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Abstract

A wide range of applications in engineering and scientific computing are
involved in the acceleration of the sparse matrix vector product (SpMV).
Graphics Processing Units (GPUs) have recently emerged as platforms that
yield outstanding acceleration factors. SpMV implementations for GPUs
have already appeared on the scene. This work is focussed on the ELLR-T al-
gorithm to compute SpMV on GPU architecture, its performance is strongly
dependent of the optimum selection of two parameters. Then, taking ac-
count that the memory operations dominate the performance of ELLR-T,
an analytical model is proposed in order to obtain the auto-tuning of ELLR-
T for particular combinations of sparse matrix and GPU architecture. The
evaluation results with a representative set of test matrices show that the
average performance achieved by auto-tuned ELLR-T by means of the pro-
posed model is near to the optimum. A comparative analysis of ELLR-T
against a variety of previous proposals shows that ELLR-T with the esti-
mated configuration reaches the best performance on GPU architecture for
the representative set of test matrices.
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1. Introduction

The Matrix-Vector product (MV) is a key operation for a wide variety
of scientific applications, such as image processing, simulation, control engi-
neering and so on. For many applications based on MV, the matrix is large
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and sparse. Sparse matrices are involved in linear systems, eigensystems and
partial differential equations from a wide spectrum of scientific and engineer-
ing disciplines[1]. For these problems the optimization of the sparse matrix
vector product (SpMV) is a challenge because of the irregular computation
of large sparse operations. Therefore, additional effort must be spent to ac-
celerate the computation of SpMV. This effort is focused on the design of
appropriate data formats to store the sparse matrices, since the performance
of SpMV is directly related to the used format as shown in [2, 3, 4].

Currently, Graphics Processing Units (GPUs) offer massive parallelism for
scientific computations. The use of GPUs for general purpose applications
has exceptionally increased in the last few years thanks to the availability
of Application Programming Interfaces (APIs), such as Compute Unified
Device Architecture (CUDA) [5] and OpenCL [6] that greatly facilitate the
development of applications targeted at GPUs.

Recently, several implementations of SpMV have been developed with
CUDA and evaluated on GPUs [7, 8, 9, 10, 11]. Devising GPU-friendly
matrix storage formats has been a key in these implementations. This work
is focused on the ELLR-T algorithm which relies on the storage format for
the sparse matrix, ELLPACK-R [12, 13]. This format is a GPU-friendly
variant of one previously designed for vector architectures, ELLPACK [14].
An extensive performance evaluation of this new approach has been carried
out based on a representative set of test matrices. The comparative study has
drawn the conclusion that the implementation based on ELLR-T proves to
outperform the most common and efficient formats for SpMV on GPUs used
so far. However, the ELLR-T performance strongly depends on the values of
two parameters related to the the configuration of ELLR-T according to the
particular combination of input sparse matrix/GPU architecture. The goals
of this work are: (1) to analyze the ELLR-T algorithm; (2) to propose a model
to optimize the ELLR-T performance and (3) to evaluate the performance
achieved by ELLR-T algorithm with the modeled configuration.

Currently there are several proposals to model the performance of GPUs
executing general applications. Thus, an analytical model of GPU perfor-
mance based on the estimation of the memory warp parallelism is analyzed
in [15]. However the complexity of the management memory in the GPU
architecture introduces a large number of factors to instantiate the model on
specific applications and GPU architectures. On the other hand, a tool to
predict the GPU performance is proposed on [16]. It automatically generates
mini-kernels from specific applications for benchmark the GPU architecture
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and lately introduces the experimental measures on their model, taking ac-
count the symbolic evaluation of the application code. More closely to our
proposal, a model to estimate the performance of SpMV on GPUs based
on the blocked ELLPACK implementation is introduced in [17]. However,
bearing in mind that the ELLR-T performance is strongly determined by its
memory access, this work proposes a analytical model based on the evalua-
tion of the GPU memory operations when ELLR-T is executed on a specific
GPU architecture for a particular matrix, in order to obtain the values of the
parameters that optimize the performance. The evaluation of the proposed
model proves its high accuracy, and it can be included as a previous stage of
ELLR-T in order to get its auto-tuning on run time, since it takes as inputs
the row lengths of the matrix and two parameters of GPU architecture.

