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A clear, comprehensive explanation of Beowulf for Linux. 

Beowulf clusters, which exploit mass-market PC hardware and 

software in conjunction with cost-effective commercial network 

technology, are becoming the platform for many scientific, 

engineering, and commercial applications. With growing popularity 
has come growing complexity.  

 

Addressing that complexity, Beowulf Cluster Computing with Linux 

and Beowulf Cluster Computing with Windows provide system 

users and administrators with the tools they need to run the most 
advanced Beowulf clusters.  

 

The book is appearing in both Linux and Windows versions in 

order to reach the entire PC cluster community, which is divided 

into two distinct camps according to the node operating system. 
Each book consists of three stand-alone parts. The first provides 

an introduction to the underlying hardware technology, assembly, 

and configuration. The second part offers a detailed presentation of 

the major parallel programming librairies. The third, and largest, 

part describes software infrastructures and tools for managing 

cluster resources.  

 

This includes some of the most popular of the software packages 

available for distributed task scheduling, as well as tools for 

monitoring and administering system resources and user 
accounts. Approximately 75% of the material in the two books is 

shared, with the other 25% pertaining to the specific operating 

system. Most of the chapters include text specific to the operating 

system. The Linux volume includes a discussion of parallel file 

systems. 
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Chapter 1: Introduction 
Thomas Sterling 

Clustering is a powerful concept and technique for deriving extended capabilities from 

existing classes of components. In nature, clustering is a fundamental mechanism for 

creating complexity and diversity through the aggregation and synthesis of simple basic 

elements. The result is no less than the evolution and structure of the universe, the 

compound molecules that dictate the shape and attributes of all materials and the form and 

behavior of all multicellular life, including ourselves. To accomplish such synthesis, an 

intervening medium of combination and exchange is required that establishes the 
interrelationships among the constituent elements and facilitates their cooperative 

interactions from which is derived the emergent behavior of the compound entity. For 

compound organizations in nature, the binding mechanisms may be gravity, coulombic forces, 

or synaptic junctions. In the field of computing systems, clustering is being applied to render 

new systems structures from existing computing elements to deliver capabilities that through 
other approaches could easily cost ten times as much. In recent years clustering hardware 

and software have evolved so that today potential user institutions have a plethora of choices 

in terms of form, scale, environments, cost, and means of implementation to meet their 

scalable computing requirements. Some of the largest computers in the world are cluster 

systems. But clusters are also playing important roles in medium-scale technical and 
commerce computing, taking advantage of low-cost, mass-market PC-based computer 

technology. These Beowulf-class systems have become extremely popular, providing 

exceptional price/performance, flexibility of configuration and upgrade, and scalability to 

provide a powerful new tool, opening up entirely new opportunities for computing 

applications. 

 

1.1 Definitions and Taxonomy 

In the most general terms, a cluster is any ensemble of independently operational elements 

integrated by some medium for coordinated and cooperative behavior. This is true in 
biological systems, human organizations, and computer structures. Consistent with this broad 

interpretation, computer clusters are ensembles of independently operational computers 

integrated by means of an interconnection network and supporting user -accessible software 

for organizing and controlling concurrent computing tasks that may cooperate on a common 

application program or work-load. There are many kinds of computer clusters, ranging from 
among the world's largest computers to collections of throwaway PCs. Clustering was among 

the first computer system architecture techniques for achieving significant improvements in 

overall performance, user access bandwidth, and reliability. Many research clusters have 

been implemented in industry and academia, often with proprietary networks and/or custom 

processing nodes. 
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Commodity clusters are local ensembles of computing nodes that are commercially available 

systems employed for mainstream data-processing markets. The interconnection network 

used to integrate the compute nodes of a commodity cluster is dedicated to the cluster 
system and is also commercially available from its manufacturer. The network is dedicated in 

the sense that it is used internally within the cluster supporting only those communications 

required between the compute nodes making up the cluster, its host or master nodes, which 

are themselves "worldly," and possibly the satellite nodes responsible for managing mass 

storage resources that are part of the cluster. The network of a commodity cluster must not be 
proprietary to the cluster product of a single vendor but must be available for procurement, in 

general, for the assembly of any cluster. Thus, all components of a commodity cluster can be 

bought by third-party systems integrators or the end-user installation site itself. Commodity 

clusters employ software, which is also available to the general community. Software can be 

free, repackaged and distributed for modest cost, or developed by third-party independent 
software vendors (ISVs) and commercially marketed. Vendors may use and distribute as part 

of their commodity cluster products their own proprietary software as long as alternate 

external software is available that could be employed in its place. The twin motivating factors 

that drive and restrict the class of commodity computers is (1) their use of nonspecialty parts 

that exploits the marketplace for cost reduction and stable reliability and (2) the avoidance of 

critical unique solutions restricted to a specific cluster product that if unavailable in the future 

would disrupt end-user productivity and jeopardize user investment in code base. 

Beowulf-class systems are commodity clusters that exploit the attributes derived from 
mass-market manufacturing and distribution of consumer-grade digital electronic components. 

Beowulfs are made of PCs, sometimes lots of them; cheap EIDE (enchanced integrated drive 

electronics) (usually) hard disks; and low -cost DIMMs (dual inline memory modules) for main 

memory. A number of different microprocessor families have been used successfully in 

Beowulfs, including the long-lasting Intel X86 family (80386 and above), their AMD binary 

compatible counterparts, the Compaq Alpha 64-bit architecture, and the IBM PowerPC series. 

Beowulf systems deliver exceptional price/performance for many applications. They use low 

cost/no cost software to manage the individual nodes and the ensemble as a whole. A large 

part of the scientific and technical community using Beowulf has employed the Linux open 
source operating system, while many of the business and commercial users of Beowulf 

support the widely distributed commercial Microsoft Windows operating system. Both types of 

Beowulf system use middleware that is a combination of free open software and commercial 

ISV products. Many of these tools have been ported to both environments, although some still 

are restricted to one or the other environment. The nodes of Beowulfs are either uniprocessor 
or symmetric multiprocessors (SMPs) of a few processors. The price/performance sweet spot 

appears to be the dual-node SMP systems, although performance per microprocessor is 

usually less than for single-processor nodes. Beowulf-class systems are by far the most 

popular form of commodity cluster today. 
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At the other end of the cluster spectrum are the constellations. A constellation is a cluster of 

large SMP nodes scaled such that the number of processors per node is greater than the 

number of such nodes making up the entire system. This is more than an arbitrary distinction. 
Performance of a cluster for many applications is derived through program and system 

parallelism. For most commodity clusters and Beowulf systems, the primary parallelism 

exploited is the internode parallelism. But for clusters, the primary parallelism is intranode, 

meaning most of the parallelism used is within the node. Generally, processors within an 

SMP node are more tightly coupled through shared memory and can exploit finer-grained 
parallelism than can Beowulf clusters. But shared-memory systems require the use of a 

different programming model from that of distributed-memory systems, and therefore 

programming constellations may prove rather different from programming Beowulf clusters 

for optimal performance. Constellations are usually restricted to the largest systems. 

 
1.2 Opportunities and Advantages 

Commodity clusters and Beowulf-class systems bring many advantages to scalable parallel 
computing, opening new opportunities for users and application domains. Many of these 

advantages are a consequence of superior price/performance over many other types of 

system of comparable peak capabilities. But other important attributes exhibited by clusters 

are due to the nature of their structure and method of implementation. Here we highlight and 

expand on these, both to motivate the deployment and to guide the application of 
Beowulf-class systems for myriad purposes. 

Capability Scaling. More than even cost effectiveness, a Beowulf system's principle attribute 
is its scalability. Through the aggregation of commercial off-the-shelf components, ensembles 

of specific resources deemed critical to a particular mode of operation can be integrated to 

provide a degree of capability not easily acquired through other means. Perhaps most well 

known in high-end computing circles is peak performance measured in flops (floating-point 

operations per second). Even modest Beowulf systems can attain a peak performance 
between 10 and 100 gigaflops. The largest commodity cluster under development will 

achieve 30 teraflops peak performance. But another important capability is mass storage, 

usually through collections of hard disk drives. Large commodity disks can contain more than 

100 gigabytes, but commercial database and scientific data-intensive applications both can 

demand upwards of 100 terabytes of on-line storage. In addition, certain classes of memory 

intensive applications such as those manipulating enormous matrices of multivariate data can 

be processed effectively only if sufficient hardware main memory is brought to bear on the 

problem. Commodity clusters provide one method of accumulating sufficient DRAM (dynamic 

random access memory) in a single composite system for these large datasets. We note that 

while clusters enable aggregation of resources, they do so with limited coupling, both logical 
and physical, among the constituent elements. This fragmentation within integrated systems 

can negatively impact performance and ease of use. 
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Convergence Architecture.  Not anticipated by its originators, commodity clusters and 

Beowulf-class systems have evolved into what has become the de facto standard for parallel 

computer structure, having converged on a communitywide system architecture. Since the 
mid-1970s, the high-performance computing industry has dragged its small user and 

customer base through a series of often-disparate parallel architecture types, requiring major 

software rework across successive generations. These changes were often a consequence 

of individual vendor decisions and resulted in low customer confidence and a strong reticence 

to invest in porting codes to a system that could easily be obsolete before the task was 
complete and incompatible with any future generation systems. Commodity clusters 

employing communitywide message-passing libraries offer a common structure that crosses 

vendor boundaries and system generations, ensuring software investment longevity and 

providing customer confidence. Through the evolution of clusters, we have witnessed a true 

convergence of parallel system architectures, providing a shared framework in which 
hardware and software suppliers can develop products with the assurance of customer 

acceptance and application developers can devise advanced user programs with the 

confidence of continued support from vendors. 

Price/Performance. No doubt the single most widely recognized attribute of Beowulf-class 

cluster systems is their exceptional cost advantage compared with other parallel computers. 

For many (but not all) user applications and workloads, Beowulf clusters exhibit a 

performance-to-cost advantage of as much as an order of magnitude or more compared with 
massively parallel processors (MPPs) and distributed shared-memory systems of equivalent 

scale. Today, the cost of Beowulf hardware is approaching one dollar per peak megaflops 

using consumer-grade computing nodes. The implication of this is far greater than merely the 

means of saving a little money. It has caused a revolution in the application of 

high-performance computing to a range of problems and users who would otherwise be 

unable to work within the regime of supercomputing. It means that for the first time, 

computing is playing a role in industry, commerce, and research unaided by such technology. 

The low cost has made Beowulfs ideal for educational platforms, enabling the training in 

parallel computing principles and practices of many more students than previously possible. 

More students are now learning parallel programming on Beowulf-class systems than all 
other types of parallel computer combined. 

Flexibility of Configuration and Upgrade. Depending on their intended user and 

application base, clusters can be assembled in a wide array of configurations, with very few 

constraints imposed by commercial vendors. For those systems configured at the final site by 

the intended administrators and users, a wide choice of components and structures is 

available, making possible a broad range of systems. Where clusters are to be dedicated to 

specific workloads or applications, the system structure can be optimized for the required 
capabilities and capacities that best suit the nature of the problem being computed. As new 

technologies emerge or additional financial resources are available, the flexibility with which 

clusters are imbued is useful for upgrading existing systems with new component 
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technologies as a midlife "kicker" to extend the life and utility of a system by keeping it 

current. 

Technology Tracking.  New technologies most rapidly find their way into those products 
likely to provide the most rapid return: mainstream high -end personal computers and SMP 

servers. Only after substantial lag time might such components be incorporated into MPPs. 

Clustering, however, provides an immediate path to integration of the latest technologies, 

even those that may never be adopted by other forms of high-performance computer 

systems. 

High Availability.  Clusters provide multiple redundant identical resources that, if managed 

correctly, can provide continued system operation through graceful degradation even as 

individual components fail. 

Personal Empowerment.  Because high-end cluster systems are derived from readily 
available hardware and software components, installation sites, their system administrators, 

and users have more control over the structure, elements, operation, and evolution of this 
system class than over any other system. This sense of control and flexibility has provided a 

strong attractor to many, especially those in the research community, and has been a 

significant motivation for many installations. 

Development Cost and Time. The emerging cluster industry is being fueled by the very low 

cost of development and the short time to product delivery. Based on existing computing and 

networking products, vendor-supplied commodity clusters can be developed through basic 

systems integration and engineering, with no component design required. Because the 
constituent components are manufactured for a much larger range of user purposes than is 

the cluster market itself, the cost to the supplier is far lower than custom elements would 

otherwise be. Thus commodity clusters provide vendors with the means to respond rapidly to 

diverse customer needs, with low cost to first delivery. 

 
1.3 A Short History 

Cluster computing originated within a few years of the inauguration of the modern electronic 
stored-program digital computer. SAGE was a cluster system built for NORAD under Air 

Force contract by IBM in the 1950s based on the MIT Whirlwind computer architecture. Using 

vacuum tube and core memory technologies, SAGE consisted of a number of separate 

standalone systems cooperating to manage early warning detection of hostile airborne 

intrusion of the North American continent. Early commercial applications of clusters employed 

paired loosely coupled computers, with one computer performing user jobs while the other 

managed various input/output devices. 

Breakthroughs in enabling technologies occurred in the late 1970s, both in hardware and 
software, which were to have significant long -term effects on future cluster computing. The 
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first generations of microprocessors were designed with the initial development of VLSI (very 

large scale integration) technology, and by the end of the decade the first workstations and 

personal computers were being marketed. The advent of Ethernet provided the first widely 
used local area network technology, creating an industry standard for a modestly priced 

multidrop interconnection medium and data transport layer. Also at this time, the multitasking 

Unix operating system was created at AT&T Bell Labs and extended with virtual memory and 

network interfaces at the University of California-Berkeley. Unix was adopted in its various 

commercial and public domain forms by the scientific and technical computing community as 
the principal environment for a wide range of computing system classes from scientific 

workstations to supercomputers. 

During the decade of the 1980s, increased interest in the potential of cluster computing was 

marked by important experiments in research and industry. A collection of 160 interconnected 

Apollo workstations was employed as a cluster to perform certain computational tasks by the 

National Security Agency. Digital Equipment Corporation developed a system comprising 

interconnected VAX 11/750 computers, coining the term "cluster" in the process. In the area 
of software, task management tools for employing workstation farms were developed, most 

notably the Condor software package from the University of Wisconsin. Different strategies 

for parallel processing were explored during this period by the computer science research 

community. From this early work came the communicating sequential processes model more 

commonly referred to as the message-passing model, which has come to dominate much of 
cluster computing today. 

An important milestone in the practical application of the message-passing model was the 
development of PVM (Parallel Virtual Machine), a library  of linkable functions that could allow 

routines running on separate but networked computers to exchange data and coordinate their 

operation. PVM (developed by Oak Ridge National Laboratory, Emery University, and the 

University of Tennessee) was the first widely deployed distributed software system available 

across different platforms. By the beginning of the 1990s, a number of sites were 
experimenting with clusters of workstations. At the NASA Lewis Research Center, a small 

cluster of IBM workstations was used to simulate the steady-state behavior of jet aircraft 

engines in 1992. The NOW (network of workstations) project at UC Berkeley began operating 

the first of several clusters there in 1993, which led to the first cluster to be entered on the 

Top500 list of the world's most powerful computers. Also in 1993, Myrinet, one of the first 

commercial system area networks, was introduced for commodity clusters, delivering 

improvements in bandwidth and latency an order of magnitude better than the Fast Ethernet 

local area network (LAN) most widely used for the purpose at that time. 

The first Beowulf-class PC cluster was developed at the NASA Goddard Space Flight center 

in 1994 using early releases of the Linux operating system and PVM running on 16 Intel 100 

MHz 80486-based personal computers connected by dual 10 Mbps Ethernet LANs. The 

Beowulf project developed the necessary Ethernet driver software for Linux and additional 
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low-level cluster management tools and demonstrated the performance and cost 

effectiveness of Beowulf systems for real-world scientific applications. That year, based on 

experience with many other message-passing software systems, the first Message -Passing 
Interface (MPI) standard was adopted by the parallel computing community to provide a 

uniform set of message-passing semantics and syntax. MPI has become the dominant 

parallel computing programming standard and is supported by virtually all MPP and cluster 

system vendors. Workstation clusters running Sun Microsystems Solaris operating system 

and NCSA's PC cluster running the Microsoft NT operating system were being used for 
real-world applications. 

In 1996, the DOE Los Alamos National Laboratory and the California Institute of Technology 
with the NASA Jet Propulsion Laboratory independently demonstrated sustained 

performance of over 1 Gflops for Beowulf systems costing under $50,000 and was awarded 

the Gordon Bell Prize for price/performance for this accomplishment. By 1997, Beowulf-class 

systems of over a hundred nodes had demonstrated sustained performance of greater than 

10 Gflops, with a Los Alamos system making the Top500 list. By the end of the decade, 28 
clusters were on the Top500 list with a best performance of over 200 Gflops. In 2000, both 

DOE and NSF announced awards to Compaq to implement their largest computing facilities, 

both clusters of 30 Tflops and 6 Tflops, respectively. 

 

1.4 Elements of a Cluster 

A Beowulf cluster comprises numerous components of both hardware and software. Unlike 

pure closed-box turnkey mainframes, servers, and workstations, the user or hosting 
organization has considerable choice in the system architecture of a cluster, whether it is to 

be assembled on site from parts or provided by a systems integrator or vendor. A Beowulf 

cluster system can be viewed as being made up of four major components, two hardware and 

two software. The two hardware components are the compute nodes that perform the work 

and the network that interconnects the node to form a single system. The two software 
components are the collection of tools used to develop user parallel application programs and 

the software environment for managing the parallel resources of the Beowulf cluster. The 

specification of a Beowulf cluster reflects user choices in each of these domains and 

determines the balance of cost, capacity, performance, and usability of the system. 

The hardware node is the principal building block of the physical cluster system. After all, it is 
the hardware node that is being clustered. The node incorporates the resources that provide 

both the capability and capacity of the system. Each node has one or more microprocessors 
that provide the computing power of the node combined on the node's motherboard with the 

DRAM main memory and the I/O interfaces. In addition the node will usually include one or 

more hard disk drives for persistent storage and local data buffering although some clusters 

employ nodes that are diskless to reduce both cost and power consumption as well as 

increase reliability. 
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The network provides the means for exchanging data among the cluster nodes and 

coordinating their operation through global synchronization mechanisms. The 

subcomponents of the network are the network interface controllers (NIC), the network 
channels or links, and the network switches. Each node contains at least one NIC that 

performs a series of complex operations to move data between the external network links and 

the user memory, conducting one or more transformations on the data in the process. The 

channel links are usually passive, consisting of a single wire, multiple parallel cables, or 

optical fibers. The switches interconnect a number of channels and route messages between 
them. Networks may be characterized by their topology, their bisection and per channel 

bandwidth, and the latency for mes sage transfer. 

The software tools for developing applications depend on the underlying programming model 

to be used. Fortunately, within the Beowulf cluster community, there has been a convergence 

of a single dominant model: communicating sequential processes, more commonly referred 

to as message passing. The message-passing model implements concurrent tasks or 

processes on each node to do the work of the application. Messages are passed between 
these logical tasks to share data and to synchronize their ope rations. The tasks themselves 

are written in a common language such as Fortran or C++. A library of communicating 

services is called by these tasks to accomplish data transfers with tasks being performed on 

other nodes. While many different message-passing languages and implementation libraries 

have been developed over the past two decades, two have emerged as dominant: PVM and 
MPI (with multiple library implementations available for MPI). 

The software environment for the management of resources gives system administrators the 
necessary tools for supervising the overall use of the machine and gives users the capability 

to schedule and share the resources to get their work done. Several schedulers are available 

and discussed in this book. For coarse-grained job stream scheduling, the popular Condor 

scheduler is available. PBS and the Maui scheduler handle task scheduling for interactive 

concurrent elements. For lightweight process management, the new Scyld Bproc scheduler 
will provide efficient operation. PBS also provides many of the mechanisms needed to handle 

user accounts. For managing parallel files, there is PVFS, the Parallel Virtual File System. 

 
1.5 Description of the Book 
Beowulf Cluster Computing is offered as a fully comprehensive discussion of the foundations 

and practices for the operation and application of commodity clusters with an emphasis on 

those derived from mass-market hardware components and readily available software. The 

book is divided into three broad topic areas. Part I describes the hardware components that 

make up a Beowulf system and shows how to assemble such a system as well as take it out 

for an initial spin using some readily available parallel benchmarks. Part II discusses the 
concepts and techniques for writing parallel application programs to run on a Beowulf using 

the two dominant communitywide standards, PVM and MPI. Part III explains how to manage 

the resources of Beowulf systems, including system administration and task scheduling. Each 
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part is standalone; any one or pair of parts can be used without the need of the others. In this 

way, you can just jump into the middle to get to the necessary information fast. To help in this, 

Chapter 2 (the next chapter) provides an overview and summary of all of the material in the 
book. A quick perusal of that chapter should give enough context for any single chapter to 

make sense without your having to have read the rest of the book. 

The Beowulf book presents three kinds of information to best meet the requirements of the 
broad and varied cluster computing community. It includes foundation material for students 

and people new to the field. It also includes reference material in each topic area, such as the 

major library calls to MPI and PVM or the basic controls for PBS. And, it gives explicit 

step-by-step guidance on how to accomplish specific tasks such as assembling a processor 
node from basic components or installing the Maui scheduler.  

This book can be used in many different ways. We recommend just sitting down and perusing 

it for an hour or so to get a good feel for where the information is that you would find most 

useful. Take a walk through Chapter 2 to get a solid overview. Then, if you're trying to get a 

job done, go after that material germane to your immediate needs. Or if you are a first-time 
Beowulf user and just learning about cluster computing, use this as your guide through the 

field. Every section is designed both to be interesting and to teach you how to do something 

new and useful. 

One major challenge was how to satisfy the needs of the majority of the commodity cluster 

community when a major division exists across the lines of the operating system used. In fact, 
at least a dozen different operating systems have been used for cluster systems. But the 

majority of the community use either Linux or Windows. The choice of which of the two to use 

depends on many factors, some of them purely subjective. We therefore have taken the 

unprecedented action of offering a choice: we've crafted two books, mostly the same, but 

differing between the two operating systems. So, you are holding either Beowulf Cluster 

Computing with Windows  or Beowulf Cluster Computing with Linux. Whichever works best for 

you, we hope you find it the single most valuable book on your shelf for making clusters and 

for making clusters work for you. 
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Chapter 2: An Overview of Cluster Computing 

Overview 
Thomas Sterling 

Commodity cluster systems offer an alternative to the technical and commercial computing 

market for scalable computing systems for medium - and high-end computing capability. For 
many applications they replace previous-generation monolithic vector supercomputers and 

MPPs. By incorporating only components already developed for wider markets, they exploit 

the economy of scale not possible in the high-end computing market alone and circumvent 

significant development costs and lead times typical of earlier classes of high-end systems 

resulting in a price/performance advantage that may exceed an order of magnitude for many 
user workloads. In addition, users have greater flexibility of configuration, upgrade, and 

supplier, ensuring longevity of this class of distributed system and user confidence in their 

software investment. Beowulf-class systems exploit mass-market components such as PCs 

to deliver exceptional cost advantage with the widest space of choice for building systems. 

Beowulfs integrate widely available and easily accessible low-cost or no-cost system 
software to provide many of the capabilities required by a system environment. As a result of 

these attributes and the opportunities they imply, Beowulf-class clusters have penetrated 

almost every aspect of computing and are rapidly coming to dominate the medium to high 

end. 

Computing with a Beowulf cluster engages four distinct but interrelated areas of 
consideration: 

1. hardware system structure, 
2. resource administration and management environment, 

3. distributed programming libraries and tools, and 

4. parallel algorithms. 

Hardware system structure encompasses all aspects of the hardware node components and 

their capabilities, the dedicated network controllers and switches, and the interconnection 

topology that determines the system's global organization. The resource management 

environment is the battery of system software and tools that govern all phases of system 
operation from installation, configuration, and initialization, through administration and task 

management, to system status monitoring, fault diagnosis, and maintenance. The distributed 

programming libraries and tools determine the paradigm by which the end user coordinates 

the distributed computing resources to execute simultaneously and cooperatively the many 

concurrent logical components constituting the parallel application program. Finally, the 

domain of parallel algorithms provides the models and approaches for organizing a user's 

application to exploit the intrinsic parallelism of the problem while operating within the 

practical constraints of effective performance.  
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This chapter provides a brief and top-level overview of these four main domains that 

constitute Beowulf cluster computing. The objective is to provide sufficient context for you to 

understand any single part of the remaining book and how its contribution fits in to the 
broader form and function of commodity clusters. 

 
2.1 A Taxonomy of Parallel Computing 

The goal of achieving performance through the exploitation of parallelism is as old as 
electronic digital computing itself, which emerged from the World War II era. Many different 

approaches and consequent paradigms and structures have been devised, with many 

commercial or experimental versions being implemented over the years. Few, however, have 
survived the harsh rigors of the data processing marketplace. Here we look briefly at many of 

these strategies, to better appreciate where commodity cluster computers and Beowulf 

systems fit and the tradeoffs and compromises they represent. 

A first-tier decomposition of the space of parallel computing architectures may be codified in 
terms of coupling: the typical latencies involved in performing and exploiting parallel 

operations. This may range from the most tightly coupled fine-grained systems of the systolic 

class, where the parallel algorithm is actually hardwired into a special-purpose 
ultra-fine-grained hardware computer logic structure with latencies measured in the 

nanosecond range, to the other extreme, often referred to as distributed computing, which 

engages widely separated computing resources potentially across a continent or around the 

world and has latencies on the order of a hundred milliseconds. Thus the realm of parallel 

computing structures encompasses a range of 108, when measured by degree of coupling 
and, by implication, granularity of parallelism. In the following list, the set of major classes in 

order of tightness of coupling is briefly described. We note that any such taxonomy is 

subjective, rarely orthogonal, and subject to debate. It is offered only as an illustration of the 

richness of choices and the general space into which cluster computing fits. 

Systolic computers are usually special-purpose hardwired implementations of fine-grained 
parallel algorithms exploiting one-, two -, or three -dimensional pipelining. Often used for 

real-time postsensor processors, digital signal processing, image processing, and graphics 

generation, systolic computing is experiencing a revival through adapt ive computing, 

exploiting the versatile FPGA (field programmable gate array) technology that allows different 

systolic algorithms to be programmed into the same FPGA medium at different times. 

Vector computers exploit fine-grained vector operations through heavy pipelining of memory 

bank accesses and arithmetic logic unit (ALU) structure, hardware support for gather-scatter 

operations, and amortizing instruction fetch/execute cycle overhead over many basic 

operations within the vector operation. The basis for the original supercomputers (e.g., Cray), 

vector processing is still a formidable strategy in certain Japanese high end systems. 
SIMD (single instruction, multiple data) architecture exploits fine-grained data parallelism by 

having many (potentially thousands) or simple processors performing the same operation in 

lock step but on different data. A single control processor issues the global commands to all 
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slaved compute processors simultaneously through a broadcast mechanism. Such systems 

(e.g., MasPar-2, CM -2) incorporated large communications networks to facilitate massive 

data movement across the system in a few cycles. No longer an active commercial area, 
SIMD structures continue to find special-purpose application for postsensor processing. 

Dataflow  models employed fine-grained asynchronous flow control that depended only on 

data precedence constraints, thus exploiting a greater degree of parallelism and providing a 

dynamic adaptive scheduling mechanism in response to resource loading. Because they 

suffered from severe overhead degradation, however, dataflow computers were never 
competitive and failed to find market presence. Nonetheless, many of the concepts reflected 

by the dataflow paradigm have had a strong influence on modern compiler analysis and 

optimization, reservation stations in out-of-order instruction completion ALU designs, and 

multithreaded architectures. 

PIM (processor-in-memory) architectures are only just emerging as a possible force in 
high-end system structures, merging memory (DRAM or SRAM) with processing logic on the 

same integrated circuit die to expose high on-chip memory bandwidth and low latency to 

memory for many data-oriented operations. Diverse structures are being pursued, including 

system on a chip, which places DRAM banks and a conventional processor core on the same 

chip; SMP on a chip, which places multiple conventional processor cores and a three-level 

coherent cache hierarchical structure on a single chip; and Smart Memory, which puts logic at 

the sense amps of the DRAM memory for in-place data manipulation. PIMs can be used as 

standalone systems, in arrays of like devices, or as a smart layer of a larger conventional 

multiprocessor. 

