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Abstract

The sparse matrix vector product (SpMV) is a paramount operation
in engineering and scientific computing and, hence, has been a subject of
intense research for long. The irregular computations involved in SpMV
make its optimization challenging. Therefore, enormous effort has been
devoted to devise data formats to store the sparse matrix with the ulti-
mate aim of maximizing the performance. The Graphics Processing Units
(GPUs) have recently emerged as platforms that yield outstanding accel-
eration factors. Currently, SpMV implementations for NVIDIA-GPUs
have already appeared on the scene. This work proposes and evaluates a
new implementation of SpMV for GPUs based on a new matrix storage
format, called ELLPACK-R, and compares it against a variety of formats
proposed elsewhere. The most important qualities of this new format is
that (1) no preprocessing of the sparse matrix is required, and (2) the
resulting SpMV algorithm is very regular. The comparative evaluation
of this new SpMV approach has been carried out based on a represen-
tative set of test matrices. The results show that the SpMV approach
based on ELLPACK-R turns out to be superior to the previous strategies
used so far. Moreover, a comparison with standard state-of-the-art su-
perscalar processors reveals that significant speedup factors are achieved
with GPUs.

1 Introduction

The Matrix-Vector product (MV) is a key operation for a wide variety of scien-
tific applications, such as image processing, simulation, control engineering and
so on [1]. The relevance of this kind of operation in computational sciences is
supported by the constant effort devoted to optimise the computation of MV
for the processors at the time, which range from the early computers in the
seventies to the last modern multi-core architectures [2, 3, 4, 5]. In that sense,
the fact that MV is a routine of Level 2 in BLAS (Basic Linear Algebra Sub-
routines) is remarkable because the BLAS library has constantly been improved
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and optimized as the computer architectures have evolved [6, 7, 8]. For many
applications based on MV, the matrix is large and sparse, i.e. the dimensions
of matrix are large (≥ 105) and the percentage of non-zero components is very
low (≤ 1 − 2%). Sparse matrices are involved in linear systems, eigensystems
and partial differential equations from a wide spectrum of scientific and engi-
neering disciplines. For these problems the optimization of the sparse matrix
vector product (SpMV) is a challenge because of the irregular computation of
large sparse operations. This irregularity arises from the fact that the data
access locality is not maintained and that fine grained parallelism of loops is
not exploited [9]. Therefore, additional effort must be spent to accelerate the
computation of SpMV. This effort is focused on the design of appropriate data
formats to store the sparse matrices, since the performance of SpMV is directly
related to the used format.

Currently, Graphics Processing Units (GPUs) offer massive parallelism for
scientific computations. The use of GPUs for general purpose applications has
exceptionally increased in the last few years thanks to the availability of Appli-
cation Programming Interfaces (APIs), such as Compute Unified Device Archi-
tecture (CUDA) [14] and OpenCL [10], that greatly facilitate the development
of applications targeted at GPUs. Specifically, dense algebra operations are
accelerated by GPU computing and the library CUBLAS [8] is now publicly
available to get easily high performance with NVIDIA GPUs in these opera-
tions. Recently, several implementations of SpMV have also been developed
with CUDA and evaluated on NVIDIA GPUs [11, 12, 13]. The aim of this work
is to design and analyse GPU computing approaches of SpMV. This work covers
a variety of formats to store the sparse matrix in order to explore the best pos-
sible use of the GPU for a variety of algorithmic parameters. A proposal for a
new storage format is presented which proves to outperform the most common
and efficient formats for SpMV used so far.

Next, Section 2 summarises the aspects related to GPU programming and
computing. Then, Section 3 reviews the different formats to compress sparse
matrices and the corresponding codes to compute SpMV, given that the selection
of an appropriate format is the key to optimise SpMV on GPUs. Section 4

Figure 1: Different access times and sizes of GPU Memories
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introduces a new format suitable for computation of SpMV on GPUs. In Section
5 the performance measured on a NVIDIA Geforce GTX 295 with a wide set
of representative sparse matrices belonging to diverse applications is presented.
The results clearly show that the new storage format presented here, ELLPACK-
R, gets the best performance for most of the test matrices. Finally, Section 6
summarises the main conclusions.