The remainder of the paper is structured as follows. Next Section 2
describes the main characteristics of the computational GPU model focusing
the interest on the main factors which impact on the GPU performance.
Then, Section 3 starts with a review of the different formats to compress
sparse matrices, following the details of ELLR-T algorithm are analyzed,
this section ends proposing a model to optimize the performance of ELLR-
T. In Section 4 the evaluation results show the high performance of ELLR-T
achieved by a NVIDIA Geforce GTX 285 with a set of representative sparse
matrices when the proposed model is used to configure it. The results clearly
show that the ELLR-T with the proposed model gets the best performance
for all the test matrices. Finally, Section 5 summarizes the main conclusions.

2. Computational GPU model

GPUs have hundreds of cores that can collectively run thousands of com-
puting threads. Each core, called Scalar Processor (SP), belongs to a set of
multiprocessors units called Streaming Multiprocessors (SM) that compose
the device.

Using the CUDA interface, the GPU is considered by the programmer
as a set of SIMT (Single Instruction, Multiple Threads) multiprocessors [5].
Each kernel (parallel code) is executed as a batch of threads organized as
a grid of thread blocks whose configuration is defined by the programmer
setting up specific parameters. One of these parameters is the threads block
size, hereinafter it is denoted as BS. On run time, the blocks are cyclically
mapped on the SMs, as it is illustrated in Figure 1. The blocks in turn
are divided into sets of threads called warps, the warp size (denoted here as
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Figure 1: Threads Blocks Mapping on the GPU architecture

ws = 32) is defined by the architecture. Currently, the SMs are composed
by eight (or thirty-two) SPs on the most extended NVIDIA GT (or Fermi)
GPU architectures [5, 18].

According to the memory resources in every SM and the particular kernel
memory requirements, every SM can simultaneously execute a set of max-
imum active warps. Thus, the blocks queue on every SM is executed in
pipeline, then, if one warp executes a slow memory access, the execution
of the following warp is started, so that the slow memory access can be
hidden by the computation if the pipeline is fed [19]. In order to optimize
the exploitation of the NVIDIA GPU architecture the programmer has to
attend to maximize the bandwidth memory, the memory management can
be optimized if the access pattern of the different threads belonging to ev-
ery half-warp (16 threads) verifies the coalescence and alignment conditions,
then, it can be performed in parallel by all of them and the memory latency
would be the same as that of a single access. Moreover, the use of texture
memory improves the performance when the searched word is located within
it [5].
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3. Accelerating the SpMV on GPUs. ELLR-T approach

3.1. Formats to compress sparse matrices

Several formats have been proposed to optimize the computation with
sparse matrices for a specific architecture. These formats define the locality
or the coalescence of memory access for the SpMV, which are essential to
optimize the performance on CPU or GPU architectures. Before describing
the details of ELLR-T kernel let us review the more used formats to store
sparse matrices.

Let u = Av be a sparse matrix vector product where A is the sparse
matrix, v and u are the input and output vectors respectively, every specific
algorithm to compute u = Av, exploiting a particular architecture, is related
to a specific format to store A.

Compressed Row Storage (CRS) is the most extended format to store
sparse matrices on superscalar processors. Let N and Nz be the number of
rows of the matrix and the total number of non-zero entries of the matrix,
respectively; the data structure consists of the following arrays: (1) A[ ] array
of floats of dimension Nz, which stores the entries; (2) J [ ] array of integers of
dimension Nz, which stores their column index; and (3) start[ ] array of inte-
gers of dimension N + 1, which stores the pointers to the beginning of every
row in A[ ] and J [ ], both sorted by row index. The code to compute SpMV
based on CRS has several drawbacks that hamper the optimization of the
performance of this code on superscalar architectures. First, the access lo-
cality of vector v[ ] is not maintained due to the indirect addressing. Second,
the fine grained parallelism is not exploited because the number of iterations
of the inner loop is small and variable [20]. Despite these drawbacks, several
optimizations have made possible to improve the performance of sparse com-
putation on current processors [4, 21]. In particular, the Intel Math Kernel
Library (MKL) improves the performance of sparse BLAS operations, based
on CRS, by optimizing the memory management and exploiting the ILP on
Intel processors.

