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a b s t r a c t

Electron tomography allows elucidation of the molecular architecture of complex biological specimens.
Weighted backprojection (WBP) is the standard reconstruction method in the field. In this work, three-
dimensional reconstruction with WBP is addressed from a matrix perspective by formulating the prob-
lem as a set of sparse matrix-vector products, with the matrix being constant and shared by all the prod-
ucts. This matrix approach allows efficient implementations of reconstruction algorithms. Although WBP
is computationally simple, the resolution requirements may turn the tomographic reconstruction into a
computationally intensive problem. Parallel systems have traditionally been used to cope with such
demands. Recently, graphics processor units (GPUs) have emerged as powerful platforms for scientific
computing and they are getting increasing interest. In combination with GPU computing, the matrix
approach for WBP exhibits a significant acceleration factor compared to the standard implementation.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Electron tomography (ET) is an essential structural technique
in cellular biology (Lucic et al., 2005). An individual specimen is
imaged in the electron microscope, and a set of projection images
is taken at different orientations. The tomographic reconstruction
algorithms combine those images to obtain the three-dimensional
(3D) structure of the specimen. Tomographic reconstruction can
be modelled as a least square problem to be solved by matrix
algorithms (Herman, 2009), where large sparse matrices are in-
volved. In the implementations, however, the matrix coefficients
are usually re-computed because of the large memory require-
ments. Nowadays, the memory available in modern computers
allows storage of large matrices, which may improve the perfor-
mance of algorithms. Nevertheless, sparse matrix data structures
must be carefully devised to optimize the access to the memory
hierarchy.

Large projection images (1K � 1K–4K � 4K pixels) are typically
used to fulfill the resolution needs in ET. High performance com-
puting has traditionally been used to cope with the computa-
tional requirements (Fernández, 2008). Graphics Processing
Units (GPUs) are receiving great interest in 3D electron micros-
copy because many image processing procedures are well suited
for the SIMD (single instruction, multiple data) parallelism

massively exploited by GPU (Castano-Diez et al., 2007, 2008; Sch-
meisser et al., 2009). Programming interfaces, such as CUDA, facil-
itate the development of applications targeted at GPUs (Castano-
Diez et al., 2008; Nickolls et al., 2008). The performance of GPUs
for common steps in ET, and in particular for tomographic recon-
struction, has turned out to be excellent (Castano-Diez et al.,
2007, 2008).

This work introduces a matrix approach to tomographic recon-
struction. The standard method, weighted backprojection (WBP), is
firstly formulated as a set of sparse matrix–vector products
(SpMV), where the sparse matrix is invariable. The nonzero ele-
ments of the matrix are stored into an optimized sparse matrix
data structure. The power of GPU computing is then exploited to
further improve the performance and yield reconstructions of bio-
logical datasets in seconds.

2. Matrix WBP

Assuming single tilt axis geometry, the 3D problem can be
decomposed into a set of independent two-dimensional (2D)
reconstruction subproblems corresponding to the slices perpendic-
ular to the tilt axis (Fernández, 2008). The 3D volume is obtained
by stacking the 2D slices reconstructed from the corresponding
sinogram (i.e. the set of 1D projections). Now we will thus focus
on the 2D reconstruction problem.

The projection process can be modelled as follows. The sino-
gram p is related to the slice gH by the discrete Radon Transform
or projection operation:
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pi ¼
Xm

j¼1

Ai;jgH

j 1 6 i 6 n ð1Þ

where n ¼ ntiltsnbins is the dimension of p, with ntilts being the num-
ber of projection angles and nbins the number of projection values
obtained for every projection angle; m ¼ mxmy is the dimension of
gH, i.e. the total number of voxels in every slice, with mx and my

being the number of voxels in the x and y dimensions, respectively;
and Ai;j is a weighting factor representing the contribution of the
voxel j to the projection value i, and its value only depends on the
geometry of the projections. The set of weighting factors defines
the n�m matrix A. This matrix is sparse, i.e. many coefficients
are zero, since the contribution of every voxel is associated with a
small subset of projection values.

