2010 10th IEEE International Conference on Computer and Information Technology (CIT 2010)

Improving the performance of the sparse matrix
vector product with GPUs

F. Véazquez, G. Ortega, J.J. Fernandez, E.M. Garz6n
Dpt Computer Architecture. Almeria University
Cra Sacramento s/n Almeria 04120 Spain
{f.vazquez, gol315, jjfdez, gmartin} @ual.es

Abstract—Sparse matrices are involved in linear systems,
eigensystems and partial differential equations from a wide
spectrum of scientific and engineering disciplines. Hence, sparse
matrix vector product (SpMYV) is considered as key operation
in engineering and scientific computing. For these applications
the optimization of the sparse matrix vector product (SpMYV)
is very relevant. However, the irregular computation involved
in SpMV prevents the optimum exploitation of computational
architectures when the sparse matrices are very large. Graphics
Processing Units (GPUs) have recently emerged as platforms that
yield outstanding acceleration factors. SpMV implementations
for GPUs have already appeared on the scene. This work
proposes and evaluates new implementations of SpMV for GPUs
called ELLR-T. They are based on the format ELLPACK-
R, which allows storage of the sparse matrix in a regular
manner. A comparative evaluation against a variety of storage
formats previously proposed has been carried out based on a
representative set of test matrices. The results show that: (1)
the SpMYV is highly accelerated with GPUs; (2) the performance
strongly depends on the specific pattern of the matrix; and (3) the
implementations ELLR-T achieve higher overall performance.
Consequently, the new implementations of SpMYV, ELLR-T,
described in this paper can help to exploit the GPUs, because,
they achieve high performance and they can be easily joined in
the engineering and scientific computing.

I. INTRODUCTION

The Matrix-Vector product (MV) is a key operation for
a wide variety of scientific applications, such as image pro-
cessing, simulation, control engineering and so on [14]. For
many applications based on MV, the matrix is large and
sparse, i.e. the dimensions of matrix are large (> 10%) and the
percentage of non-zero components is very low (< 1 — 2%).
Sparse matrices are involved in linear systems, eigensystems
and partial differential equations from a wide spectrum of
scientific and engineering disciplines. For these problems the
optimization of the sparse matrix vector product (SpMV) is
a challenge because of the irregular computation of large
sparse operations. This irregularity arises from the fact that
the data access locality is not maintained and that fine grained
parallelism of loops is not exploited [6]. Therefore, additional
effort must be spent to accelerate the computation of SpMV.
This effort is focused on the design of appropriate data formats
to store the sparse matrices, since the performance of SpMV
is directly related to the used format as shown [12], [13], [15].

Currently, Graphics Processing Units (GPUs) offer massive
parallelism for scientific computations. The use of GPUs for

978-0-7695-4108-2/10 $26.00 © 2010 IEEE
DOI 10.1109/CIT.2010.208

1146

general purpose applications has exceptionally increased in
the last few years thanks to the availability of Application
Programming Interfaces (APIs), such as Compute Unified
Device Architecture (CUDA) [11] and OpenCL [9], that
greatly facilitate the development of applications targeted at
GPUs. Recently, several implementations of SpMV have been
developed with CUDA and evaluated on GPUs [1], [3]-[5],
[10]. Devising GPU-friendly matrix storage formats has been
key in these implementations.

This work aims at presenting and evaluating a new approach
to increase the performance of SpMV on GPUS which relies
on a new storage format for the sparse matrix, ELLPACK-
R. This format is a GPU-friendly variant of one previously
designed for vector architectures, ELLPACK [7]. An extensive
performance evaluation of this new approach has been carried
out based on a representative set of test matrices. The compar-
ative study has drawn the conclusion that the implementations
ELLR-T based on ELLPACK-R proves to outperform the most
common and efficient formats for SpMV on GPUs used so far.

