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Electron tomography (ET) is an important technique in biosciences that is providing new insights into
the cellular ultrastructure. Iterative reconstruction methods have been shown to be robust against the
noise and limited-tilt range conditions present in ET. Nevertheless, these methods are not extensively
used due to their computational demands. Instead, the simpler method weighted backprojection
(WBP) remains prevalent. Recently, we have demonstrated that a matrix approach to WBP allows a
significant reduction in processing time both on central processing units and on graphics processing
units (GPUs). In this work, we extend that matrix approach to one of the most common iterative
methods in ET, simultaneous iterative reconstruction technique (SIRT). We show that it is possible to
implement this method targeted at GPU directly, using sparse algebra. We also analyse this approach
on different GPU platforms and confirm that these implementations exhibit high performance. This

may thus help to the widespread use of SIRT.
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1. INTRODUCTION

Tomographic reconstruction allows the elucidation of the three-
dimensional (3D) structure of an object from a set of projection
images taken from it by means of some imaging technique.
Tomographic reconstruction is essential in many disciplines
related to medicine and biology [1]. In cellular biology, in
particular, electron tomography (ET) is making it possible
to visualize cellular environments at an unprecedented level
of detail [2, 3]. Actually, major breakthroughs have been
achieved thanks to this technique [4]. To fulfil the resolution
requirements, large images (typically in the range 1024×1024–
4096 × 4096) are used and thus huge tomograms (0.5–8 giga-
voxels) are computed.

Weighted backprojection (WBP) is currently the standard
method in ET. However, under the noise and limited-tilt range
conditions found in this field, iterative methods have turned
out to be far superior [5]. Nonetheless, their computational
demands have prevented their extensive use, even though high-
performance computing strategies have been developed [6].

In the last few years, graphics processing units (GPUs) have
revolutioned the field of ET and have played an important
role to substantially accelerate these iterative methods [7, 8].
Sophisticated GPU strategies have been devised which succeed
in reconstructing huge tomograms with these methods at about
1 min iteration pace [9]. However, tricky features and low-level
GPU programming have been necessary to get this excellent
performance.

Tomographic reconstruction can be modelled as a least
square problem to be solved by matrix algorithms [1], where
large sparse matrices are involved. Not long ago, the memory
requirements precluded storage of the matrix coefficients, so
they were recomputed on the fly. However, modern computing
platforms now ship with significant amount of memory.
Recently, we have presented a fresh implementation of WBP
that exploits the matrix coefficients kept in memory, which
remarkably accelerates the reconstruction process, both in
central processing units (CPUs) and in GPUs [10]. In addition to
the high speedup, one main advantage of this matrix approach is
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its simplicity, in the sense that the tomographic reconstruction
method is simply formulated as a set of sparse matrix vector
(SpMV) products. Another advantage is the versatility, since no
special low-level feature of the underlying computing platform
has to be exploited.

In this work, we extend the matrix approach to iterative
methods and evaluate it on different GPU platforms. Our goal
is to demonstrate that it is possible to implement these methods
directly using sparse algebra and that these implementations
are indeed efficient and exhibit high performance. Therefore,
this may contribute to extend the use of iterative reconstruction
methods.

This work has been structured as follows: Section 2 presents
an introduction to ET and describes the standard reconstruction
method, WBP. Section 3 introduces the iterative method
addressed in this work, simultaneous iterative reconstruction
technique (SIRT) and our matrix approach to SIRT is then
described in Section 4. The performance evaluation is carried
out in Section 5.

2. ELECTRON TOMOGRAPHY

ET is an imaging technique that is playing a major role in cellular
biology [2, 11]. It allows visualization of the architecture of
organelles, cells and complex viruses at close-to-molecular
resolution. The level of resolution currently attainable by ET
allows the identification of macromolecular assemblies and
their interactions in the native cellular context. ET has made
possible major breakthroughs in life sciences [4, 12–17].

In ET, the so-called single-axis tilting is the most common
data collection geometry used to record the set of projection
images required to compute the 3D reconstruction. For the
collection of a single-axis tilt series, a single specimen is tilted
over a range typically ±60◦ or 70◦ in small tilt increments
(1–2◦), and an image of the same object area is recorded at
each tilt angle via, typically, charge-coupled device cameras
(see sketch in Fig. 1). Sometimes, for better angular coverage,
another tilt series is taken with the specimen rotated by 90◦
(the so-called double-axis tilting geometry) [18, 19]. Typical
electron tomographic data sets thus have a number of images
between 60 and 280. Due to the resolution requirements, the
image size typically ranges from 1024 × 1024 to 4096 × 4096
pixels.