Therefore, the projection operation can be defined as a sparse
matrix–vector product, p ¼ AgH, where A is usually called the for-
ward projection operator. Then, the system p ¼ AgH must be
solved to compute the unknown slice gH. In practice, the system
is ill-conditioned and a least square problem must thus be solved
to compute an approximation of gH.

WBP is the standard method to solve this problem (Radermach-
er, 2006), which reconstructs the specimen by uniformly distribut-
ing the specimen density present in the projection images over
computed backprojection rays. Formally, the backprojection can
be defined by means of the matrix backprojection operator B as:

gj ¼
Xn

i¼1

Bj;ipi 1 6 j 6 m ð2Þ

where B is the transpose of matrix A, and when the number of tilt
angles is large enough, the vector g is a good estimation of the slice
gH. In WBP a high-pass filter is applied to the projections before
backprojection (Radermacher, 2006), whose burden is usually neg-
ligible. In the following, we assume that the projections are already
weighted.

Our matrix WBP approach then reconstructs a 3D object as a set
of independent SpMV products:

gs ¼ Bps 1 6 s 6 Nslices ð3Þ

where Nslices is the total number of slices in the volume. Note that
the matrix B: (1) is involved in all the products, since the projec-
tions have the same geometry for all slices; and (2) is sparse and
the location of nonzero coefficients (referred to as nonzeroes)
exhibits some regular pattern related to its definition (i.e.
Bj;i ¼ Ai;j). Using the voxel-driven projection approach (Bruyant,
2002), the elements Bj;i are located in mx � nbins blocks, which are
mostly structured by bi-diagonals. Moreover, in every row of every
block, there are no more than two contiguous nonzeroes. Therefore,
the maximum number of nonzeroes in each row of matrix B is
2ntilts. Fig. 1 and Supplementary Fig. S1 illustrate the pattern of B.

Nowadays, the memory requirements to store the sparse matrix
are fulfilled in current computers, and the Compressed Row Stor-
age (CRS) is the most extended format on CPUs (Bisseling, 2004).
Let m and Nz be the number of rows and the number of nonzeroes
of the matrix, respectively. The sparse data structure consists of (1)
an array of Nz floating-point numbers that stores the entries; (2) an
array of Nz integers that keeps their column index; and (3) an array
of m integers with the pointers to the beginning of every row in the
arrays (1) and (2). For GPU, however, other data structures have
proven better suited for the SpMV operation (Vázquez et al., 2009).

3. Tuning matrix WBP on GPUs

The regularity and the symmetry relationships between the
nonzeroes of B can be exploited to improve the memory access
and thus accelerate the SpMV operations on GPUs. Four different
implementations have been developed:

3.1. General

The simplest implementation is based on the storage of matrix
B in a sparse matrix data structure optimal for GPUs: the ELL-R
scheme (Vázquez et al., 2009). This format consists of two arrays
of dimension m� ð2ntiltsÞ, where m ¼ mxmy is the number of rows
of B and 2ntilts is the maximum number of nonzeroes in the rows.
The first array, Bsp, stores the nonzeroes and the second, I, stores
the original column index ðiÞ in matrix B for each value in Bsp. An

Fig. 1. Pattern of matrix B, using only one tilt angle, with nbins ¼ 4, and a slice of 4� 4 voxels. In general, a projected pixel contributes to two neighbour projection bins (left).
The weighting factors ðl=d; r=dÞ are computed proportionally to the distance to the centre of the projection bin. For instance, the projection of the 3rd pixel contributes to the
2nd and 3rd projection bins, with the proper weights (right). This projection approach makes the matrix B exhibit a blocked bi-diagonal structure (right). Nonzero coefficients
are denoted by black boxes in the sketch of matrix B.
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additional vector rl of dimension m keeps the actual number of
nonzeroes in each row. The arrays Bsp and I store their elements
in column-major order. As every thread in the GPU computes a
row, this ensures optimal coalesced global memory access. Fig. 2
shows the data structures involved in the ELL-R scheme and the
algorithm for the SpMV operation on the GPU.