2 Computational keys to exploit GPUs

Compute Unified Device Architecture (CUDA) provides a set of extensions to
standard ANSI C for programming NVIDIA GPUs. It supports heterogeneous
computation where applications use both the CPU and GPU. Serial portions of
applications are run on the CPU, and parallel portions are accelerated on the
GPU. These portions executed in parallel by the GPU are called kernels [14].
GPUs have hundreds of cores that can collectively run thousands of computing
threads. Each core, called Scalar Processor (SP), belongs to a set of multipro-
cessors units called Streaming Multiprocessors (SM) that compose the device.
The number of SMs ranges from eight (NVIDIA Tesla C870) to thirty in mod-
ern GPUs (NVIDIA Geforce GTX 295). The SPs in a SM share resources such
as registers and memory. The on-chip shared memory allows the parallel tasks
running on these cores to share the data without the need of sending it over the
system memory bus [14].

To develop codes for GPUs with CUDA, the programmer has to take into
account several architectural characteristics, such as the topology of the multi-
processors and the management of the memory hierarchy. The GPU architecture
allows the host to issue a succession of kernel invocations to the device. Each
kernel is executed as a batch of threads organized as a grid of thread blocks.
The execution of every thread block is assigned to every SM. Moreover, every
block is composed by several groups of 32 threads called warps. All threads
belonging to a warp execute the same program over different data. The size of
every thread block is defined by the programmer. The maximum instruction
throughput is got when all threads of the same warp execute the same instruc-
tion sequence, given that any flow control instruction can cause the threads of
the same warp to diverge, that is, to follow different execution paths. If this
occurs, the different executions paths have to be serialized, increasing the total
number of instructions executed for this warp [14].

Another key to take advantage of GPUs is related to the memory manage-
ment. There are several kinds of memory available on GPUs with different
access times and sizes that constitute a memory hierarchy, as illustrated in Fig-
ure 1. The effective bandwidth can vary by an order of magnitude depending
on the access pattern for each type of memory. There is a parallel memory
interface between the global memory and every SM of the GPU. The access to
the global memory can be performed in parallel by all threads of a half-warp (16
threads), which is accelerated only for specific coalesced memory access patterns
[14]. Hence the ordering of the data access chosen in an algorithm may have
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significant performance effects during GPU memory operations.
From the programmer’s point of view, the GPU is considered as a set of

SIMD (Single Instruction stream, Multiple Data streams) multiprocessors with
shared memory. Therefore, the SPMD (Single Program Multiple Data) pro-
gramming model is offered by CUDA. Moreover, in order to optimise the GPU
performance, the programmer has to consider two main goals: (1) to balance
the computation of the sets of threads, and (2) to optimise the data access
through the memory hierarchy. Specifically, to optimise SpMV on GPUs, both
goals have to be taken into account in devising appropriate formats to store the
sparse matrix, since the parallel computation and the memory access are tightly
related to the storage format of the sparse matrix.

3 Formats to compress sparse matrices

3.1 Coordinate storage

The coordinate storage scheme (COO) to compress a sparse matrix is a direct
transformation from the dense format. Let Nz be the total number of non-
zero entries of the matrix. A typical implementation of COO uses three one-
dimensional arrays of size Nz. One array, of floating-point numbers (hereafter
referred to as floats), contains the non-zero entries. The other two arrays, of
integer numbers, contain the corresponding row and column indices for each non-
zero entry. The performance of SpMV may be penalised by COO because it does
not implicitly include the information about the ordering of the coordinates.

3.2 Compressed Row Storage (CRS) and some variants

Compressed Row Storage (CRS) is the most extended format to store sparse
matrices on superscalar processors. Figure 2(left) illustrates the CRS details.
Let N and Nz be the number of rows of the matrix and the total number of
non-zero entries of the matrix, respectively; the data structure consists of the
following arrays:(1) A[ ] array of floats of dimension Nz, which stores the entries;
(2) j[ ] array of integers of dimension Nz, which stores their column index; and
(3) start[ ] array of integers of dimension N , which stores the pointers to the
beginning of every row in A[ ] and j[ ].

The code to compute SpMV based on CRS can be seen on Figure 2(left).
There are several drawbacks that hamper the optimization of the performance
of this code on superscalar architectures. First, the locality to access to vector
v[ ] is not maintained due to the indirect addressing. Second, the fine grained
parallelism is not exploited because the number of iterations of the inner loop
is small and variable [9].