The computation of a distortion-free 3D reconstruction
from a single-axis tilt series would require that a data set
from the full tilt range (±90◦) be available. Due to physical
limitations of microscopes, the angular tilt range is limited
and, as a result, tomographic tilt series have a wedge of
missing data corresponding to the uncovered angular range.
This limitation, which is not present in medical tomography,
causes distortions in 3D reconstructions. The structural features
in the 3D reconstruction become elongated and blurred along
the Z direction (i.e. there is a significant loss of resolution in the

FIGURE 1. Single-tilt axis data acquisition geometry. The specimen
is imaged in the microscope by tilting it over a range typically ±60◦ or
70◦ in small tilt increments. As a result, a set projection images needed
to structure determination is collected. Note that the structure to be
reconstructed can be considered as made up of slices perpendicular to
the tilt axis, as sketched.

Z-direction, which is the electron beam direction) [5, 20]. On
the other hand, the signal-to-noise ratio in the acquired images
is extremely low (in the order of 0.1) due to the use of low
electron doses to reduce the radiation damage of the specimen
during imaging.

Therefore, ET requires a method of ‘3D reconstruction from
projections’ to be able to deal with limited angle conditions and
extremely low signal-to-noise ratios of the projection images.
Currently, the standard method in the field is the well-known
WBP. It assumes that projection images represent the amount
of mass density encountered by imaging rays. The method
simply distributes the known specimen mass present in projec-
tion images evenly over computed backprojection rays. In this
way, specimen mass is projected back into a reconstruction
volume (i.e. backprojected). When this process is repeated
for a series of projection images recorded from different tilt
angles, backprojection rays from the different images intersect
and reinforce each other at the points where mass is found in
the original structure. Therefore, the 3D mass of the specimen
is reconstructed from a series of projection images. The back-
projection process involves an implicit low-pass filtering that
makes reconstructed volumes strongly blurred. In practice, in
order to compensate for the transfer function of the backpro-
jection process, a previous high-pass filter (i.e. weighting) is
applied to the projection images, hence the term ‘WBP’. For a
more in-depth description of the method, refer to [21].
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FIGURE 2. 3D reconstruction of Vaccinia virus [13]. Left: Result with WBP. Right: 100 iterations of the iterative method called SIRT. The XZ,
XY and ZY planes are shown at top-left, bottom-left and bottom-right panels, respectively. The planes containing the Z-axis clearly show the
artefacts due to the limited-tilt range conditions present in ET, in particular blurring and fading-out of features. Furthermore, it is clearly seen that
the contrast in the SIRT reconstruction is much better.

The relevance of WBP in ET mainly stems from the linearity
and the computational simplicity of the method (O(N3 × M),
where N3 is the number of voxels of the volume and M is the
number of projection images). The main disadvantages of WBP
are that (i) the results may be strongly affected by limited tilt
angle data obtained with the microscope and (ii) WBP does not
implicitly take into account the transfer function of the electron
microscope or the noise conditions. As a consequence of the
latter, a posteriori regularization techniques (such as low-pass
filtering) may be needed to attenuate the effects of the noise.

Several GPU implementations to accelerate WBP and make
it suitable for real-time reconstruction have been reported in
ET [7, 8]. Recently, a brand new GPU approach has been
introduced that addresses WBP from a matrix perspective by
formulating the reconstruction problem as a set of SpMV
products, with the matrix being constant and shared by all
the products [10]. In conjunction with the use of optimal
matrix storage formats on GPUs, this approach succeeds in
further accelerating WBP without dealing with low-level GPU
programming features.

On the other side of the arena, there exists another family of
reconstruction methods, the series expansion methods. These
ones model the tomographic reconstruction problem as a large
system of linear equations. This system is typically solved
by means of iterative methods, which leads to the iterative
reconstruction methods (see next section). These methods have
turned out to be more robust against the conditions (limited
angle data, noise) found in ET [5, 22, 23]. However, they
have not been used extensively in this field because of their
computational demands. SIRT is one of such methods [24, 25].