ELLPACK or ITPACK [14] was introduced as a format to compress a
sparse matrix with the purpose of solving large sparse linear systems with
ITPACKV subroutines on vector computers. This format stores the sparse
matrix on two arrays, one float A[ ], to save the entries, and one integer
J [ ], to save the column index of every entry. Both arrays are of dimension
N ×Max nzr at least, where N is the number of rows and Max nzr is the
maximum number of non-zeros per row in the matrix, with the maximum
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being taken over all rows. Note that the size of all rows in these compressed
arrays A[ ] and J [ ] is the same, because every row is padded with zeros.
Therefore, ELLPACK can be considered as an approach to fit a sparse matrix
in a regular data structure similar to a dense matrix. Consequently, this
format is appropriate to compute operations with sparse matrices on vector
architectures. Focusing our interest on the GPU architecture the SpMV
based on ELLPACK can improve the performance due to the coalesced global
memory access, thanks to the column-major ordering used to store the matrix
elements into the data structures. However, if the percentage of zeros is high
in the ELLPACK data structure and there is a relevant amount of padding
zeros, then the performance decreases. This penalty even remains when
conditional branches are included to avoid the memory access and arithmetic
operations with padding zeros.

Recently, different kernels to compute SpMV on GPUs have been pro-
posed [7, 8, 9, 10, 11, 22]. On the one hand, the kernel called CRS(vector)
evaluated in [7] is based on CRS format. It computes every output vector
element with the collaboration of the 32 threads of every warp. Similarly,
another kernel based on the CRS format has been proposed in [9] and it
has been included on the SpMV4GPU library [23]. Here the collaboration of
16 threads (half warp) computes every output vector element, and padding-
zeroes are added to every row to complete a length multiple of 16, in order to
fulfill the memory alignment requirements and improve the coalesced mem-
ory access. On the other hand, the kernels related to the format called HYB
(which stands for hybrid) proposed by [7] seem to yield high performance on
GPUs. With the goal of improving the performance of ELLPACK it com-
bines the ELLPACK and coordinate storage scheme (COO) formats, this last
format consists of three linear arrays to store the entries, columns indexes
and row indexes of the sparse matrix. Recently, the format called Sliced
ELLPACK has been proposed and evaluated in [11]. In order to compress
the matrix, the N rows of A are partitioned in sets of S rows and every set
is stored with ELLPACK format. Moreover, the τ threads into every block
collaborate in the computation related to every set of rows. It achieves high
performance when a preprocess with reordering of rows is considered and the
optimum values of the parameters S and τ are selected. Other format, called
BELLPACK, has been proposed in [10], this proposal compresses the sparse
matrix by small dense entries blocks. Then, this approach reaches better per-
formance for those sparse matrices with their pattern including small blocks
of entries. Both approaches, Sliced ELLPACK and BELLPACK, include
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complex pre-processing of the sparse matrix.
Moreover, we have devised the kernel based on the format ELLPACK-R, it

has proved achieve better performance on GPUs for a high percentage of the
representative test matrices [12, 22]. Recently, we have proposed the kernel
ELLR-T with the same kind of format to store the sparse matrix. It reaches
the best performance if optimum values of two parameters are selected [13].
Next, this kernel is described in depth, with the aim of analyzing the model
for the selection of the optimum parameters.

3.2. Computing SpMV with ELLR-T algorithm on GPUs

ELLPACK-R consists of two arrays, A[ ] (float) and J [ ] (integer) of
dimension N ×Max nzr; and, moreover, an additional integer array called
rl[ ] of dimension N (i.e. the number of rows) is included with the purpose of
storing the actual length of every row, regardless of the number of the zero
elements padded.