MPPs (massively parallel processors) constitute a broad class of multiprocessor 
architectures that exploit off-the-shelf microprocessors and memory chips in custom designs 

of node boards, memory hierarchies, and global system area networks. Ironically, "MPP" was 

first used in the context of SIMD rather than MIMD (multiple instruction, multiple data) 

machines. MPPs range from distributed-memory machines such as the Intel Paragon, 

through shared memory without coherent caches such as the BBN Butterfly and CRI T3E, to 
truly CC-NUMA (non-uniform memory access) such as the HP Exemplar and the SGI 

Origin2000. 

Clusters are an ensemble of off-the-shelf computers integrated by an interconnection 

network and operating within a single administrative domain and usually within a single 

machine room. Commodity clusters employ commercially available networks (e.g., Ethernet, 
Myrinet) as opposed to custom networks (e.g., IBM SP-2). Beowulf-class clusters incorporate 

mass-market PC technology for their compute nodes to achieve the best price/performance. 

Distributed computing, once referred to as "metacomputing", combines the processing 

capabilities of numerous, widely separated computer systems via the Internet. Whether 

accomplished by special arrangement among the participants, by means of disciplines 

referred to as Grid computing, or by agreements of myriad workstation and PC owners with 
some commercial (e.g., DSI, Entropia) or philanthropic (e.g., SETI@home) coordinating host 
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organization, this class of parallel computing exploits available cycles on existing computers 

and PCs, thereby getting something for almost nothing. 

In this book, we are interested in commodity clusters and, in particular, those employing PCs 
for best price/performance, specifically, Beowulf-class cluster systems. Commodity clusters 

may be subdivided into four classes, which are briefly discussed here. 

Workstation clusters —  ensembles of workstations (e.g., Sun, SGI) integrated by a system 

area network. They tend to be vendor specific in hardware and software. While exhibiting 
superior price/performance over MPPs for many problems, there can be as much as a factor 

of 2.5 to 4 higher cost than comparable PC-based clusters. 

Beowulf-class systems —  ensembles of PCs (e.g., Intel Pentium 4) integrated with 
commercial COTS local area networks (e.g., Fast Ethernet) or system area networks (e.g., 

Myrinet) and run widely available low-cost or no-cost software for managing system 

resources and coordinating parallel execution. Such systems exhibit exceptional 

price/performance for many applications. 

Cluster farms —  existing local area networks of PCs and workstations serving either as 

dedicated user stations or servers that, when idle, can be employed to perform pending work 
from outside users. Exploiting job stream parallelism, software systems (e.g., Condor) have 

been devised to distribute queued work while precluding intrusion on user resources when 

required. These systems are of lower performance and effectiveness because of the shared 

network integrating the resources, as opposed to the dedicated networks incorporated by 

workstation clusters and Beowulfs. 

Superclusters —  clusters of clusters, still within a local area such as a shared machine room 

or in separate buildings on the same industrial or academic campus, usually integrated by the 
institution's infrastructure backbone wide area netork. Although usually within the same 

internet domain, the clusters may be under separate ownership and administrative 

responsibilities. Nonetheless, organizations are striving to determine ways to enjoy the 

potential opportunities of partnering multiple local clusters to realize very large scale 

computing at least part of the time.  
 

2.2 Hardware System Structure 

The most visible and discussed aspects of cluster computing systems are their physical 
components and organization. These deliver the raw capabilities of the system, take up 

considerable room on the machine room floor, and yield their excellent price/performance. 

The two principal subsystems of a Beowulf cluster are its constituent compute nodes and its 

interconnection network that integrates the nodes into a single system. These are discussed 
briefly below.  
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2.2.1 Beowulf Compute Nodes 

The compute or processing nodes incorporate all hardware devices and mechanisms 

responsible for program execution, including performing the basic operations, holding the 

working data, providing persistent storage, and enabling external communications of 

intermediate results and user command interface. Five key components make up the 

compute node of a Beowulf cluster: the microprocessor, main memory, the motherboard, 

secondary storage, and packaging. 

The microprocessor provides the computing power of the node with its peak performance 

measured in Mips (millions of instructions per second) and Mflops (millions of floating-point 

operations per second). Although Beowulfs have been implemented with almost every 
conceivable microprocessor family, the two most prevalent today are the 32-bit Intel Pentium 

3 and Pentium 4 microprocessors and the 64 -bit Compaq Alpha 21264 family. We note that 

the AMD devices (including the Athlon), which are binary compatible with the Intel Pentium 

instruction set, have also found significant application in clusters. In addition to the basic 

floating-point and integer arithmetic logic units, the register banks, and execution pipeline and 
control logic, the modern microprocessor, comprising on the order of 20 to 50 million 

transistors, includes a substantial amount of on-chip high-speed memory called cache for 

rapid access of data. Cache is organized in a hierarchy usually with two or three layers, the 

closest to the processor being the fastest but smallest and the most distant being relatively 

slower but with much more capacity. These caches buffer data and instructions from main 
memory and, where data reuse or spatial locality of access is high, can deliver a substantial 

percentage of peak performance. The microprocessor interfaces with the remainder of the 

node usually by two external buses: one specifically optimized as a high-bandwidth interface 

to main memory, and the other in support of data I/O. 

Main mem ory stores the working dataset and programs used by the microprocessor during 

job execution. Based on DRAM technology in which a single bit is stored as a charge on a 

small capacitor accessed through a dedicated switching transistor, data read and write 

operations can be significantly slower to main memory than to cache. However, recent 

advances in main memory design have improved memory access speed and have 

substantially increased memory bandwidth. These improvements have been facilitated by 
advances in memory bus design such as RAMbus. 

The motherboard is the medium of integration that combines all the components of a node 

into a single operational system. Far more than just a large printed circuit board, the 

motherboard incorporates a sophisticated chip set almost as complicated as the 

microprocessor itself. This chip set manages all the interfaces between components and 
controls the bus protocols. One important bus is PCI, the primary interface between the 

microprocessor and most high-speed external devices. Initially a 32-bit bus operating at 33 

MHz, the most recent variation operates at 66 MHz on 64-bit data, thus quadrupling its 

potential throughput. Most system area network interface controllers are connected to the 

node by means of the PCI bus. The motherboard also includes a substantial read-only 



 29 

memory (which can be updated) containing the system's BIOS (basic input/output system), a 

set of low-level services, primarily related to the function of the I/O and basic bootstrap tasks, 

that defines the logical interface between the higher-level operating system software and the 
node hardware. Motherboards also support several other input/output ports such as the 

user's keyboard/mouse/video monitor and the now-ubiquitous universal serial bus (USB) port 

that is replacing several earlier distinct interface types. Nonetheless, the vestigial parallel 

printer port can still be found, whose specification goes to the days of the earliest PCs more 

than twenty years ago. 
Secondary storage provides high-capacity persistent storage. While main memory loses all 

its contents when the system is powered off, secondary storage fully retains its data in the 

powered-down state. While many standalone PCs include several classes of secondary 

storage, some Beowulf-systems may have nodes that keep only something necessary for 

holding a boot image for initial startup, all other data being downloaded from an external host 
or master node. Secondary storage can go a long way to improving reliability and reducing 

per node cost. However, it misses the opportunity for low-cost, high-bandwidth mass storage. 

Depending on how the system ultimately is used, either choice may be optimal. The primary 

medium for secondary storage is the hard disk, based on a magnetic medium little different 

from an audio cassette tape. This technology, almost as old as digital computing itself, 

continues to expand in capacity at an exponential rate, although access speed and 

bandwidths have improved only gradually. Two primary contenders, SCSI (small computer 

system interface) and EIDE (enhanced integrated dual electronics), are differentiated by 

somewhat higher speed and capacity in the first case, and lower cost in the second case. 

Today, a gigabyte of EIDE disk storage costs the user a few dollars, while the list price for 
SCSI in a RAID (redundant array of independent disks) configuration can be as high as $100 

per gigabyte (the extra cost does buy more speed, density, and reliability). Most workstations 

use SCSI, and most PCs employ EIDE drives, which can be as  large as 100 GBytes per drive. 

Two other forms of secondary storage are the venerable floppy disk and the optical disk. The 

modern 3.5-inch floppy (they don't actually flop anymore, since they now come in a hard 
rather than a soft case), also more than twenty years old, holds only 1.4 MBytes of data and 

should have been retired long ago. Because of its ubiquity, however, it continues to hang on 

and is ideal as a boot medium for Beowulf nodes. Largely replacing floppies are the optical 

CD (compact disk), CD-RW (compact disk-read/write), and DVD (digital versatile disk). The 

first two hold approximately 600 MBytes of data, with access times of a few milliseconds. 
(The basic CD is read only, but the CD-RW disks are writable, although at a far slower rate.) 

Most commercial software and data are now distributed on CDs because they are very cheap 

to create (actually cheaper than a glossy one-page double-sided commercial flyer). DVD 

technology also runs on current -generation PCs, providing direct access to movies. 

Packaging for PCs originally was in the form of the "pizza boxes": low, flat units, usually 

placed on the desk with a fat monitor sitting on top. Some small early Beowulfs were 

configured with such packages, usually with as many as eight of these boxes stacked one on 

top of another. But by the time the first Beowulfs were implemented in 1994, tower 
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cases— vertical floor-standing (or sometimes on the desk next to the video monitor) 

components— were replacing pizza boxes because of their greater flexibility in configuration 

and their extensibility (with several heights available). Several generations of Beowulf 
clusters still are implemented using this low-cost, robust packaging scheme, leading to such 

expressions as "pile of PCs" and "lots of boxes on shelves" (LOBOS). But the single limitation 

of this strategy was its low density (only about two dozen boxes could be stored on a 

floor-t o-ceiling set of shelves) and the resulting large footpad of medium-to large-scale 

Beowulfs. Once the industry recognized the market potential of Beowulf clusters, a new 
generation of rack-mounted packages was devised and standardized (e.g., 1U, 2U, 3U, and 

4U, with 1U boxes having a height of 1.75 inches) so that it is possible to install a single 

floor-standing rack with as many as 42 processors, coming close to doubling the processing 

density of such systems. Vendors providing complete turnkey systems as well as hardware 

system integrators ("bring-your-own software") are almost universally taking this approach. 
Yet for small systems where cost is critical and simplicity a feature, towers will pervade small 

labs, offices, and even homes for a long time. (And why not? On those cold winter days, they 

make great space heaters.) 

Beowulf cluster nodes (i.e., PCs) have seen enormous, even explosive, growth over the past 

seven years since Beowulfs were first introduced in 1994. We note that the entry date for 

Beowulf was not arbitrary: the level of hardware and software technologies based on the 

mass market had just (within the previous six months) reached the point that ensembles of 
them could compete for certain niche applications with the then-well-entrenched MPPs and 

provide price/performance benefits (in the very best cases) of almost 50 to 1. The new Intel 

100 MHz 80486 made it possible to achieve as much as 5 Mflops per node for select 

computationally intense problems and the cost of 10 Mbps Ethernet network controllers and 

network hubs had become sufficiently low that their cost permitted them to be employed as 

dedicated system area networks. Equally important was the availability of the inchoate Linux 

operating system with the all-important attribute of being free and open source and the 

availability of a good implementation of the PVM message-passing library. Of course, the 

Beowulf project had to fill in a lot of the gaps, including writing most of the Ethernet drivers 

distributed with Linux and other simple tools, such as channel bonding, that facilitated the 
management of these early modest systems. Since then, the delivered floating-point 

performance per processor has grown by more than two orders of magnitude while memory 

capacity has grown by more than a factor of ten. Disk capacities have expanded by as much 

as 1000X. Thus, Beowulf compute nodes have witnessed an extraordinary evolution in 

capability. By the end of this decade, node floating-point performance, main memory size, 
and disk capacity all are expected to grow by another two orders of magnitude. 

One aspect of node structure not yet discussed is symmetric multiprocessing. Modern 
microprocessor design includes mechanisms that permit more than one processor to be 

combined, sharing the same main memory while retaining full coherence across separate 

processor caches, thus giving all processors a consistent view of shared data in spite of their 
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local copies in dedicated caches. While large industrial-grade servers may incorporate as 

many as 512 processors in a single SMP unit, a typical configuration for PC-based SMPs is 

two or four processors per unit. The ability to share memory with uniform access times should 
be a source of improved performance at lower cost. But both design and pricing are highly 

complicated, and the choice is not always obvious. Sometimes the added complexity of SMP 

design offsets the apparent advantage of sharing many of the node's resources. Also, 

performance benefits from tight coupling of the processors may be outweighed by the 

contention for main memory and possible cache thrashing. An added difficulty is attempting to 
program at the two levels: messag e passing between nodes and shared memory between 

processors of the same node. Most users don't bother, choosing to remain with a uniform 

message-passing model even between processors within the same SMP node. 

2.2.2 Interconnection Networks 

Without the availability of moderate-cost short-haul network technology, Beowulf cluster 

computing would never have happened. Interestingly, the two leaders in cluster dedicated 

networks were derived from very different precedent technologies. Ethernet was developed 

as a local area network for interconnecting distributed single user and community computing 

resources with shared peripherals and file servers. Myrinet was developed from a base of 

experience with very tightly coupled processors in MPPs such as the Intel Paragon. Together, 

Fast and Gigabit Ethernet and Myrinet provide the basis for the majority of Beowulf-class 

clusters. 

A network is a combination of physical transport and control mechanisms associated with a 
layered hierarchy of message encapsulation. The core concept is the "message." A message 

is a collection of information organized in a format (order and type) that both the sending and 

the receiving processes understand and can correctly interpret. One can think of a message 

as a movable record. It can be as short as a few bytes (not including the header information) 

or as long as many thousands of bytes. Ordinarily, the sending user application process calls 

a library routine that manages the interface between the application and the network. 

Performing a high -level send operation causes the user message to be packaged with 

additional header information and presented to the network kernel driver software. Additional 

routing information and additional converges are performed prior to actually sending the 
message. The lowest-level hardware then drives the communication channel's lines with the 

signal, and the network switches route the message appropriately in accordance with the 

routing information encoded bits at the header of the message packet. Upon receipt at the 

receiving node, the process is reversed and the message is eventually loaded into the user 

application name space to be interpreted by the application code. 

The network is characterized primarily in terms of its bandwidth and its latency. Bandwidth is 

the rate at which the message bits are transferred, usually cited in terms of peak throughput 
as bits per second. Latency is the length of time required to sends the message. Perhaps a 
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fairer measure is the time from sending to receiving an application process, taking into 

consideration all of the layers of translation, conversions, and copying involved. But vendors 

often quote the shorter time between their network interface controllers. To complicate 
matters, both bandwidth and latency are sensitive to message length and message traffic. 

Longer messages make better use of network resources and deliver improved network 

throughput. Shorter messages reduce transmit, receive, and copy times to provide an overall 

lower transfer latency but cause lower effective bandwidth. Higher total network traffic (i.e., 

number of messages per unit time) increases overall network throughput, but the resulting 
contention and the delays they incur result in longer effective message transfer latency. 

More recently, an industrial consortium has developed a new networking model known as VIA. 
The goal of this network class is to support a zero -copy protocol, avoiding the intermediate 

copying of the message in the operating system space and permitting direct 

application-to-application message transfers. The result is significantly reduced latency of 

message transfer. Emulex has developed the cLAN network product, which provides a peak 

bandwidth in excess of 1 Gbps and for short messages exhibits a transfer latency on the 
order of 7 microseconds. 

 

2.3 Node Software 

A node in a cluster is often (but not always) an autonomous computing entity, complete with 
its own operating system. Beowulf clusters exploit the sophistication of modern operating 

systems both for managing the node resources and for communicating with other nodes by 

means of their interconnection network. 

Linux has emerged as the dominant Unix-like operating system. Its development was 

anything but traditional; it was started by a graduate student (Linus Tovald) in Finland and 
contributed to by a volunteer force of hundreds of developers around the world via the 

Internet. Recently Linux has received major backing from large computer vendors including 

IBM, Compaq, SGI, and HP. Linux is a full-featured multiuser, multitasking, demand-paged 

virtual memory operating system with advanced kernel software support for high-performance 

network operation.  
 

2.4 Resource Management 

Except in the most restrictive of cases, matching the requirements of a varied work -load and 

the capabilities of the distributed resources of a Beowulf cluster system demands the support 

and services of a potentially sophisticated software system for resource management. The 

earliest Beowulfs were dedicated systems used by (at most) a few people and controlled 

explicitly, one application at a time. But today's more elaborate Beowulf clusters, possibly 
comprising hundreds or even thousands of processors and shared by a large community of 

users, both local and at remote sites, need to balance contending demands  and available 
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processing capacity to achieve rapid response for user programs and high throughput of 

cluster resources. Fortunately, several such software systems are available to provide 

systems administrators and users alike with a wide choice of policies and mechanisms by 
which to govern the operation of the system and its allocation to user tasks. 

The challenge of managing the large set of compute nodes that constitute a Beowulf cluster 

involves several tasks to match user-specified workload to existing resources. 

Queuing. User jobs are submitted to a Beowulf cluster by different people, potentially from 
separate locations, who are possibly unaware of requirements being imposed on the same 

system by other users. A queuing system buffers the randomly submitted jobs, entered at 

different places and times and with varying requirements, until system resources are 

available to process each of them. Depending on priorities and specific requirements, 

different distributed queues may be maintained to facilitate optimal scheduling.  

Scheduling.  Perhaps the most complex component of the resource manager, the scheduler 

has to balance the priorities of each job, with the demands of other jobs, the existing system 
compute and storage resources, and the governing policies dictated for their use by system 

administrators. Schedulers need to contend with such varied requirements as large jobs 

needing all the nodes, small jobs needing only one or at most a few nodes, interactive jobs 

during which the user must be available and in the loop for such things as real-time 

visualization of results or performance debugging during program development, or 

high-priority jobs that must be completed quickly (such as medical imaging). The scheduler 

determines the order of execution based on these independent priority assessments and the 

solution to the classic bin-packing problem: What jobs can fit on the machine at the same 

time? 

Resource Control. A middleware component, resource control puts the programs on the 
designated nodes, moves the necessary files to the respective nodes, starts jobs, suspends 

jobs, terminates jobs, and offoads result files. It notifies the scheduler when resources are 

available and handles any exception conditions across the set of nodes committed to a given 

user job. 

Monitoring. The ongoing status of the Beowulf cluster must be continuously tracked and 
reported to a central control site such as a master or host node of the system. Such issues as 

resource availability, task status on each node, and operational health of the nodes must be 

constantly monitored to aid in the successful management of the total system in serving its 

incident user demand. Some of this information must continuously update the system 

operators status presentation, while other statistics and status parameters must be directly 

employed by the automatic resource management system. 

Accounting. In order to assess billing or at least to determine remaining user allocation of 
compute time (often measured in node hours), as well as to assess overall system utilization, 
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availability, and demand response effectiveness, records must be automatically kept of user 

accounts and system work. This is the primary tool by which system administrators and 

managers assess effectiveness of scheduling policies, mai ntenance practices, and user 
allocations. 

While no single resource management system addresses all of these functions optimally for 

all operational and demand circumstances, several tools have proven useful in operational 

settings and are available to users and administrators of Beowulf-class cluster systems. An 

entire chapter is dedicated to each of these in Part III of this book; here they are discussed 
only briefly. 

Condor  supports distributed job stream resource management emphasizing capacity or 

throughput computing. Condor schedules independent jobs on cluster nodes to handle large 

user workloads and provides many options in scheduling policy. This venerable and robust 

package is particularly well suited for managing both workloads and resources at remote 
sites. 

PBS is a widely used system for distributing parallel user jobs across parallel Beowulf cluster 

resources and providing the necessary administrative tools for professional systems 

supervision. Both free and commercially supported versions of this system are available, and 

it is professionally maintained, providing both user and administrator confidence. 

Maui is an advanced scheduler incorporating sophisticated policies and mechanisms for 

handling a plethora of user demands and resource states. This package actually sits on top of 

other lower-level resource managers, providing added capability. 

PVFS manages the secondary storage of a Beowulf cluster, providing parallel file 

management shared among the distributed nodes of the system. It can deliver faster 
response and much higher effective disk bandwidth than conventional use of NFS (network 

file system). 

 
2.5 Distributed Programming 

Exploitation of the potential of Beowulf clusters relies heavily on the development of a broad 

range of new parallel applications that effectively takes advantage of the parallel system 

resources to permit larger and more complex problems to be explored in a shorter time. 
Programming a cluster differs substantially from that of programming a uniprocessor 

workstation or even an SMP. This difference is in part due to the fact that the sharing of 

information between nodes of a Beowulf cluster can take a lot longer than between the nodes 

of a tightly coupled system, because the fragmented memory space reflected by the 

distributed-memory Beowulfs imposes substantially more overhead than that required by 
shared-memory systems, and because a Beowulf may have many more nodes than a typical 

32-processor SMP. As a consequence, the developer of a parallel application code for a 

Beowulf must take into consideration these and other sources of performance degradation to 

achieve effective scalable performance for the computational problem. 
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A number of different models have been employed for parallel programming and execution, 

each emphasizing a particular balance of needs and desirable traits. The models differ in part 

by the nature and degree of abstraction they present to the user of the underlying parallel 
system. These vary in generality and specificity of control. But one model has emerged as the 

dominant strategy. This is the "communicating sequential processes" model, more often 

referred to as the message -passing model. Through this methodology, the programmer 

partitions the problem's global data among the set of nodes and specifies the processes to be 

executed on each node, each working primarily on its respective local data partition. Where 
information from other nodes is required, the user establishes logical paths of communication 

between cooperating processes on separate nodes. The application program for each 

process explicitly sends and receives messages passed between itself and one or more other 

remote processes. A message is a packet of information containing one or more values in an 

order and format that both processes involved in the exchange understand. Messages are 
also used for synchronizing concurrent processes in order to coordinate the execution of the 

parallel tasks on different nodes. 

Programmers can use low-level operating system kernel interfaces to the network, such as 
Unix sockets or remote procedure calls. Fortunately, however, an easier way exists. Two 

major message-passing programming systems have been developed to facilitate parallel 

programming and application development. These are in the form of linkable libraries that can 

be used in conjunction with conventional languages such as Fortran or C. Benefiting from 
prior experiences with earlier such tools, PVM has a significant following and has been used 

to explore a broad range of semantic constructs and distributed mechanisms. PVM was the 

first programming system to be employed on a Beowulf cluster and its availability was critical 

to this early work. MPI, the second and more recently distributed programming system, was 

developed as a product of a communitywide consortium. MPI is the model of choice for the 

majority of the parallel programming community on Beowulf clusters and other forms of 

parallel computer as well, even shared-memory machines. There are a number of open and 

commercial sources of MPI with new developments, especially in the area of parallel I/O, 

being incorporated in implementations of MPI-2. Together, MPI and PVM represent the bulk 

of parallel programs being developed around the world, and both languages are represented 
in this book. 

Of course, developing parallel algorithms and writing parallel programs involves a lot more 

than just memorizing a few added constructs. Entire books have been dedicated to this topic 

alone (including threein this series), and it is a focus of active research. A detailed and 

comprehensive discourse of parallel algorithm design is beyond the scope of this book. 

Instead, we offer specific and detailed examples that provide templates that will satisfy many 

programming needs. Certainly not exhaustive, these illustrations nonetheless capture many 
types of problem. 

 
2.6 Conclusions 



 36 

Beowulf cluster computing is a fascinating microcosm of parallel processing, providing 

hands-on exposure and experience with all aspects of the field, from low-level hardware to 

high-level parallel algorithm design and everything in between. While many solutions are 
readily available to provide much of the necessary services required for effective use of 

Beowulf clusters in many roles and markets, many challenges still remain to realizing the best 

of the potential of commodity clusters. Research and advanced development is still an 

important part of the work surrounding clusters, even as they are effectively applied to many 

real-world work-loads. The remainder of this book serves two purposes: it represents the 
state of the art for those who wish ultimately to extend Beowulf cluster capabilities, and it 

guides those who wish immediately to apply these existing capabilities to real-world 

problems. 
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Chapter 3: Node Hardware 

Overview 
Thomas Sterling 
Beowulf is a network of nodes, with each node a low-cost personal computer. Its power and 

simplicity is derived from exploiting the capabilities of the mass-market systems that provide 

both the processing and the communication. This chapter explores all of the hardware 

elements related to computation and storage. Communication hardware options will be 

considered in detail in Chapter 5. 

Few technologies in human civilization have experienced such a rate of growth as that of the 

digital computer and its culmination in the PC. Its low cost, ubiquity, and sometimes trivial 
application often obscure its complexity and precision as one of the most sophisticated 

products derived from science and engineering. In a single human lifetime over the fifty-year 

history of computer development, performance and memory capacity have grown by a factor 

of almost a million. Where once computers were reserved for the special environments of 

carefully structured machine rooms, now they are found in almost every office and home. A 
personal computer today outperforms the world's greatest supercomputers of two decades 

ago at less than one ten -thousandth the cost. It is the product of this extraordinary legacy that 

Beowulf harnesses to open new vistas in computation. 

Hardware technology changes almost unbelievably rapidly. The specific processors, chip sets, 

and three-letter acronyms (TLAs) we define today will be obsolete in a very few years. The 

prices quoted will be out of date before this book reaches bookstore shelves. On the other 

hand, the organizational design of a PC and the functions of its primary components will last a 

good deal longer. The relative strengths and weaknesses of components (e.g., disk storage is 

slower, larger, cheaper and more persistent than main memory) should remain valid for 

nearly as long. Fortunately, it is now easy to find up-to-date prices on the Web; see Appendix 
C for some places to start. 

This chapter concentrates on the practical issues related to the selection and assembly of the 

components of a Beowulf node. You can assemble the nodes of the Beowulf yourself, let 

someone else (a system integrator) do it to your specification, or purchase a turnkey system. 

In either case, you'll have to make some decisions about the components. Many system 

integrators cater to a know-nothing market, offering a few basic types of systems, for example, 

"office" and "home" models with a slightly different mix of hardware and software components. 
Although these machines would work in a Beowulf, with only a little additional research you 

can purchase far more appropriate systems for less money. Beowulf systems (at least those 

we know of) have little need for audio systems, speakers, joysticks, printers, frame grabbers, 

and the like, many of which are included in the standard "home" or "office" models. 

High-performance video is unnecessary except for specialized applications where video 
output is the primary function of the system. Purchasing just the components you need, in the 
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quantity you need, can be a tremendous advantage. Fortunately, customizing your system 

this way does not mean that you have to assemble the system yourself. Many system 

integrators, both large and small, will assemble custom systems for little or no price premium. 
In fact, every system they assemble is from component parts, so a custom system is no more 

difficult for them than a standard one. 

An enormous diversity of choice exists both in type and quantity of components. More than 
one microprocessor family is available, and within each family are multiple versions. There is 

flexibility in both the amount and the type of main memory. Disk drives, too, offer a range of 

interface, speed, capacity, and number. Choices concerning ancillary elements such as 

floppy disk drives and CD-ROM drives have to be considered. Moreover, the choice of the 
motherboard and its chip set provide yet another dimension to PC node implementation. This 

chapter examines each of these issues individually and considers their interrelationships. A 

step-by-step procedure for the assembly of a processor node is provided to guide the initiate 

and protect the overconfident. 

We reiterate that we make no attempt to offer a complete or exhaustive survey. Far more 

products are available than can be explicitly presented in any single book, and new products 

are being offered all the time. In spite of the impossibility of exhaustive coverage, however, 
the information provided here should contain most of what is required to implement a Beowulf 

node. Final details can be acquired from documentation provided by the parts vendors. 

 
3.1 Overview of a Beowulf Node 

The Beowulf node is responsible for all activities and capabilities associated with executing 

an application program and supporting a sophisticated software environment. These fall into 

four general categories: 
1. instruction execution, 

2. high-speed temporary information storage, 

3. high-capacity persistent information storage, and 

4. communication with the external environment, including other nodes. 

The node is responsible for performing a set of designated instructions specified by the 

application program code or system software. The lowest-level binary encoding of the 

instructions and the actions they perform are dictated by the microprocessor instruction set 
architecture (ISA). Both the instructions and the data upon which they act are stored in and 

loaded from the node's random access memory (RAM). The speed of a processor is often 

measured in megahertz, indicating that its clock ticks so many million times per second. 