Figure 2 illustrates the behaviour of WBP and SIRT in the
3D reconstruction of Vaccinia virus [13]. On the left-hand
side of the figure, the reconstruction obtained using WBP is
shown, where the noise and artefacts due to the limited-tilt range
conditions in ET are apparent. On the right, the reconstruction
resulting from 100 iterations of SIRT is presented, which shows
better contrast and fewer artefacts. Nonetheless, SIRT took two
orders of magnitude longer than WBP. Then, high-performance
computing should be applied in order to reduce the computation
time of SIRT. Our approach to accelerate it combines GPU
computing and the matrix implementation of SIRT.

3. ITERATIVE RECONSTRUCTION:
THEORETICAL BACKGROUND

Assuming voxels as basis functions to represent the volume,
the 3D problem can then be decomposed into a set of
independent two-dimensional (2D) reconstruction subproblems
corresponding to the 2D slices perpendicular to the tilt axis [6]
(see Fig. 1 where a slice is sketched). The 3D volume is obtained
by stacking the 2D slices reconstructed from the corresponding
sinogram (i.e. the set of 1D projections). In the following, we
thus focus on the 2D reconstruction problem.

Iterative methods are based on an image formation model
where the projection measurements (i.e. the components of the
sinogram p) depend linearly on the slice g� in such a way that

pi =
m∑

j=1

Ai,j g
�
j 1 ≤ i ≤ n, (1)
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where n = ntiltsnbins is the dimension of p, with ntilts being the
number of projection angles and nbins the number of projection
values obtained for every projection angle; m = mxmy is
the dimension of g�, i.e. the total number of voxels in every
slice, with mx and my being the number of voxels in the x

and y dimensions, respectively and Ai,j is a weighting factor
representing the contribution of the voxel j to the projection
value i, and its value only depends on the geometry of the
projections. The set of weighting factors defines the n × m

matrix A. This matrix is sparse, i.e. many coefficients are zero,
since the contribution of every voxel is associated with a small
subset of projection values. Equation (1) can then be expressed
as an SpMV product, p = Ag�, where A is usually called the
forward projection operator.

Under those assumptions, the reconstruction of the slice g�

can be modelled as the inverse problem of estimating the g�
j ’s by

solving the system of linear equations given by Equation (1). In
practice, the system is ill-conditioned due to a variety of reasons
(e.g. noise, discretization process, etc.) and a least square
problem must thus be solved to compute an approximation g
of g�. As a consequence, iterative methods to solve the system
are used, which lead to the iterative tomographic reconstruction
methods.

There exist numerous iterative approaches for the reconstruc-
tion problem. In the ET field, SIRT is an iterative method that
has got an excellent reputation. Conceptually speaking, in each
iteration, this algorithm computes the error between the pro-
jection measurements and the projections calculated from the
reconstruction at the current iteration. Then, it refines the recon-
struction by backprojecting the average error. In mathematical
terms, the algorithm considers all the orthogonal projections of
the current iterate (k) onto the hyperplanes defined by the equa-
tions of the system (Equation (1)), and takes the average of these
projections, as expressed by the following equation:

gk+1
j = gk

j +
n∑

i=1

pi − ∑m
l=1 Ai,lg

k
l∑m

l=1 A2
i,l

Ai,j for 1 ≤ j ≤ m. (2)

Equation (2) can be expressed in matrix form as:

gk+1 = gk + �gk+1 = gk + Bek, (3)

where B = AT is the backward projection operator, and the
components of vector ek are:

ek
i = pi − qk

i

wi

for 1 ≤ i ≤ n (4)

with

wi =
m∑

l=1

A2
i,l , (5)

and

qk
i =

m∑

l=1

Ai,lg
k
l for 1 ≤ i ≤ n (6)

or, in matrix form:
qk = Agk. (7)

Equation (4) basically consists of simple component-
wise vector operations. The weights in Equation (5) are
calculated directly from the matrix A and are constant for all
iterations. Equations (7) and (3) show that one iteration of
the reconstruction method requires two SpMV operations, with
matrix A and its transpose B = AT, respectively.