Next, Section II summarizes the aspects related to GPU
programming and computing. Then, Section III reviews the
different formats to compress sparse matrices, given that the
selection of an appropriate format is the key to optimize SpMV
on GPUs. Section IV introduces the proposed format and
algorithms for computation of SpMV on GPUs. In Section
V the performance measured on a NVIDIA Geforce GTX
285 with a set of representative sparse matrices belonging
to diverse applications is presented. The results clearly show
that the new algorithms for computation of SpMV with GPUs
presented here, ELLR-T, get the best performance for all
the test matrices. Finally, Section VI summarizes the main
conclusions.

II. COMPUTATIONAL KEYS TO EXPLOIT GPUS

From a programmer’s point of view, the GPU is considered
as a set of SIMD (Single Instruction stream, Multiple Data
streams) multiprocessors. Each kernel (parallel code) is exe-
cuted as a batch of threads organized as a grid of thread blocks.
For the execution, each block is assigned to a Streaming
Multiprocessor (SM) composed by eight cores called Scalar
Processors (SP). The blocks in turn are divided into sets of 32
threads called warps.

IEEE
computer
® psouety

Each SM has an on-chip memory area containing a set of
32-bit registers and a low latency memory shared between all
threads belonging to the block called shared memory. There
is also an off-chip memory area consisting of a larger size
and latency memory known as device memory. It is addressed
by all threads declared for the execution, and, moreover,
there are two low latency cache memories called constant
memory and texture memory. The device memory access is
performed by groups of 16 threads called half-warps. If the
access pattern of the different threads belonging to every warp
verifies the coalescence conditions, then, it can be performed
in parallel by all of them and the memory latency would be
the same as that of a single access. On the modern GPUs,
coalescing is achieved by any pattern of accesses that fits into
a segment size of 32, 64 or 128 bytes for 8, 16 or 32 and
64-bit words respectively. Memory segments must be aligned
to 16 and 32 memory words in order to reduce the number
of memory accesses. The use of texture memory improves the
performance when the searched word is located within it.

The ratio between the number of active warps per multi-
processor and the maximum number of active warps is called
the multiprocessor occupancy. The occupancy determines how
effectively the hardware is kept busy with the goal of hide
latencies, by switching between active warps, due to memory
operations and paused warps. Occupancy is closely related
to the thread block size (BS) and the number of registers and
shared memory size used by a kernel. Therefore a good choice
of BS will improve the performance.

On the other hand, the maximum instruction throughput is
achieved when all threads of the same warp execute the same
instruction sequence, given that any flow control instruction
can cause the threads of the same warp to diverge, that is, to
follow different execution paths that will be serialized.

Specifically, to optimize SpMV on GPUs, these goals have
to be taken into account when devising appropriate formats to
store the sparse matrix since the parallel computation and the
memory access are tightly related to the storage format of the
sparse matrix.

III. AN OVERVIEW OF SPMV AND ITS CHALLENGES.
FORMATS TO COMPRESS SPARSE MATRICES.

The pattern of memory access to read the elements of
the sparse matrix has a strong impact in the performance of
SpMV. So, every specific algorithm to compute SpMV (i.e.
n Av where A is the sparse matrix, v and v are the
output and input vectors respectively) exploiting a particular
architecture is related to a specific format to store the sparse
matrix. Next, the main formats to compress sparse matrices
and their corresponding algorithms are described, focusing on
the formats specifically designed for SIMD architectures such
as vector architectures and GPUs.

A. Coordinate storage (COO)

The coordinate storage scheme (COO) to compress a sparse
matrix is a direct transformation from the dense format. Let

1147

Nz be the total number of non-zero entries of the matrix. A
typical implementation of COO uses three one-dimensional
arrays of size Nz. One array, A[] of floating-point numbers
(hereafter referred to as floats), contains the non-zero entries.
The other two arrays of integer numbers, I[] and J[], contain
the corresponding row and column indices for each non-zero
entry. The performance of SpMV based on COO may be pe-
nalized because it does not implicitly include the information
about the ordering of the coordinates, and, additionally, for
multi-threaded implementations of SpMV atomic data access
must be included when the elements of the output vector are
written.