Unfortunately, data cannot be loaded into or stored in memory at anywhere near the rate 

necessary to feed a modern microprocessor (1 GHz and higher rates are now common). 
Thus, the processor often waits for memory, and the overall rate at which programs run is 

usually governed as much by the memory system as by the processor's clock speed. 
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Microprocessor designers employ numerous ingenious techniques to deal with the problem of 

slow memories and fast processors. Usually, a memory hierarchy is incorporated that 

includes one or more layers of very fast but very small and very expensive cache memories, 
which hold copies of the contents of the slower but much larger main memory. The order of 

instruction execution and the access patterns to memory can profoundly affect the 

performance impact of the small high-speed caches. In addition to holding the application 

dataset, memory must support the operating system and provide sufficient space to keep the 

most frequently used functions and system management tables and buffers coresident for 
best performance.  

Except for very carefully designed applications, a program's entire dataset must reside in 
RAM. The alternative is to use disk storage either explicitly (out-of-core calculations) or 

implicitly (virtual memory swapping), but this usually entails a severe performance penalty. 

Thus, the size of a node's memory is an important parameter in system design. It determines 

the size of problem that can practically be run on the node. Engineering and scientific 

applications often obey a rule of thumb that says that for every floating-point operation per 
second, one byte of RAM is necessary. This is a gross approximation at best, and actual 

requirements can vary by many orders of magnitude, but it provides some guidance; for 

example, a 1 GHz processor capable of sustaining 200 Mflops should be equipped with 

approximately 200 MBytes of RAM. 

Information stored in RAM is not permanent. When a program finishes execution, the RAM 
that was assigned to it is recovered by the operating system and reassigned to other 

programs. The data is not preserved. Thus, if one wishes to permanently store the results of a 
calculation, or even the program itself, a persistent storage device is needed. Hard disk 

devices that store data on a rotating magnetic medium are the most common storage device 

in Beowulf nodes. Data stored on hard disk is persistent even under power failures, a feature 

that makes the hard disk the preferred location for the operating system and other utilities that 

are required to restart a machine from scratch. A widely held guideline is that the local disk 
capacity be at least ten times the main memory capacity to provide an adequate area for 

virtual-memory swap space; more room is required for software and user-generated data. 

With the low cost of hard disk, a single drive can provide this capacity at a small fraction of the 

overall system cost. An alternative is to provide permanent storage capability off-node, 

providing access via the system area network to remote storage resources (e.g., an NFS 

server on one of the nodes). This may be a practical solution for small Beowulf systems, but 

as the system grows, a single server can easily be overwhelmed. 

The results of computational activities performed on a Beowulf node must be presented to the 
node's external environment during and after a computation. This requires communication 

with peripheral devices such as video monitors, printers, and external networks. Furthermore, 

users need access to the system to start jobs and to monitor and control jobs in progress. 

System managers may need console access, the ability to install software distributions on 
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CD-ROMs or other media, or backup data to tape or other archival storage. The requirements 

are served by the I/O subsystem of the node. On today's PCs, these devices usually share 

the PCI bus, with some low-performance devices using the older ISA bus. In fact, some 
systems no longer have an ISA bus. 

In a Beowulf system typically only one or two nodes have extensive I/O capabilities beyond 

communication on the system area network. All external interaction is then funneled through 

these worldly nodes. The specific I/O requirements vary greatly from installation to installation, 

so a precise specification of the peripherals attached to a worldly node is impossible. We can, 
however, make firm recommendations about the I/O requirements of internal or compute 

nodes. The majority of nodes in a Beowulf system lack the personality of a worldly node. They 

have one major I/O requirement, which is to communicate with one another. Th e hardware 

and software involved in interprocessor communication are discussed in Chapters 5 and 6,  

respectively. For now, we will simply observe that the processor communicates with the 
network through the network interface controller attached to a high-speed bus. 

3.1.1 Principal Specifications 

In selecting the proper node configuration for a new Beowulf, the choices can appear 
overwhelming. Fortunately, only a small number of critical parameters largely characterize a 

particular Beowulf node. These parameters usually relate to a few peak capabilities or 

capacities and are only roughly predictive of the performance of any given application or 

workload. Nonetheless, they are widely used and provide a reasonable calibration of the 

price/performance tradeoff space. 

Processor clock rate —  the frequency (MHz or GHz) of the primary signal within the 

processor that determines the rate at which instructions are issued 

Peak floating-point performance —  the combination of the clock rate and the number of 

floating-point operations that can be issued and/or retired per instruction (Mflops) 

Cache size —  the storage capacity (KBytes) of the high-speed buffer memory between the 
main memory and the processor 

Main memory capacity —  the storage capacity (MBytes) of the primary system node 
memory in which resides the global dataset of the applications as well as myriad other 

supporting program, buffering, and argument data 

Disk capacity —  the storage capacity (GBytes) of the permanent secondary storage internal 
to the processing node 

SAN network port peak bandwidth —  the bandwidth (Mbps) of the network control card and 
system area network communication channel medium 
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Other parameters that are sometimes of interest are the number of processors included in 

symmetric multiprocessing configurations, memory latency and band-width, measured 

performance of various benchmarks, and seek and access times to disks. 

3.1.2 Basic Elements 

The general Beowulf node is a complex organization of multiple subsystems that support the 

requirements for computation, communication, and storage discussed above. Figure 3.1 

shows a block diagram of a node architecture representative of the general structures found 

in today's PCs adapted to the purpose of Beowulf-class computing.  

 
Figure 3.1: Block diagram of a typical Beowulf node. Some additional components, e.g., keyboard, 

mouse, additional network interfaces, graphics adaptors, CD-ROM drive, will be necessary on 

nodes responsible for I/O services. 

Microprocessor —  all of the logic required to perform instruction execution, memory 

management and address translation, integer and floating-point operations, and cache 
management. Processor clock speeds can be as low as 100 MHz found on 

previous-generation Int el Pentium processors to as high as 1.7 GHz on the Intel Pentium 4 

with an 800 MHz Pentium 3 representing near the sweet spot in price/performance.  

Cache —  a small but fast buffer for keeping recently used data. Cache provides the illusion of 
a much higher-speed memory than is actually available. Multiple layers of cache may be 

employed; 16 KBytes of Level 1 (L1) and 256 KBytes of Level 2 (L2) cache are common. The 

effect of cache can be dramatic, but not all programs will benefit. Memory systems are so 
complex that often the only reliable way to determine the effectiveness of cache for a given 

application is to test the application on machines with different amounts of cache. 
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Main memory —  high-density storage with rapid read/write access. Typical access times of 

70 nanoseconds can be found with DIMM memory modules with memory capacities between 

64 MBytes and 512 MBytes. This memory is often optimized for throughput, delivering 
successive data items every 10 nanoseconds or less after an initial setup step. 

EIDE/SCSI disk controller —  a sophisticated unit that manages the operation of the hard 

disk and CD-ROM drives, buffers data blocks, and controls the transfer of data directly to or 

from main memory. 

Hard drive —  persistent storage, even after processor power cycling, and backing store to 
the main memory for problems requiring datasets larger than the main memory can hold. Disk 

capacities range from 1 GByte to over 100, but the most common and cost effective sizes 

today are between 20 and 80 GBytes. Hard disks conform to either the EIDE or SCSI 

interface standards. Access times of a few milliseconds are usual for these electromechanical 

rotating magnetic storage devices. 

Floppy disk controller —  a very low cost and low capacity storage medium of nominally 1.4 
MBytes capacity (double sizes are available). Floppies are used primarily at boot time to 

install a minimal system capable of bootstrapping itself into a full configuration. Access times 

are long, and the small capacity makes them unsuitable for other data storage roles. 

Nevertheless, their historical role as a boot medium makes them a valuable part of every 

Beowulf node. 

Motherboard chip set —  a sophisticated special-purpose controller that manages and 

coordinates the interactions of the various component s of the PC through PCI, USB, and 
other interfaces. It plays an important role in memory management, especially for symmetric 

multiprocessors where cache coherence is maintained through snooping cache protocols. 

BIOS ROM memory —  the minimum set of functional binary routines needed to perform 
rudimentary functionality of the motherboard and its interfaces, including bootstrap and 

diagnostic functions. Modern systems include writable BIOS EEPROMs (electronically 

erasable, programmable ROMs) that can have their contents directly upgraded from newer 

versions of the BIOS programs with replacement on the actual chips. 

PCI bus —  the universal industry standard for high-speed controllers. The common PCI bus 

operates a 32-bit data path at 33 MHz; PCI buses with 64-bit data paths at 66 MHz are also 
available. 

Video controller —  a card that converts digital signals from the processor into analog signals 
suitable for driving a video display. Modern high-end video cards contain powerful on-board 

processors and often have many megabytes of memory and sophisticated programmable 

interfaces. Such a card might be appropriate for an I/O or interactive node intended to drive a 

high-resolution monitor for data visualization and interactive display. Other Beowulf nodes, 



 43 

however, have little need for video output. Indeed, were it were not for the fact that most BIOS 

software will not boot without a video card, such cards would be unnecessary on the majority 

of Beowulf nodes. Video cards are available with either PCI or AGP connections. 

Network interface controller —  an interface that provide communication access to the 

node's external environment. One or more such interfaces couple the node to the Beowulf's 

system area network. A second network interface card (not shown) on a worldly node can 

provide the link between the entire Beowulf machine and the local area network that connects 

it to other resources in the user's environment, such as file servers, printers, terminals, and 

the Internet. 

Power supply —  not part of the logical system, but an important component to the overall 
operation. It provides regulated output voltages of 5 volts, -5 volts, 12 volts, and -12 volts to 

support system operation. Power supplies are rated in watts and have a general range of 

between 200 and 400 watts per node. 

Cooling systems —  typically a fan mounted on the CPU carrier itself, for dissipating heat 
from the processor. Other fans cool the rest of a node. Because fans are mechanical devices, 

they are among the most likely components to fail in a Beowulf cluster. 

 
3.2 Processors 

The microprocessor is the critical computational component of the PC-based node and 
Beowulf-class systems. In the seven-year period since the first Beowulf was completed in 

early 1994, central processing unit (CPU) clock speed has increased by a factor of 16. More 
impressive is the single-node floating-point performance sustained on scientific and 

engineering problems which has improved by two orders of magnitude during the same 

period. A single PC today outperforms the entire 16-processor first-generation Beowulf of 

1994. 

With the proliferation of Linux ports to a wide array of processors, Beowulf-like clusters are 
being assembled with almost every conceivable processor type. Primary attention has been 

given to Intel processors and their binary compatible siblings from AMD. The Compaq Alpha 
family of processors has also been effectively applied in this arena. Compaq has recently 

announced that development of the Alpha family will continue only through 2003, with 

Compaq contributing the Alpha technology to the development of future Intel IA64 

processors. 

This section presents a brief description of the most likely candidates of microprocessors for 

future Beowulf-class systems. The choice is constrained by three factors: performance, cost, 

and software compatibility. Raw performance is important to building effective medium-and 

high-end parallel systems. To build an effective parallel computer, you should start with the 

best uniprocessor. Of course, this tendency must be tempered by cost. The overall 

price/performance ratio for your favorite application is probably the most important 



 44 

consideration. The highest performance processor at any point in time rarely has the best 

price/performance ratio. Usually it is the processor one generation or one-half generation 

behind the cutting edge that is available with the most attractive ratio of price to performance. 
Recently, however, the Compaq Alpha has delivered both best performance and best 

price/performance for many applications. The third factor of software compatibility is an 

important practical consideration. If a stable software environment is not available for a 

particular processor family, even if it is a technical pacesetter, it is probably inappropriate for 

Beowulf. Fortunately, Linux is now available on every viable microprocessor family, and this 
should continue to be the case into the foreseeable future. Some key features of current 

processors are summarized in Table 3.1. 

Table 3.1: Key features of selected processors, mid-2001.  

Chip Vendor Speed 
(MHz) 

L1 
Cache 

Size I/D 

(KByte
s) 

L2 
Cach

e 

Size 
(KByt

es) 

Pentium III Intel 1000 16K/16K  256K 

Pentium 4 Intel 1700 12K/8K 256K 

Itanium Intel 800 16K/16K  96K 

Athlon AMD 1330 64K/64K  256K 

Alpha 21264B Compaq 833 64K 64K 

3.2.1 Intel Pentium Family 

The Pentium 4 implements the IA32 instruction set but uses an internal architecture that 

diverges substantially from the old P6 architecture. The internal architecture is geared for 

high clock speeds; it produces less computing power per clock cycle but is capable of 

extremely high frequencies. 

The Pentium III is based on the older Pentium Pro architecture. It is a minor upgrade from the 
Pentium II; it includes another optimized instruction set called SSE for three-dimensional 

instructions and has moved the L2 cache onto the chip, making it synchronized with the 

processor's clock. The Pentium III can be used within an SMP node with two processors; a 

more expensive variant, the Pentium III Xeon, can be used in four-processor SMP nodes. 

3.2.2 AMD Athlon 
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The AMD Athlon platform is similar to the Pentium III in its processor architecture but similar 

to the Compaq Alpha in its bus architecture. It has two large 64 KByte L1 caches and a 256 

KByte L2 cache that runs at the processor's clock speed. The performance is a little ahead of 
the Pentium III in general, but either can be faster (at the same clock frequency) depending 

on the application. The Athlon supports dual-processor SMP nodes. 

3.2.3 Compaq Alpha 21264 

The Compaq Alpha processor is a true 64-bit architecture. For many years, the Alpha held 

the lead in many benchmarks, including the SPEC benchmarks, and was used in many of the 
fastest supercomputers, including the Cray T3D and T3E, as well as the Compaq SC family. 

The Alpha uses a Reduced Instruction Set Computer (RISC) architecture, distinguishing it 
from Intel's Pentium processors. RISC designs, which have dominated the workstation 

market of the past decade, eschew complex instructions and addressing modes, resulting in 

simpler processors running at higher clock rates, but executing somewhat more instructions 

to complete the same task. 

3.2.4 IA64 

The IA64 is Intel's first 64-bit architecture. This is an all-new design, with a new instruction set, 
new cache design, and new floating-point processor design. With clock rates approaching 1 

GHz and multiway floating-point instruction issue, Itanium should be the first implementation 

to provide between 1 and 2 Gflops peak performance. The first systems with the Itanium 

processor were released in the middle of 2001 and have delivered impressive results. For 

example, the HP Server rx4610, using a single 800 MHz Itanium, delivered a SPECfp2000 of 
701, comparable to recent Alpha-based systems. The IA64 architecture does, however, 

require significant help from the compiler to exploit what Intel calls EPIC (explicitly parallel 

instruction computing). 

 

3.3 Motherboard 

The motherboard is a printed circuit board that contains most of the active electronic 

components of the PC node and their interconnection. The motherboard provides the logical 
and physical infrastructure for integrating the subsystems of the Beowulf PC node and 

determines the set of components that may be used. The motherboard defines the 

functionality of the node, the range of performance that can be exploited, the maximum 

capacities of its storage, and the number of subsystems that can be interconnected. With the 

exception of the microprocessor itself, the selection of the motherboard is the most important 
decision in determining the qualities of the PC node to be used as the building block of the 

Beowulf-class system. It is certainly the single most obvious piece of the Beowulf node other 

than the case or packaging in which it is enclosed.  
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While the motherboard may not be the most interesting aspect of a computer, it is, in fact, a 

critical component. Assembling a Beowulf node primarily involves the insertion of modules 

into their respective interface sockets, plugging power and signal cables into their ports, and 
placing configuration jumpers across the designated posts. The troubleshooting of 

nonfunctioning systems begins with verification of these same elements associated with the 

motherboard. 

The purpose of the motherboard is to integrate all of the electronics of the node in a robust 
and configurable package. Sockets and connectors on the motherboard include the following: 

§ Microprocessor(s) 

§ Memory 
§ Peripheral controllers on the PCI bus 

§ AGP port 

§ Floppy disk cables  

§ EIDE cables for hard disk and CD-ROM 

§ Power 
§ Front panel LEDs, speakers, switches, etc. 

§ External I/O for mouse, keyboard, joystick, serial line, USB, etc. 

Other chips on the motherboard provide 

§ the system bus that links the processor(s) to memory, 

§ the interface between the peripheral buses and the system bus, and 

§ programmable read-only memory (PROM) containing the BIOS software. 

The motherboard restricts as well as enables functionality. In selecting a motherboard as the 

basis for a Beowulf node, several requirements for its use should be considered, including 

§ processor family, 
§ processor clock speed,  

§ number of processors, 

§ memory capacity, 

§ memory type, 

§ disk interface, 
§ required interface slots, and 

§ number of interface buses (32- and 64-bit PCI). 

Currently the choice of processor is likely to be the Intel Pentium III, AMD Athlon, or the 

Compaq Alpha 21264B. More processors, including native 64-bit processors, will continue to 

be released. In most cases, a different motherboard is required for each choice. Clock speeds 

for processors of interest range from 733 MHz to almost 2 GHz, and the selected 

motherboard must support the desired speed. Motherboards containing multiple processors 
in symmetric multiprocessor configurations are available, adding to the diversity of choices. 

Nodes for compute intensive problems often require large memory capacity with high 



 47 

bandwidth. Motherboards have a limited number of memory slots, and memory modules have 

a maximum size. Together, these will determine the memory capacity of your system. 

Memory bandwidth is a product of the width and speed of the system memory bus. 

Several types of memory are available, including conventional DRAM, EDO RAM (extended 

data output RAM), SDRAM (synchronous DRAM), and RDRAM (Rambus DRAM). The choice 

of memory type depends on your application needs. While RDRAM currently provides the 

highest bandwidth, other types of memory, such as SDRAM and DDR SDRAM (double data 

rate SDRAM) can provide adequate bandwidth at a significantly reduced cost. The two disk 

interfaces in common use are EIDE and SCSI. Both are good with the former somewhat 

cheaper and the latter slightly faster under certain conditions. Most motherboards come with 
EIDE interfaces built in, and some include an SCSI interface as well, which can be convenient 

and cost effective if you choose to use SCSI. On the other hand, separate SCSI controllers 

may offer more flexibility and options. Motherboards have a fixed number of PCI slots, and it 

is important to select one with enough slots to meet your needs. This is rarely a consideration 

in Beowulf compute nodes but can become an issue in a system providing I/O services. 
 

3.4 Memory 

The memory system of a personal computer stores the data upon which the processor 

operates. We would like a memory system to be fast, cheap, and large, but available 

components can simultaneously deliver only two (any two) of the three. Modern memory 

systems use a hierarchy of components implemented with different technologies that together, 

under favorable conditions, achieve all three. When purchasing a computer system, you must 
select the size and type of memory to be used. This section provides some background to 

help with that choice. 

3.4.1 Memory Capacity 

Along with processor speed, memory capacity has grown at a phenomenal rate, quadrupling 

in size approximately every three years. Prices for RAM have continued to decline and now 

are about ten cents per megabyte (a little more for higher-speed/capacity SDRAMs). A 

general principle is that faster processors require more memory. With increasingly 

sophisticated and demanding operating systems, user interfaces, and advanced applications 

such as multimedia, there is demand for ever-increasing memory capacity. As a result of both 

demand and availability, the size of memory in Beowulf-class systems has progressively 

expanded. Today, a typical Beowulf requires at least 256 MBytes of main memory, and this 

can be expected to grow to 2 GBytes within the next two to three years. 

3.4.2 Memory Speed 

In addition to the capacity of memory, the memory speed can significantly affect the overall 
behavior and performance of a Beowulf node. Speed may be judged by the latency of 



 48 

memory access time and the throughput of data provided per unit time. While capacities have 

steadily increased, access times have progressed only slowly. However, new modes of 

interfacing memory technology to the processor managed system bus have significantly 
increased overall throughput of memory systems. This increase is due to the fact that the 

memory bandwidth internal to the memory chip is far greater than that delivered to the system 

bus at its pins. Significant advances in delivering these internal acquired bits to the system 

bus in rapid succession have been manifest in such memory types as EDO-DRAM, SDRAM, 

and Rambus DRAM. Further improvement to the apparent performance of the entire memory 
system as viewed by the processor comes from mixing small memories of fast technology 

with high-capacity memory of slower technology. 

3.4.3 Memory Type s 

Semiconductor memory is available in two fundamental types. Static random access memory 

(SRAM) is high speed but moderate density, while dynamic random access memory (DRAM) 

provides high-density storage but operates more slowly. Each plays an important role in the 

memory system of the Beowulf node. 

SRAM is implemented from bit cells fabricated as multitransistor flipflop circuits. These active 

circuits can switch state and be accessed quickly. They are not as high density as are 

DRAMs and consume substantially more power. They are reserved for those parts of the 

system principally requiring high speed and are employed regularly in L1 and L2 caches. 

Current -generation processors usually include SRAMs directly on the processor chip. L2 

caches may be installed on the motherboard of the system or included as part of the 

processor module.  

Earlier SRAM was asynchronous (ASRAM) and provided access times of between 12 and 20 
nanoseconds. Motherboards operating up to 66 MHz or better use synchronous burst SRAM 

(SBSRAM) providing access times on the order of ten nanoseconds. 

DRAM is implemented from bit cells fabricated as a capacitor and a single by-pass transistor. 

The capacitor stores a charge passively. The associated switching transistor deposits the 

state of the capacitor's charge on the chip's internal memory bus when the cell is addressed. 

Unlike SRAM, reading a DRAM cell is destructive, so after a bit is accessed, the charged 

state has to be restored by recharging the capacitor to its former condition. As a consequence, 
DRAM can have a shorter access time (the time taken to read a cell) than cycle time (the time 

until the same cell may be accessed again). Also, isolation of the cell's storage capacitor is 

imperfect and the charge leaks away, requiring it to be refreshed (rewritten) every few 

milliseconds. Finally, because the capacitor is a passive, nonamplifying device, it takes longer 

to access a DRAM than an SRAM cell. However, the benefits are substantial. DRAM density 
can exceed ten times that of SRAM, and its power consumption is much lower. Also, new 

techniques for moving data from the DRAM internal memory row buffers to the system bus 

have narrowed the gap in terms of memory bandwidth between DRAM and SRAM. As a 

result, main memory for all Beowulf nodes is provided by DRAM in any one of its many forms. 
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Of the many forms of DRAM, the two most likely to be encountered in Beowulf nodes are 

EDO DRAM and SDRAM. Both are intended to increase memory throughput. EDO DRAM 

provides a modified internal buffering scheme that maintains data at the output pins longer 
than conventional DRAM, improving memory data transfer rates. While many current 

motherboards support EDO DRAM, the higher-speed systems likely to be used as Beowulf 

nodes in the immediate future will employ SDRAM instead. SDRAM is a significant advance 

in memory interface design. It supports a pipeline burst mode that permits a second access 

cycle to begin before the previous one has completed. While one cycle is putting output data 
on the bus, the address for the next access cycle is simultaneously applied to the memory. 

Effective access speeds of 10 nanoseconds can be achieved with systems using a 100 MHz 

systems bus; such memory is labeled PC100 SDRAM. Faster versions are available, 

including PC133 SDRAM. 

Other, even higher-performance forms of DRAM memory are appearing. Two of the most 
important are Rambus DRAM and DDR SDRAM. These may be described as "PC1600" or 

"PC2100" memory. These are not 16 or 21 times as fast as PC100; in these cases, the 
number refers to the peak transfer rate (in Mbps) rather than the system bus clock speed. It is 

important to match both the memory type (e.g., SDRAM or RDRAM) and the system bus 

speed (e.g., PC133) to the motherboard. 

3.4.4 Memory Hierarchy and Caches 
The modern memory system is a hierarchy of memory types. Figure 3.2 shows a typical 

memory hierarchy. Near the processor at the top of the memory system are the high-speed 

Level-1 (L1) caches. Usually a separate cache is used for data and instructions for high 

bandwidth to load both data and instructions into the processor on the same cycle. The 
principal requirement is to deliver the data and instruction words needed for processing on 

every processor cycle. These memories run fast and hot, are relatively expensive, and now 

often incorporated directly on the processor chip. For these reasons, they tend to be very 

small, with a typical size of 16 KBytes. Because L1 caches are so small and the main memory 

requires long access times, modern architectures usually include a second-level (L2) cache 
to hold both data and instructions. Access time to acquire a block of L2 data may take several 

processor cycles. A typical L2 cache size is 256 KBytes. Some systems add large external 

caches (either L2 or L3) with sizes of up to 8 MBytes. 
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Figure 3.2: A node memory hierarchy with sizes typical of Beowulf nodes in 2001. 

Cache memory is usually implemented in SRAM technology, which is fast (a few 
nanoseconds) but relatively low density. Only when a datum required by the processor is not 

in cache does the processor directly access the main memory. Main memory is implemented 
in one of the DRAM technologies. Beowulf nodes will often include between 256 MBytes and 

512 MBytes of SDRAM memory. 

3.4.5 Package Styles 

The packaging of memory has evolved along with the personal computers in which they were 

installed and has converged on a few industrywide standards. Dual Inline Memory Modules 

(DIMMs) are the primary means of packaging DRAMs, and most modern motherboards use 

one or more of these forms. The most common form factors are 168 -pin and 184-pin DIMMs. 

 

3.5 BIOS 

Even with effective industrywide standardization, hardware components will differ in detail. In 
order to avoid the necessity of customizing a different operating system for each new 

hardware system, a set of low-level service routines is provided, incorporated into read-only 

memory on the motherboard. This basic I/O system (BIOS) software is a logical interface to 

the hardware, giving a layer of abstraction that facilitates and makes robust higher-level 

support software. Besides the system BIOS that is hardwired to the motherboard, additional 

BIOS ROMs may be provided with specific hardware peripherals. These include the video 

BIOS, the drive controller BIOS, the network interface controller BIOS, and the SCSI drive 



 51 

controller BIOS. The BIOS contains a large number of small routines organized in three 

groups: startup or POST (for power-on self-test), setup, and system services. 

The POST startup BIOS routines manage initialization activities, including running 
diagnostics, setting up the motherboard chip set, organizing scratchpad memory for the BIOS 

data area (BDA), identifying optional equipment and their respective BIOS ROMs, and then 

bootstrapping the operating system. The CMOS (complementary metal oxide semiconductor) 

setup routine provides access to the system configuration information, which is stored in a 

small CMOS RAM. The system services routines are called through interrupts directly from 

hardware on the motherboard, from the processor itself, or from software. They allow access 

to low-level services provided by the system including the CPU, memory, motherboard chip 
set, integrated drive electronics, PCI, USB, boot drives, plug-n-play capability, and power 

control interfaces. 

 
3.6 Secondary Storage 

With the exception of the BIOS ROM, all information in memory is lost during power cycling 

except for that provided by a set of external (to the motherboard) devices that fall under the 

category of secondary storage. Of these, disk drives, floppy drives, and CD-ROM drives are 
most frequently found on Beowulf nodes. Disk and floppy drives are spinning magnetic media, 

while CD-ROM drives (which are also spinning media) use optical storage to hold 

approximately 650 MBytes of data. The newer DVD technology is replacing CD-ROMs with 

greater storage capacity. Besides persistence of storage, secondary storage is characterized 

by very high capacity and low cost per bit. While DRAM may be purchased at about ten cents 
per megabyte, disk storage costs less than half a cent per megabyte, and the price continues 

to fall. For the particular case of Beowulf, these three modes of secondary storage play very 

different roles. 

CD-ROMs provide an easy means of installing large software systems but are used for little 
else. Even for this purpose, only one or two nodes in a system are likely to include a CD-ROM 

drive because installation of software on most of the nodes is performed over the system area 

network. 

Floppy discs are fragile and slow and don't hold very much data (about 1.44 MBytes). They 

would be useless except that they were the primary means of persistent storage on early PCs, 
and PC designers have maintained backward compatibility that allows systems to boot from a 

program located on floppy disk. Occasionally, something goes terribly wrong with a node (due 

either to human or to system error), and it is necessary to restore the system from scratch. A 

floppy drive and an appropriate "boot floppy" can make this a quick, painless, and trouble-free 

procedure. Although other means of recovery are possible, the small price of about $15 per 
node for a floppy drive is well worth the investment. 
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The hard drive serves three primary purposes. It maintains copies of system wide programs 

and data so that these do not have to be repeatedly acquired over the network. It provides a 

large buffer space to hold very large application datasets. And it provides storage space for 
demand paging as part of the virtual memory management system. When the user or system 

memory demands exceed the available primary memory, page blocks can be automatically 

migrated to hard disk, making room in memory for other information to be stored. 