The Incremental Compressed Row Storage (ICRS) format [1] is a variant of
CRS where the location of non-zero elements is encoded as a one-dimensional
index. The underlying motivation is the following: if the entries within a row
are ordered by increasing column index, the one-dimensional indices form a

4



monotonically increasing sequence. ICRS consists of two arrays: (1) A[ ] array
of floats of dimension Nz, which stores the entries; and (2) inc[ ] array of
integers of dimension Nz, which stores the increments of indexes of the vector
v[ ]. More details about ICRS can be obtained in [1]. The performance obtained
by ICRS is similar to CRS according to our experience with the set of matrices
considered.

We have designed and evaluated a new format, called CRSN (CRS with
Negative marks), which is a variant of CRS. The components of CRSN are
illustrated in Figure 2(center). CRSN only requires two arrays of dimension Nz,
which are equivalent to the arrays A[ ] and j[ ] of the original CRS. However,
the beginning of every row is marked with a negative column index in j[ ], and
the corresponding code to compute SpMV includes one loop that contains a
conditional branch. The performance obtained with CRSN is slightly better
than with CRS and ICRS on superscalar cores included in current processors,
such as Intel Core 2 Duo, Intel Xeon Quad Core Clovertown and AMD Opteron
Quad Core according to our experience. Specifically, better performance is got
on Intel Core 2 Duo E8400. In Section 5, CRSN on one core of Intel Core
2 Duo E8400 is considered as a reference, with the purpose of comparing the
performance of the SpMV computation on two architectures, GPU and one
superscalar core.

3.3 ELLPACK

ELLPACK or ITPACK [15] was introduced as a format to compress a sparse
matrix with the purpose of solving large sparse linear systems with ITPACKV
subroutines on vector computers. This format stores the sparse matrix on two
arrays, one float, to save the entries, and one integer, to save the columns of every
entry. Both arrays are of dimension at least N × MaxEntriesbyRows, where
N is the number of rows and MaxEntriesbyRows is the maximum number
of non-zeros per row in the matrix, with the maximum being taken over all
rows. Note that the size of all rows in these compressed arrays A[ ] and j[ ] is
the same, because every row is padded with zeros, as seen in Figure 2(right).
Therefore, ELLPACK can be considered as an approach to fit a sparse matrix in
a regular data structure similar to a dense matrix. Consequently, this format is
appropriate to compute operations with sparse matrices on vector architectures.
However, if the percentage of zeros is high in the ELLPACK data structure and
there is a very irregular location of entries in different rows, then the performance
decreases.

4 ELLPACK-R, a format to optimize SpMV on
GPUs

ELLPACK-R is a variant of the ELLPACK format. ELLPACK-R consists of
two arrays, A[ ] (float) and j[ ] (integer) of dimension N ×MaxEntriesbyRows;
and, moreover, an additional integer array called rl[ ] of dimension N (i.e. the
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Figure 2: Different storage formats for sparse matrices and the corresponding
codes to compute SpMV

number of rows) is included with the purpose of storing the actual length of
every row, regardless of the number of the zero elements padded. An important
point is the fact that the arrays store their elements in column-major order. As
seen in Figure 3, these data structures take advantage of:

(1) The coalesced global memory access, thanks to the column-major order-
ing used to store the matrix elements into the data structures. Then, the thread
identified by index x accesses to the elements in the x row: A[x + i ∗ N ] with
{ 0 ≤ i < rl[x] } where i is the column index and rl[x] is the total number of
non-zeros in row x. Consequently, two threads x and x+1 access to consecutive
memory address, thereby fulfilling the conditions of coalesced global memory
access.

(2) Non-synchronized execution between different blocks of threads. Every
block of threads can complete its computation without synchronization with
others blocks, because every thread computes one element of the vector u (i.e.
the result of the SpMV operation), and there are no data dependences in the
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Figure 3: ELLPACK-R format and kernel to compute SpMV on GPUs

computation of different elements of u.
(3) The reduction of the waiting time or unbalance between threads of one

warp. Figure 4 shows an example of histogram of a tiny matrix, and a hy-
pothetic small warp of eight threads is considered with the goal of illustrating
the advantage of ELLPACK-R. The computational load of every warp of eight
threads is different and it is proportional to the longest row in the correspond-
ing subset of rows of the matrix. Bearing in mind the kernel of SpMV with
ELLPACK-R, the dark area is proportional to the runtime of every thread, and
the grey area is proportional to the waiting time of every thread. Therefore,
only the warps related to rows of very different length are penalised with longer
waiting times, as can be seen in Figure 4.