B. Compressed Row Storage (CRS)

Compressed Row Storage (CRS) is the most extended
format to store sparse matrices on superscalar processors. Let
N and Nz be the number of rows of the matrix and the total
number of non-zero entries of the matrix, respectively; the
data structure consists of the following arrays: (1) A[| array
of floats of dimension Nz, which stores the entries; (2) J|]
array of integers of dimension Nz, which stores their column
index; and (3) start[| array of integers of dimension N + 1,
which stores the pointers to the beginning of every row in AJ |
and J|], both sorted by row index.

The code to compute SpMV based on CRS has several
drawbacks that hamper the optimization of the performance of
this code on superscalar architectures. First, the access locality
of vector v[] is not maintained due to the indirect addressing.
Second, the fine grained parallelism is not exploited because
the number of iterations of the inner loop is small and variable
[6]. Despite these drawbacks, several optimizations have made
possible to improve the performance of sparse computation
on current processors [8], [15]. In particular, the Intel Math
Kernel Library (MKL) improves the performance of sparse
BLAS operations, based on CRS, by optimizing the memory
management and exploiting the ILP on Intel processors.

C. ELLPACK

ELLPACK or ITPACK [7] was introduced as a format to
compress a sparse matrix with the purpose of solving large
sparse linear systems with ITPACKV subroutines on vector
computers. This format stores the sparse matrix on two arrays,
one float A[], to save the entries, and one integer J|], to save
the column index of every entry. Both arrays are of dimension
N x Max_nzr at least, where N is the number of rows and
Maz_nzr is the maximum number of non-zeros per row in
the matrix, with the maximum being taken over all rows. Note
that the size of all rows in these compressed arrays A[| and
J[] is the same, because every row is padded with zeros.
Therefore, ELLPACK can be considered as an approach to fit
a sparse matrix in a regular data structure similar to a dense
matrix. Consequently, this format is appropriate to compute
operations with sparse matrices on vector architectures.

Focusing our interest on the GPU architecture and if every
element ¢ of vector u is computed by a thread identified
by index z ¢ and the arrays store their elements in

column-major order, then the SpMV based on ELLPACK can
improve the performance due to: (1) the coalesced global
memory access, thanks to the column-major ordering used
to store the matrix elements into the data structures. Then,
the thread identified by index x accesses to the elements
in the z row: Alxz + k x N] with {0 < k < Maz_nzr}
where k is the column index into the new data structures A |
and J[]. Consequently, two threads = and = + 1 access to
consecutive memory address, thereby fulfilling the conditions
of coalesced global memory access; (2) non-synchronized
execution between different thread blocks. Every thread block
can complete its computation without synchronization with
others blocks.

However, if the percentage of zeros is high in the ELLPACK
data structure and there is a relevant amount of padding zeros,
then the performance decreases. This penalty even remains
when conditional branches are included to avoid the memory
access and arithmetic operations with padding zeros, because
to compute every u[i], with 0 < i < N, the k-loop must iterate
until £ = Max_nzr and the conditional branch is executed in
every iteration; so in order to reduce the memory access and
activity of arithmetic units, the computation is penalized with
N x Max_nzr executions of the conditional branch.

D. Recent Proposals for GPUs

Recently, different proposals of kernels to compute SpMV
on GPUs have been described and analysed [1], [3]-[5],
[10]. They can be classified in two groups according to their
relationship with CRS or ELLPACK formats.