Between the hard disk drive and the motherboard are two dominant interface types: EIDE and 
SCSI. The earlier IDE interface evolved from the PC industry, while SCSI was a product of 

the workstation and server industry. Today, both are available. In the past, SCSI performance 

and cost were both significantly greater than those of IDE. The EIDE standard closed the 
performance gap a few years ago, but the price difference still exists. Perhaps equally 

important is that many motherboards now include EIDE interfaces as integral components so 

that no separate control card is required to be purchased or to take up a PCI socket. SCSI 

drive capacities can run a little higher than IDE drives, a factor that may be important for 

some installations. Several different SCSI standards exist, including Wide, UltraWide, SCSI-2, 
and SCSI-3. Systems are usually downwards compatible, but it is safest to match the drive's 

capabilities with that of your SCSI controller. Beowulf-class systems have been implemented 

with both types, and your needs or preferences should dictate your choice. (We have 

continued to rely on EIDE drives because of their lower cost.) 

The primary performance characteristic of a hard drive is its capacity. EIDE hard drives with 
80 GByte capacities are available for under $300, and 40 GByte drives cost around $100. 

Also of interest is the rotation speed, measured in revolutions per minute, which governs how 
quickly data can be accessed. The fastest rotation speeds are found on SCSI drives, and are 

now around 15000 rpm and deliver transfer rates in excess of 50 MBytes per second. 

 
3.7 PCI Bus 

While the PC motherboard determines many of the attributes of the PC node, it also provides 
a means for user-defined configuration through the Peripheral Component Interconnect. This 

interface is incorporated as part of virtually every modern motherboard, providing a widely 
recognized standard for designing separate functional units. PCI is replacing the ISA and 

EISA buses as the principal means of adding peripherals to personal computers. 

The PCI standard permits rapid data transfer of 132 MBytes per second peak using a 33 MHz 

clock and 32-bit data path. A 64-bit extension is defined, enabling peak throughput of 264 

MBytes per second when used. A extension with a bus clock rate of 66 MHz provides a peak 

transfer bandwidth of 528 MBytes per second. A new version, PCI -X, is expected toward the 

end of 2001.  

The PCI bus permits direct interconnection between any pair of PCI devices, between a PCI 

device and the system memory, or between the system processor and the PCI devices. PCI 
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supports multiple bus masters, allowing any PCI device to take ownership of the bus and 

permitting (among other things) direct memory access transfers without processor 

intervention. Arbitration among the pending PCI masters for the next transfer action can be 
overlapped with the current PCI bus operation, thereby hiding the arbitration latency and 

ensuring high sustained bus throughput. 

High throughput is enabled by a process called linear burst transfer. A block of data being 
sent from one device to another on the PCI bus is moved without having to send the address 

of each word of data. Instead, the length of the block is specified along with the initial address 

of the location where the block is to be moved. Each time a word is received, the accepting 

unit increments a local address register in preparation for the next word of the block. PCI bus 
transfers can be conducted concurrently with operation of the processor and its system bus to 

avoid processor delays caused by PCI operation. 

Although bus loading limits the number of PCI sockets to three or four, each connected board 
can logically represent as many as eight separate PCI functions for a total of 32. Up to 256 

PCI buses can be incorporated into one system, although rarely are more than two present. 

The PCI standard includes complete bit-level specification of configuration registers. This 

makes possible the automatic configuration of connected peripheral devices for plug-n-play 

reconfigurability. 

 
3.8 Example of a Beowulf Node 

The majority of Beowulfs (over five generations of systems in the past seven years) have 
employed microprocessors from Intel or AMD. This is because they have been among the 

least expensive systems to build, the system architectures are open providing a wealth of 

component choices, and the Linux operating system was first available on them. While not 

the fastest processors in peak performance, their overall capability has been good, and their 

price/performance ratios are excellent. The most recent microprocessors in this family and 

their motherboards support clock speeds of over 1 GHz. 

The following table shows a snapshot of current costs for an AMD Athlon-based node and 
illustrates the amazing value of commodity components. These prices were taken from a 

variety of sources, including online retailers and Web pages about recent Beowulf clusters. 

We note that, as discussed earlier, a CD-ROM is not included in the list because it is 

assumed that system installation will be performed over the network. A floppy drive is 

included to facilitate initial installation and crash recovery. Moreover, since the BIOS requires 

a video card to boot, a very inexpensive one is included on every system. 

Many other choices exist, of course, and the products of other vendors in many cases are as 
worthy of consideration as the ones listed here. 

§  
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Processor AMD Athlon 1GHz $102 

Processor Fan  $8.50 

Motherboard Generic $117.50 

Memory 512 MB PC100 SDRAM $74 

Hard Disk 40GB $141 

Floppy Disk Sony 1.44MB $13.50 

Network 
Interface 

Controller 

100Mb/s Ethernet $16.50 

Video Card Generic VGA $25 

Package Generic tower case with power 

supply and cables 

$58 

 

Total   

 

3.9 Boxes, Shelves, Piles, and Racks 

A review of Beowulf hardware would be incomplete without some mention of the technology 
used to physically support (i.e., keep it off the floor) a Beowulf system. Packaging is an 

important engineering domain that can significantly influence the cost and practical aspects of 

Beowulf implementation and operation. Packaging of Beowulfs has taken two paths: the 
minimalist "lots of boxes on shelves" strategy, captured so well by the acronym of the NIH 

LOBOS system, and the "looks count" strategy, adopted by several projects including the 

Hive system at NASA Goddard Space Flight Center and the Japanese Real World Computing 

Initiative. The minimalist approach was driven by more than laziness. It is certainly the most 

economical approach and is remarkably reliable as well. This is due to the same economies 

of scale that enable the other low-cost, high-reliability subsystems in Beowulf. In the 

minimalist approach, individual nodes are packaged in exac tly the same "towers" that are 

found deskside in homes and offices. These towers incorporate power supplies, fan cooling, 

and cabling and cost less than a hundred dollars. Towers provide uniform configuration, 

standardized interface cabling, effective cooling, and a structurally robust component 

mounting framework but are flexible enough to support a variety of internal node 

configurations. Industrial-grade shelving, usually of steel framework and particle board 

shelves, is strong, readily available, easily assembled, and inexpensive. It is also flexible, 

extensible, and easily reconfigured. You can find it at your nearest home and garden center. 
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When assembling such a system, care should be taken to design tidy power distribution and 

networking wire runs. Extension cords and power strips work fine but should be physically 

attached to the shelving with screws or wire-ties so that the system does not become an 
unmaintainable mess. Similar considerations apply to the Ethernet cables. Labeling cables so 

the ends can be identified without laboriously tracing the entire run can save hours of 

headache. 

Different approaches are possible for video and keyboard cables. In our systems, most nodes 
do not have dedicated keyboard and video cables. Instead, we manually attach cables to 

nodes in the very rare circumstances when necessary maintenance cannot be carried out 

remotely. Linux's powerful networking capabilities makes it unnecessary to maintain constant 
console video and keyboard access to each and every node of the system. 

Rack mounting is considerably more expensive but offers the possibility of much higher 

physical densities. New motherboards with rack-mountable form factors that incorporate a 

Fast Ethernet controller, SCSI controller, and video controller offer the possibility of building 

Beowulf nodes that can be packaged very tightly because they don't require additional 

daughter cards. These systems probably will be important in the future, as larger Beowulf 

systems are deployed and machine room space becomes a major consideration. 
 

3.10 Node Assembly 

We conclude this chapter with a checklist for building a Beowulf node. Building Beowulf 
nodes from component parts may not be the right choice for everyone. Some will feel more 

comfortable with systems purchased from a system integrator, or they simply won't have the 

manpower or space for in-house assembly. Nevertheless, the cost should not be overlooked; 

a node can be several hundred dollars. You should carefully weigh the luxury of having 
someone else wield the screwdriver vs. owning 25 percent more computer power. Keep in 

mind that cables often come loose in shipping, and there is no guarantee that the 

preassembled system will not require as much or more on-site troubleshooting as the 

homemade system. 

Although targeted at the reader who is building a Beowulf node from parts, this checklist will 

also be useful to those who purchase preassembled systems. Over the lifetime of the Beowulf 

system, technology advances will probably motivate upgrades in such things as memory 
capacity, disk storage, or improved networking. There is also the unavoidable problem of 

occasional maintenance. Yes, once in a while, something breaks. Usually it is a fan, a 

memory module, a power supply, or a disk drive, in that order of likelihood. More often than 

not, such a break will occur in the first few weeks of operation. With hundreds of operational 

nodes in a large Beowulf, some parts replacement will be required. The checklist below will 
get you started if you decide to replace parts of a malfunctioning node. 
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To many, the list below will appear obvious, but, in fact, experience has shown that a 

comprehensive list of steps is not only convenient but likely to simplify the task and aid in 

getting a system working the first time. Many sites have put together such procedures, and 
we offer the one used at Caltech as a helpful example. 

Before you initiate the actual assembly, it helps to get organized. Five minutes of preparation 

can save half an hour during the process. If you're assembling a Beowulf, you will probably 

build more than one unit at one time, and the preparation phase is amortized over the number 

of units built. 

§ Collect and organize the small set of tools you will be using: 

o #2 Phillips head screwdriver 
o Antistatic wrist strap 

o Antistatic mat on which to place assembly 

o Needlenose pliers 

o 1/8-inch blade flat blade screwdriver 

o Small high -intensity flashlight 
§ Organize all parts to be assembled. If more than one unit is to be built, collect like 

parts together bin-style. 

§ Provide sufficient flat space for assembly, including room for keyboard, mouse, 

and monitor used for initial check-out. 

§ Work in a well-lighted environment. 
§ Follow the same order of tasks in assembling all units; routine leads to reliability. 

§ Have a checklist, like this one, handy, even if it is used only as a reference. 

§ When first opening a case, collect screws and other small items in separate 

containers. 

§ Keep food and drink on another table to avoid the inevitable accident. 

After you have done one or two systems, the process becomes much quicker. We find that 

we can assemble nodes in well under an hour once we become familiar with the 
idiosyncrasies of any particular configuration.  

Many of the instructions below may not apply in every case. Included are directions for such 
subassemblies as monitors, keyboards, and sound cards that rarely show up in the majority 

of Beowulf nodes. Usually, however, at least one such node is more heavily equipped to 

support user interface, operations support, and external connections for the rest of the 

system. 

In a number of cases, the specific action is highly dependent on the subsystems being 
included. Only the documentation for that unit can describe exactly what actions are to be 

performed. For example, every motherboard will have a different set and positioning of 
jumpers, although many of the modern boards are reducing or almost eliminating these. In 
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these instances, all we can say is: "do the right thing," but we still indicate in general terms the 

class of action to take place. 

3.10.1 Motherboard Preassembly 

§ Set every jumper on the motherboard properly. 

§ Look through your motherboard manual and verify every setting, since the 

default may not work for your CPU, memory, or cache configuration. 

§ Locate every jumper and connector: floppy, hard drive, PS/2, COM port, LPT 

port, sound connectors, speaker connector, hard disk LED, power LED, reset 

switch, keyboard lock switch, and so forth. 

§ Install the CPU. 

o Processors are designed so that they can only be inserted 

correctly. Don't force. 

o Whatever the chip, match the notched corner of the CPU with 

the notched corner of the socket. 

o When using a ZIF socket, lift the handle 90 degrees, insert the 

CPU, and then return the handle back to its locked position. 
§ Install the memory. 

o Main memory DIMM. Note pin 1 on the DIMM, and 

find the pin 1 mark on the motherboard. It is difficult to 

install 164-pin DIMMs incorrectly, but it is possible. 

Begin by placing the DIMM at a 45 degree angle to the 
socket of bank 0. The DIMM will be angled toward the 

rest of the DIMM sockets (and away from any DIMMs 

previously installed). Insert the DIMM firmly into the 

socket; then rotate the DIMM until it sits perpendicular 

to the motherboard and the two clips on each edge 

have snapped around the little circuit board. There 

may or may not be a "snap," but you should verify that 

the two clips are holding the DIMM fast and that it 

doesn't jiggle in the socket. Repeat this until you fill 

one, two, or more banks. 

o Cache memory (if so equipped). Some older units 

may have L2 caches on the motherboard, while newer 

processors include them within the processor module. 

Cache memory may be DIMM or SIMM; in any case, 

install it now. 

3.10.2 The Case 

§ Open the case, remove all the internal drive bays, and locate all the 

connectors: speaker, hard disk LED, power LED, reset switch, 
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keyboard lock switch, mother board power, peripheral power, and so 

forth.  

§ Mount the motherboard in the case. 
o ATX-style cases use only screws to mount the 

motherboard, and it is very straightforward.  

§ Plug in the keyboard, and see whether it fits. 

§ Plug in an adapter card, and see whether it fits. 

§ Start connecting the case cables to the motherboard. 
o Pull out floppy cables, hard disk cables, PS/2 mouse 

cable, and lights. Line up each pin 1 to the red side of 

cables. 

o Install the speaker. It usually is a 4-pin connector with 

two wires (one red, one black, which can be installed 
either way on the motherboard).  

o If your case has holes for COM ports and LPT ports, 

punch these out, and save a card slot by unscrewing 

the connectors that came on the slot-filler strip of 

metal, removing the connector, and mounting it 

directly on the case. 

o Attach power cables to the motherboard. 

o ATX-style cases have only one power 

connector, which is keyed to only fit one 

way. 
o The AT-style power connector comes in 

two pieces and must be connected 

properly. The black wires must be placed 

together when they are plugged into the 

motherboard.  
o Ensure that the CPU cooling fan is 

connected to the power supply. This is 

usually a 4-pin male connector that goes 

to one of the power supply connectors. 

3.10.3 Minimal Peripheral 
§ Floppy disk drive 

o Mechanical 

o It may be necessary to reinstall the floppy 
mounting bay (if it was taken out 

previously). 

o The floppy drive must protrude from the 

front of the case. Take off one of the 3.5 



 59 

inch plastic filler panels from the front of 

the case. Then slide the floppy drive in 

from the front until the front of the drive is 
flush with the front of the case. Using two 

small screws that are supplied with the 

case, attach the floppy drive's left side. If 

the floppy drive bay is detachable, 

remove the bay with the floppy half 
installed, and with the drive bay out, 

install the screws for the right side.  

o If the drive bay is going to contain hard 

disks in addition to floppy drives, leave 

the drive bay out for now, and go to the 
hard disk installation section before 

putting the drive bay back into the case. 

o Electrical 

o The floppy disk needs two connections: 

one to the power supply, and one to the 

motherboard or floppy controller. The 

power supply connector is shaped to 

prevent you from getting it backwards. 

o Some floppy power connectors are smaller 

than the standard connector, and most 
power supplies come with one of these 

plugs. These connectors can be installed 

in only one way. 

o For data, a flat ribbon cable is needed. It is 

gray with 34 conductors and a red stripe 
to indicate pin 1. One end of the cable 

will usually have a twist in it. The twisted 

portion connects to a second floppy drive 

(drive B:). The end farthest from the twist 

connects to the motherboard or floppy 
controller. 

§ VGA card installation 

o If the motherboard has an integrated video adapter, 

skip the next step. 

o Plug the VGA card into the appropriate slot, 

depending on the type of card purchased (PCI slot for 

a PCI card, ISA slot for an ISA card). 
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o Screw the top of the metal bracket that is attached to 

the adapter into the case, using one of the screws 

supplied with the case. 
§ Monitor 

o Plug the monitor into a wall power outlet. 

o Plug the video input plug, which is a 15-pin connector, 

into the back of the video card. 

3.10.4 Booting the System 

Setup involves configuring the motherboard's components, peripherals, and controllers. The 
setup program is usually in ROM and can be run by pressing a certain key during POST. 

Check the CMOS settings using the setup program before booting for the first time. If you 

make changes, you will need to exit setup and save changes to CMOS for them to take effect. 

You will be able to change the date and time kept by the real time clock. Memory 

configuration such as shadow RAM and read/write wait states can be changed from their 

defaults. IDE hard disks can be detected and configured. Boot sequence and floppy drives 

can be configured and swapped. PCI cards and even ISA cards can be configured, and 

plug-n-play disabled (which should be done if running a non-Windows operating system). ISA 

bus speed can be changed and ports can be enabled or disabled. 

IDE disks are almost always configured as auto detect or user-defined type. Use shadow 

video unless you have problems. Shadow the ROM of your network interface card (NIC) or 

SCSI card for better speed. For better speed and if you have EDO memory, you can usually 

use the most aggressive memory settings— just try it out before you stick with it to avoid 

corrupting data files. 

Minimum requirements for booting the system are as follows: 

§ A bootable floppy disk 

§ Motherboard with CPU and memory installed 

§ Video card on the motherboard 

§ Floppy drive with one cable connected to it and power to it 

§ Monitor plugged into the wall and the video card 

§ Keyboard attached 

To boot the system, proceed as follows: 

§ Making sure that the power switch is off, attach a power cord from the 

case to the wall. 

§ Turn on the monitor. 

§ Turn on the power to the PC, and get ready to shut it off if you see, hear, 

or smell any problems. 

§ Look for signs that all is working properly: 

o The speaker may make clicks or beeps. 
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o The monitor should fire up and show something.  

o Make sure all of the memory counts. 

o The floppy drive light should come on one time during 
POST. 

To set up the system, proceed as follows: 

§ Enter setup by hitting the appropriate key (delete, F1, F10, Esc, or 

whatever the motherboard manual specifies), and check the CMOS 

settings. 

§ Change the CMOS settings, and see whether the computer will 

remember them. 
§ Update the date and time. 

§ View every setup screen, and look at each of the settings. 

§ Make sure the first boot device is set to be the floppy drive. 

§ If you have EDO RAM, optimize the memory settings (if you wish) or 

make any other changes you see fit. 
§ Save your changes and reboot; rerun setup, and make sure the 

updates were made. 

§ Save any changes after the rerun. Make sure the bootable floppy is in 

the drive, and let it try to boot from the floppy. If it does not boot, or 

there is some error message— or nothing— on the screen, go to the 
troubleshooting section (Section 3.10.6). 

3.10.5 Installing the Other Components 

If your PC boots and runs setup, you're almost done. Now you can install all of the other 
components. First, unplug your PC and wait a few minutes. You should begin to mount the 

drives if you have not already done so. 

IDE Hard disk installation 
§ Mechanical. This is similar to the floppy installation above, with the 

exception that the drive will not be visible from outside of the 

case.  

§ Electrical 

o Most motherboard BIOS systems today can read 

the IDE drive's specifications and automatically 

configure them. If it does not, you will have to get 

the drive's parameters (usually written on the 

drive), which include number of cylinders, 

number of heads, and number of sectors per 

track, and enter them in the drive parameter table 
in the CMOS setup. 



 62 

o A ribbon cable and power connector attach to 

each hard disk. The power cable has four wires 

in it and is keyed so it cannot be installed 
incorrectly. 

o The documentation that came with the hard disk 

indicates how the jumpers are set, if you are 

installing one disk and no other IDE device, the 

jumpers can usually be removed. If you are 
installing more than one disk, decide which disk 

will be booted. The boot disk should go on the 

primary hard disk controller. Move the jumper(s) 

on the hard disk to make it a MASTER or 

PRIMARY. Many newer hard disks will use pins 
labeled MA, SL, and CS; you will jumper the MA 

pins. The second hard disk or CD-ROM will be 

configured as a SLAVE or SECONDARY drive. 

You will jumper the SL pins on this device. Use 

your drive's manual or call the manufacturer's 

800 number for proper jumper settings. If the 

CD-ROM drive will be alone on its own controller, 

follow the manufacturer's directions (usually it is 

okay to jumper it as a slave). Once jumpered 

properly, the drives can be connected with the 
18-inch 40-pin ribbon cables and powered up. 

Pin 1 usually goes next to the power connector. 

SCSI hard disk installation 
§ Mechanical. Follow the floppy installation above, with the exception 

that the drive will not be visible from outside of the case. 

§ Electrical 

o Unless the motherboard has the SCSI controller 
built in, the BIOS will not read a SCSI drive, and 

the drive table should be set up with "not 

installed." 

o A ribbon cable and power connector attach to 

each hard disk. The power cable has four wires 
in it and is keyed so it cannot be installed 

incorrectly. The other end of the ribbon cable 

plugs into the SCSI controller itself. 

o The documentation that came with the hard disk 

explains how the jumpers are set. If you are 
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installing one disk and no other SCSI devices, 

the jumpers can usually be removed so that the 

disk will be set to ID 0. Each SCSI device on the 
chain (ribbon cable) must have its own unique ID 

number, usually 0 through 7, with 7 being 

reserved for the controller itself. 

o The last physical device on the cable has to be 

terminated, depending on the device, either with 
a jumper or with some type of resistor networks 

that are plugged in. This is very important. 

NIC installation 
§ This is similar to the VGA card installation described previously. If 

any jumpers are to be set, do that now, and write the settings 

down. Read the installation manual that came with the card. 

Sound card installation 
§ See NIC installation above. If you are setting jumpers, make sure 

you don't set two cards to the same resource (interrupt request, 
direct memory access, or port address). Keep all settings distinct. 

At this point, you are ready to begin installing the operating system. Don't forget to connect 

the mouse and external speakers and to make a network hookup, if you have these options 

installed. 

3.10.6 Troubleshooting 

Each time you boot, you should connect at least the following four components to your PC: 

§ Speaker 
§ Keyboard 

§ Floppy drive 

§ Monitor 

What should a normal boot look and sound like? 
§ First, LEDs will illuminate everywhere— the motherboard, the hard disks, 

the floppy drive, the case, the NIC, the printer, the CD-ROM, the 

speakers, the monitor, and the keyboard. 
§ The hard disks usually spin up, although some disks, especially SCSIs, 

may wait for a cue from the controller or may simply wait a fixed 

amount of time to begin spinning to prevent a large power surge 

during boot. 

§ The P/S and CPU fans will start to spin.  
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§ The first thing displayed on the monitor usually will be either memory 

counting or a video card BIOS display. 

§ During the memory count, the PC speaker may click. 
§ When the memory is done counting, the floppy disk often screeches as 

its LED comes on (called floppy seek). 

§ The monitor may have messages from the BIOS, including BIOS 

version, number of CPUs, a password prompt, and nonfatal error 

messages. 
§ The last part of the power-on self-test is often a chart that lists the 

components found during POST, such as CPU and speed, VGA card, 

serial ports, LPT ports, IDE hard disks, and floppy disks. If no system 

files are found, either on a bootable floppy or hard disk, you may get a 

message from the BIOS saying, "Insert Boot disk and press any key" 
or something similar. This is a nonfatal error, and you can put a 

bootable floppy in the drive and press a key. 

If the above happens, you will know that your motherboard is at least capable of running the 
ROM's POST. The POST has many potential problems, most of which are nonfatal errors. 

Any consistent error, however, is a cause for concern. The fatal POST errors will normally 

generate no video, so you need to listen to the speaker and count beeps. The number of 

beeps and their length indicate codes for a technician to use in repairing the PC. 

At this point, the POST is done, and the boot begins. 

What should I do if there is no video or bad video during boot? 

§ Check the monitor's power and video connection. 

§ Try reseating the video card or putting it in a new socket (turn off the 
system first!). 

§ Make sure the speaker is connected, in case you are getting a fatal 

POST message that could have nothing to do with video. 

§ Swap out the video card and/or the monitor. 

The two most notable and common POST messages are as follows: 

§ HDD (or FDD) controller error. Usually this is a cabling issue, such as a 

reversed connector. 
§ Disk drive 0 failure. You forgot power to the hard disk, or you've got the 

wrong drive set in CMOS (rerun setup). Also make sure the disk is 

properly connected to the controller. 

What about floppy problems? 
§ If the light stays on continuously after boot, you probably have the 

connector on backwards. 
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If you are still experiencing problems, try the following: 

§ Check the cables or try someone else's cables. 

§ Recheck all the jumper settings on the motherboard. 
§ Remove secondary cache, or disable it in setup. This can fix many 

problems. 

§ Slow down the CPU: it may have been sold to you at the wrong spe ed. 

§ Replace SIMMs with known working ones. 

§ Replace the video card.  
§ Remove unnecessary components such as extra RAM, sound card, 

mouse, modem, SCSI card, extra hard disks, tape drives, NIC, or 

other controller card. 

§ Remove all hard disks, and try booting from floppy. 

§ Remove the motherboard from the case, and run it on a piece of 
cardboard. This will fix a problem caused by a motherboard grounded 

to the case. 
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Chapter 4: Linux 
Peter H. Beckman 

Since the original AT&T and Berkeley Unix operating systems of the early 1970s, many 

variants of the operating system have been launched. Some have prospered, while others 

have fallen into obscurity. Have you ever heard of Concentrix or nX? Many customized Unix 

derivatives are no doubt still occupying obsolete Winchester drives and 8-inch floppies in the 

dusty storage rooms of businesses and laboratories, right there next to the paper tape 

readers and acoustic modem couplers. Even Microsoft tried its hand and sold a Unix back in 

1980, when it released XENIX. 

 

4.1 What Is Linux? 

Simply put, Linux™ is a flavor (clone) of the original Unix™ operating systems. While Linux is 

relatively new on the operating system scene, arriving about two decades after Ken 
Thompson and Dennis Ritchie of AT&T presented the first Unix paper at a Purdue University 

symposium in 1973, it has rapidly become one of the most widely known and used Unix 

derivatives. Ever since Linus Torvalds, the creator of Linux, released it in October 1991, 

developers from all over the world have been improving, extending, and modifying the source 

code. Linus has remained the godfather of the Linux source code, ensuring that it does not 

get overwhelmed with useless features, code bloat, and bad programming. As a result, Linux 

has become so popular that International Data Corporation (IDC) reported that Linux was the 

fastest-growing server operating system in both 1999 and 2000 and, after Microsoft Windows, 

is the most-used server operating system. 

4.1.1 Why Use Linux for a Beowulf? 

Linux users tend to be some of the most fervent, inspired, and loyal computer users in the 

world— probably in the same league as Apple Macintosh users. Both groups of users are 

likely to rebut any criticism with a prolonged, sharp-tongued defense of the capabilities of their 

system. For scientific computational clusters, however, a cute penguin named Tux and lots of 

enthusiasm are insufficient; some pragmatism is required. 

Linux is the most popular open source operating system in the world. Its success is the result 

of many factors, but its stability, maturity, and straightforward design have certainly been keys 
to its growth and market share. The stability and availability of Linux have also created a 

booming commercial marketplace for products, unmatched by any other open source 

operating system. Companies such as IBM, Fujitsu, NEC, Compaq, and Dell have all 

incorporated Linux into their business model, creating a marketplace around a distribution of 

kernel source code that is free. Other companies are simply using Linux because it makes 
practical business sense. 
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The enthusiastic backing of multibillion dollar companies is certainly a vote of confidence for 

Linux, but it is by no means sufficient for deciding to choose Linux. Probably the most 

important reason for using Linux to build a Beowulf is its flexibility. Because Linux is open 
source, it can easily be modified, rearranged, and tweaked for whatever the task. Some 

individuals may grow pale at the idea of modifying the operating system, but never fear: Linux 

is actually very friendly. Because of the distributed development environment that has helped 

it become so successful, it is also easily modified and tweaked. Later in this chapter, some 

simple instructions will show just how easy modifying Linux can be.  

Does Linux really need to be modified before you can use it to build a Beowulf? Well, no. 

However, scientists are generally by their very nature extremely curious, and even though a 
wonderfully fast and easy-to-use Beowulf can be constructed with "stock" kernels, most 

cluster builders will soon give in to the nearly irresistible urge to roll up their sleeves and pop 

the hood to see what is really inside the Linux kernel. Be warned: many a plasma physicist or 

molecular biologist, fully intending to spend all of her time solving the mysteries of the 

universe and writing technical papers, has instead become completely drawn into the 
wonderful and creative release that comes from modifying the source code. You can often 

see these expatriates roaming the HPC and Beowulf mailing lists answering questions about 

the latest kernel and support for new chip sets or features. 