According to the mapping of threads in the computation of every row,
several implementations of SpMV based on ELLPACK-R can be developed.
Thus, when T threads compute the element u[i] accessing to the i-th row, the
implementation is referred to as ELLR-T. So, the i-th row is split in sets of
T elements. Then, in order to compute the element u[i], T threads compute
⌈rl[i]/T ⌉ iterations of the inner loop of SpMV. Every thread stores its partial
computation in the shared memory of the GPU. Finally, to generate the value
of u[i], one reduction of the T values computed and stored in shared memory
has to be included. The value of parameter T can be explored in order to
obtain the best performance with every kind of sparse matrices. Figure 2
illustrates the characteristics of the code of ELLR-T, underlining on top the
specific storage for the sparse matrix on the device memory to warranty that
the device memory access of every set of T = 2 threads is coalescent and
aligned. This characteristic is very relevant for ELLR-T due to the high
memory access related to computation of the SpMV. The algorithms ELLR-
T to compute SpMV with GPUs take advantage of:

1. Coalesced and aligned global memory access. The access to read the
elements of A, J and rl are coalesced and aligned thanks to the column-
major ordering used to store the matrix elements and the zeros-padding
to complete the length of every row as multiple of 16. Consequently,
the highest possible memory bandwidth of GPU is exploited.

2. Homogeneous computing within the warps. The threads belonging to
one warp do not diverge when executing the kernel to compute SpMV.
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Figure 2: (a) The ELLR-T memory storage of the sparse matrix fulfilling the coalescence
and alignment conditions for T = 2 and (b) ELLR-T code to compute SpMV on GPUs
including the reduction on share memory for T = 32

The code does not include flow instructions that cause serialization in
warps since every thread executes the same loop, but with different
number of iterations. Every thread stops as soon as its loop finishes,
and the remaining threads continue the execution.

3. Reduction of useless computation and unbalance of the threads of one
warp. Let Si be the set of T threads which are collaborating on
the computation of u[i], the k-loop reaches the maximum value of
k = ⌈rl[i]/T ⌉ ≤ ⌈Max nzr/T ⌉ for specific sets, Si, into the warp.
Then, the run-time of every warp is proportional to the maximum el-
ement of the sub-vector ⌈rl[i]/T ⌉ related to every warp, and it is not
necessary for the k-loop reaches k = ⌈Max nzr/T ⌉ for all threads,
then, there are not useless iterations and the control of loops of this
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implementation is reduced comparing with SpMV based on ELLPACK.
However, if the value of T excessively increases, relevant number of
threads are unloaded, the unbalance increases and the kernel achieves
a poor performance.

Consequently, ELLR-T is devised to exploit the GPU architecture com-
puting the SpMV operation, however, in order to reach the best performance
it is very relevant to select the optimum values of two parameters: (1) T ,
that is, the number of threads which collaborate to compute one element of
output vector and related to every matrix row, then, it is an specific param-
eter of ELLR-T; and (2) BS, that is, the block size of the CUDA code, is a
general parameter to optimize the CUDA programs.

3.3. Model for optimizing ELLR-T

Our goal is to define a model to predict the values of BS and T which
optimize ELLR-T for the specific combination of a sparse matrix and a GPU
architecture. Then, it is not necessary an accurate estimation of GPU perfor-
mance, since our aim is just to determine the values of the parameters which
maximize the performance, knowing the particularities of a sparse matrix
and a GPU platform.

According to our experience and the results described in [16, 17], the
performance reached by SpMV on GPUs is dominated by the memory op-
erations. They are strongly related to the pattern of the sparse matrix and,
additionally, the memory broadband is related to the resources of the GPU
and the kind of memory access included in the kernel. More specifically
for ELLR-T algorithm, the number of memory operations of every set of T
threads reading the i-th row is proportional to its length, that is rl[i], and
every thread accesses to the device memory rl[i]/T times. From other point
of view, the broadband memory is proportional to the number of stream
multiprocessors (SM) of the GPU denoted by n. It is reasonable to think
that the run-time of ELLR-T is proportional to the number of memory ac-
cess executed by every SM. Moreover, there will is an unbalance between the
different SMs of GPU due to (1) the irregularities of the matrix row length,
and (2) the mismatches between the number of SMs, n, and the number of
threads blocks ⌈N∗T