3.2. Symmetry 1 (sym1)

The relationship between adjacent nonzeroes in B, bj;i–0 and
bj;iþ1 – 0, is exploited to reduce the storage size. These pair of non-
zeroes comes from the projection coefficients of a given voxel and
verifies bj;iþ1 ¼ 1� bj;i (Fig. 1). In this implementation, only the first
coefficient of the pair is stored in the ELL-R structure whereas the
other is easily computed on the fly. Therefore, the size of the data
structure is reduced at 50%.

3.3. Symmetry 2 (sym2)

This implementation also takes advantage of the symmetry
existing in the projection of a slice: Assuming that the centre of
the slice is (0,0), if a point ðx; yÞ is projected to a point r ¼
x cosðhÞ þ y sinðhÞ in the projection corresponding to the tilt angle

h, it is easy to see that the point ð�x;�yÞ of the slice is then pro-
jected to rs ¼ �r in that projection. Therefore, for a given tilt angle
h, there is no longer need to store the projection coefficients for all
the points ðx; yÞ in the slice. This further reduces the storage space
of the data structure in nearly another 50%.

3.4. Symmetry 3 (sym3)

This implementation also exploits the fact that in the tilt range
typically used in ET the same tilt angles are found in the positive
and negative halves (i.e., �70, �69, . . ., 69, 70). Under these condi-
tions, a projection angle of �h makes the point ðx;�yÞ projected to
the point r ¼ x cosð�hÞ � y sinð�hÞ ¼ x cosðhÞ þ y sinðhÞ. Therefore,
the projection coefficients are shared with the projection of the
point ðx; yÞ with angle h. As a result, the space requirements for
the sparse matrix are further reduced in nearly 50% again.

The three geometry-related symmetry properties allow a signif-
icant reduction of the memory requirements to store the matrix B.
Supplementary Fig. S2 illustrates the symmetry relationships be-
tween the components of an example matrix.

The matrix B in ELL-R format is generated and stored at the GPU
in order to be exploited for all the SpMV operations and avoid
latencies due to transfers CPU–GPU. The sinogram being processed

Fig. 2. Sparse data structure based on the ELL-R scheme. (Left) The nonzeroes of matrix B (sketched in Figure S1) are densely stored in an array Bsp . An auxiliary array I keeps
the original column index in B of the components stored in Bsp . An additional vector rl keeps the actual number of nonzeroes in each row of the matrix. (Right) Algorithm for
SpMV on GPU using the ELL-R scheme.

Fig. 3. Memory requirements of the different implementations for the datasets. The limit of 896 MB is imposed by the memory available in the GPU used in this work. The
implementations needing higher amounts of memory than this value cannot run on this GPU. However, the use of the symmetries significantly reduces the demands, making
most of the problems affordable.
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is bound to the fast texture cache of the GPU (Nickolls et al., 2008).
The floating-point computations are performed with single
precision.

4. Experimental evaluation

The matrix WBP approach was implemented with CUDA and
evaluated on a CPU based on Intel Core 2 E8400 at 3.00 GHz, 8
GB RAM and 6 MB L2 cache, under Linux, and a GPU of a NVIDIA
GeForce GTX 295 card, with 30 multiprocessors of 8 cores (i.e.
240 cores) at 1.2 GHz, 896 MB of memory and compute capability
1.3. For the CPU, the standard sparse matrix format, CRS, was used.
For the GPU, the four implementations based on the ELL-R format
were used.

Synthetic datasets were created to carry out an extensive per-
formance evaluation. They comprised a number of aligned projec-
tion images to yield cubic 3D reconstructions. The datasets had
different image sizes (512, 768 and 1024) and number of tilt angles
(60, 90 and 120). These data sizes resemble reconstructed volumes
with size from 1024 � 1024 � 128 to 2048 � 2048 � 256 voxels,
i.e. 0.5–4 GB. Three additional datasets to actually represent exper-
imental situations were used (denoted by exp1, exp2, exp3): with
71 images of 1024 � 1024 pixels, 61 images of 1024 � 1024 pixels
and 61 images of 2048 � 2048 pixels to yield tomograms of
1024 � 1024 � 140, 1024 � 1024 � 480 and 2048 � 2048 � 960
voxels, respectively.