On the one hand, the kernel called CRS(vector) evaluated in
[3] is based on CRS format. This kernel computes every output
vector element with the collaboration of the 32 threads of
every warp. So, one warp computes the float products related
to the entries of one row in a cyclic fashion, followed by a
parallel reduction in shared memory in order to obtain the
final result of output vector element. Then, if the number of
elements by row is lower than 32 the performance reached by
CRS(vector) will decrease and the best performance will be
achieved by matrices of rows with high number of elements.
Similarly, another kernel to compute SpMV on GPUs based
on CRS format has been recently proposed in [1]. Here the
collaboration of 16 threads (half warp) computes every output
vector element doing a zero-padding of rows to complete a
length multiple of 16, in order to fulfill the memory alignment
requirements and improve the coalesced memory access. It has
been included on the SpMV4GPU library [2], and hereinafter
it will be referred to the same name. Thus, it reaches better
performance when the number of elements by rows is lower,
but its performance decreases when the rows have a very high
number of entries, if compared with CRS(vector), as analyzed
in Section V. On the other hand, the kernels related to the
format called HYB (which stands for hybrid) proposed by
[3] seem to yield the best performance on GPUs so far. This
format combines the ELLPACK and COO formats with the
goal of improving the performance of ELLPACK. Let A be
a sparse matrix stored with CRS format, then a preprocessing

1148

step is required to store it with HYB format in order to
compute: (1) parameter Max_nzr, (2) distribution function
of rows according to their number of entries, (3) subset of a
specific percentage of rows with less entries, for example 2/3
[3], and its corresponding parameter Max_nzr’, and, finally,
(4) two data structures to store A. Max_nzr’ entries of every
row are stored in ELLPACK format, and if any entries remain,
they are stored with COO format. In other words, HYB stores
the sparse matrix with ELLPACK avoiding the elements which
overfill some rows and storing them with COO format. So, the
corresponding computation of SpMV based on GPU is split
in several kernels related to the different formats, hopefully
with an appropriate value of Max_nzr’ the main kernel
related to ELLPACK can reach high performance on GPU,
but the kernels related to COO format adds relevant penalties
due mainly to un-coalesced memory access and the need to
use atomic functions for the write memory operations. This
drawback could be relevant especially for any kind of patterns
of sparse matrices where the computation of Maz_nzr' does
not reach optimum value.

Recently, the format called Sliced ELLPACK has been
proposed and evaluated in [10]. In order to compress the
matrix, the N rows of A are partitioned in sets of S rows
and every set is stored with ELLPACK format. Moreover,
the 7 threads into every block collaborate in the computation
related to every set of rows. It achieves high performance
when a preprocess with reordering of rows is considered and
the optimum values of the parameters S and 7 are selected.
Other format, called BELLPACK, has been proposed in [5],
this proposal compresses the sparse matrix by small dense
entries blocks. Then, this approach reaches better performance
for those sparse matrices with their pattern including small
blocks of entries. Both approaches, Sliced ELLPACK and
BELLPACK, include complex pre-processing of the sparse
matrix.

IV. SPMV BASED ON ELLPACK-R

We propose the ELLPACK-R format, a variant of ELL-
PACK, to further improve the performance reached by ELL-
PACK on GPUs. ELLPACK-R consists of two arrays, A |
(float) and J[] (integer) of dimension N x Max_nzr; and,
moreover, an additional integer array called r{[] of dimension
N (i.e. the number of rows) is included with the purpose of
storing the actual length of every row, regardless of the number
of the zero elements padded.

According to the mapping of threads in the computation
of every row, several implementations of SpMV based on
ELLPACK-R can be developed. Thus, when 7' threads com-
pute the element wu[i] accessing to the i-th row, the imple-
mentation is referred as ELLR-T. So, the i-th row is split in
sets of T elements. Then, in order to compute the element
uli], T threads compute rl[] iterations of the inner loop
of SpMV, every thread stores its partial computation in the
shared memory. Finally, to generate the value of w[i], one
reduction of the 7' values computed and stored in shared
memory has to be included. The value of parameter 7" can be

idx=(blockidx.x*blockDim.x+threadidx.x) # Thread index (BS=blockDim.x)