BS
⌉. Consequently, the performance of ELLR-T is propor-

tional to the run-time of the most loaded SM, i. e. to the maximum number
of memory access executed by one SM on the GPU.
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Bearing in mind the above considerations and the threads mapping on
GPU architecture, described in Section 2, let us define the model for opti-
mizing ELLR-T. We suppose that the value of block size, BS, lets to active
enough number of threads in every SM, so that the arithmetic computation
is hidden by the memory access on the pipeline of GPU computation and it
is not necessary to include it in the model. Then, it is coherent to establish
that the best performance of ELLR-T is reached when the number of memory
access on the most loaded SM is minimum.

Let Bsm be the number of blocks for the SM indexed by sm, we suppose
that the run time is proportional to the number of the memory access for
every SM and it can be estimated as:

Msm =
b=Bsm−1∑

b=0

M b
sm (1)

where b is the index of block related to the smth-multiprocessor and M b
sm is

proportional to the memory access of the bth-block.

M b
sm =

w=⌈BS
ws ⌉−1∑

w=0

M b
sm(w) (2)

where ws is the warp size (ws = 32 for NVIDIA GPU architectures) An-
alyzing the ELLR-T code, the number of access to device memory for the
wth-warp can be estimated as:

M b
sm(w) = MAX1(rl, T, b, w) +MAX2(rl, T, b, w) (3)

where MAX1 and MAX2 represent the maximum row length into the set of
rows related to the first and second half of the wth-warp respectively, with
this warp belonging to the b-th block, that is

MAX1(rl, T, b, w) = {rl(ws/T ∗ w + xw) | 0 ≤ xw < (ws/2)/T}

and

MAX2(rl, T, b, w) = {rl(ws/T ∗ w + xw) | (ws/2)/T ≤ xw < ws/T}

where xw is the thread identifier belonging to the wth-warp.
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Then, according to the previous analysis the ELLR-T run-time is pro-
portional to the maximum number of memory access by one SM, denoted by
MELLR−T , which can be expressed as:

MELLR−T (rl, BS, T ) = MAXsm=0..n−1


b=Bsm−1∑

b=0

w=⌈BS
ws ⌉−1∑

w=0

M b
sm(w)

 (4)

Notice that the value of MELLR−T (rl, BS, T ) is not an estimation of the
run-time, however it can be used to locate the optimum ELLR-T configu-
ration because MELLR−T (rl, BS, T ) and ELLR-T run-time achieve their ex-
treme values for the same BS and T values approximately.

The analytical expression defined by Equation 4 is the key of our model
and it establishes the relation between the memory activity and the param-
eters BS and T for one particular combination of matrix/GPU architecture
before that ELLR-T starts its execution. The matrix characteristics are in-
troduced on the model with the rl[] vector and the GPU architecture by
means of the the number of SMs, n, and the warp size ws which are static
parameters of the architecture. So that, this model can be integrated as the
first stage of ELLR-T without previous benchmark of the GPU architecture
and without relevant overload in order to determine the optimum configu-
ration of the ELLR-T, that is, the values of BS and T which achieve the
minimum of MELLR−T .

4. Evaluation

This section is intended to evaluate: (1) the accuracy of the proposed
model to predict the optimum configuration of the ELLR-T kernel when the
input matrix and GPU architecture are known; and (2) the performance
achieved by the ELLR-T kernel when it is configured according to the pre-
diction of proposed model.

The evaluation results have been obtained on a GeForce GTX 285 as
the test architecture. Moreover, the set of test sparse matrices described
in Table 1 has been considered. They are related to different disciplines of
science and engineering. Table 1, on the left, summarizes the characteristic
parameters associated to specific patterns of the set of test matrices: number
of rows (N), total number of non-zeros elements (Entries), average number
of entries per row (Av), percentage of relative standard deviation of entries
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Table 1: Set of test matrices. Characteristic parameters related to entries distribution on
the rows (on the left). Actual and estimated optimum parameters (on the right)