Fig. 3 shows the memory demanded by the sparse data struc-
tures. In the general implementation, the demands rapidly increase

Table 1
Run-times (s).

Dataset CPU GPU

Size Tilts Standard Matrix Standard General Sym 1 Sym 2 Sym 3

512 60 94.81 23.46 2.17 1.52 0.85 0.84 0.86
512 90 142.16 35.39 2.77 2.08 1.21 1.18 1.02
512 120 189.38 47.70 3.02 2.84 1.55 1.48 1.33
768 60 319.83 78.96 6.81 4.92 2.96 2.58 2.77
768 90 478.25 116.36 8.46 7.06 4.04 3.56 3.37
768 120 637.34 155.09 9.84 – 5.20 4.72 4.06
1024 60 759.69 194.17 16.45 – 6.80 6.13 6.19
1024 90 1137.24 293.78 20.06 – 9.37 8.40 7.95
1024 120 1515.25 398.08 23.15 – – 11.15 9.54

exp1 128.96 36.45 2.97 2.00 1.22 1.06 1.14
exp2 374.21 102.36 8.23 5.71 3.43 3.20 3.27
exp3 2992.22 795.01 64.20 – – 25.18 26.05

Standard represents the implementation (for CPU and for GPU) based on recomputation of the coefficients; Matrix is the implementation of matrix WBP, using the CRS format,
on the CPU. The implementation of matrix WBP for GPU using the ELL-R format is denoted by General, and the use of the different symmetries is represented by SymX. The
results marked with ‘–’ indicate unaffordable cases due to the memory demands.

Fig. 4. Speed-up factors showed by the different matrix WBP implementations over the standard WBP based on recomputation of the coefficients. These factors were
obtained on the CPU (a) and on GPU (b). For the CPU, the matrix was stored using the CRS format whereas for the GPU the four different implementations based on the ELL-R
format were tested.
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with the problem size, approaching 2 GB in the largest case. This
amount does not turn out to be a problem in modern computers.
However, the upper boundary imposed by the memory available
in the GPU precludes addressing problem sizes requiring more
than 896 MB of memory. Nonetheless, the symmetry relationships
decrease the demands and make all problem sizes affordable on
the GPU. In particular, the use of two or three symmetries makes
it possible to address even the largest case, which is representative
of the most expensive cases in ET.

The datasets were subjected to tomographic reconstruction
with the standard WBP, based on recomputation of the coefficients,
and with matrix WBP on the CPU and on the GPU. The computation
times are summarized in Table 1. For a fair comparison, the time
required for generating the matrix was taken into account, though
it turned out to be negligible (lower than 1% of the total time). The
run-time obtained on the CPU reflects the computational complex-
ity of the algorithm, which depends linearly on m;Nslices and ntilts.
However, on the GPU the run-time increase slower than propor-
tional because of the optimized memory access and the multi-
threaded computation, which minimize latencies.

Fig. 4(a) shows that the acceleration factor thanks to the matrix
approach is in the range [3.5�, 4.0�] on the CPU, regardless of the
problem size. On the GPU, however, the situation is different (see
Fig. 4(b)). First, the reduction of the matrix storage based on the
symmetry operations is essential to obtain speed-up factors great-
er than 1.5. Second, for a given image size, the speed-up decreases
as a function of the number of tilts. Third, in general the larger the
symmetry level, the better the performance is. However, the cases

corresponding to the highest level of symmetry (sym3) and small
number of tilts (60) do not fulfill the two latter trends. Finally,
the highest speed-up factors are around 2.5 and correspond to
the highest levels of symmetry operations (sym2, sym3) with a
number of angles between 60 and 90. These results demonstrate
that matrix WBP succeeds in reducing the computing time re-
quired for tomographic reconstruction, either on CPU (by a factor
up to 4�) or GPU (up to 2.5�).