Another reason to choose Linux is that you will not be alone. The available talent pool for 

knowledgeable system administrators that have Linux experience and actually enjoy working 
with Linux is large. System administrators are scrambling to find excuses for building a 

Beowulf with Linux. The same cannot often be said for other operating systems. Furthermore, 

remote administration has been a part of all Unix derivatives for decades. Many simple 

interfaces are available for updating the configuration of remote machines and organizing a 

room full of servers. The talent pool of Beowulf builders is growing. Linux clusters are popping 

up in every nook and cranny, from small departments on campus to the world's most 
prestigious laboratories. A quick look at the Top500 list (www.top500.org) shows that Linux 

is the unchallenged champion for building compute engines with commodity parts. 

Google (www.google.com), one of the most popular and acclaimed search engines, is now 

using more than 8,000 Linux nodes for its search engine server farm [38]. While Google is not 
a scientific computing cluster, its size demonstrates the flexibility and adaptability of Linux. 

From an embedded palm-sized computer to running on an 8,000-processor cluster, Linux has 

demonstrated its utility and stability for nearly any task. There are even real-time versions of 

the Linux operating system. No legacy operating system can even come close to such 

flexibility and dominance among the largest clusters in the world. 

Another reason to choose Linux is its support for many types of processors. Alpha, PowerPC, 

IA32, IA64, and many others are all supported in Linux. You can choose to build your Beowulf 
from the fastest Apple Macintosh servers or IBM pSeries servers, or you can buy the biggest 

and hottest (literally) chip on the market, the Intel IA64. As an example of the flexibility and 

speed with which the Linux community ports to new hardware, take a quick look at the Intel 
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IA64. The IA64 is already available in many places, and the operating system of choice is 

Linux. Several distributions have already been released, and for many users, removing Linux 

and installing a legacy operating system (should it become widely available) is certainly not in 
their plans. 

Finally, many people choose Linux for what it does not have, or what can be removed. Linux 

is a sophisticated multitasking virtual memory kernel. However, it can be trimmed down to a 

very small set of functions representing the bare necessities. In fact, Linux can easily be 

compiled to use as little as 600 KBytes of compressed disk space on a floppy. Linux can be 

made small. It can fit on embedded devices. Although counterintuitive to some legacy 

companies, where adding a new feature and urging all the users to upgrade are the status 
quo, smaller and simpler is better when it comes to operating system kernels for a Beowulf. 

The first reason that smaller is better comes from decades of experience with source code 

development and stability. Whenever a line of code is added to a source tree, the probability 

increases that a hidden bug has been introduced. For a kernel that controls the memory 

system and precious data on disk, robustness is vital. Having fewer functions running in 
privileged mode makes for a more stable environment. A small kernel is a kernel that is more 

likely to be stable. Although it did not run Linux, the NASA Sojourner that traveled to Mars 

was also designed with the "smaller and simpler is better" mantra. The Sojourner sported a 2 

MHz CPU and less than 1 MByte of combined RAM and nonvolatile data storage. While 

NASA certainly could have afforded a larger computer, as well as a large commercial 
operating system, simpler was better. Making a service call to Mars to press Ctrl-Alt-Del was 

not an option. 

More down to earth, although nearly as cold, the NSF -funded Anubis project uses Linux 

machines to monitor seismic conditions at unmanned monitoring stations on Antartica [1]. 

The stations upload their data vi a ARGOS satellite transmitters. The average annual 

temperature for the stations is -28 degrees Celsius to -54 degrees Celsius. Linux was 

chosen for its stability, robustness, and the ease with which it could be modified for the task. 

Traveling hundreds of miles across an ice sheet to repair a blue screen of death was not 

seriously considered. 

The second reason for a small kernel is that the most stable code path is the most used code 
path. Bugs tend to congregate in out-of-the-way locations, away from the well-worn code 

paths. The smaller the kernel, the fewer the hidden and rarely tested code paths. Finally, 

smaller is better when it comes to kernel memory and CPU cycles on a Beowulf. For scientific 

computing, nearly every instruction not being performed by the scientific application, usually 

in the form of a floating-point operation, is overhead. Every unnecessary kernel data structure 

that is walked by the kernel pollutes the precious cache values intended for the scientific 

application. Because kernel operations such as task switching are run extremely often, even 
a small amount of additional kernel overhead can noticeably impact application performance. 

Linux's heritage of development on small machines forced developers to pay extremely close 

attention to performance issues. For Beowulfs, a small kernel is advantageous. 
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With its modular and easy-to-modify code base, support for a wide variety of the hottest 

CPUs on the planet, and incredibly enthusiastic talent pool, Linux is a winner for building 

Beowulfs. 

4.1.2 A Kernel and a Distribution 

The term "Linux" is most correctly applied to the name for the Unix-like kernel, the heart of an 

operating system that directly controls the hardware and provides true multitasking, virtual 

memory, shared libraries, demand loading, shared copy-on-write executables, TCP/IP 

networking, and file systems. The kernel is lean and mean. It contains neither an integrated 

Web browser nor a graphic windowing system. Linux, in keeping with its Unix heritage, 

follows the rule that smaller and simpler should be applied to every component in the system 

and that components should be easily replaceable. However, the term "Linux" has also been 

applied in a very general way to mean the entire system, the Linux kernel combined will all of 

the other programs that make the system easy to use, such as the graphic interface, the 

compiler tools, the e-mail programs, and the utilities for copying and naming files. Strictly 

speaking, Linux is the kernel. Nevertheless, most users refer to a "Linux system" or "Linux 

CD-ROM" or "Linux machine" when they really mean the Linux kernel packaged up with all of 
the tools and components that work with the kernel — a distribution. 

A Linux distribution packages up all the common programs and interfaces that most users 

think of when they imagine Linux, such as the desktop icons or the Apache Web server or, 

more important, for scientific users, compilers, performance monitoring tools, and the like. 

Many Linux distribution companies exist. They take the freely available Linux kernel and add 

an "installer" and all the other goodies just described. In fact, those companies (Red Hat, 

Turbolinux, Caldera, SuSE, and a host of smaller companies) have the freedom to customize, 
optimize, support, and extend their Linux distribution to satisfy the needs of their users. 

Several volunteer efforts also bundle up all the software packages with the kernel and release 

a distribution. Understanding how the Linux kernel and Linux distributions are developed and 

maintained is key to understanding how to get support and how to get a Beowulf cluster up 

and running on the network as quickly as possible.  

4.1.3 Open Source and Free Software  

Of course, before getting very far in any discussion about the Linux kernel or Linux CD-ROM 

distributions, some time must be spent on the topic of open source and free software. Several 

well-written books on the topic have already been published. The book Open Sources  [7] 
details the many intertwined and fascinating stories of how the code bases that began as 

research projects or simply hobby tinkering become the fundamental standards that are the 

lifeblood of the Internet. It is important, however, to understand some of the basic concepts of 

freely distributable software for building a Beowulf with Linux. Of course, the most important 

reason for understanding some of the fundamental licensing issues surrounding the Linux 

kernel is so that they can be adhered to. Even though the term "free" is cavalierly used within 

the community, there can often be strict rules and practices that must be followed. Another 
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reason why it is important to understand these basic issues is so that you can understand 

how the code base came to exist in the form it is today and how you can contribute back to 

the community that provided the software for your use. 

The open source software movement has gathered both publicity and credibility over the past 

couple of years. Richard Stallman began work in 1984 on creating a free, publicly available 

set of Unix-compatible tools. He uses the term "free software" to describe the freedom users 

have to modify it, not the price. Several years later, the GNU General Public License (GPL) 

was released. The GPL (sometimes called the "copyleft") became the license for all of the 

GNU products, such as gcc (a C compiler) and emacs (a text editor). The GPL strives to 

ensure that nobody can restrict access to the original source code of GPL licensed software 
or can limit other rights to using the software. Anyone may sell a copy of GPL software for as 

much as people are willing to pay (without any obligation to give money back to the original 

author), but nothing prevents the person who bought the software from doing the same. 

Moreover, all users must be given a copy of the source code so that those users are able to 

fix and enhance the software to suit their needs. However, probably the most important 
aspect of the GPL is that any modifications to GPLed source code must also be GPLed. 

For most Beowulf users, the strict rules for how free software may be distributed will never 
come up. However, if code licensed under the GPL is modified, its binary-only distribution is 

forbidden under the license. For example, if a Beowulf user extends or patches one of Donald 

Becker's Ethernet drivers or uses it as the basis for writing a driver, that driver cannot be 

redistributed in binary-only form. The Linux kernel also uses a clarified GPL license. 

Therefore, modifying the Linux kernel for private use is fine, but users may not modify the 
kernel and then make binary -only versions of the kernel for distribution. Instead, they must 

make the source code available if they intend to share their changes with the rest of the 

world. 

More recently, Eric Raymond and others coined the term "open source" to refer to freely 

distributable software (www.opensource.org). There are, however, differences between 

the two monikers associated with freely distributable software. GPLed source code cannot be 

the basis for a privately developed set of enhancements that are then sold in binary-only 

shrink-wrapped form. Derived software must remain essentially free. On the other hand, 

licenses that follow the open source definition but are not the GPL are not so restricted. An 

open source-compliant license that is not using the GPL permits programmers and users 

greater flexibility in what they do with the code. They are free to use the source code however 

they wish. Th ey may develop private, "closed" code repositories and then sell products that 

may be distributed in binary -only form. 

Many licenses conform to the open source definition: Mozilla Public License (Netscape), MIT 

License (used for the X-Windows Consortium), and the amended BSD License. A company 
can enhance an open source-licensed program that is not using the GPL and then sell a 

binary-only version. In fact, software developed by the X-Windows Consortium and the BSD 

project was commercialized and used as the basis for a wide range of products. For the 
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Beowulf user, this means that code licensed with a BSD or X-Windows-style license give the 

users the freedom to use the software in whatever manner they see fit. Specifically, the 

MPICH version of MPI, available from Argonne National Laboratory and explained in greater 
detail in Chapter 9 of this book, is licensed using a non -GPL open source license. Beowulf 

users may make changes to the source code and distribute binary -only versions, or even 

create products based on the work done by the original authors. Many people believe the 

careful choice of license for the MPICH project helped make the MPI standard as successful 

as it is today. 

Of course "giving back" to the community that has worked collectively to provide the 

sophisticated toolset that makes Beowulf computation possible is part of the scientific process 
and is highly encouraged by the authors of this book regardless of what kind of license a 

particular piece of software uses. The scientific process demands repeatability, and the freely 

distributable nature of most Beowulf software provides an ideal environment for extending 

and corroborating other scientists results. Whenever possible, changes to the source code 

should be sent back to the authors or maintainers, so the code can continue to grow and 
improve. 

4.1.4 A Linux Distribution 

A Linux distribution generally arrives on one or more CD-ROMs, with the Linux kernel actually 
using a very small portion of that CD-ROM. Since a distribution can be fashioned around a 

Linux kernel in practically any manner, Linux distributions can vary quite widely in form and 

function. Since the Linux kernel is probably the most portable kernel on the planet, it is 

running on an amazing array of CPUs and devices, everything from handheld devices such 

as the Compaq iPAQ and the IBM Linux wrist watch to the IBM S390, a large corporate 

enterprise server getting a new lease on life with Linux. With such an incredible range of 

users and hardware devices that can run Linux comes a plethora of distributions built around 

those kernels and their target users. It can be quite daunting to choose among the dozens of 

popular (and hundreds of specialized) Linux distributions. Linux Web sites list dozens of 

distributions created with the Linux kernel. Of course, not all such distributions are suitable for 

use in a Beowulf. Many are designed for the embedded market, while others are built for a 

single-purpose appliance server, such as a firewall or a file/print server. 

One of the first steps to using Linux to build your Beowulf Linux cluster is to pick a distribution 

and get comfortable with it. While it is beyond the scope of this book to help you become a 

rabid Linux user, there are plenty of books on the topic that can help guide you through the 

different installers and different graphic desktops optimized for each distribution. The list 

below shows some of the most popular Linux distribution companies or groups and where to 

find more information about them. 

Which distribution is best for building a Beowulf? Unfortunately, there is no easy answer. 
Usually, the choice comes down to three factors: support, language, and ease of use. While 
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the core of all Linux distributions are, by nature of the GPL, available for free and may 

downloaded from the Internet, the question of support is very important, especially to the new 

user. Most commercial distributions include 

 

 

Table 4.1: Some companies or groups that release Linux distributions. 

Company URL 

 

Red hat  
www.redhat.com 

Turbolinux 
www.turbolinux.com 

Mandrake 
www.mandrake.com  

Debian 
www.debian.org 

SuSE 
www.suse.com  

Slackware www.slackware.com 

Caldera www.caldera.com 

 

access to either phone or e-mail support. Some include the option of purchasing additional 

support. Some integrate software that is not freely distributable. Other companies, such as 

LinuxCare, do not produce a Linux distribution but simply support all of them. 

Local familiarity and popularity can be a factor in your choice. If everyone else in your office or 
on your campus or at your laboratory is using the same Linux distribution, getting their help 

when things go awry may be easiest if you share a common distribution. Another 

consideration is support for your native language and e-mail support in that language. The 

SuSE distribution is very popular in Germany, and naturally has very good support for the 

German language. Certainly, you can email your questions in German to their support staff. 

Likewise, the Turbolinux distribution is very popular in Japan and China and supports 

double-byte characters and special input methods for typing in Japanese or Chinese. 

Naturally, your choice of distribution may also be influenced by what the hardware company 

can preload on your Beowulf nodes if you are not building them from scratch. Having your 
nodes arrive preloaded with a Linux distribution can save a lot of time. 

Another key detail for building a Beowulf with Linux is the licensing of the distribution. Almost 

every commercial vendor, has, at times, included software that could not be freely distributed. 

In some cases, a portion of the purchase price is used to pay royalties for the software that is 

not freely distributable. Using such a distribution to install 16 nodes would violate the licensing 
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unless you actually purchased 16 copies. Luckily, most distribution companies try to make it 

very clear whether their distribution can be freely distributed and, in many cases, offer a freely 

distributable version of the distribution on the Web site. 

4.1.5 Version Numbers and Development Methods 

The Linux kernel, Linux applications, and even the Linux distributions have different 
development models, different version numbers, and different schedules. While picking a 

Linux distribution for your Beowulf, a basic understanding of version numbers and distribution 

versions is required. A relatively small team of core developers develops the Linux kernel. 
Yes, many many people from around the world, representing more than fifty different 

countries, have contributed to the Linux kernel, but its stability and the organized introduction 

of new features are made possible by a well-coordinated band of core programmers. With 

Linus Torvalds sometimes called the "benevolent dictator," core developers such as Donald 

Becker, Alan Cox, Stephen Tweedie, and David Miller maintain and extend sections of the 

kernel with the help of hundreds of programmers who send in contributions to the kernel. This 

hierarchical model is clearly more efficient than everyone sending Linus their patches and 

new ideas for how the kernel can be extended (not that they don't try). Of course, not all 

patches and extensions are included in the main line, or "stock" kernel, no matter who sent 

them. Significant restraint and conservatism are used for most sections of the code. Some 

programmers must lobby Linus or other code developers for extended periods of time before 

their improvements are incorporated. In some cases, the suggestions are never accepted and 

are therefore made available only as a patch and not part of the "official" kernel tree. 

Your Linux distribution will, of course, arrive with a Linux kernel, but upgrading the kernel is 

one of the most common ways to update a Beowulf node, and will be discussed later. It is 

important to understand that the version number of the kernel and the version number of the 

distribution are in no way related. At any point in time the Linux kernel has two 

most-up-to-date kernels: the "stable" release and the "development" release. Stable kernels 

use an even minor kernel number, such as 2.0, 2.2, or 2.4. Similarly, development kernels 

use odd minor kernel numbers, such as 2.1 or 2.3. As work on a development kernel 

becomes more stable, the rate of change begins to slow, and finally the core kernel 

developers stop adding new features. There exists no definitive set of tests that indicate when 
a development kernel is ready for general us e, but at some point, Linus will "release" a new 

stable kernel. After that, patches and updates take the form of incremental versions, such as 

2.4.9 or 2.4.11. With few exceptions, a kernel that is part of a popular CD-ROM distribution 

comes from the "stable" kernel releases. Of course, nothing prevents a would-be Beowulf 

builder from using the latest, most unstable versions of the development kernel. However, the 
main kernel developers take the stability of the Linux kernel very seriously, and it would be 

wise to be conservative in choosing a kernel. 

Linux distributions, on the other hand, can create version numbers for their distribution 

however they please. Red Hat 7.0 simply means that it is newer than Red Hat 6.0. Since 
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distribution companies are separate, they use completely different versioning schemes. Red 

Hat 7.0 is not necessarily any newer than Turbolinux 6.5. In fact, because it is clearly to their 

advertising advantage, don't be surprised to find out that the distribution on the shelf with the 
highest version number is in fact not the most recent release. Furthermore, distributions are 

free to use whatever basic version of the Linux kernel they believe will make their end-users 

most satisfied. Then, they often add in a couple more changes to the kernel that may not be in 

the mainline kernel. For example, a hardware company working with a distribution company 

may ask for some special drivers or special options be added to the kernel, so their hardware 
can work well with Linux. While certainly common practice, it can lead to some confusion in 

infrequent cases because upgrading the kernel for such a distribution may not always work 

unless the upgraded kernel came from the distribution's Web site and therefore contained the 

special additions, or the special additions are added to the basic main-line kernel that can be 

downloaded from www.kernel.org. 

For the Beowulf user, this situation means that getting help with kernel issues may involve 

some investigation. Generally, the distribution companies support their product, or you can 
purchase support from a company such as LinuxCare. However, that does not mean they 

wrote the code or are on a first-name basis with the person who did. The commercial support 

company can certainly provide front-line support, but what the industry often calls level-3 

support requires some extra work. Generally, open source programmers such as Donald 

Becker make a portion of their time available to answer questions about the code they 
authored. However, the author of the code could also have moved on to other endeavors, 

leaving the source code behind. Kernel and Beowulf mailing lists help, but the burden can 

often be on you to find the problem or find the person who can help you. When trying to track 

down what you believe to be a kernel or driver issue, please follow these guidelines: 

1. Read the documentation. Because Linux support has traditionally been ad 
hoc in nature, a large number of HOWTO documents have been written, 

ranging from ones that are probably very important to you like the 
Kernel-HOWTO, the Beowulf-HOWTO, and the 

Parallel-Processing-HOWTO, to more specific ones like the 

Slovenian-HOWTO, the Kodak-Digitalcam-HOWTO, the 
Quake-HOWTO, and the Coffee-mini-HOWTO. These documents are 

located under /usr/doc/HOWTO  on most distributions. 

2. Second, search the Web. Google www.google.com is amazing. Many a 

per-plexing, nasty bug or software incompatibility has been easily solved 

with fifteen or twenty minutes of Web surfing. 
3. Get some help from local Linux users. Often, there is a very simple answer 

or widely known work -around for a problem. Talking to someone can also 

help you better understand the problem, so Google can once again be 

queried or intelligent e-mail sent. 
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4. Read the relevant mailing lists, and search for your topic of interest on the 

mailing list. Several archives of Linux -specific mailing lists exist, such as 
can be found at marc.theaimsgroup.com. 

5. After the difficulty has been narrowed down to a very clear, reproducible 

example, mail the appropriate mailing list, and ask for help. To make your 

bug report useful to the readers (and get you a fix much faster), follow the 
guidelines given in the kernel sources as REPORTING-BUGS, 

Documentation/BUG-HUNTING, and 
Documentation/oops-tracing. 

6. If you don't make any progress, try looking at the source code and mailing 

the author directly. Naturally, this should be used as a last resort. Authors 

of key portions can often get dozens or hundreds of e-mail messages a day 

about their code. 
 

4.2 The Linux Kernel 

As mentioned earlier, for the Beowulf user, a smaller, faster, and leaner kernel is a better 
kernel. This section describes the important features of the Linux kernel for Beowulf users 

and shows how a little knowledge about the Linux kernel can make the cluster run faster and 

more smoothly. 

What exactly does the kernel do? Its first responsibility is to be an interface to the hardware 
and provide a basic environment for processes and memory management. When user code 

opens a file, requests 30 megabytes of memory for user data, or sends a TCP/IP message, 
the kernel does the resource management. If the Linux server is a firewall, special kernel 

code can be used to filter network traffic. In general, there are no additives to the Linux kernel 

to make it better for scientific clusters— usually, making the kernel smaller and tighter is the 

goal. However, sometimes a virtual memory management algorithm can be twiddled to 

improve cache locality, since the memory access patterns of scientific applications are often 
much different from the patterns common Web servers and desktop workstations, the 

applications for which Linux kernel parameters and algorithms are generally tuned. Likewise, 

occasionally someone creates a TCP/IP patch that makes message passing for Linux 

clusters work a little better. Before going that deep into Linux kernel tuning, however, the 

kernel must first simply be compiled. 

4.2.1 Compiling a Kernel 

Almost all Linux distributions ship with a kernel build environment that is ready for action. The 
transcript below shows how you can learn a bit about the kernel running on the system. 

% ls -l /proc/version 

-r--r--r-- 1 root root 0 Jun 9 23:32 /proc/version 
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% cat /proc/version 

Linux version 2.2.14-3 (support@kernel.turbolinux.com) (gcc driver 

version 2.95.2 19991024 (release) executing gcc version 2.7.2.3) 

#1 Wed Feb 23 14:09:33 PST 2000 

 

% cd /usr/src 

% ls -ld linux 

lrwxrwxrwx 1 root root 12 May 16 2000 linux -> linux-2.2.14 
The /proc file system is not really a file system in the traditional meaning. It is not used to 

store files on the disk or some other secondary storage; rather, it is a pseudo-file system that 

is used as an interface to kernel data structures— a window into the running kernel. Linus 

likes the file system metaphor for gaining access to the heart of the kernel. Therefore, the 
/proc file system does not really have disk filenames but the names of parts of the system 

that can be accessed. In the example above, we read from the handle /proc/version 

using the Unix cat command. Notice that the file size is meaningless, since it is not really a 

file with bytes on a disk but a way to ask the kernel "What version are you currently running?" 

We can see the version of the kernel and some information about how it was built. 
The source code for the kernel is often kept in /usr/src. Usually, a symbolic link from 

/usr/src/linux  points to the kernel currently being built. Generally, if you want to 

download a different kernel and recompile it, it is put in /usr/src, and the symlink 

/usr/src/linux  is changed to point to the new directory while you work on compiling the 

kernel. If there is no kernel source in /usr/src/linux , you probably did not select "kernel 

source" when you installed the system for the first time, so in an effort to save space, the 

source code was not installed on the machine. The remedy is to get the software from the 

company's Web site or the original installation CD-ROM. 

The kernel source code often looks something like the following: 

% cd /usr/src/linux 

% ls 

COPYING        README                 configs  init    modules 

CREDITS        README.kernel-sources  drivers  ipc     net 

Documentation  REPORTING-BUGS         fs       kernel  pcmcia-cs-3.1.8 

MAINTAINERS    Rules.make             ibcs     lib     scripts 

Makefile       arch                   include  mm 

If your Linux distribution has provided the kernel source in its friendliest form, you can 

recompile the kernel, as it currently is configured, simply by typing 
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% make clean ; make bzImage 

The server will then spend anywhere from a few minutes to twenty or more minutes 

depending on the speed of the server and the size of the kernel. When it is finished, you will 

have a kernel. 

% ls -l /usr/src/linux-2.2.14/arch/i386/boot/bzImage 

-rw-r--r-- 1 root root 574272 Jun 10 00:13 

/usr/src/linux-2.2.14/arch/i386/boot/bzImage 

4.2.2 Loadable Kernel Modules 

For most kernels shipped with Linux distributions, the kernel is built to be modular. Linux has 
a special interface for loadable kernel modules, which provides a convenient way to extend 

the functionality of the kernel in a dynamic way, without maintaining the code in memory all 
the time, and without requiring the kernel be recompiled every time a new or updated module 

arrived. Modules are most often used for device drivers, file systems, and special kernel 

features. For example, Linux can read and write MSDOS file systems. However, that 

functionality is usually not required at all times. Most often, it is required when reading or 

writing from an MSDOS floppy disk. The Linux kernel can dynamically load the MSDOS file 

system kernel module when it detects a request to mount an MSDOS file system. The 

resident size of the kernel remains small until it needs to dynamically add more functionality. 

By moving as many features out of the kernel core and into dynamically loadable modules, 

the legendary stability of Linux compared with legacy operating systems is achieved. 

Linux distributions, in an attempt to support as many different hardware configurations and 
uses as possible, ship with as many precompiled kernel modules as possible. It is not 

uncommon to receive five hundred or more precompiled kernel modules with the distribution. 

In the example above, the core kernel was recompiled. This does not automatically recompile 

the dynamically loadable modules. 

4.2.3 The Beowulf Kernel Diet 

It is beyond the scope of this book to delve into the inner workings of the Linux kernel. 
However, for the Beowulf builder, slimming down the kernel into an even leaner and smaller 

image can be beneficial and, with a little help, is not too difficult. 
In the example above, the kernel was simply recompiled, not configured. In order to slim 

down the kernel, the configuration step is required. There are several interfaces to configuring 

the kernel. The README file in the kernel source outlines the steps required to configure and 
compile a kernel. Most people like the graphic interface and use make xconfig to edit the 

kernel configuration for the next compilation. 

Removing and Optimizing.  The first rule is to start slow and read the documentation. Plenty 

of documentation is available on the Internet that discusses the Linux kernel and all of the 
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modules. However, probably the best advice is to start slow and simply remove a couple 

unneeded features, recompile, install the kernel, and try it. Since each kernel version can 

have different configuration options and module names, it is not possible simply to provide the 
Beowulf user a list of kernel configuration options in this book. Some basic principles can be 

outlined, however. 

Think compute server: Most compute servers don't need support for amateur radio 

networking. Nor do most compute servers need sound support, unless of course your 

Beowulf will be used to provide a new type of parallel sonification. The list for what is really 
needed for a compute server is actually quite small. IrDA (infrared), quality of service, ISDN, 

ARCnet, Appletalk, Token ring, WAN, AX.25, USB support, mouse support, joysticks, and 

telephony are probably all useless for a Beowulf. 

Optimize for your CPU: By default, many distributions ship their kernels compiled for the 

first-generation Pentium CPUs, so they will work on the widest range of machines. For your 
high-performance Beowulf, however, compiling the kernel to use the most advanced CPU 

instruction set available for your CPU can be an important optimization. 

Optimize for the number of processors: If the target server has only one CPU, don't 

compile a symmetric multiprocessing kernel, because this adds unneeded locking overhead 

to the kernel. 

Remove firewall or denial-of-service protections: Since Linux is usually optimized for Web 

serving or the desktop, kernel features to prevent or reduce the severity of denial-of-services 

attacks are often compiled into the kernel. Unfortunately, an extremely intense parallel 

program that is messaging bound can flood the interface with traffic, often resembling a 

denial-of-service attack. Indeed, some people have said that many a physicist's MPI program 
is actually a denial-of-service attack on the Beowulf cluster. Removing the special checks and 

detection algorithms can make the Beowulf more vulnerable, but the hardware is generally 

purchased with the intent to provide the most compute cycles per dollar possible, and putting 

it behind a firewall is relatively easy compared with securing and hampering every node's 

computation to perform some additional security checks. 
Other Considerations.  Many Beowulf users slim down their kernel and even remove 

loadable module support. Since most hardware for a Beowulf is known, and scientific 

applications are very unlikely to require dynamic modules be loaded and unloaded while they 

are running, many administrators simply compile the required kernel code into the core. 

Particularly careful selection of kernel features can trim the kernel from a 1.5-megabyte 
compressed file with 10 megabytes of possible loadable modules to a 600-kilobyte 

compressed kernel image with no loadable modules. Some of the kernel features that should 

be considered for Beowulfs include the following: 

§ NFS: While NFS does not scale to hundreds of node, it is very convenient for 

small clusters. 

§ Serial console: Rather than using KVM (Keyboard, Video, Mouse) switches or 

plugging a VGA (video graphics array) cable directly into a node, it is often 
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very convenient to use a serial concentrator to aggregate 32 serial consoles 

into one device that the system administrator can control. 

§ Kernel IP configuration: This lets the kernel get its IP address from BOOTP or 
DHCP, often convenient for initial deployment of servers. 

§ NFS root: Diskless booting is an important configuration for some Beowulfs. 

NFS root permits the node to mount the basic distribution files such as 
/etc/passwd from an NFS server. 

§ Special high-performance network drivers: Often, an extreme performance 
Beowulf will use high-speed networking, such as Gigabit Ethernet or Myrinet. 