Matrix N Entries Av σ
Av BSO TO BS⋆ T ⋆

qh1484 1.484 6.110 4,1 38,9 64 8 128 4
dw2048 2.048 10.114 4,9 10,2 64 4 128 2
rbs480a 480 17.087 35,6 1,4 64 16 128 8
gemat12 4.929 33.111 6,7 44,8 256 4 128 2
dw8192 8.192 41.746 5,1 12,0 64 1 128 1
mhd3200a 3.200 68.026 21,3 27,4 128 8 128 8
e20r4000 4.241 131.556 31,0 49,6 256 4 128 8
bcsstk24 3.562 159.910 45,0 25,6 128 8 128 4
mac econ 206.500 1.273.389 6,2 71,9 512 4 512 2
qcd5 4 49.152 1.916.928 39,0 0,0 128 4 128 1
mc2depi 525.825 2.100.225 4,0 1,9 128 1 128 1
rma10 46.835 2.374.001 50,7 56,1 128 8 128 8
cop20k A 121.192 2.624.331 21,6 63,7 128 4 128 1
wbp128 16.384 3.933.095 240,1 14,5 128 1 128 8
dense2 2.000 4.000.000 2.000 0,0 256 8 128 32
cant 62.451 4.007.383 64,2 21,9 512 4 128 4
pdb1HYS 36.417 4.344.765 119,3 26,7 128 8 256 8
consph 83.334 6.010.480 72,1 26,4 512 2 128 1
shipsec1 140.874 7.813.404 55,5 20,0 128 4 128 2
pwtk 217.918 11.634.424 53,4 8,9 512 2 128 1
wbp256 65.536 31.413.932 479,3 14,7 128 2 128 8

by row( σ
Av
). These parameters display the variability or dispersion of the

number of entries by row of the matrices. Their diversity in the set of test
matrices is significant. All matrices are real of dimensions N ×N . Although
some of them are symmetric, they all have been considered as general to
compute SpMV. The remainder information included on Table 1 will be
described on the posterior analysis.

The programming interface, CUDA, allows the programmer to specify
which variables are to be stored in the texture cache within the memory
hierarchy [5]. Here, vector v has been stored binding to the texture memory
for all kernels evaluated, since only the vector v is reused throughout the
products with the different rows of the matrix, in the computation of u = Av.
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In order to illustrate the impact of the parameters BS and T on the per-
formance of ELLR-T, Figure 4 shows the performances achieved by ELLR-
T with the optimum and worst configurations (denoted by ELLR-TO and
ELLR-TW respectively) for the set of test matrices. Both configurations
have been defined by means of exhaustive search. As it can be seen, there
are relevant differences between the performance reached by both configura-
tions. So, it underlines that the selection of appropriate values for BS and
T has a strong impact on the performance of ELLR-T. Table 1, on the right,
shows the optima (BSO and TO) and the values estimated (BS⋆ and T ⋆)
by the proposed model. So BS⋆ and T ⋆ minimize MELLR−T subject to the
mapping restrictions according to the GPU resources. The optima and the
estimated values match for few matrices, this result could indicate that the
proposed model fails. However, the performance achieved by the optima and
the estimated values are very near as shown in Figure 4, where ELLR-T⋆ is
referred to the ELLR-T kernel with the estimated configuration.

In order to analyze this fact, Figure 3 shows MELLR−T as function of the
parameters T and BS for four illustrative examples of test matrices: rma10,
pdb1HYS, mac econ and dense2. As it is shown, very different plots of
MELLR−T are related to every matrix. So, if the interest is focused on rma10,
the minimum of MELLR−T is well-pronounced for the specific combination of
the parameters BS⋆ = 128 and T ⋆ = 8 and the optimum performance is
achieved by these values, that is BS⋆ = BSO and T ⋆ = TO. However, the
plot of MELLR−T for pdb1HYS exhibits almost the same minimum value for
BS = 128, 256, 512 and T = 8, thus the performance achieved by BS⋆ = 256
and T = 8 is almost the optimum, although BS⋆ ̸= BSO = 128. This plot for
mac econ is very different because it shows that MELLR−T does not depend
on BS and almost the same minimum of MELLR−T is achieved by two values
of T = 2, 4, then, the estimated values by the model BS⋆ = 512 and T ⋆ = 2
get almost the optimum performance of BSO = 512 and TO = 4. However,
the plot for the matrix dense2 shows that MELLR−T decreases as T increases
and several combinations of BS and T achieve nearly the same minimum
value due the regular pattern of this matrix, so, the values defined by the
model BS⋆ = 128 and T ⋆ = 32 get nearly the optimum performance although
BSO = 256 and TO = 8. Then, it can be concluded that the proposed model
helps to define one combination of both parameters which nearly achieves
the optimum performance.