Iterative 3D reconstruction can then be expressed as:

gk+1
s = gk

s + Bek
s 1 ≤ s ≤ Nslices, (8)

where Nslices is the total number of slices in the 3D volume
and s denotes the index of the slice to be computed from the
corresponding sinogram. As a consequence, the reconstruction
of the volume requires 2 × K × Nslices SpMV products, where
K is the number of iterations. In half of the products, the
matrix involved is A (forward projection operator) whereas its
transpose B = AT (backprojection operator) is involved in the
other half. Those matrices are common for all slices because
the projections have the same geometry for all slices. In those
matrices, the location of non-zero coefficients (referred to as
non-zeroes) exhibits a regular pattern related to its definition.
Using the voxel-driven projection approach [26], the elements
of B = AT are located in mx × nbins blocks, which are mostly
structured by bi-diagonals [10]. Moreover, in every row of
every block, there are no more than two contiguous non-zeroes.
Therefore, the maximum number of non-zeroes in each row of
that matrix is 2 ntilts. The same features are applicable to matrix
A, with the appropriate modifications. The reader is referred
to [10] for an in-depth description of the structure of the matrix.

4. MATRIX APPROACH TO ITERATIVE
RECONSTRUCTION

Our matrix approach consists in implementing the
reconstruction method as a set of SpMV products, along
with some basic vector operations, as described in the previous
section. Algorithm 1 describes the matrix implementation of
SIRT and highlights the two SpMV operations in each iteration,
the operations performed at the GPU (i.e. the GPU kernels)
marked with the symbol �, and also the CPU–GPU transfers.

The size of the matrices A and B are reduced significantly by
exploiting of the symmetry relationships among the projection
coefficients [10]. To store A and B, we make use of a recently
devised scheme to represent sparse matrix data on GPUs
and that have turned out to be key for an efficient SpMV
computation [27]. This scheme is known as ELLPACK-R and is
based on a well-known format proposed some time ago [28, 29].
Given a sparse matrix M, ELLPACK-R consists of two arrays
with a number of rows equal to that of the original matrix and
a number of columns equal to the maximum number of non-
zeroes in the rows. The first array, Msp, stores the non-zeroes
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and the second, I , stores the original column index in matrix M
for each value in Msp. An additional vector rl keeps the actual
number of non-zeroes in each row. The reader is referred to [27]
for a detailed description of the ELLPACK-R format.

The SpMV operation using the ELLPACK-R scheme is
optimally executed on the GPU by launching multiple threads
that, independently, compute the product of a row of the
matrix [27]. Despite that the matrices A and B = AT are stored
using the same format and that the actual number of operations
is the same, the performance is not expected to be similar due to
their different characteristics, as explained in the following. In
ET, the number of tilt angles is much lower than the dimension
of the images. As a consequence, the matrices A and B are not
square at all, which leads to a different structure when translated
into the ELLPACK-R format. Figure 3 presents an illustrative
example with mxmy = 2 × 6 and ntiltsnbins = 2 × 4 where the
arraysAsp andBsp of the ELLPACK-R format are shown. It turns
out that B has a higher number of rows (m = mxmy) that are
more evenly filled, with a maximum number of non-zeroes per
row of 2 ntilts. On the contrary,A has a lower amount of rows that

Algorithm 1 Matrix SIRT algorithm on GPU.

Compute A and copy it to GPU device memory
� Compute B matrix
� Compute the weights w (Eq. 5)
For s = 1 to s = Nslices

Copy ps to GPU device memory
� g0

s = 0
� For k = 0 to K − 1

� qk = Agk
s ; ← SpMV product

� Compute ek
s from ps, qk, w (Eq. 4)

� gk+1
s = gk

s + Bek
s ; ← SpMV product

Copy gK
s to CPU main memory

FIGURE 3. ELLPACK-R format of A and B = AT matrices.

are less evenly filled. Moreover, the length of the rows in A may
be significantly higher than in B. These structures have a strong
impact on the exploitation of GPU, and so the product Bek is
accomplished by more concurrent threads with more balanced
workload, which ensures better GPU multiprocessor occupancy
and parallelism than the computation of Agk

s in Algorithm 1.
Finally, another important difference between A and B is the
fact that the ELLPACK-R structure of the latter is well defined
a priori (its dimensions are m × (2 ntilts)), which allows its
creation using the parallel capabilities of the GPU, whereas it
does not hold for the former at all.