Naturally, those specialized drivers as well as the more common 100B T 

Ethernet driver can be compiled into the kernel. 

§ A file system: Later in this chapter a more thorough discussion of file systems 

for Linux will be presented. It is important the kernel is compiled to support 
the file system chosen for the compute nodes  

Network Booting. Because of the flexibility of Linux, many options are available to the 

cluster builder. While certainly most clusters are built using a local hard drive for booting the 

operating system, it is certainly not required. Network booting permits the kernel to be loaded 

from a network-attached server. Generally, a specialized network adapters or system BIOS is 

required. Until recently, there were no good standards in place for networking booting 

commodity hardware. Now, however, most companies are offering network boot-capable 

machines in their high-end servers. The most common standard is the Intel PXE 2.0 net 

booting mechanism. On such machines, the firmware boot code will request a network 

address and kernel from a network attached server, and then receive the kernel using TFTP 
(Trivial File Transfer Protocol). Unfortunately, the protocol is not very scalable, and attempting 

to boot more than a dozen or so nodes simultaneously will yield very poor results. Large 

Beowulfs attempting to use network boot protocols must carefully consider the number of 

simultaneously booting nodes or provide multiple TFTP servers and separate Ethernet 

collision domains. For a Linux cluster, performing a network boot and then mounting the local 
hard drive for the remainder of the operating system does not seem advantageous; it 

probably would have been much simpler to store the kernel on hard drive. However, network 

booting can be important for some clusters if it is used in conjunction with diskless nodes. 

4.2.4 Diskless Operation 

Some applications and environments can work quite well without the cost or management 

overhead of a hard drive. For example, in secure or classified computing environments, 

secondary storage can require special, labor -intensive procedures. In some environments, 

operating system kernels and distributions may need to be switched frequently, or even 

between runs of an application program. Reinstalling the operating system on each compute 

node to switch over the system would be impractical, as would maintaining multiple hard disk 

partitions with different operating systems or configurations. In such cases, building the 

Beowulf without the operating system on the local hard drive, if it even exists, can be a good 
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solution. Diskless operation also has the added benefit of making it possible to maintain only 

one operating system image, rather than having to propagate changes across the system to 

all of the Beowulf nodes. 
For diskless operations, naturally, Linux can accommodate where other systems may not be 

so flexible. A complete explanation of network booting and NFS-root mechanisms is beyond 
the scope of this book (but they are documented in the Diskless-HOWTO and 

Diskless-root-NFS-HOWTO) and certainly is a specialty area for Beowulf machines. 

However, a quick explanation of the technology will help provide the necessary insight to 
guide your decision in this regard. 

In addition to hardware that is capable of performing a network boot and a server to dole out 

kernels to requesting nodes, a method for accessing the rest of the operating system is 
required. The kernel is only part of a running machine. Files such as /etc/passwd and 

/etc/resolv.conf also need to be available to the diskless server. In Linux, NFS root 

provides this capability. A kernel built with NFS root capability can mount the root file system 

from a remote machine using NFS. Operating system files such as dynamic libraries, 

configuration files, and other important parts of the complete operating system can be 

accessed transparently from the remote machine via NFS. As with network booting, there are 

certain limitations to the scalability of NFS root for a large Beowulf. In Section 4.2.6, a more 

detailed discussion of NFS scalability is presented. In summary, diskless operation is 

certainly an important option for a Beowulf builder but remains technically challenging. 

4.2.5 Downloading and Compiling a New Kernel 

For most users, the kernel shipped with their Linux distribution will be adequate for their 

Beowulf. Sometimes, however, there are advantages to downloading a newer kernel. 
Occasionally a security weakness has been solved, or some portion of TCP/IP has been 

improved, or a better, faster, more stable device driver arrives with the new kernel. 

Downloading and compiling a new kernel may seem difficult but is really not much harder 

than compiling the kernel that came with the distribution.  

The first step is to download a new kernel from www.kernel.org. The importance of 

reading the online documents, readme files, and instructions cannot be overstated. As 

mentioned earlier, sticking with a "stable" (even minor version) kernel is recommended over 

the "development" (odd minor version) kernel. It is also important to understand how far 

forward you can move your system simply by adding a new kernel. The kernel is not an 

isolated piece of software. It interfaces with a myriad of program and libraries. For example, 

the Linux mount command file system interfaces to the kernel; should significant changes to 

the kernel occur, a newer, compatible mount command may also need to be upgraded. 

Usually, however, the most significant link between the kernel and the rest of the operating 
system programs occurs with what most people call libc. This is a library of procedures that 

must be linked with nearly every single Linux program. It contains everything from the 
printf function to routines to generate random numbers. The library libc is tied very 

closely to the kernel version, and since almost every program on the system is tied closely to 
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libc, the kernel and LibC must be in proper version synchronization. Of course, all of the 

details can be found at www.kernel.org, or as a link from that site. 

The next step is to determine whether you can use a "stock" kernel. While every major 
distribution company uses as a starting point a stock kernel downloaded from kernel.org,  

companies often apply patches or fixes to the kernel they ship on the CD-ROM. These minor 

tweaks and fixes are done to support the market for which the distribution is targeted or to 

add some special functionality required for their user base or to distinguish their product. For 

example, one distribution company may have a special relationship with a RAID device 
manufacturer and include a special device driver with their kernel that is not found in the stock 

kernel. Or a distribution company may add support for a high-performance network adapter or 

even modify a tuning parameter deep in the kernel to achieve higher performance over the 

stock kernels. Since the distribution company often modifies the stock kernel, several options 

are available for upgrading the kernel: 
§ Download the kernel from the distribution company's Web site instead of 

kernel.org. In most cases, the distribution company will make available 

free, upgraded versions of the kernel with all of their distribution-specific 

modifications already added.  
§ Download the kernel from kernel.org, and simply ignore the 

distribution-dependent modifications to the kernel. Unless you have a special 

piece of hardware not otherwise supported by the stock kernel, it is usually 

safe to use the stock kernel. However, any performance tuning performed by 

the distribution company would not have been applied to the newly download 

kernel. 
§ Port the kernel modification to the newer kernel yourself. Generally, 

distribution companies try to make it very clear where changes have been 

made. Normally, for example, you could take a device driver from the kernel 

that shipped with your distribution and add it to the newer stock kernel if that 

particular device driver was required. 

Of course, all of this may sound a little complicated to the first-time Beowulf user. However, 

none of these improvements or upgrades are required. They are by the very nature of Linux 
freely available to users to take or leave as they need or see fit. Unless you know that a new 

kernel will solve some existing problem or security issue, it is probably good advice to simply 

trim the kernel down, as described earlier, and use what was shipped with your distribution. 

4.2.6 Linux File Systems 

Linux supports an amazing number of file systems. Because of its modular kernel and the 
virtual file system interface used within the kernel, dynamically loaded modules can be loaded 

and unloaded on the fly to support whatever file system is being mounted. For Beowulf, 

however, simplicity is usually a good rule of thumb. Even through there are a large number of 
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potential file systems to compile into the kernel, most Beowulf users will require only one or 

two. 

The de facto standard file system on Linux is the second extended file system, commonly 
called EXT2. EXT2 has been performing well as the standard file system for years. It is fast 

and extremely stable. Every Beowulf should compile the EXT2 file system into the kernel. It 

does, unfortunately, have one drawback, which can open the door to including support for 

(and ultimately choosing) another file system. EXT2 is not a "journaling" file system. 

Journaling File Systems.  The idea behind a journaling file system is quite simple: Make 

sure that all of the disk writes are performed in such a way as to ensure the disk always 

remains in a consistent state or can easily be put in a consistent state. That is usually not the 
case with nonjournaling file systems like EXT2. Flipping off the power while Linux is writing to 

an EXT2 file system can often leave it in an inconsistent state. When the machine reboots, a 

file system check, or "fsck," must be run to put the disk file system back into a consistent state. 

Performing such a check is not a trivial matter. It is often very time consuming. One rule of 

thumb is that it requires one hour for every 100 gigabytes of used disk space. If a server has a 
large RAID array, it is almost always a good idea to use a journaling file system, to avoid the 

painful delays that can occur when rebooting from a crash or power outage. However, for a 

Beowulf compute node, the choice of a file system is not so clear. 

Journaling file systems are slightly slower than nonjournaling file systems for writing to the 
disk. Since the journaling file system must keep the disk in a consistent state even if the 

machine were to suddenly crash (although not likely with Linux), the file system must write a 

little bit of extra accounting information, the "journal," to the disk first. This information enables 
the exact state of the file system to be tracked and easily restored should the node fail. That 

little bit of extra writing to the disk is what makes journaling file systems so stable, but it also 

slows them down a little bit. 

If a Beowulf user expects many of the programs to be disk-write bound, it may be worth 
considering simply using EXT2, the standard nonjournaling file system. Using EXT2 will eke 

out the last bit of disk performance for a compute node's local file writes. However, as 

described earlier, should a node fail during a disk write, there is a chance that the file system 
will be corrupt or require an fsck that could take several minutes or several hours depending 

on the size of the file system. Many parallel programs use the local disk simply as a scratch 

disk to stage output files that then must be copied off the local node and onto the centralized, 

shared file system. In those cases, the limiting factor is the network I/O to move the partial 

results from the compute nodes to the central, shared store. Improving disk-write 
performance by using a nonjournaling file system would have little advantage in such cases, 

while the improved reliability and ease of use of a journaling file system would be well worth 

the effort. 

Which Journaling File System? Once, unlike other legacy operating systems, Linux is 

blessed with a wide range of journaling file systems from which to choose. The most common 
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are EXT3, ReiserFS, IBM's JFS, and SGI's XFS. EXT3 is probably the most convenient file 

system for existing Linux to tinker with. EXT3 uses the well-known EXT2 file formatting but 

adds journaling capabilities; it does not improve upon EXT2, however. ReiserFS, which was 
designed and implemented using more sophisticated algorithms than EXT2, is being used in 

the SuSE distribution. It generally has better performance characteristics for some operations, 

especially systems that have many, many small files or large directories. IBM's Journaling 

File System (JFS) and SGI's XFS files systems had widespread use with AIX and IRIX before 

being ported to Linux. Both file systems not only do journaling but were designed for the 
highest performance achievable when writing out large blocks of data from virtual memory to 

disk. For the user not highly experienced with file systems and recompiling the kernel, the 

final choice of journaling file system should be based not on the performance characteristics 

but on the support provided by the Linux distribution, local Linux users, and the completeness 

of Linux documentation for the software.  
Networked and Distributed File Systems.  While most Linux clusters use a local file system 

for scratch data, it is often convenient to use network-based or distributed file systems to 

share data. A network-based file system allows the node to access a remote machine for file 

reads and writes. Most common and most popular is the network file system, NFS, which has 

been around for about two decades. An NFS client can mount a remote file system over an IP 

(Internet Protocol) network. The NFS server can accept file access requests from many 

remote clients and store the data locally. NFS is also standardized across platforms, making it 

convenient for a Linux client to mount and read and write files from a remote server, which 

could be anything from a Sun desktop to a Cray supercomputer. 

Unfortunately, NFS does have two shortcomings for the Beowulf user: scalability and 
synchronization. Most Linux clusters find it convenient to have each compute node mount the 

user's home directory from a central server. In this way, a user in the typical edit, compile, and 

run development loop can recompile the parallel program and then spawn the program onto 

the Beowulf, often with the use of an mpirun  or PBS command, which are covered in 

Chapters 9 and 16, respec tively. While using NFS does indeed make this operation 
convenient, the result can be a B3 (big Beowulf bottleneck). Imagine for a moment that the 

user's executable was 5 megabytes, and the user was launching the program onto a 

256-node Linux cluster. Sinc e essentially every single server node would NFS mount and 

read the single executable from the central file server, 1,280 megabytes would need to be 

sent across the network via NFS from the file server. At 50 percent efficiency with 100-baseT 
Ethernet link s, it would take approximately 3.4 minutes simply to transfer the executable to 

the compute nodes for execution. To make matters worse, NFS servers generally have 

difficulty scaling to that level of performance for simultaneous connections. For most Linux 

servers, NFS performance begins to seriously degrade if the cluster is larger than 64 nodes. 

Thus, while NFS is extremely convenient for smaller clusters, it can become a serious 

bottleneck for larger machines. Synchronization is also an issue with NFS. Beowulf users 

should not expect to use NFS as a means of communicating between the computational 
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nodes. In other words, compute nodes should not write or modify small data files on the NFS 

server with the expectation that the files can be quickly disseminated to other nodes. 

The best technical solution would be a file system or storage system that could use a 
tree-based distribution mechanism and possibly use available high-performance network 

adapters such as Myrinet or Gigabit Ethernet to transfer files to and from the compute nodes. 

Unfortunately, while several such systems exist, they are research projects and do not have a 

pervasive user base. Other solutions such as shared global file systems, often using 

expensive fiber channel solutions, may increase disk bandwidth but are usually even less 

scalable. For generic file server access from the compute nodes to a shared server, NFS is 

currently the most common option.  
Experimental file systems are available, however, that address many of the shortcomings 

described earlier. Chapter 17 discusses PVFS, the Parallel Virtual File System. PVFS is 

different from NFS because it can distribute parts of the operating system to possibly dozens 

of Beowulf nodes. When done properly, the bottleneck is no longer an Ethernet adapter or 

hard disk. Furthermore, PVFS provides parallel access, so many readers or writers can 
access file data concurrently. You are encouraged to explore PVFS as an option for 

distributed, parallel access to files. 

 
4.3 Pruning Your Beowulf Node 

Even if recompiling your kernel, downloading a new one, or choosing a journaling file system 
seems too adventuresome at this point, you can some very simple things to your Beowulf 

node that can increase performance and manageability. Remember that just as the kernel, 
with its nearly five hundred dynamically loadable modules, provides drivers and capabilities 

you probably will never need, so too your Linux distribution probably looks more like a kitchen 

sink than a lean and mean computing machine. While you may now be tired of the Linux 

Beowulf adage "a smaller operating system is a better operating system," it must be once 

again applied to the auxiliary programs often run with a conventional Linux distribution. If we 
look at the issue from another perspective, every single CPU instruction performed by the 

kernel or operating system daemon not directly contributed to the scientific calculation is a 

wasted CPU instruction. Fortunately, with Linux you can understand and modify any daemon 

or process as you convert your kitchen sink of useful utilities and programs into a 

designed-for -computation roadster. For a Beowulf, eliminating useless tasks delivers more 

megaflop per dollar to the end user. 

The first step to pruning the operating system daemons and auxiliary programs is to find out 
what is running on the system. For most Linux systems there are at least two standard ways 

to start daemons and other processes, which may waste CPU resources as well as memory 

bandwidth (often the most precious commodity on a cluster). 

inetd: This is the "Internet superserver". Its basic function is to wait for connections on a set 

of ports and then spawn and hand off the network connection to the appropriate program 
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when an incoming connection is made. The configuration for what ports inetd is waiting as 

well as what will get spawned can been determined by looking at /etc/inetd.conf and 

/etc/services. 

/etc/rc.d/init.d: This special directory represents the scripts that are run during the booting 

sequence and that often launch daemons that will run until the machine is shut down. 

4.3.1 inetd.conf 
The file inetd.conf is a simple configuration file. Each line in the file represents a single 

service, including the port associated with that service and the program to launch when a 
connection to the port is made. Below are some simple examples: 

ftp     stream  tcp     nowait  root    /usr/sbin/tcpd  in.proftpd 

finger  stream  tcp     nowait  root    /usr/sbin/tcpd  in.fingerd 

talk    dgram   udp     wait    root    /usr/sbin/tcpd  in.talkd 
The first column provides the name of the service. The file /etc/services maps the port 

name to the port number, for example, 

% grep ^talk /etc/services 

talk 517/udp # BSD talkd(8) 
To slim down your Beowulf node, get rid of the extra services in inetd.conf; you probably 

will not require the /usr/bin/talk program on each of the compute nodes. Of course, 

what is required will depend on the computing environment. In many very secure 

environments, where ssh is run as a daemon and not launched from inetd.conf for every new 

connection, inetd.conf has no entries. In such extreme examples, the inetd process that 

normally reads inetd.conf and listens on ports, ready to launch services, can even be 

eliminated. 

4.3.2 /etc/rc.d/init.d 

The next step is to eliminate any daemons or processes that are normally started at boot. 

While occasionally Linux distributions differ in style, the organization of the files that launch 

daemons or run scripts during the first phases of booting up a system are very similar. For 
most distributions, the directory /etc/rc.d/init.d contains scripts that are run when 

entering or leaving a run level. Below is an example: 

% cd /etc/rc.d/init.d 

% ls 

alsasound  functions  keytable  named    postgresql  snmpd     ypbind 

apmd       gpm        killall   network  proftpd     squid     yppasswdd 

atalk      halt       kparam    nfs      radiusd     sshd      ypserv 

atd        httpd      kudzu     nfsfs    random      synctime 
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autofs     identd     ldap      nfslock  sendmail    syslog 

canna      inet       lpd       nscd     serial      unicon 

crond      innd       mars-nwe  pcmcia   single      xinetd 

dhcpd      ipchains   mysql     portmap  smb         xntpd 
However, the pres ence of the script does not indicate it will be run. Other directories and 

symlinks control which scripts will be run. Most systems now use the convenient chkconfig 

interface for managing all the scripts and symlinks that control when they get turned on or off. 

Not every script spawns a daemon. Some scripts just initialize hardware or modify some 

setting.  

A convenient way to see all the scripts that will be run when entering run level 3 is the 

following: 

% chkconfig --list | grep '3:on' 

syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off 

pcmcia 0:off 1:off 2:on 3:on 4:on 5:on 6:off 

xinetd 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

lpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

mysql 0:off 1:off 2:on 3:on 4:on 5:on 6:off 

httpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

sshd 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

named 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

dhcpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

gpm 0:off 1:off 2:on 3:on 4:on 5:on 6:off 

inet 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

network 0:off 1:off 2:on 3:on 4:on 5:on 6:off 

nfsfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

random 0:off 1:off 2:on 3:on 4:on 5:on 6:off 

keytable 0:off 1:off 2:on 3:on 4:on 5:on 6:off 

nfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

nfslock 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

ntpd 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

portmap 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

sendmail 0:off 1:off 2:on 3:on 4:on 5:on 6:off 
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serial 0:off 1:off 2:on 3:on 4:on 5:on 6:off 

squid 0:off 1:off 2:off 3:on 4:on 5:on 6:off 

tltime 0:off 1:off 2:off 3:on 4:off 5:on 6:off 

crond 0:off 1:off 2:on 3:on 4:on 5:on 6:off 
Remember that not all of these spawn cycle-stealing daemons that are not required for 

Beowulf nodes. The "serial" script, for example, simply initializes the serial ports at boot time; 

its removal is not likely to reduce overall performance. However, in this example many things 
could be trimmed. For example, there is probably no need for lpd, mysql, httpd, named, 

dhcpd, sendmail, or squid on a compute node. It would be a good idea to become 

familiar with the scripts and use the "chkconfig" command to turn off unneeded scripts. With 

only a few exceptions, an X-Windows server should not be run on a compute node. Starting 

an X session takes ever -increasing amounts of memory and spawns a large set of processes. 

Except for special circumstances, run level 3 will be the highest run level for a compute node. 

4.3.3 Other Processes and Daemons 
In addition to inetd.conf and the scripts in /etc/rc.d/init.d , there are other common 

ways for a Beowulf node to waste CPU or memory resources. The cron program is often 

used to execute programs at scheduled times. For example, cron is commonly used to 

schedule a nightly backup or an hourly cleanup of system files. Many distributions come with 
some cron scripts scheduled for execution. The program slocate is often run as a nightly 

cron to create an index permitting the file system to be searched quickly. Beowulf users may 

be unhappy to learn that their computation and file I/O are being hampered by a system utility 

that is probably not useful for a Beowulf. A careful examination of cron and other ways that 

tasks can be started will help trim a Beowulf compute node. 
The ps command can be invaluable during your search-and-destroy mission. 

% ps -eo pid,pcpu,sz,vsize,user,fname --sort=vsize 

This example command demonstrates sorting the processes by virtual memory size. 

The small excerpt below illustrates how large server processes can use memory. The 

example is taken from a Web server, not a well-tuned Beowulf node. 

PID %CPU   SZ   VSZ  USER COMMAND 

26593  0.0  804  3216   web httpd 

26595  0.0  804  3216   web httpd 

3574  0.0  804  3216   web httpd 

506  0.0  819  3276  root squid 

637  0.0  930  3720  root AgentMon 

552  0.0 1158  4632 dbenl postmast 
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13207  0.0 1213  4852  root named 

13209  0.0 1213  4852  root named 

13210  0.0 1213  4852  root named 

13211  0.0 1213  4852  root named 

13212  0.0 1213  4852  root named 

556  0.0 1275  5100 dbenl postmast 

657  0.0 1280  5120 dbenl postmast 

557  0.0 1347  5388 dbenl postmast 

475  0.0 2814 11256 mysql mysqld 

523  0.0 2814 11256 mysql mysqld 

524  0.0 2814 11256 mysql mysqld 

507  0.0 3375 13500 squid squid 
In this example the proxy cache program squid is using a lot of memory (and probably some 

cache), even though the CPU usage is negligible. Similarly, the ps command can be used to 
locate CPU hogs. Becoming familiar with ps will help quickly find runaway processes or extra 

daemons competing for cycles with the scientific applications intended for your Beowulf. 

 
4.4 Other Considerations 

You can explore several other basic areas in seeking to understand the performance and 
behavior of your Beowulf node running the Linux operating system. Many scientific 

applications need just four things from a node: CPU cycles, memory, networking (message 

passing), and disk I/O. Trimming down the kernel and removing unnecessary processes can 
free up resources from each of those four areas. 

Because the capacity and behavior of the memory system are vital to many scientific 

applications, it is important that memory be well understood. One of the most common ways 

an application can get into trouble with the Linux operating system is by using too much 

memory. Demand-paged virtual memory, where memory pages are swapped to and from 

disk on demand, is one of the most important achievements in modern operating system 

design. It permits programmers to transparently write applications that allocate and use more 
virtual memory than physical memory available on the system. The performance cost for 

declaring enormous blocks of virtual memory and letting the clever operating system sort out 

which virtual memory pages in fact get mapped to physical pages, and when, is usually very 

small. Most Beowulf applications will cause memory pages to be swapped in and out at very 

predictable points in the application. Occasionally, however, the worst can happen. The 
memory access patterns of the scientific application can cause a pathological behavior for the 

operating system. 
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The crude program below demonstrates this behavior: 

#include <stdlib.h> 

#include <stdio.h> 

#define MEGABYTES 300 

main() { 

int *x, *p, t=1, i, numints = MEGABYTES*1024*1024/sizeof(int); 

x = (int *) malloc(numints*sizeof(int)); 

if (!x) { printf("insufficient memory, aborting\n"); exit(1); } 

for (i=1; i<=5; i++) { 

printf("Loop %d\n",i); 

for (p=x; p<x+numints-1; p+=1024) { 

*p = *p + t; 

} 

} 

} 

On a Linux server with 256 megabytes of memory, this program— which walks through 300 

megabytes of memory, causing massive amounts of demand-paged swapping— can take 

about 5 minutes to complete and can generate 377,093 page faults. If, however, you change 
the size of the array to 150 megabytes, which fits nicely on a 256-megabyte machine, the 

program takes only a half a second to run and generates only 105 page faults. 

While this behavior is normal for demand-paged virtual memory operating systems such as 
Linux, it can lead to sometimes mystifying performance anomalies. A couple of extra 

processes on a node using memory can push the scientific application into swapping. Since 

many parallel applications have regular synchronization points, causing the application to run 

as slow as the slowest node, a few extra daemons or processes on just one Beowulf node 
can cause an entire application to halt. To achieve predictable performance, you must prune 

the kernel and system processes of your Beowulf. 

4.4.1 TCP Messaging 

Another area of improvement for a Beowulf can be standard TCP messaging. As mentioned 

earlier, most Linux distributions come tuned for general-purpose networking. For 
high-performance compute clusters, short low-latency messages and very long messages 

are common, and their performance can greatly affect the overall speed of many parallel 

applications. Linux is not generally tuned for messages at the extremes. However, once again, 

Linux provides you the tools to tune it for nearly any purpose.  
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For 2.2.x kernels, a series of in-depth performance studies from NASA ICASE [20] detail the 

improvements made to the kernel for Beowulf-style messaging. In their results, significant and 

marked improvement could be achieved with some simple tweaks to the kernel. Other kernel 
modifications that improve performance of large messages over high-speed adapters such as 

Myrinet have also been made available on the Web. Since modifications and tweaks of that 

nature are very dependent on the kernel version, they are not outlined here. You are 

encouraged to browse the Beowulf mailing lists and Web sites and use the power of the Linux 

source code to improve the performance of your Beowulf. 

4.4.2 Hardware Performance Counters 

Most modern CPUs have built-in performance counters. Each CPU design measures and 

counts metrics corresponding to its architecture. Several research groups have attempted to 

make portable interfaces for the hardware performance counters across the wide range of 

CPU architectures. One of the best known is PAPI: A Portable Interface to Hardware 

Performance Counters [23]. Another interface, Rabbit [16], is available for Intel or AMD CPUs. 

Both provide access to performance counter data from the CPU. Such low-level packages 

require interaction with the kernel; they are extensions to its basic functionality. In order to 
use any of the C library interfaces, either support must be compiled directly into the kernel, or 

a special hardware performance counter module must be built and loaded. Beowulf builders 

are encouraged to immediately extend their operating system with support for hardware 

performance counters. Users find this low-level CPU information, especially with respect to 

cache behavior, invaluable in their quest for better node-OS utilization. Three components will 
be required: the kernel extensions (either compiled in or built as a module), a compatible 

version of the Linux kernel, and the library interfaces that connect the user's code to the 

kernel interfaces for the performance counters. 

 
4.5 Final Tuning with /proc 
As mentioned earlier, the /proc file system is not really a file system at all, but a window on 

the running kernel. It contains handles that can be used to extract information from the kernel 

or, in some cases, change parameters deep inside the kernel. In this section, we discuss 

several of the most important parameters for Beowulfs. A multitude of Linux Web pages are 

dedicated to tuning the kernel and important daemons, with the goal of serving a few more 
Web pages per second. A good place to get started is linuxperf.nl.linux.org. Many 

Linux users take it as a personal challenge to tune the kernel sufficiently so their machine is 

faster than every other operating system in the world. 

However, before diving in, some perspective is in order. Remember that in a properly 

configured Beowulf node, nearly all of the available CPU cycles and memory are devoted to 
the scientific application. As mentioned earlier, the Linux operating system will perform 

admirably with absolutely no changes. Trimming down the kernel and removing unneeded 

daemons and processes provides slightly more room for the host application.  Tuning up the 

remaining very small kernel can further refine the results. Occasionally, a performance 
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bottleneck can be dislodged with some simple kernel tuning. However, unless performance is 

awry, tinkering with parameters in /proc will more likely yield a little extra performance and a 

fascinating look at the interaction between Linux and the scientific application than incredible 
speed increases. 

Now for a look at the Ethernet device: 

% cat /proc/net/dev 

Inter-| Receive | Transmit 

face |bytes packets errs drop fifo frame compressed multicast|bytes 

packets errs drop fifo colls carrier compressed 

lo:363880104 559348 0 0 0 0 0 0 363880104 559348 0 0 0 0 0 0 

eth0:1709724751 195793854 0 0 357 0 0 0 4105118568 202431445 

0 0 0 0 481 0 

brg0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

It is a bit hard to read, but the output is raw columnar data. A better formatting can be seen 
with /sbin/ifconfig . One set of important values is the total bytes and the total packets 

sent or received on an interface. Sometimes a little basic scientific observation and data 
gathering can go a long way. Are the numbers reasonable? Is application traffic using the 

correct interface? You may need to tune the default route to use a high-speed interface in 

favor of a 10-baseT Ethernet. Is something flooding your network? What is the size of the 

average packet? Another key set of values is for the collisions (colls), errs, drop, and frame. 