In order to evaluate the accuracy of the proposed model, Table 2 shows the
distribution of the test matrices according to the Matching Percentage, i.e.
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Figure 3: MELLR−T as function of the parameters T and BS for the test matrices rma10,
pdb1HYS, mac econ and gemat12.

the ratio between the performances achieved by ELLR-T⋆ and ELLRO. So,
data on left column point that ELLR-T⋆ and ELLR-TO reach the same per-
formance for twelve matrices, and data on right column show that ELLR-T⋆

reaches between 70% and 60% of the optimum performance for two matri-
ces. Moreover, the average Matching Percentage in the set of test matrices is
91,6%. Then, the results show that the configuration of ELLR-T defined by
the proposal model achieves a performance close to the optimum, although
the estimated parameters differ to the optima.

Additionally, both configurations have been evaluated without to use the
texture memory as cache for the v vector storage, and the matching per-
centage achieved is nearly 99%. These results are coherent with the model
hypothesis, since they do not consider the GPU caches management and they
confirm the accuracy of the model. Notice that the performances of ELLR-
T⋆ and ELLR-TO differ more relevantly for the matrices cop20k A, wbp128,
pwtk and wbp256; the entries location exhibits high regularity for these ma-
trices. Consequently, the corresponding SpMV has a higher locality level, so
the cache management has more relevant impact on the performance. This
fact could justify the inaccuracy of the model for these matrices.

Next, a comparative evaluation of the performance achieved by ELLR-
T⋆ and the kernels CRS, CRS(vector), SpMV4GPU, ELLPACK, HYB will
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Figure 4: Performances achieved by ELLR-T with the optimum, modeled and worst con-
figurations (denoted by ELLR-TO, ELLR-T⋆ and ELLR-TW respectively) for the set of
test matrices

Matching Percentage 100% 90% 80% 70% 60%
Number of test matrices 12 2 3 2 2

Table 2: Distribution of test matrices

be developed. Figure 5 shows the performance (GFLOPs) of the SpMV
kernels based on the formats that have been evaluated: CRS, CRS(vector),
SpMV4GPU, ELLPACK, HYB and, moreover, the kernel ELLR-T⋆ with the
estimated values of BS and T . The results shown allow us to highlight the
following major points:

1. As any parallel implementation of SpMV, the performance obtained by
most formats increases with the number of non-zero entries in the ma-
trix, since small matrices do not generate a relevant computational load
to reach high parallel performance. Thus, in general, as the dimension
of matrices increases, the performance improves.

2. In general, the CRS format yields the poorest performance because the
pattern of memory access is not coalescent;

3. The CRS(vector) and SpMV4GPU formats achieve better performance
than CRS with most matrices, specially when Av is higher and the
distribution of entries is more regular, i.e. σ

Av
is lower. SpMV4GPU
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Figure 5: Comparing the ELLR-T⋆ performance with the SpMV based on different formats
on GPU GeForce GTX 285 with the set of test matrices

reaches higher performance than CRS(vector) because it better exploits
the power of threads.

4. In general, ELLPACK outperforms previous CRS-based formats. How-
ever, its computation is penalized for some particular matrices, mainly
due to the relevance of useless computation of the warps when the
matrix histogram includes rows with very uneven length.

5. The performance obtained by HYB is, in general, higher than the four
previous formats, but it is remarkable its poorer results for smaller
matrices due to the penalty introduced by the call to three different
kernels necessary to compute SpMV.