Thread index info the block of index blockIdx. x

Thread index info S, (set of T Threads related to the row of index i)
Row index

idb = threadIidx.x;
idp = idb % T;

i=1dx / T;
if G <nN) {
svalue=0.0;

max=ceil(r1[11/T);
for(int k = 0;k < max;k++){
value=A[k*(N’ *T)+(G *T)+idp];# N'=new dimension to fulfill the memory alignment requirements
col=3[k*(N’ *T)+(i *T)+idp];

if(idp < 16){ # Reduction on shared memory to compute u[i] (Code for T = 32)
shared[idb]+=shared[idb+16];
if (idp < 8) shared[idb]+=shared[idb+8];
if (idp < 4) shared[idb]l+=shared[idb+4];
if (idp < 2) shared[idb]+=shared[idb+2];
if(idp == 0) u[il=shared[idb]l+shared[idb+1];

(b)

Al J rl
[] [] [] svalue+=value*v[col];
}
shared[idb]=svalue;
Entries Columns Row length } }
(a)
Fig. 1.

explored in order to obtain the best performance with every
kind of sparse matrices. Figure 1 illustrates the code of ELLR-
T algorithm. The algorithms ELLR-T to compute SpMV with
GPUs take advantage of: (1) Coalesced and aligned global
memory access. The access to read the elements of A, J
and rl are coalesced and aligned thanks to the column-major
ordering used to store the matrix elements and the zeros-
padding to complete the length of every row as multiple of
16. Consequently, the highest possible memory bandwidth of
GPU is exploited. (2) Homogeneous computing within the
warps. The threads belonging to one warp do not diverge
when executing the kernel to compute SpMV. The code does
not include flow instructions that cause serialization in warps
since every thread executes the same loop, but with different
number of iterations. Every thread stops as soon as its loop
finishes, and the remaining threads continue the execution.(3)
Reduction of useless computation and unbalance of the threads
of one warp. Let S; be the set of T threads which are
collaborating on the computation of u[i], the k-loop reaches
the maximum value of k rl[i]/T < Max_nzr/T for
specific sets, .S;, into the warp. Then, the run-time of every
warp is proportional to maximum element of the sub-vector
ri[i]/T related with every warp, and it is not necessary that
the k-loop for all threads reaches k = Max_nzr/T, then,
there are not useless iterations and the control of loops of this
implementation is reduced comparing with SpMV based on
ELLPACK. (4) High occupancy. High occupancy levels are
reached as it will be shown in next section, if optimal value
of threads block size (B.S) is used.

V. EVALUATION

A comparative analysis of the performance of different
kernels to compute SpMV on GPUs has been carried out in this
work. The SpMV computations with GPU based on the fol-
lowing formats to store the matrix have been evaluated: CRS,
CRS(vector), SpMV4GPU, ELLPACK, HYB and ELLR-T*

1149

(a) ELLPACK-R Format and (b)ELLR-T code to compute SpMV on GPUs

where % denotes that ELLR-T is evaluated for optimum values
of T and BS.

This analysis is based on the run-times measured on a
GeForce GTX 285 with a set of test sparse matrices from
different disciplines of science and engineering. Table I sum-
marizes the test matrices used in this work and the charac-
teristic parameters related to their specific pattern: number
of rows (INV), total number of non-zeros elements (Entries),
average number of entries per row (Av), the difference be-
tween the maximum number of entries in a row and Av
(I Av), percentage of relative standard deviation of entries by
row(-). Moreover Table I shows the bandwidth (BW) and
speed-up (sp) reached with ELLR-T* on the GPU GeForce
GTX 285. The values of these parameters are key to justify
the differences between the performance achieved by SpMV
with the different formats, which are primarily related to the
variability or dispersion of the number of entries by row of
the matrices. All matrices are real of dimensions N x N.

The programming interface, CUDA, allows the programmer
to specify which variables are to be stored in the texture cache
within the memory hierarchy [11]. Here, the vector v has been
stored binding to the texture memory for all kernels evaluated,
since in the computation of © = Aw only the vector v is reused
throughout the products with the different rows of the matrix.