5. RESULTS

The matrix approach to SIRT has been implemented using the
library for SpMV based on the ELLPACK-R format developed
by the authors [27, 30]. It has been evaluated using several
representative data sets on three different state-of-the-art GPUs
(NVIDIA C1060, GTX285 and C2050) that were installed in
different computers. Compute unified device architecture was
the choice for GPU code development. The characteristics of
the GPUs are shown in Table 1. Note that C2050 is based on the
cutting-edge ‘Fermi’NVIDIA technology. For comparison with
the CPU implementations, a computer with a CPU Intel Xeon
Quad-core 5520 at 2.27 GHz and 24 GB SDRAM DDR3 at 1333
MHz, under Linux was employed. Two CPU implementations
have been tested. The first one (denoted by ‘Recalc.’ in Table 1)
is the standard implementation based on recalculation of the
matrix coefficients (i.e. the coefficients Ai,j , Bj,i are calculated
on-the-fly every time they are needed). The second one [denoted
by compressed row storage (CRS)] is a matrix implementation
that makes uses of the most extended sparse matrix storage
format on CPUs, the CRS, as already done in our previous
work [10]. In both cases, one core of the CPU was used.

Three data sets (denoted by data 1–3) with 71 images of
1024 × 1024, 61 images of 1024 × 1024 and 60 images of
2048 × 2048 were processed to yield tomograms of 1024 ×
1024 × 140, 1024 × 1024 × 480 and 2048 × 2048 × 256,
respectively. Two more data sets were tested in order to

TABLE 1. Characteristics of the GPUs.

C1060 GTX280a GTX285 C2050

Peak GFlops 933 933 1062 1030
Bandwidth (GB/s) 102 141 159 144
Clock (GHz) 1.3 1.3 1.4 1.15
Mem. clock (MHz) 800 1107 1242 1500
Memory (GB) 4 1 2 2.6
Cores 240 240 240 448

aThis GPU was not used in this work. It is included for comparison
with the work [9].
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TABLE 2. Run-time results.

Total run-time (s)—CPU Total run-time (s)—GPU

Tilt-series, thickness Mem (MB) Recalc. CRS C1060 GTX285 C2050

Data 1 71 × 1024 × 140 251.93 10 539.92 3028.19 130.05 95.89 87.77
Data 2 61 × 1024 × 1024, 480 628.84 30 302.82 10 766.78 562.53 403.96 296.58
Data 3 60 × 2048 × 2048, 256 1587.93 64 176.81 20 463.08 1193.74 881.17 665.84
Data 4 61 × 712 × 1012, 296 268.13 12 771.30 3454.33 143.98 116.85 110.93
Data 5 61 × 1424 × 2024, 591 1070.78 138 853.00 38 886.52 1538.39 1269.63 1137.38

compare with the most advanced GPU solution thus far [9].
That work assessed their implementation on a GPU NVIDIA
GTX280, whose characteristics are also shown in Table 1.
These data sets (denoted by data 4–5) had 61 images of
712 × 1012 and 1424 × 2024 to produce tomograms of
712 × 1012 × 296 and 1424 × 2024 × 591, respectively. A
representative amount of 30 iterations of SIRT were run for all
experiments.

The results, including memory consumption and total
processing time on the CPU and GPUs, are summarized in
Table 2. The total time includes the computation of the matrices,
which turned out to be around 1–2% in all cases. We also
measured the time spent in the data transference between
the CPU and the GPU, and it turned out to be in the order
of 1% of the total time. The results clearly show that the
requirements fit the amount of memory shipped in standard
GPUs, with 1.5 GB in the largest case. Taking into account
that standard GPUs have 4 GB or more, it is expected that
this matrix approach will readily accommodate the demands
needed for even larger tomographic reconstructions. Table 2
also shows that the matrix CPU implementation using the CRS
format involves an acceleration factor around 3.0×–3.5× when
compared with the approach based on coefficient recalculation,
thereby confirming the behaviour previously observed with
WBP [10]. As far as GPU processing times are concerned, the
results confirm that 30 iterations of SIRT for huge tomographic
reconstructions (1.0–1.7 Gvoxel), such as data 3 or data 5, can
be computed in only 11–19 min, which is striking.