(4) Homogeneous computing within the threads in the warps. The threads
belonging to one warp do not diverge when executing the kernel to compute
SpMV. The code does not include flow instructions that cause serialization in
warps since every thread executes the same loop, but with different number of
iterations. Every thread stops as soon as its loop finishes, and the other threads
in the warp continue with the execution (see Figure 4). Furthermore, coalesced
memory access is possible. This characteristic has a significant impact on the
performance.

Recently, different proposals of kernels to compute SpMV have been de-
scribed and analysed [11, 12, 13]. The kernels related to the format called HYB
(which stands for hybrid) proposed by [11] seem to yield the best performance
on GPUs so far. This format combines the ELLPACK and COO formats for
different sets of rows. However, this format previously requires a preprocess-
ing step consisting of reordering the rows in order to get a better performance.
This preprocessing of the matrix is a drawback that may produce a significant
penalization due to the calls/returns to/from kernels, especially in matrices
where large sets of rows have to be divided and reordered. Other kernel called
CRS(vector) has also been evaluated in [11]. This kernel computes every output
vector element with the collaboration of the 32 threads of every warp. So, every
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Figure 4: Histogram of a simple example with a tiny sparse matrix and assum-
ing a hypothetic small warp of eight threads. The dark area is related to the
runtimes of every thread belonging to every warp, and the grey area is related
to the waiting times of the same thread.

warp computes the float products related to the entries of every row, followed
by a parallel reduction in shared memory in order to obtain the final result of
output vector element.

5 Evaluation

A comparative analysis of the performance of different kernels to compute
SpMV on NVIDIA GPUs has been carried out in this work. The following for-
mats to store the matrix have been evaluated: CRS, CRS(vector), ELLPACK,
ELLPACK-R and HYB. This analysis is based on the run-times measured on a
GeForce GTX 295 with a set of test sparse matrices from different disciplines
of science and engineering. Table 1 summarizes the test matrices used in this
work and their important characteristics, such as the dimensions, the number
of non-zero entries, etc. Most considered matrices belong to collections of the
Matrix Market repository [16]. All matrices are real of dimensions N × N . Al-
though some of them are symmetric, they all have been considered as general
to compute SpMV. All kernels have been evaluated using the texture memory.
This memory is bound to the global memory and plays the role of a cache level
within the memory hierarchy, and its use improves the performance [14].

Figure 5 shows the performance (GFLOPs) of the SpMV kernels based on the
formats that have been evaluated: CRS, CRS(vector), ELLPACK, ELLPACK-
R and HYB. The results shown in that figure allow us to highlight the following
major points: (1) the performance obtained by most formats increases with the
number of non-zero entries in the matrix; (2) in general, the CRS format yields
the poorest performance because the pattern of memory access is not coalescent;
(3) the CRS(vector) format achieves better performance than CRS in most cases
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Table 1: Set of test matrices

Matrix N Entries Type Application area

qh1484 1484 6.110 Gen. Power systems simulations
dw2048 2048 10.114 Gen. Electrical engineering
rbs480a 480 17.087 Gen. Robotic control
gemat12 4929 33.111 Gen. Power flow modeling
dw8192 8192 41.746 Gen. Electrical engineering
mhd3200a 3200 68.026 Gen. Plasma physics
bcsstk24 3562 81.736 Sym. Structural engineering
e20r4000 4241 131.556 Gen. Fluid dynamics
mac econ 206500 1.273.389 Gen. Economics
cop20k A 121192 1.362.087 Sym. FEM/Accelerator
qcd5 4 49152 1.916.928 Gen. QCD
cant 62451 2.034.917 Sym. FEM/Cantiveler
mc2depi 525825 2.100.225 Gen. Epidemiology
pdb1HYS 36417 2.190.591 Sym. Biocomputation
rma10 46835 2.374.001 Gen. FEM/Harbor
consph 83334 3.046.907 Sym. FEM/Spheres
wbp128 16384 3.933.095 Gen. Tomographic reconstruction
shipsec1 140874 3.977.139 Sym. FEM/Ship
dense2 2000 4.000.000 Gen. Dense
pwtk 217918 5.926.171 Gen. Fluid dynamics
wbp256 65536 31.413.932 Gen. Tomographic reconstruction