6. Finally, the kernel ELLR-T⋆ based on the format ELLPACK-R achieves
the best performance for all matrices considered, except for the matrices
cop20k A, wbp128, pwtk and wbp256. In particular, it achieves the
highest performance with matrices of higher dimension and higher value
σ
Av

and a random pattern.

Memory optimizations are very relevant to maximize the performance of
the GPU. The goal is to maximize the use of the hardware by maximizing
bandwidth. Table 3 shows the effective bandwidth achieved when SpMV is
computed with ELLR-T⋆ on the GPU GeForce GTX 285 for the set of test
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Table 3: Effective Bandwidth of memory access (Bandwidth) of SpMV with ELLR-T⋆ on
the GPU GeForce GTX 285 for the set of test matrices

Matrix Bandwidth Matrix Bandwidth Matrix Bandwidth

qh1484 6,5 bcsstk24 69,9 dense2 121,1
dw2048 10,8 mac econ 38,1 cant 121,4
rbs480a 14,0 qcd5 4 120,2 pdb1HYS 119,5
gemat12 19,9 mc2depi 118,0 consph 120,0
dw8192 34,6 rma10 99,5 shipsec1 121,8
mhd3200a 41,2 cop20k A 70,1 pwtk 128,3
e20r4000 53,5 wbp128 110,5 wbp256 94,8

matrices in Table 1. It is high specially for matrices with large dimension. So,
for these matrices the effective bandwidth ranges from 90 to 128 GBps, that
is 57-80% of the peak bandwidth (159 GBps) for this card. Consequently,
these results show that in spite of the irregularity of the SpMV, the high
percentage of coalescent and aligned memory access of ELLR-T allows to
achieve a high effective bandwidth.

In order to estimate the net gain provided by GPUs over modern pro-
cessors in the SpMV computation, we have taken the best optimized SpMV
implementations for both kind of architectures. For the former, we have
considered the MKL implementation of SpMV for a computer based on a
state-of-the-art superscalar core, Intel Core 2 Duo E8400, and evaluated the
computing times for the set of test matrices. For the latter, we used the
ELLR-T⋆, which is the best for the GPU according to the results presented
above. Figure 6 shows the acceleration factors obtained by the SpMV oper-
ation on the GPU against one superscalar core for all the test matrices. The
results show that the acceleration depends on the matrix pattern, though,
in general, it increases with the number of non-zero entries. The accelera-
tion factor achieves values higher than 30× for matrices of large dimensions
and higher number of entries. In view of the results related to the effective
bandwidth and the speed-up achieved by ELLR-T with the predicted con-
figuration by means of the proposed model, we can conclude that the GPU
turns out to be an excellent accelerator of SpMV by means of the ELLR-T⋆

algorithm.
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Figure 6: Acceleration factor achieved by ELLR-T⋆ on GPU GeForce GTX 285 over one
superscalar core of Intel Core 2 Duo E8400 with the set of test matrices

5. Conclusions

In this paper a new approach to compute the sparse matrix vector product
on GPUs has been evaluated. This approach is based on the kernel ELLR-T
whose performance depends on the optimum selection of two parameters; one
is particular for ELLR-T (the number of Threads collaborating to compute
the same output vector element) and the other is general for all CUDA ker-
nel (the threads block size). A model to auto-tune the ELLR-T kernel has
been proposed. It is based on the evaluation of memory access by the stream
multiprocessors of GPU architecture, knowing the rows length of a particular
matrix. The estimated configurations by the model are close to the optima,
so the ELLR-T achieves 91% of optimum performance when the model es-
timations are considered. The comparative evaluation with other proposals
has shown that the performance achieved by ELLR-T with the configuration
estimated by the model is the best. Therefore, ELLR-T combined with the
proposed model has proven to be superior to the other approaches used thus
far. Moreover, the fact that this approach for SpMV does not require any
row reordering preprocess and any benchmark process, makes it specially
attractive to be integrated on sparse matrix libraries currently available. A
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comparison of ELLR-T on a GeForce GTX 285 has revealed that acceleration
factors of up to 30× can be achieved in comparison with optimized imple-
mentations of SpMV which exploit state-of-the-art superscalar processors.
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