The evaluation results show that the best average perfor-
mance is got by ELLR-1 followed by HYB and ELLPACK,
and the worst average performance is obtained by CRS,
CRS(vector) and SpMV4GPU. However, the performance of
ELLR-T can be highly increased if the values of two param-
eters are appropriately selected: the thread block size, BS,
before mentioned in Section II, and 7' recently mentioned.
The possible values of BS are the powers of two from
16 to 512. The experimental results have shown that only
for BS = 128,256,512 the kernels ELLR-T reach 100%
occupancy of GPU, and for BS = 16, 32,64 the occupancy
is equal to or less than 50%. Then, it is predictable that the

TABLE I
SET OF TEST MATRICES, THEIR CHARACTERISTIC PARAMETERS RELATED
TO THEIR DISTRIBUTION OF ENTRIES ON THE ROWS; EFFECTIVE
BANDWIDTH OF MEMORY ACCESS (BW) AND NET SPEED-UP (sp) OF
SPMV wiITH ELLR-T* ON THE GPU GEFORCE GTX 285

Matrix N Entries Av TAv 2 BW sp
gh1484 1484 6110 4 9 39 6. I.
dw2048 2048 10114 5 3 10 11. 2.
rbs480a 430 17087 36 0 1 14. 1.
gemat12 4929 33111 7 37 45 20. 4.
dwg192 8192 41746 5 3 12 35. 5.
mhd3200a 3200 68026 21 12 27 41. 4.
€20r4000 4241 131556 31 31 50 53. 5.
besstk24 3562 159910 45 12 26 70. 14
mac_econ 206500 1273389 6 38 72 38. 8.
qed5_4 49152 1916928 39 1 0 120. 16.
mc2depi 525825 2100225 4 0 2 118. 23,
rmalQ 46835 2374001 51 94 56 9. 14
cop20k_A 121192 2624331 22 59 64 70. 21.
wbp128 16384 3933095 240 16 14 111. 14
dense2 2000 4000000 2000 0 0 121. 15
cant 62451 4007383 64 14 21 121. 32,
pdblHYS 36417 4344765 119 85 27 121. 32
consph 83334 6010480 72 9 26 120. 33.
shipsecl 140874 7813404 55 46 20 122. 32
pwtk 217918 11634424 53 128 9 128. 33.
wbp256 65536 31413932 479 33 15 95. 13.

performance decreases with the smaller values of B.S. On the
other hand, focussing our interest on the other parameter 7T,
the values of T are divisors of BS, then T' = 2! < BS; our
experimental results have shown that ELLR-T does not reach
the highest performance for 7" > 16. Then, the kernel ELLR-
T can achieve better performance if BS = 128,256,512 and
T=1,2,4,8.

Consequently, in order to optimize the performance of
ELLR-T twelve combinations of values of BS and 7' param-
eters have to be evaluated. Many examples of applications
include the computation of SpMV hundred of times with the
same pattern of a large sparse matrix A. Then, the selection
of parameters B.S and T can be carried out in a pre-process
stage which includes twelve computations of SpMV and it
will require no relevant percentage of run time to optimize
the performance of ELLR-T.

Figure 2 shows the performance (GFLOPs) of the SpMV
kernels based on the formats that have been evaluated: CRS,
CRS(vector), SpMV4GPU, ELLPACK, HYB and moreover
the kernel ELLR-T* with optimal values of B.S and T'. The
results shown in that figure allow us to highlight the following
major points: (1) Like any parallel implementation of SpMV,
the performance obtained by most formats increases with
the number of non-zero entries in the matrix, since small
matrices do not generate a relevant computational load to
reach high parallel performance. Thus, in general, as the
dimension of matrices increases, the performance improves.
(2) In general, the CRS format yields the poorest performance
because the pattern of memory access is not coalescent; (3)
The CRS(vector) and SpMV4GPU formats achieve better
performance than CRS with most matrices, specially when
Awv is higher and the distribution of entries is more regular,