Table 3 and Fig. 4 show that all GPU implementations
achieve a significant acceleration factor compared with the
CPU ones. In the case of coefficient recalculation, the GPU
proves to outperform the CPU in a factor even higher than
100×. Nevertheless, the gain obtained by the GPU compared
with the CRS-based CPU implementation is reduced by the
factor of 3.0×–3.5× mentioned above, thus reaching 36× in
the best case. With regard to the particular GPUs, the Fermi
architecture remarkably exhibits the best performance with
an acceleration factor >90× and >30×, for the two CPU
implementations, respectively. The C1060 reaches a very good
speedup factor ([53×, 90×] and [17×, 25×], respectively), but
it is consistently lower than the other GPUs. The behaviour
of GTX285 is in-between. The speedup factors achieved by

TABLE 3. Speedup factors. GPU vs. CPU.

C1060 GTX285 C2050

CPU—Recalc.
Data 1 81.05 109.92 120.08
Data 2 53.87 75.01 102.18
Data 3 53.76 72.83 96.38
Data 4 88.70 109.29 115.13
Data 5 90.26 109.37 122.08

CPU—CRS
Data 1 23.29 31.58 34.50
Data 2 19.14 26.65 36.30
Data 3 17.14 23.22 30.73
Data 4 23.99 29.56 31.14
Data 5 25.28 30.63 34.19

the GPUs for matrix SIRT prove to be lower than those
previously obtained for matrix WBP [10], which were in
the range [100×, 130×] and [28×, 36×] for the two CPU
implementations, respectively. As explained in Section 3, this
is caused by the fact that the SpMV operation with the matrix
A is not as efficient as that with B = AT.

Finally, our matrix approach was compared with the leading
GPU solution in the ET field [9], which relies on low-level
programming and exploitation of tricky features of GPUs.
Table 4 reproduces the results (time per iteration) obtained by
that work and also presents those obtained with our matrix
approach on the different platforms. The fact that the GPU
used in that work (GTX280) is different from some of the
GPUs tested here (GTX285 and C2050) makes the results
not directly comparable. However, our GPU C1060 essentially
has the same features as the GTX280, though with a slower
memory and worse bandwidth. Therefore, the assessment of
the goodness of the matrix approach based on the comparison
between the GTX280 and C1060 is thus reliable. Table 4
indeed shows that the matrix implementation performs better.
An analysis of the speedup of C1060 (calculated from the time
spent at the GTX280) with the different data sets reveals that the
gain decreases with the data set size. For medium-large sizes
(data 4), the gain is higher than 2× whereas for huge data sets
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FIGURE 4. Speedup factors obtained with matrix SIRT on the different GPU when compared with the CPU implementations (left) based on
coefficient recalculation and (right) matrix-based using the CRS format.

TABLE 4. Comparison with Xu et al. [9].

Data 4 Data 5

Average iteration time (s)
GPU GTX280 [9] 10.67 58.47
GPU C1060 4.80 51.28
GPU GTX285 3.90 42.32
GPU C2050 3.70 37.91

Speedup
GPU C1060 2.22 1.14
GPU GTX285 2.74 1.38
GPU C2050 2.88 1.54

(data 5) the matrix implementation is slightly better (1.14×).
This behaviour is also shared by the other two GPUs, GTX285
and C2050. Therefore, these results draw the conclusion that
the matrix approach succeeds in providing reconstructions at a
speed better than sophisticated GPU strategies. Finally, Table 4
also confirms the Fermi GPU is the best platform for medium
to huge data sets.

6. CONCLUSION

In this work, we have presented a new approach to 3D
reconstruction by means of SIRT. Although we have focused
on ET, the approach is readily extendible and applicable to
other tomography fields. It relies on the formulation of the
iterative method as a set of SpMV products. The matrices
with the projection coefficients are kept in memory during the
whole process by means of optimized sparse data structures.
They are thus exploited in the calculation of all the slices
of the volume. The results undoubtedly demonstrate that the
matrix approach outperforms the standard approach based on

coefficient recalculation. When combined with the power of
GPUs, the new approach achieves striking speedup factors.
Moreover, the approach proves to provide large reconstructions
at a pace better than sophisticated GPU strategies. In addition
to high performance, the major advantages of this approach are
the simplicity to be implemented and the versatility to be run
under different GPU architectures.
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