All of those values represent some degree of inefficiency in the Ethernet. Ideally, they will all 

be zero. A couple of dropped packets is usually nothing to fret about. But should those values 

grow at the rate of several per second, some serious problems are likely. The "collisions" 

count will naturally be nonzero if traffic goes through an Ethernet hub rather than an Ethernet 

switch. High collision rates for hubs are expected; that's why they are less expensive. 
Tunable kernel parameters are in /proc/sys. Network parameters are generally in 
/proc/sys/net. Many parameters can be changed. Some administrators tweak a Beowulf 

kernel by modifying parameters such as tcp_sack, tcp_timestamps, 
tcp_window_scaling, rmem_default, rmem_max, wmem_default, or wmem_max. 

The exact changes and values depend on the kernel version and networking configuration, 

such as private network, protected from denial of service attacks or a public network where 
each node must guard against SYN flooding and the like. You are encouraged to peruse the 

documentation available at www.linuxhq.com and other places where kernel 

documentation or source is freely distributed, to learn all the details pertaining to their system. 
With regard to memory, the meminfo handle provides many useful data points: 

% cat /proc/meminfo 

total: used: free: shared: buffers: cached: 
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Mem: 263380992 152883200 110497792 64057344 12832768 44445696 

Swap: 271392768 17141760 254251008 

MemTotal: 257208 kB 

MemFree: 107908 kB 

MemShared: 62556 kB 

Buffers: 12532 kB 

Cached: 43404 kB 

SwapTotal: 265032 kB 

SwapFree: 248292 kB} 

In the example output, the system has 256 megabytes of RAM, about 12.5 megabytes 

allocated for buffers and 108 megabytes of free memory. 
The tunable virtual memory parameters are in /proc/sys/vm . Some Beowulf administrators 

may wish to tune the amount of memory used for buffering. 

% cat /proc/sys/vm/buffermem 

2 10 60 

The first value represents, as a percentage, the amount of the total system memory used for 

buffering on the Beowulf node. For a 256-megabyte node, no less than about 5 megabytes 
will be used for buffering. To change the value is simple:  

% echo 4 10 60 > /proc/sys/vm/buffermem 
Like networking and virtual memory, there are many /proc handles for tuning or probing the 

file system. A node spawning many tasks can use many file handles. A standard ssh to a 

remote machine, where the connection is maintained, and not dropped, requires four file 

handles. The number of file handles permitted can be displayed with the command 

% cat /proc/sys/fs/file-max 

4096 

The command for a quick look at the current system is 

% cat /proc/sys/fs/file-nr 

1157 728 4096 

This shows the high-water mark (in this case, we have nothing to worry about), the current 

number of handles in use, and the max. 

Once again, a simple echo command can increase the limit: 

% echo 8192 > /proc/sys/fs/file-max 
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The utility /sbin/hdparm is especially handy at querying, testing, and even setting hard disk 

parameters: 

% /sbin/hdparm -I /dev/hda 

 

/dev/hda: 

 

Model=DW CDW01A0 A , FwRev=500.B550, SerialNo=DWW-AMC1211431 9 

Config={ HardSect NotMFM HdSw>15uSec SpinMotCtl Fixed DTR>5Mbs FmtGapReq } 

RawCHS=16383/16/63, TrkSize=57600, SectSize=600, ECCbytes=40 

BuffType=3(DualPortCache), BuffSize=2048kB, MaxMultSect=16, MultSect=8 

DblWordIO=no, maxPIO=2(fast), DMA=yes, maxDMA=0(slow) 

CurCHS=17475/15/63, CurSects=16513875, LBA=yes 

LBA CHS=512/511/63 Remapping, LBA=yes, LBAsects=19541088 

tDMA={min:120,rec:120}, DMA modes: mword0 mword1 mword2 

IORDY=on/off, tPIO={min:120,w/IORDY:120}, PIO modes: mode3 mode4 

UDMA modes: mode0 mode1 *mode2 } 

Using a Beowulf builder and a simple disk test, 

% /sbin/hdparm -t /dev/hda1 

 

/dev/hda1: 

Timing buffered disk reads: 64 MB in 20.05 seconds = 3.19 MB/sec  

you can understand whether your disk is performing as it should, and as you expect. 

Finally, some basic parameters of that kernel can be displayed or modified. 
/proc/sys/kernel contains structures. For some message-passing codes, the key may 

be /proc/sys/kernel/shmmax . It can be used to get or set the maximum size of 

shared-memory segments. For example, 

% cat /proc/sys/kernel/shmmax 

33554432 

shows that the largest shared-memory segment available is 32 megabytes. Especially on an 
SMP, some messaging layers may use shared -memory segments to pass messages within a 

node, and for some systems and applications 32 megabytes may be too small. 

All of these examples are merely quick forays into the world of /proc. Naturally, there are 

many, many more statistics and handles in /proc than can be viewed in this quick overview. 
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You are encouraged to look on the Web for more complete documentation and to explore the 

Linux source— the definitive answer to the question "What will happen if I change this?" A 

caveat is warranted: You can make your Beowulf node perform worse as a result of 
tampering with kernel parameters. Good science demands data collection and repeatability. 

Both will go a long way toward ensuring that kernel performance increases, rather than 

decreases. 

 

4.6 Conclusions 
Linux is a flexible, robust node operating system for Beowulf computational clusters. Stability 

and adaptability set it apart from the legacy operating systems that dominate desktop 

environments. While not a "cancer" like some detractors have labeled Linux, it has spread 

quickly from its humble beginnings as a student's hobby project to a full-featured server 

operating system with advanced features and legendary stability. And while almost any Linux 
distribution will perform adequately as a Beowulf node operating system, a little tuning and 

trimming will skinny down the already lean Linux kernel, leaving more compute resources for 

scientific applications. If this chapter seems a little overwhelming, we note that there are 

companies that will completely configure and deliver Beowulf systems, including all the 

aforementioned tweaks and modifications to the kernel. There are also revolutionary systems 
such as the Beowulf software from Scyld Computing Corporation (www.sycld.com). The 

software from Scyld combines a custom Linux kernel and distribution with a complete 

environment for submitting jobs and administering the cluster. With its extremely simple 

single-system image approach to management, the Scyld software can make Beowulfs very 

easy indeed.  

One final reminder is in order. Many Beowulf builders became acquainted with Linux purely 

out of necessity. They started constructing their Beowulf saying, "Every OS is pretty much like 

every other, and Linux is free...free is good, right?". On the back of restaurant napkins, they 

sketched out their improved price/performance ratios. After the hardware arrived, the 

obligatory LINPACK report was sent to the Top500 list, and the real scientific application ran 

endlessly on the new Beowulf. Then it happened. Scientists using Linux purely as a tool 

stopped and peered inquisitively at the tool. They read the source code for the kernel. 
Suddenly, the simulation of the impending collision of the Andromeda galaxy with our own 

Milky Way seemed less interesting. Even though the two galaxies are closing at a rate of 

300,000 miles per hour and we have only 5 billion years to wait, the simulation simply seemed 

less exciting than improving the virtual memory paging algorithm in the kernel source, 

sending Linus Torvalds the patch, and reading all the kernel mailing list traffic. Beware. Even 
the shortest of peeks down the rabbit's hole can sometimes lead to a wonderland much more 

interesting than your own. 
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Chapter 5: Network Hardware 

Overview 
Thomas Sterling 

Networking converts a shelf full of PCs into a single system. Networking also allows a system 

to be accessed remotely and to provide services to remote clients. The incredible growth of 
both the Internet and enterprise-specific intranets has resulted in the availability of 

high-performance, low-cost networking hardware that Beowulf systems use to create a single 

system from a collection of nodes. This chapter reviews networking hardware, with a 

particular emphasis on Fast Ethernet because of its superb price/performance ratio.  

For Beowulf systems, the most demanding communication requirements are not with the 

external environment but with the other nodes on the system area network. In a Beowulf 

system, every Beowulf node may need to interact with every other node, independently or 
together, to move a wide range of data types between processors. Such data may be large 

blocks of contiguous information representing subpartitions of very large global data sets, 

small packets containing single values, or synchronization signals in support of collective 

operation. In the former case, a high bandwidth communication path may be required. In the 

latter case, low latency communication is required to expedite execution. Requirements in 
both cases are highly sensitive to the characteristics of the parallel program being executed. 

In any case, communications capability will determine the generality of the Beowulf-class 

system and the degree of difficulty in constructing efficient programs. The choice of network 

hardware and software dictates the nature of this capability. 

Section 5.1 introduces some of the most popular networking technologies for Beowulf 
clusters. In Section 5.2, we take a detailed look at the most popular networking choice, Fast 

Ethernet (and Gigabit Ethernet). We conclude in Section 5.3 with comments on interconnect 

technology choice and some other practical issues 

 
5.1 Interconnect Technologies 

In spite of its popular use in existing Beowulfs, Ethernet-based networking is not the only 

technology choice for enabling internode communication. Other solutions exist that can 
deliver equal or better performance depending on the application. Fast Ethernet is a popular 

choice because of its ubiquity and consequent low price. A Fast Ethernet card costs only 

about 2 percent of the price of today's $1,000 Beowulf nodes. Only the network switches have 

a significant impact on the overall price of the system. With other networking technologies, 

each network interface card can cost as much as a 16-port Fast Ethernet switch. So you have 

to think carefully before committing to an alternative network. If the kinds of applications you 

intend to run require specific properties, such as low latency, which are not provided by Fast 

Ethernet, then it is likely worth the additional cost. For example, real-time image processing, 
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parallel video streaming, and real-time transaction processing all require low latencies and do 

not work well with Fast Ethernet. We will briefly discuss the most common networking 

technologies used by Beowulf systems. Not enough data has been collected on application 
performance in systems using these technologies for us to comment on when each should be 

used. 

5.1.1 The Ethernets 

The most popular and inexpensive networking choice for Beowulfs is Ethernet, particularly 

Fast Ethernet. Ethernet, first developed at Xerox PARC in the early 1970s and standardized 
by the IEEE in the early 1980s, is the most widely used technology for local area networks. 

Ethernet continues to be an evolving technology: 10 Gigabit Ethernet (10 Gbps) has entered 

vendor field testing and should be available in quantity by early 2002. With the very low cost 

of Fast Ethernet and the rapid emergence of Gigabit and 10 Gigabit Ethernet, Ethernet will 

continue to play a critical role in Beowulf-class computing for some time to come. 

Fast Ethernet. Beowulf was enabled by the availability of a low-cost, moderate-bandwidth 

networking technology. Ethernet, operating initially at 10 megabits per second (Mbps) for 

early Beowulfs and shortly thereafter at 100 Mbps peak bandwidth, provided a cost-effective 

means of interconnecting PCs to form an integrated cluster.  Used primarily for commercial 

local area network technology, Ethernet supplied the means of implementing a system area 

network at about 20 percent of the cost of the total system, even when employing low-cost 

personal computers. Fast Ethernet with TCP/IP provides 90 –95 Mbps to applications with 

latencies in the hundreds of microseconds. Drivers for Fast Ethernet and TCP/IP have been 

integrated into the mainline Linux kernel sources for quite some time and are well tested, with 

a large user base. Cost of Fast Ethernet interfaces has dropped to the point that many 
motherboard vendors have begun to integrate single - or dual-port interfaces into their 

products. While other networking continues to be available (and used in some Beowulfs), 

Fast Ethernet will continue to be a mainstay of many Beowulf implementations because of its 

extremely low cost. 

Gigabit Ethernet. The success of 100 base-T Fast Ethernet and the growing demands 
imposed on networks by high-resolution image data, real-time data browsing, and 

Beowulf-class distributed applications have driven the industry to establish a new set of 

standards for Ethernet technology capable of 1 Gbps. Referred to as "Gigabit Ethernet," a 

backward-compatible network infrastructure has been devised, and products are available 

from various vendors. A number of changes were required to Fast Ethernet, including the 

physical layer and a large part of the data exchange protocols. However, to maintain 

compatibility with Fast Ethernet, or 100 -baseT systems, means for mixed-mode operation 

has been provided. Currently, Gigabit Ethernet is not quite cost effective for Beowulf-class 

computing. The early product offerings for Gigabit Ethernet, as the early offerings for 10 

Gigabit Ethernet will be, were for backbone service and traffc aggregation rather than for 

direct host connections; hence, the demand for NICs was assumed to be low, and a large 
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market has not yet emerged to amortize development costs. Both switches and NICs are 

substantially more expensive than their Fast Ethernet equivalents. 

Several factors will motivate the migration of next-generation Gigabit Ethernet into the role of 
system area networks for Beowulf-class systems. While Fast Ethernet served well for 200 

MHz Intel Pentium Pro processor -based Beowulf nodes, current Pentium 4 processors are 

available at speeds of 1.7 GHz. The PCI bus now supports a data path twice as wide and 

twice the clock rate, permitting high-bandwidth data transfers to peripheral devices including 

Gigabit NICs. A broader range of Beowulf applications can be supported with higher 

bandwidth. Unfortunately, Gigabit Ethernet with TCP/IP does not provide substantially better 

latencies than does Fast Ethernet. Some Beowulf installations have already experimented 
with Gigabit Ethernet, and the Beowulf project has already delivered drivers to the Linux 

operating system for several Gigabit Ethernet cards. Some vendors have even begun to 

supply high-performance, open source gigabit drivers for their NICs. The experience with 

Fast Ethernet demonstrated that a rapid and dramatic drop in price can be expected once the 

technology is adopted by the mass market. With the introduction of inexpensive combination 
ethernet/Fast Ethernet/Gigabit Ethernet ASICs, motherboard integration and low-cost gigabit 

adapters are beginning to appear. Gigabit switch prices have also begun to fall. The 1 Gbps 

technology is in place, and experience by manufacturers is leading to rapid improvements 

and cost cutting. With these advances, we expect that Gigabit Ethernet will become a leader 

in interconnect price/performance in the next one to two years. 

5.1.2 Myrinet 

Myrinet is a system area network (SAN) designed by Myricom, Inc. On November 2, 1998, it 

was approved as American National Standard ANSI/VITA 26-1998. It is designed around 

simple low-latency blocking switches. The path through these switches is implemented with 

"header -stripping" source routing, where the sending node prepends the route through the 

network, and each switch removes the first byte of the message and uses it as the output port. 

Packets can be of arbitrary length.  

The bandwidth of the adapter and switch is hidden from the application and has regularly 
increased over time from the original 640 Mbps to the current 2.4 Gbps. Myrinet delivers 

between 10 and 7 microseconds, depending on the generation of adapter and switch. A 

limitation of Myrinet is that the switches are incrementally blocking. If a destination port is 

busy in a multistage network, the packet is stalled, and that stalled packet potentially blocks 

other packets traveling the network, even to unrelated source and destination nodes. This 

problem is mitigated, however, by the network's high speed and the ability to construct 

topologies with rich interconnects. Blocking is minimized by higher-density switches that 

reduce the number of a stages traversed by a typical message in a network of fixed size.  

While Myrinet is the strongest provider of high -bandwidth SANs, it has the limitation of being 
provided by a single vendor. The price of the network adapters and per port costs of switches 
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has remained high, typically exceeding the price of the entire computing node. Myrinet's big 

advantage is its customized protocols. These protocols are designed to yield high 

performance and low latency by offloading as much work as possible to the NIC itself and 
bypassing the operating system whenever possible. Myrinet NICs effectively provide a 

second processor that can do much of the protocol work and avoid interrupting the host CPU 

during communication. This advantage could also be obtained for less money by adding a 

second primary processor. This advantage is most significant with active messages, where 

the on-board processor can handle the message and generate a reply without and 
interrupting the host CPU. In order for the hardware to be used in this way, Myricom provides 

a substantial amount of open source software, both drivers and a tuned version of MPICH. 

Using customized protocols also encourages user-level access to the hardware. This strategy 

has also been pursued with commodity hardware (see Section 5.3.3 for a brief discussion of 

MVIA, an implementation for commodity hardware by the Virtual Interface Architecture, VIA). 
Unfortunately, user-level access protocols have the disadvantage of precluding clusters from 

transparently scaling from standard TCP and Ethernet on small-scale machines to alternative 

hardware such as Myrinet on big clusters. 

5.1.3 cLAN 

The cLAN high-performance cluster switches provide a native implementation of the VIA (see 
www.viarch.org). Eight port and thirty port switches are available, offering 1.25 Gbps per 

port (2.5 Gbps bidirectional). Because these implement the VIA directly in hardware, latencies 

are low (around 0.5 microsecond) and bandwidths are high (comparable to the other high-end 
networking solutions). The developer of cLAN was Giganet, which was acquired by Emulex in 

March 2001.  

While VIA is defined by a consortium and is not a single-vendor design, the VIA standard 

specifies only a set of concepts and operations. There is no specification of the signals (they 

can be electrical, optical, or anything else) or the interfaces to individual computers. There is 

also no standard programmer interface, although most VIA efforts (including cLAN) use the 

sample application programming interface provided in the VIA specification. However, 
because the VIA standard does not specify the hardware over which VIA is used, there is no 

possibility of interoperable VIA solutions. Infiniband, discussed below, addresses this issue. 

5.1.4 Scalable Coherent Interface  

The Scalable Coherent Interface is an IEEE standard originally designed to provide an 
interconnect for cache-coherent shared-memory systems. One of the first major deployments 

of SCI was on the Convex Exemplar SPP-1000 in 1994. SCI has not been able to gain 

ground in traditional networking markets, despite its ability to serve as a general-purpose 

interconnect. The main reason Beowulf designers choose to use SCI is for its low latency of 

well under 10 µs. Current PC motherboard chip sets do not support the coherency 

mechanisms required to construct an SCI-based shared-memory Beowulf. But if that 

functionality is ever added to commodity motherboards, we may see an increase in the 
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popularity of SCI as researchers experiment with shared-memory Beowulf systems. Seven 

years ago, SCI delivered many clear advantages, but today commodity network technology 

has caught up, although SCI still delivers significantly lower latency. Dolphin Interconnect 
offers an SCI-based interconnect for Beowulf systems along with closed-source binary 

drivers and an implementation of MPI tuned for the SCI network. 

5.1.5 QsNet 

Another high -performance network, called QsNet, is produced by Quadrics. This network 

provides a bandwidth of 340 Mbps and an MPI latency of around 5 µs. While this network is 

one the costliest, it has been chosen by some of the largest clusters, including Compaq SC 

systems for the ASCI Q system and the NSF teraflops system at the Pittsburg 

Supercomputing Center. To provide high performance, Quadrics uses many techniques 

similar to those mentioned above for Myrinet. 

5.1.6 Infiniband 

Infiniband (www.infinibandta.org) combines many of the concepts of VIA with a detailed 

electrical and interface specification that will allow vendors to produce interoperable 
components. This addresses the major limitation of the VIA specification. One goal of the 

Infiniband trade organization (with over two hundred members) is to increase the rate at 

which networking performance improves. 

As of early 2001, no Infiniband products were available. Many are under development, 
however, and by 2002 Infiniband may become an important alternative to the other networks 

described here. Intel has committed to delivering integrated Infiniband interfaces on its 

motherboards in the next one to two years. This should provide another high-bandwidth, 
low-latency interconnect at a relatively low price point. 

 
5.2 A Detailed Look at Ethernet 

Ethernet was originally developed as a packet-based, serial multidrop network requiring no 
centralized control. All network access and arbitration control is performed by distributed 

mechanisms. Variable-length message packets comprise a sequence of bits including a 

header, data, and error -detecting nodes. A fixed-topology (no switched line routing) network 
passes packets from the source to destination through intermediate elements known as hubs 

or switches. The next step through the network is determined by addressing information in the 

packet header. The topology can be a shared multidrop passive cable to which many 

Ethernet controllers are attached, a tree structure of hubs or switches, or some more 

complicated switching technology for high bandwidths and low latency under heavy loads. 

5.2.1 Packet Format 

The Ethernet message packet comprises a sequence of seven multibit fields, one of which is 

variable length. The fields include a combination of network control information and data 
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payload. The structure of the Ethernet packet is shown in Figure 5.1 and is described below. 

The packet's variable length allows improved overall network performance across a wide 

range of payload requirements. Thus, a transfer of only a few words between nodes does not 
impose the full burden of the longest possible packet. However, even with this capability, 

sustained data transfer throughput is sensitive to packet length and can vary by more than an 

order of magnitude depending on payload size, even in the absence of network contention. 

 
Figure 5.1: Ethernet packet format. 

Preamble. Arrival of a message packet at a receiving node (whether or not the message is 

addressed for that node) is asynchronous. Prior to data assimilation, the node and the 

incident packet must first synchronize. The preamble field is a 62-bit sequence of alternating 

1s and 0s that allows the phase lock loop circuitry of the node receiver to lock on to the 
incoming signal and synchronize with the bit stream. 

Synch. The synch field is a 2-bit sequence of 1s (11) that breaks the sequence of alternating 

1s and 0s provided by the preamble and indicates where the remaining information in the 

packet begins. If the preamble provides carrier-level synchronization, the synch field provides 

bit field registration. 

Destination Address. The destination address field is 6 bytes (or 48 bits) in length and 

specifies the network designation of the network node intended to receive the packet. A 

message packet may be intended for an individual node or a group of nodes. If the first bit of 

the destination address field is 0, then the message is intended for a single receiving node. If 

the first bit is 1, then the message is multicast, intended for some or all network nodes. In the 
case of multicast communications, a group address is employed providing a logical 

association among some subset of all receiving nodes. Any node that is a member of a group 

specified by the message destination address field (with the first bit equal to 1) must accept 

the message. In the case of a multicast transmitted packet, a destination address field of all 

1s indicates that the packet is a broadcast message intended for all nodes on the network. 
Ethernet node receivers must be capable of receiving, detecting, and accepting broadcast 

messages. 

In addition to distinguishing among single destination and multicast transmission, the 

destination address also determines whether the specified address is a globally or locally 

administered address. A globally administered address is unique and is provided by  an 

industrywide assignment process. The address is built into the network adaptor (interface 

card) by the manufacturer. A locally administered address is provided by the local systems 
administrator and can be changed by the organization managing the network. The second bit 

of the destination address field is a 0 if globally administered and a 1 if the address 

designation is locally administered. The sequence of bits of the destination address field is 

sent least significant bit first. 
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Source Address.  The source address is a 48-bit field that indicates the address of the 

transmitting node. The format of the source address is the same as that of the destination 

address. The source address is always the individual address and never a group address of 
the node sending a packet. Therefore, the least significant bit is always 0. Likewise, the 

broadcast address is never used in this field. 

Type. The type field is 16 bits in length and designates the message protocol type. This 

information is used at higher levels of message-handling software and does not affect the 

actual exchange of data bits across the network. The most significant of the two bytes is sent 
first, with the least significant bit of each byte of the type field being sent first. 

Data. The message payload of the packet is included in the data field. The data field is 

variable length. It may have as few as 46 bytes and as many as 1,500 bytes. Thus, a packet 

may be as small as 72 bytes or as long as 1,526 bytes. The contents of the data field are 

passed to higher -level software and do no affect the network transfer control. Data is 
transferred least significant bit first. 

Frame Check Sequence. Error detection for message corruption in transmission is provided 

by computing a cyclic redundancy check (CRC) for the destination address, source address, 

type, and data fields. The four-byte CRC value is provided as the last field of the message 

packet. It is computed by both the transmitting and receiving nodes and compared by the 

receiving node to determine that the integrity of the packet has been retained in transmission. 

5.2.2 NIC Architecture 

The Network Interface Controller accepts message data from the host node processor and 
presents an encapsulated and encoded version of the data to the physical network medium 

for transmission. While there have been many different implementations of the Ethernet NIC 

hardware, with some enhancements, their basic architecture is the same. Figure 5.2 shows a 

block diagram of the typical Ethernet NIC architecture. The Data Link Layer of the 

architecture is responsible for constructing the message packet and controlling the logical 

network interface functions. The Physical Layer is responsible for encoding the message 

packet in a form that can actually be applied to the transmission medium. 

 

Figure 5.2: Ethernet NIC architecture. 
Data Link Layer. The Data Link Layer provides the logical interface between the host 

processor and the Physical Layer of the Ethernet. When a message is to be transmitted, the 

Data Link Layer accepts, temporarily stores, and encapsulates the message and controls the 

transmission process of the Physical Layer. When a message is being received, it accepts 
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the packet from the Physical Layer, determines whether the node is the correct destination, 

verifies bit integrity, unpacks the data into byte sequence, temporarily buffers the data, and 

passes it on to the processor. The Data Link Layer is made up of the Logical Link Control 
sublayer and the Media Access Control sublayer. 

For most current-generation Beowulf nodes, the Logical Link Control sublayer incorporates 

an interface to the PCI bus. This element of the Ethernet controller provides all logical control 

required to accept commands from the host processor and to provide direct memory access 

to the node main memory for rapid data transfers between memory and the network. Usually 

included is some form of FIFO buffering within the Data Link Layer to hold one or more 

incoming or outgoing messages in the node. The Logical Link Control sublayer presents 
variable-length byte sequences to the Media Access Control sublayer and accepts data byte 

sequences from it. The exact form and operation of the Logical Link Control sublayer is not 

standardized, and manufacturer differences are a source of headaches for device driver 

writers. 

The Media Access Controller (MAC) is largely responsible for conducting the Ethernet 

protocol for both transmitted and received messages. Its two principal tasks are message 

encapsulation and packet collision handling. To transmit a message, the MAC accepts the 
byte sequence of the data to be sent, as well as the destination address, from the Logical Link 

Controller. It formats the message packet including the preamble, synch bits, destination 

address, its own address in the source address field, and the protocol type provided by the 

logical link controller as well as the data field. It then computes the CRC value and appends it 

to the message packet. When receiving an Ethernet packet from the Physical Layer, the MAC 
strips away the preamble and synch bits and determines if the destination address is that of 

its host node. If not, the rest of the message is discarded and the receive process terminates. 

If the Destination Address field matches the local address, the MAC accepts the data, 

reformatting it into the correctly ordered byte sequence for the Logical Link Controller. The 

MAC computes the cyclic redundancy check and compares it with the value included in the 
message to verify transmission integrity. 

The MAC is also responsible for handling the CSMA/CD (Carrier Sense Multiple 
Access/Collision Detect) arbitration protocol. The Physical Layer provides signals to the MAC 

indicating whether there is packet transmission on the data link and whether there is a 

collision among two or more packets on the link. When a signal is available, the MAC 

operates as above to determine whether the message is for the host node and, if so, acquires 

the data. In the case of a collision, the MAC simply discards any partial incoming messages 
and waits for new packet data. When transmitting, the MAC is responsible for handling 

collision avoidance and resolution. As described above, the MAC waits for access to the data 

link and supplies the packet to the physical layer that begins transmission. If in the process of 

packet transmission the MAC receives a collision signal from the Physical Layer, after briefly 

continuing transmission (to overcome the network propagation delay) it terminates the 
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message and begins its random roll-back sequence to determine a new time when it will 

again attempt to transmit the message. 

Physical Layer. The Physical Layer encodes the message packet provided by the Data Link 
Layer and converts it to electrical signals appropriate for the physical transmission medium. 

Upon receiving messages transmitted by other nodes, the Physical Layer acquires the 

electrical signals from the transmission medium, converts them to digital signals, and 

decodes them into the message's binary bit sequence. The Physical Layer includes two major 

stages: the transceiver and the Physical Line Signaling (PLS) sublayer. The transceiver, also 
referred to as the Medium Attachment Unit (MAU), performs the electrical conversion from 

transmission media signals to logical signal levels. 

The interface between the PLS sublayer of the Physical Layer and the MAC sublayer of the 

Data Link Layer exchanges data with bits represented as discrete voltage levels. This form of 

information representation is inadequate for Ethernet for two reasons. First, in a highly noisy 

(in the electrical sense) environment such as presented by a local area network, signal levels 

can be significantly attenuated and distorted. Second, in a single bit-serial communication 
protocol such as that employed by the Ethernet interconnect, both data and timing 

information need to be incorporated in the signal. For this reason, Manchester encoding is 

used to convey the information with the value of a bit specified by the sense (direction) of the 

signal transition rather than a specific range of values. With data fixed at the point of signal 

transition, the timing information is provided simultaneously. 

The actual Ethernet signal is differential; that is, one line is high when the other is low and 

vice versa. The PLS sublayer converts the message packet provided by the MAC first into its 
Manchester encoded representation and then into differential form. The PLS layer performs 

the decoding task for incoming signals from the transceiver, converting Manchester 

sequences into regular bit strings. The PLS layer also provides the collision detect signal to 

the MAC. 