1150

i.e. -7~ is lower. SpMV4GPU reaches higher performance than
CRS(vector) because it better exploits the power of threads,
as sixteen threads collaborate to compute every u element,
and perform a total coalesced memory access. (4) In general,
ELLPACK outperforms both CRS-based formats, however its
computation is penalized for some particular matrices, mainly
due to the relevance of useless computation of the warps when
the matrix histogram includes rows with very uneven length.
(5) The performance obtained by HYB is, in general, higher
than the four previous formats, but it is remarkable its poorer
results for smaller matrices due to the penalty introduced
by the call to three different kernels necessary to compute
SpMV. Moreover, with specific matrices of higher dimension
(qed5_4, mc2depi, cop20k_A, wbpl28, consph, wbp256) it
reaches lower or similar performance than ELLPACK, because
the percentage of entries stored with ELLPACK format is near
to 100 %.(6) Finally, the kernel ELLR-T* based on the format
ELLPACK-R clearly achieves the best performance for all
matrices considered in this work. In particular, it achieves the
highest performance with matrices of high dimensions and
higher values of parameters I Av, and Z-. It is remarkable
the improvement of the performance reach by ELLR-T* for
matrices with large dimension.

Memory optimizations are very relevant to maximize the
performance of the GPU. The goal is to maximize the use
of the hardware by maximizing bandwidth. The effective
bandwidth memory access is a parameter to estimate the level
of memory optimization while a specific kernel is executed on
the GPU [11]. Table I shows the effective bandwidth achieved
when SpMV is computed with ELLR-T* on the GPU GeForce
GTX 285 for the set of test matrices in Table I. The effective
bandwidth reached by ELLR-T* is high specially for matrices
with large dimension. So, for these matrices the effective
bandwidth ranges from 90 to 128 GBps, that is 57-80% of
the peak bandwidth (159 GBps) for this card.

In order to estimate the net gain provided by GPUs in the
SpMV computation, we have taken the best optimized SpMV
implementations for modern processors and for GPUs. For
the former, we have considered the MKL implementation of
SpMV for a computer based on a state-of-the-art superscalar
core, Intel Core 2 Duo E8400, and evaluated the computing
times for the set of test matrices. For the GPU GeForce GTX
285, we used the ELLR-T*, which is the best for the GPU
according to the results presented above. Table I shows the
speedup factors obtained for the SpMV operation on the GPU
against one superscalar core, for all the test matrices. The
results show that the speedup depends on the matrix pattern,
though in general it increases with the number of non-zero
entries. The speedup achieves values higher than 30x for
matrices of large dimensions and higher number of entries.
In view of the results related to the effective bandwidth and
the speed-up achieved by ELLR-T*, we can conclude that the
GPU turns out to be an excellent accelerator of SpMV.

Performance
B CRS O CRS{vector) DELL ®HYB O SpMV4GPU DELLR-T*
35
31,48
30 20,20 26 3001 067 2064 2992
m 27,51 M M
25 _ 2360 2+ 23,66
@ 20 -
o 1?,_14 M 16,74 i - |
T 1
[V 12,96 H 1
984 r
10 25
7.23 &
34
5 343 4"
2,24
1,30 |-| 1
0 "“-"”I'”-'ﬂ T T T T T T T T T T T . T T T T T T
e 2 " o = = n - & G ol =] & N s)
3 ¥ o ») o & > i » v & A & N
ST FITFTF &Ly TS
& ol & & (\3 & Vc,‘" (\\,,c, DDQ) o Qb & & E)
Matrix

Fig. 2.