Fig. 5(a) compares the speed-up of matrix WBP on the GPU vs.
CPU. The GPU exhibits excellent acceleration factors, in general
higher than 25� and, in the case of symmetry 3, reaching up to
42�. The use of some symmetry level is key to significantly in-
crease the acceleration, otherwise the improvements only oscillate
around 15�. For a given image size and symmetry level, the speed-
up exhibits monotonically increasing curves as a function of the
number of tilts. On the other hand, the speed-up in general in-
creases with the symmetry level. The exception is for 60 tilts,
where the second level (sym2) slightly outperforms the third
one, which is clearly observed with the last three datasets.

Finally, in order to estimate the net gain by the use of matrix
WBP and GPU computing, the speed-up factors against the stan-
dard WBP on the CPU were computed (Fig. 5(b)). For comparison,
the acceleration factor of the GPU over the CPU on the standard
recomputation-based WBP is presented too. This speed-up is in
the range [45�, 65�] and thus higher than those shown in
Fig. 5(a). However, in terms of computing time, the standard
WBP is worse than the matrix WBP (Table 1). The other data in
Fig. 5(b) correspond to the different implementations of matrix

Fig. 5. (a) Speed-up factor of matrix WBP implementation on the GPU vs. CPU. (b) Effective speed-up derived from the different approaches (the standard based on
recomputation and the four matrix approaches) on the GPU compared to the standard approach on the CPU.
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WBP. They exhibit a trend similar – though scaled – to that shown
in Fig. 5(a). And it is clearly seen that matrix WBP on the GPU yield
excellent net speed-ups in the range 105�, �155�, depending on
the symmetry level and the problem size. More importantly, all
this acceleration factors lead to the capability of computing recon-
structions of 1–4 GB in size in around 10 s, as Table 1 shows.

5. Discussion and conclusion

This work has addressed the tomographic reconstruction prob-
lem from a matrix perspective. The standard method, WBP, has
been formulated as a set of sparse matrix–vector products, with
the matrix being constant for all the slices in the volume. An opti-
mized implementation for GPUs has also been developed. The re-
sults demonstrate that the matrix approach succeeds in reducing
the computation time on CPUs and GPUs, with an acceleration fac-
tor of 4� and 2.5�, respectively. This difference in the acceleration
rate between the two platforms comes from the extraordinary
massively parallel computing capabilities of the GPUs, which also
make them very fast for the standard implementation based on
coefficient recalculation. The conjunction of matrix WBP and GPU
computing yields significant acceleration compared to the stan-
dard implementation on CPU and is thus capable of providing
tomograms in a few seconds.

Several geometry-related symmetry relationships have been
exploited to reduce the matrix, which is important in GPUs due
to their limited available memory. The highest level of symmetry
(sym3) yields the best performance with a relatively large number
of tilt angles. The level of symmetry 2 is an interesting option since
(1) there is no prerequisite for the tilt angles, (2) fulfills the mem-
ory requirements of most ET problems, and (3) also provides good
performance, especially for a low number of tilt angles.

This matrix approach can be easily applicable or extendible to
other geometries or methods. It is suitable for double-tilt axis ET,
where the same matrix would be exploited for the two axes. Iter-
ative reconstruction methods, which are getting increasing interest
in the field (Lucic et al., 2005), would benefit from this approach as
well. In these methods, the projection operation can also be imple-
mented as a sparse matrix–vector product, with the transpose of
the matrix used for backprojection. This matrix approach thus
opens up the possibility of implementing reconstruction methods
with sparse linear algebra. Finally, the fact that tomograms can
be quickly computed in the order of seconds makes this matrix
approach suitable for real-time ET systems (Zheng et al., 2007;
Suloway et al., 2009).

The code for matrix WBP will be available through the group’s
website. Although it was developed with NVIDIA CUDA, its imple-
mentation with OpenCL, the new standard for GPU programming,
is straightforward. This will allow exploitation of the GPUs from
different manufacturers.
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