(even for matrices with high number of non-zero entries by row or nearly dense),
despite the fact that a coalesced matrix data access is not possible with this
format either; (4) in general, ELLPACK outperforms both CRS-based formats,
however its computation is penalised for some particular matrices, mainly due
to the divergence of the warps when the matrix histogram includes rows with
very uneven length; (5) The performance obtained by HYB is, in general, higher
than that for the three previous formats, but it is remarkable its poorer results
for smaller matrices due to the penalty introduced by the preprocessing step;
(6) finally, ELLPACK-R clearly achieves the best performance for most matrices
considered in this work.

Figure 6 plots the average performance obtained for the five formats evalu-
ated. As seen, the best average performance is got by ELLPACK-R, followed by
HYB and ELLPACK, and the worst average performance is obtained by CRS
and CRS(vector). Therefore, these results confirm that ELLPACK-R is superior
to the sparse matrix storage formats used thus far. The algorithm for comput-
ing SpMV using ELLPACK-R neither includes flow control instructions that
serialise the execution of a warp of 32 threads, nor complex pre-processing steps
to reorder the matrix rows; moreover, it allows coalesced matrix data access.
In conclusion, the simplicity of the SpMV computation based on ELLPACK-R
allows full exploitation of the GPU architecture and its computing power.
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Figure 5: Performance of SpMV based on different formats on GPU GeForce
GTX 295 with the set of test matrices, using the texture cache memory

Figure 6: Average performance of SpMV on GPU GeForce GTX 295 and the
set of test matrices
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Figure 7: Speed-up of SpMV on GPU GeForce GTX 295 for the set of test
matrices in Table 1, taking as a reference the runtimes of SpMV on a Intel Core
2 Duo E8400. The storage format that provided the best performance for each
platform was used, ELLPACK-R for the GPU and CRSN for the superscalar
core.

The key of the success of GPUs in high performance computing comes from
the outstanding speedup factors in comparison with standard computers or even
clusters of workstations. In order to estimate the net gain provided by GPUs in
the SpMV computation, we have implemented the SpMV for a computer based
on a state-of-the-art superscalar core, Intel Core 2 Duo E8400, and evaluated
the computing times for the set of test matrices in Table 1. For the superscalar
implementation, we chose the CRSN format as it provided the best performance
for this platform (results not shown here). For the GPU GeForce GTX 295, we
used the ELLPACK-R format, which is the best for the GPU according to
the results presented above. Figure 7 shows the speedup factors obtained for
the SpMV operation on the GPU against the superscalar core for all the test
matrices considered in this work. The speedup ranges from a modest 5× factor
to an exceptional 80× factor. The plot shows that the speedup depends on
the matrix pattern, though in general it increases with the number of non-zero
entries. In view of these results, we can conclude that the GPU turns out to be
an excellent accelerator of SpMV.

6 Conclusions

In this paper a new approach to compute the sparse matrix vector on GPUs has
been proposed and evaluated, ELLPACK-R. The simplicity of the SpMV im-
plementation based on ELLPACK-R makes it well suited for GPU computing.
The comparative evaluation with other proposals has shown that the average
performance achieved by ELLPACK-R is the best after an extensive study on
a wide set of test matrices. Therefore, ELLPACK-R has proven to be superior
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to the other approaches used thus far. Moreover, the fact that this approach
for SpMV does not require any preprocessing step makes it specially attractive
to be integrated on sparse matrix libraries currently available. A comparison of
the GPU implementation of SpMV based on ELLPACK-R on a GeForce GTX
295 has revealed that acceleration factors of up to 80× can be achieved in com-
parison to state-of-the-art superscalar processors. Therefore, GPU computing is
expected to play an important role in computational science to accelerate SpMV,
especially dealing with problems where huge sparse matrices are involved.
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