VI. CONCLUSIONS

In this paper a new approach to compute the sparse matrix
vector on GPUs has been proposed and evaluated, ELLR-T.
The specific characteristics of ELLR-T based on ELLPACK-
R format makes it well suited for GPU computing. The
comparative evaluation with other proposals has shown that the
performance achieved by ELLR-T is the best after an extensive
study on a set of representative test matrices. Therefore,
ELLR-T has proven to be superior to the other approaches
used thus far. Moreover, the fact that this approach for SpMV
does not require any row reordering preprocess makes it
specially attractive to be integrated on sparse matrix libraries
currently available. A comparison of ELLR-T on a GeForce
GTX 285 has revealed that acceleration factors of up to 30x
can be achieved in comparison to optimized implementations
of SpMV which exploit state-of-the-art superscalar processors.
Therefore, GPU computing is expected to play an important
role in computational science to accelerate SpMYV, especially
dealing with problems where huge sparse matrices are in-
volved.

ACKNOWLEDGMENT

This work has been funded by grants from the Spanish
Ministry of Science and Innovation TIN2008-01117 and Junta
de Andalucia (P06-TIC-01426, PO8-TIC-3518)

REFERENCES

[1] Baskaran MM, Bordawekar R. Optimizing Sparse Matrix-Vector Multi-
plication on GPUs. IBM Research Report RC24704. April 2009.

[2] Baskaran MM, Bordawekar R. Sparse Matrix-Vector Multiplica-
tion Toolkit for Graphics Processing Units. April, 2009 http://www.
alphaworks.ibm.com/tech/spmv4gpu

1151

Performance of SpMV based on different formats on GPU GeForce GTX 285 with the set of test matrices, using the texture cache memory.

[3] Bell N, Garland M. Implementing Sparse Matrix-Vector Multiplication
on Throughput-Oriented Processors Proceedings of SC’09. http://www.
nvidia.com/object/nvidia_research_pub_013.html

Buatois L, Caumon G, Levy B. Concurrent number cruncher - A GPU

implementation of a general sparse linear solver. International Journal of

Parallel, Emergent and Distributed Systems 2009; 24(3):205-223

Choi JW, Singh A, Vuduc RW. Model-driven Autotuning of Sparse

Matrix-Vector Multiply on GPUs Proceedings of PPoPP10, 2010

Kurzak J, Alvaro W, Dongarra J. Optimizing matrix multiplication for

a short-vector SIMD architecture - CELL processor. Parallel Computing

2009; 35(3):138-150

Kincaid DR, Oppe TC, Young DM. ITPACKYV 2D User’s Guide. CNA-

232 1989. http://rene.ma.utexas.edu/CNA/ITPACK/manuals/userv2d/

Intel. Math Kernel Library. Reference Manual

http://software.intel.com/sites/products/documentation/hpc/mkl/mklman.

pdf

KRONOS GROUP. OpenCL - The open standard for parallel programming

of heterogeneous systems.

http://www.khronos.org/developers/library/overview/opencl_overview.pdf

[10] Monakov,A; Lokhmotov, A; and Avetisyan, A. Automatically Tuning
Sparse Matrix-Vector Multiplication for GPU Architectures
Proceedings of HIPEAC 2010, LNCS 5952, pp. 111- 125, 2010

[11] NVIDIA, CUDA Programming guide. Version 2.3, August, 2009.
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/
NVIDIA_CUDA_Programming_Guide_2.3.pdf

[12] Ogielski AT, Aiello W. Sparse matrix computations on parallel processor
arrays. SIAM Journal on Scientific Computing 1993; 14:519-530.

[13] Toledo S. Improving the memory-system performance of sparse-matrix
vector multiplication. IBM Journal of Research and Development. 1997;
41(6):711-725

[14] Véazquez F, Garzén EM, Fernidndez JJ. A matrix approach to tomo-
graphic reconstruction and its implementation on GPUs. Journal of
Structural Biology, 2010; 170:146-151

[15] Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J. Op-
timization of sparse matrix-vector multiplication on emerging multicore
platforms. Parallel Computing 2009; 35(3):178-194

[4

=

[5]
[6]

[7]
[8

—

[9]