5.2.3 Hubs and Switches 

The Network Interface Controllers provide the connection between the processor node and 
the system area network. The effectiveness of the SAN and its scalability depend on the 

means by which the nodes are interconnected. These include passive multidrop coaxial cable, 

active repeaters, and intelligent routing switches, as well as more complicated 

through -the-node store and forward techniques. 

Repeaters and Hubs.  An early advantage of Ethernet was that the medium of 

communication was a passive multidrop coaxial cable. Over a limited distance and number of 

nodes, such a cable located all expensive logic and electronics in the NICs. As technology 

costs dropped and demands on network performance increased, other approaches could 

compete. Ironically, the coax cables that had helped keep costs down became the dominant 
cost driver. Twisted-pair connections using inexpensive repeaters or hubs have now replaced 



 104 

coaxial cables in all but the oldest installations. Logically, hubs provide the same NIC 

interface. All nodes are visible from all other nodes, and the CSMA/CD arbitration protocol is 

still employed. A repeater is an active unit that accepts signals from the distributed nodes on 
separate twisted pair wires, actively cleans up the signals, amplifies them to desired levels, 

and then redistributes them to all of the attached nodes. 

Switches.  The demand for higher sustained bandwidths and the need to include larger 

number of nodes on a single network spurred development of more sophisticated means of 

exchanging messages among nodes. Switches, like hubs or repeaters, accept packets on 
twisted-pair wires from the nodes. Unlike repeaters, however, these signals are not broadcast 

to all connected nodes. Instead, the destination address fields of the message packets are 

interpreted and the packet is sent only to the target node or nodes. This functionality is much 

more complicated than that of a simple repeater, requiring buffer space and logic not required 

by a hub. At the time of the earliest Beowulfs, the cost of switches was prohibitive. By the third 
generation of Beowulf systems (based on Intel Pentium Pro processors), however, the cost of 

switches was sufficiently low that they became standard Beowulf components. 

Today, 16-way switches have dropped in price another factor of four or more, and they are 
the backbone of many moderate-sized systems. Moderate-cost switches with up to 48 

connections are widely available. For greater connectivity, multiple switches can be 

interconnected. There is a catch, however. The network must be a tree; it may not contain 

any cycles. 

A problem occurs with the tree topology. The bisection bandwidth of the root or top level 

switch becomes a communication bottleneck. All the traffic might have to go through this 
channel. A typical bandwidth for low-cost, 16-way Fast Ethernet switches is near or at 1.6 

Gbps. Backplane saturation with Fast Ethernet switches is not a serious problem at this point. 

Current generation of gigabit switches provides much higher backplane bisection bandwidth 

and therefore the possibility of many more network ports without contention. With a properly 

sized core gigabit switch, the network core can be easily (with money) scaled to 192 Gbps or 
more. With these, use of Fast Ethernet switches with dual or quad gigabit uplinks scale 

properly, without serious contention in the network to a scale easily upwards of 1,000 nodes. 

 
5.3 Network Practicalities: Interconnect Choice 

Network choice for a system area network can be a difficult process. In this section we 
consider various factors and present two examples illustrating how different choices can 

affect performance. 

5.3.1 Importance of the Interconnect 

The cost for the NIC and switch complex can equal or exceed the cost of node hardware on a 

large cluster: it is not a factor that should be taken lightly. 
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In the absence of financial considerations, however, the most important factor when choosing 

an interconnect technology is the communication patterns of the intended workload for the 

cluster. While the peak CPU performance of the processors in a cluster tends to add up rather 
quickly, a given application may or may not be able to effectively utilize it without a high 

bandwidth and/or low latency interconnect. This can account for up to a 95% penalty when 

comparing theoretical speed with achieved performance. Because of this fact, and the high 

cost of interconnect hardware, it is important to build a properly sized system area network for 

a given workload. 

If a cluster is being built for a small number of applications, thorough application 

benchmarking is in order. The spectrum of communication patterns exhibited by applications 
ranges from occasional communication from one node to another to consistent 

communication from all nodes to all other nodes. At one extreme are applications that behave 

like Seti@Home, wherein compute nodes infrequently query a master node for a work unit to 

process for hours or days. At the other extreme are applications like MILC (MIMD Lattice 

Computation), where nodes are in constant communication with one or more other nodes and 
the speed of the computation is limited by the performance of the slowest node. As is obvious 

from the communication pattern description, basically any interconnect would perform 

admirably in the first case, while the fastest interconnect possible is desirable in the second 

case. 

5.3.2 Differences between the Interconnect Choices 

As seen in the preceding descriptions, interconnects vary wildly with respect to bandwidth, 
latency, scalability, and cost. Available interconnect bandwidth can range from a shared 10 

Mbps network segment for the entire cluster to upwards to 340 Mbps available to all nodes 

simultaneously. Latency delivered to applications can range from in the hundreds of 

microseconds down to half a microsecond. This is near the latency cost of using the PCI bus. 

Various interconnects scale to different levels. Switched Ethernet -based interconnects, for 

example, basically work for any number of nodes on a network segment, as reliable packet 

delivery is provided by the TCP/IP layer. For this reason, Ethernet switch complexes deal well 

with congestion. Interconnect networks do not universally possess these characteristics, 

however; various interconnect types have topology scalability issues, and others basically 
require a full bisectional bandwidth switch complex to be built to minimize switch congestion. 

The cost of these technologies ranges from practically free to into the thousands of dollars 

per node of up-front cost. This does not take into consideration the substantial, recurring 

effort of integration, software, and hardware debugging. Variance in the types of drivers 

provided can also affect difficulty in integration. Some vendors provide binary drivers only for 
particular versions of the Linux kernel. These cause clusters using these interconnects to 

become kernel "version locked." In many cases, the kernel bugs that cluster administrators 

are likely to encounter are fixed by subsequent releases of the kernel. Hence, version-locked 

machines are harder to support. 
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5.3.3 Strategies to Improve Performance over Ethernet 

Realistically, financial considerations are fairly important while designing a cluster. This is 

clearly indicated by the high frequency of clusters with Ethernet as an interconnect. As this is 
the slowest interconnect on the above list, performance optimization is of the utmost 

importance. The simplest approach is to tune the system's Ethernet and TCP/IP stacks; these 

changes are fairly nonintrusive and straightforward to implement, and there is a fairly good 
document detailing this tuning process at www.psc.edu/networking/perf_tune.html.  

Other approaches can be more intrusive. These fall into three categories: hardware choice, 
software features, and other network topologies. 

Ethernet card performance will be heavily influenced by the characteristics of the NIC chosen. 
Higher-quality Ethernet NICs will deliver better throughput and latency at a lower host CPU 

utilization. This better performance is achieved through a number of techniques. Use of 

jumbo frames is one way to reduce host CPU utilization. By using a large MTU setting of 

9,000 bytes as opposed to the usual 1,500 bytes, the NIC has to package up a considerably 

smaller number of Ethernet frames. Jumbo frames are supported only in Gigabit networks, 
but their use can significantly increase network throughput. Some NICs support TCP 

checksum calculation in hardware on the NIC itself. This removes one of the most expensive 

tasks from the host CPU. Some NICs also support interrupt coalescing. This means that the 

NIC has some quantity of local memory into which received packets can be stored 

temporarily, to reduce the interrupt load of NIC use. Without interrupt coalescing, heavy 
network use can induce enough context switching for interrupt servicing that computational 

throughput of the host CPU drops substantially. This feature is also really used only on 

Gigabit networks. Substantial differences in the feature set are supported by Gigabit network 

adapters. 

On the other hand, Fast Ethernet NICs have a basically comparable hardware feature set and 

depend on drivers to deliver outstanding performance. There is a large variation in the quality 

of Gigabit drivers as well. All of the hardware features mentioned above need to be supported 

in software as well as in hardware in order to be used. Alternatively, TCP/IP may not be used 

at all. All of the properties a network protocol provides, such as reliable delivery and 

out-of-order packet reassembly, come at the cost of latency and bandwidth penalties. Some 
of these properties are important, some not. The VIA specification (www.viarch.org) 

describes an architecture that implements only those properties that are required in cluster 

communication. This provides a protocol with far less overhead than Ethernet's CSMA/CD 

and TCP/IP have. By using the MVIA implementation 

(www.nersc.gov/research/FTG/via/) of the VIA specification and its drivers for Fast 

Ethernet or Gigabit Ethernet NICs, more bandwidth is delivered to applications with less 

latency using commodity hardware. (This is the same protocol mentioned in Section 5.1.3.) 

The final approach taken to maximize Ethernet performance is to use a different network 

topology. One of these topologies is to use EtherChannel, or Ethernet bonding. This software 

makes multiple physical Ethernet interfaces negotiate a virtual aggregated connection from 

Administrador
By using the MVIA implementation(www.nersc.gov/research/FTG/via/) of the VIA specification and its drivers for FastEthernet or Gigabit Ethernet NICs, more bandwidth is delivered to applications with lesslatency using commodity hardware.



 107 

the switch (there is no benefit to doing this in a shared network segment) to the client. This 

can increase the amount of bandwidth available to applications by integer multiples based on 

the number of physical interfaces available. Unfortunately, this has no positive effect on 
latency, as the logical path that a message takes from end to end has bonding routines to go 

through as well. Another topology designed to improve bisectional bandwidth and latency is 
FNN (www.aggregate.org/FNN), or Flat Network Neighborhoods. In this topology, hosts 

have multiple network interfaces that each home on a different switch. In a properly setup 

network, each host will have a NIC on the same switch as an interface on any given other 
host in the network. This technique attempts to leverage the large performance difference 

between backplanes and uplinks in a cost-effective manner. 

5.3.4 Cluster Network Pitfalls 

Linux gigabit support doesn't interact well with switch autonegotiation and time-sensitive 

protocols such as DHCP. We have had several problems with gigabit switch port initialization 

time. These long initialization times cause DHCP requests to time out. We have tracked this 

problem to a number of factors on the switch, all of which had to do with autonegotiation. 

Gigabit switches try to autonegotiate a number of settings when link comes up. The list of 

settings that are autonegotiated by default includes flow control, port negotiation, 

etherchannel (bonding), and 802.1q trunking. Then a spanning tree check is run to determine 

whether any switching loops exist in the network. All said, this process can take up to a 

minute to complete. This is certainly longer than the default DHCP request timeout. On Fast 

Ethernet networks, a number of these same settings are autonegotiated. While this list is 

shorter, and the port setup time is considerably less than on Gigabit Ethernet, problems can 

still result if many hosts are brought up in parallel. To this end, disabling autonegotiation 
whenever possible will immensely simplify the network itself and reduce the number of 

problems encountered.  

As Fast Ethernet is the most common interconnect, and Ethernet is the most common sort of 
Linux host networking, internode communication and cluster administrative processes may 

compete with one another for resources. This event should be avoided if at all possible. With 

the heavy usage of transparent networkbased services like NFS, it is possible to 

unintentionally use large quantities of network bandwidth with fairly innocuous operations. 
Extraneous processes, even administrative tasks, should be avoided if possible while user 

jobs are running. 
The nature of cluster administrative operations, whether synchronous, like pdsh, or 

asynchronous, like cron jobs, is that they run in a loosely parallel fashion. While these jobs 

are not synchronized internally, their methods of invocation cause them to be started in very 
small time windows. When these administrative operations are performed in parallel, the load 

pattern on servers is more bursty than normal Unix servers. In these cases, peak capacity is 

important more often than sustained throughput. 
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5.3.5 An Example of an Ethernet Interconnected Beowulf 

The Clemson Mini -grid Beowulf employs four switches. The processor pool utilizes a Foundry 

Networks FastIron III with a backplane throughput of 480 Gbps and supports up to 336 Fast 

Ethernet ports or up to 120 Gigabit Ethernet ports. The configuration used in the Clemson 

machine includes 16 Gigabit Ethernet ports and 264 Fast Ethernet ports. The Mini -grid 

processor pool includes 130 nodes each with two Fast Ethernet NICs connected to this switch. 

In addition, the processor pool's switch is connected to three primary clusters one of which 

employs a Foundry Networks FastIron II Plus with a backplane throughput of 256 Gbps 

connected to 66 dual-NIC nodes, and two of which employ a Foundry Networks FastIron II 

with a backplane throughput of 128 Gbps connected to 34 dual-NIC nodes. The switches in 
the Mini-grid are connected by multiple trunked Gigabit Ethernet links. There are four trunked 

links between the pool and the larger cluster and two trunked links each between the pool 

and the two smaller clusters. The dual -NIC nodes in the pool and the clusters use Linux 

channel bonding to double the throughput of a normal Fast Ethernet NIC. The Foundry 

Networks switches use a similar technique to trunk up to eight Gigabit Ethernet links between 
any two switches. Using this approach one could build a Fast Ethernet switching system with 

up to 1080 ports with no bottlenecks. In practice, considerably larger networks can be built, 

though not with full bisection bandwidth. For many applications somewhat less bandwidth 

may be adequate. Other vendors with large Fast Ethernet switches include Hewlett Packard, 

Cisco, and Extreme. 

5.3.6 An Example of a Myrinet Interconnected Cluster 

The Chiba City cluster at Argonne National Laboratory (discussed in more detail in Chapter 

18) has two discrete networks: (1) a Myrinet network consisting of 5 Clos switches, 4 Spine 
switches, and 320 host ports, and (2) a Fast/Gigabit Ethernet netwo rk consisting of 10 Cisco 

Catalyst 4000s and a Catalyst C6509 with 480 Fast Ethernet ports and 102 Gigabit Ethernet 

ports. The Myrinet network is used primarily as the system interconnect; however, if need be, 

Ethernet can be used as well. The Myrinet topology is symmetric, as is the Ethernet topology. 

Each spine switch has 128 network ports, with connections to all of the Clos switches in the 
network, but no connections to other spines. Each Myrinet Clos switch has 64 host ports and 

64 network (switch interconnect) ports. Each Clos has its network ports distributed across all 

four spine switches. This yields 4096 potential routes from any given node to any other node 

in the network. This is required to guarantee full bisectional bandwidth for all possible 

workloads. 

The Ethernet network is also fairly symmetric. Each group of 32 nodes and their management 

node are connected to a Catalyst 4000. Each of the 32 nodes is connected with Fast Ethernet, 
and the manager is connected with Gigabit Ethernet. Each of these switches has dual gigabit 

uplinks to the core Catalyst C6509. Because of the oversubscription of uplinks between each 

Catalyst 4000 and the core C6509, this network does not have full bisectional bandwidth. If 
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this were primarily an interconnect network, and full bisectional bandwidth were important, 

this could be remedied by upgrading all switch uplinks from dual to quad gigabit connections. 
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Chapter 6: Network Software 
Thomas Sterling 

In this chapter, we turn to the networking software options available to the Beowulf 

programmer, administrator, and user. Networking software is usually described as a stack, 

made up of different protocol layers that interoperate with one another. We survey a few of 

the layers in the networking stack, focusing on those services and tools that are used 

extensively on Beowulf systems. 

6.1 TCP/IP 

Parallel computers have traditionally used special high-performance interprocessor 
communication networks that use custom protocols to transmit data between processing 

elements. In contrast, Beowulf clusters rely on commodity networks whose original design 

goals did not include serving as the interconnect for a commodity supercomputer. The use of 

commodity networks implies the use of commodity protocols when costs must be kept down. 

Thanks to the tremendous growth of the Internet during the last decade of the twentieth 

century, TCP/IP has become the de facto standard network communication protocol. Network 

software vendors have been forced to abandon their proprietary networking protocols in favor 
of this once obscure but now ubiquitous protocol. Beowulfs naturally default to 

communicating with this protocol. 

The IP protocol is conceptually divided into different logical layers that combine to form a 
protocol stack. The IP layer is a routable datagram layer. Data to be transferred is fragmented 

into datagrams— individual packets of data. Packet length is limited by the physical transport 

layer, and the IP layer contains the logic to fragment requests that are too large into multiple 

IP packets that are reassembled at the destination. Each datagram is individually routable 
and contains a four-byte IP address that specifies the destination host. This version of IP is 

called IPv4. A new version, called IPv6, will increase the address space available to IP 

applications. The four-byte addresses used in IPv4 are too small for the total number of 

computers currently connected to the world's networks. This address depletion will be 

remedied by IPv6, which uses 16 bytes to represent host addresses. Currently, however, 
IPv4 remains dominant, particularly in the United States. 

The IP stack commonly supports two services: TCP (Transmission Control Protocol) and 
UDP (User Datagram Protocol). TCP, the most common IP service, provides a reliable, 

sequenced byte stream service. While the underlying physical transport layer usually 

provides error checking, TCP provides its own final data integrity checking. Most multiple-hop 

physical transports provide only a best-effort delivery promise. TCP incorporates a 

positive -acknowledgment sliding-window retransmission mechanism that recovers from 
packet loss. It also tolerates latency while maintaining high performance in the normal case of 
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no packet loss. Moreover, TCP provides its own data stream packetization, avoiding 

fragmentation in the IP layer.  

The drawbacks of TCP come from its ability to handle wide area networks. New TCP streams 
use "slow start" to detect the bandwidth limit of the network gradually. Congestion is detected 

by recording dropped packets. Any corrupted or dropped packet immediately drops the 

offered load. The Nagel algorithm used by TCP can cause problems for message-passing 

libraries. In order to minimize "tinygrams" (short packets), Nagel's algorithm delays the 

sending of small messages until the acknowledgment for an initial small message is returned. 
You can avoid this behavior either by compiling the Linux kernel with an option not to use 

Nagel's algorithm or by constructing your programs to use large messages. You can also turn 

off the algorithm in an application by using the TCP_NODELAY  socket option, although some 

early versions of Linux did not properly implement this feature. See 

www.icase.edu/coral/LinuxTCP.html and 
www.icase.edu/coral/LinuxTCP2.html  for a discussion of TCP performance issues in 

Linux. 

The other IP service, UDP, provides unsequenced, unreliable datagram transport. The 
advantages of UDP are that it has a relatively low latency because it incurs no startup delay. 

Its primary disadvantage is that you typically have to provide retransmission services similar 

to those of TCP when you use UDP. 

6.1.1 IP Addresses 

The destination of an Internet Protocol packet is specified by a 32-bit IP address (or 128 bits) 
for IPv6) that uniquely identifies the destination host. IP addresses are usually written in 

"dotted decimal notation," with the bytes of the address written as a decimal numbers 

separated by  decimal points. The IP address range is divided into networks along an address 

bit boundary. The portion of the address that remains fixed within a network is called the 

network address, and the remainder is the host address. The division between these two 

parts is specified by the netmask. A typical netmask is 255.255.255.0, which specifies 24 bits 

of network address and 8 bits of host addresses. 

Three IP address ranges have been reserved for private networks: 
§ 10.0.0.0 – 10.255.255.255 
§ 172.16.0.0 – 172.31.255.255 
§ 192.168.0.0 – 192.168.255.255 

These address ranges are permanently unassigned and will not be forwarded by Internet 

backbone routers or conflict with publicly accessible IP addresses. We will use IP addresses 

from the range 192.168.1.0–192.168.1.255 in the following examples. 

In the past only a few netmasks were permitted. The netmasks were split on byte boundaries. 
These boundaries were given the names Class A (255.0.0.0 with about 16 million host 
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addresses), Class B (255.255.0.0 with about 64,000 host addresses) and Class C 

(255.255.255.0 with 254 host addresses). Netmasks may now fall on any bit boundary but are 

split on byte boundaries where possible. The class names are still used when this occurs. We 
will use the Class C network 192.168.1.0. 

Two addresses in the host address range are reserved: the addresses with all host bits 0 or 1. 

The host address with all bits set (e.g., 192.168.1.255) is the network broadcast address. 

Packets sent to this address will be forwarded to every host on the network. The address with 

all bits unset is not a host address at all— it is the network address. Similarly when a larger 

network is divided into subnets the highest and lowest address ranges are best avoided. 

While the Class C network 192.168.0.0 is valid, starting at 192.168.1.0 is recommended. It is 
syntactically possible to specify an invalid netmask— one with noncontiguous set bits. A 

"slash" notation is sometimes used to avoid this; for example, 192.168.1.0/24 specifies our 

network of 192.168.1.0 with a netmask of 255.255.255.0. 

An alternative to assigning specific IP addresses to each node is to use the Dynamic Host 
Configuration Protocol (DHCP). 

6.1.2 Zero-Copy Protocols 

One way to improve network performance, especially for high-performance networks, is to 
eliminate unnecessary copying of data between buffers in the kernel or between the kernel 

and user space. So-called zero-copy protocols give applications nearly direct access to the 

network hardware, which copies data directly to and from buffers in the application program. 

Implementing true zero-copy TCP from user-level applications is difficult. On the transmit side 
the kernel must wire down the pages, so that they are not moved during the network 

operation, and set copy -on-write in the virtual memory system, so that there isn't a race 

condition with an application writing the data while it is being transferred. Transmit buffers are 
often quickly reused, so the copy -on-write results in page copies rather than data buffer 

copies. If many small writes are done to socket, all of the data pages must be wired down until 

the ACK is received. After all of this kernel overhead, not much work has been saved. 

Protocol layers must still construct the protocol headers and do the TCP checksums over the 

data to be transmitted. 
When a frame arrives, the kernel has to decide where to put it. While it is possible to only read 

the variable-length IP header and defer handling the data, if the user-level process isn't 

already waiting in a read() call with a large enough buffer, the system has to perform a copy. 

The kernel also still has to process the TCP checksum. Some of this work can be handled by 

a smart adapter, which moves part of the protocol stack onto a coprocessor. When the 

protocol stack must function with all types of network adapters, zero-copy becomes 

impossible because of details such as byte alignment. The Ethernet header is 14 bytes, which 

always misaligns the IP header fields. Several research projects have developed methods for 

direct user-level-program access to the network because modifying the existing socket 
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interface to use a zero-copy mechanism is very difficult. The most notable projects are the 

Virtual Interface Architecture (VIA) and U-Net, but neither is yet in widespread use. 

 
6.2 Sockets 

Sockets are the low-level interface between user-level programs and the operating system 

and hardware layers of a communication network. They provide a reasonably portable 

mechanism for two (or more) applications to communicate, and they support a variety of 

addressing formats, semantics, and underlying protocols. Sockets were introduced in the 

BSD 4.2 release of Unix and are being formally codified by the POSIX 1003.1g draft standard. 

Since its introduction, the sockets API has been widely adopted and is available on all 
modern Unix variants, including Linux. On Linux, the socket API is supported directly by the 

operating system, but (as noted above) research projects have proposed lower-level 

zero-copy protocols that would allow applications more direct access to the kernel. 

The socket API is powerful but not particularly elegant. Many programmers avoid working 

with sockets directly, opting instead to hide the socket interface behind one or more additional 
layers of abstraction (e.g., remote procedure calls or a library like MPI). Nevertheless, our 

survey of networking would not be complete without a brief introduction to sockets. If you 

intend to program with sockets, you should consult both on-line (e.g., man socket) and 

printed documentation. The excellent book by Stevens [31] has many examples and 

thoroughly covers the finer points of sockets programming. 
The basic idea behind the socket abstraction is that network communication resembles file 

I/O sufficiently closely that the same system calls can be used for both. Once a network 

connection is established between two processes, the transmission and receipt of data are 
performed with read and write, just as one sends data to a file, a tape, or any other device. 

The socket API is primarily concerned with naming and locating communication endpoints 
(i.e., sockets) and assigning them to file descriptors suitable for use by read and write. 

A socket is created by invoking the socket system call with arguments specifying an 

address family, a socket type, and a protocol. Theoretically, an enormous number of 

combinations are possible, but in practice only two make up the vast majority of socket 

applications. 
The first type is unreliable, connectionless, datagram sockets. The Internet address family 

AF_INET, the stream socket type SOCK_DGRAM, and the Unreliable Datagram Protocol 

IPPROTO_UDP allow one to create connectionless datagram sockets. These sockets allow for 

the transmission of a single message or datagram at a time. Neither the integrity nor the 

delivery of the data is guaranteed by the underlying protocol layers, so error-correcting codes, 
sequencing, and acknowledgment/retry are up to the application. A UDP socket is analogous 

to a conventional postal service mailbox. Many-to-one communication is the norm; that is, 

one UDP socket (mailbox) can receive datagrams (letters) from multiple senders, and 

one-to-many communication is possible simply by addressing datagrams (letters) to different 

recipients. Bidirectional communication is possible if two parties regularly reply to one 
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another's messages, but the correspondents must be aware that messages can occasionally 

be lost, damaged, or delivered out of order. Return addresses are always available for UDP 
datagrams. SOCK_DGRAM sockets are very lightweight, consuming only one file descriptor 

and demanding minimal processing in the lower levels of the protocol stack. They are small 

and fast and are appropriate for tasks that can tolerate the lack of reliability and for which 

resource consumption may be an issue. One must carefully weigh the costs, however. If 

reliability is established at the application layer by means of acknowledgments, error 

correcting codes, and the like, the speed and size advantage may disappear. Many 
implementations of NFS use UDP datagram sockets as the underlying transport mechanism. 

The second type of socket application is reliable, connection-oriented, stream -type sockets. 

Sockets in the Internet address family AF_INET, of type SOCK_STREAM generally use the 

Transmission Control Protocol IPPROTO_TCP and provide reliable, connection -oriented 

virtual circuits. TCP provides a connection-oriented channel like a conventional two-party 
telephone circuit. Once established, bidirectional communication flows between two 

endpoints until one of them is closed. The channel is stream oriented: individual messages 

are merged seamlessly into a continuous stream of data. The receiver gets no information 
about the individual write requests made by the sender. Data is returned to read requests 

in sequence, but without message boundary markers of any kind. Reads do not correspond 

to whole writes and it is very common for the operating system to deliver only part of the 

data requested in a read or to accept only part of the data requested by a write. 

SOCK_STREAM sockets are very reliable. Failure usually means that there is some kind of 

misconfiguration or that the remote server has crashed, although failure can also occur if the 

network is congested (even temporarily). Thus, the burden on the programmer is greatly 
reduced. Occasionally, the lack of message boundaries means that the application must 

insert markers of some kind into the data stream, but this task is far easier than overcoming 
the unreliability of SOCK_DGRAM sockets. The greatest shortcoming of SOCK_STREAM  sockets 

is their resource consumption. Each open circuit requires its own file descriptor, of which only 

a finite number are available, as well as kernel resources to maintain the state of the 
connection. Maintaining thousands of simultaneously active stream sockets would impose a 

significant burden on a system. 

Server vs. Client Programming.  Frequently in network programs there is a clear distinction 

between servers and clients. Servers are programs that run more or less indefinitely, waiting 

for requests or connections that are initiated by clients. This distinction is not always so 
clearcut, however, and the sockets API actually allows considerable flexibility in cases where 

the roles are blurred. 

Client tasks: The client has four basic tasks: 

1. create a local socket with an otherwise unused address, 

2. determine the address of the server, 

3. establish a connection (TCP only), and 

4. send and receive data. 
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Clients create sockets using the socket function discussed above. Since the client is usually 

content to let the operating system choose an unused address, there is no need to call bind 

(see below). Sending and receiving data are done with the conventional read and write 
system calls (for SOCK_DGRAM sockets, however, the sendto, sendmsg, recvfrom and 

recvmsg functions may be more convenient). The only task of any complexity is identifying 

the address of the server. Once the server's address is known, the connect system call is 

used to establish a SOCK_STREAM channel. 

Socket addresses: Addresses in the AF_INET family are represented by a struct 
sockaddr_in, found in the header file <netinet/in.h>. Internet family addresses consist 

of two numbers: an IP address and a port number. The IP address contains enough 

information to locate the host computer on the Internet using IP. It is usually written in the 

familiar "dotted" notation (i.e., 131.215.145.137). In a program it is represented as a four-byte 

integer in network (i.e., big-endian) byte order. Obtaining the Internet address of a foreign 
server usually involves recourse to one or more library functions such as gethostbyname, 
inet_aton, or the constants INADDR_ANY, INADDR_LOOPBACK defined in the the include 

file '<netinet/in.h>'. 

The port number is a 16-bit integer that is unique for each socket endpoint on a single Internet 

host. Servers usually "advertise" their services so that their port numbers are "well known." 
There is a registry of officially recognized port numbers,[1] and the file '/etc/services ' 

contains a partial listing of that registry, which can be searched by the library utility 
getservbyname. However, for new, private, or experimental services it is more common for 

servers and clients to simply agree on a port number in advance, for example, by referring to 

a macro in a shared header file. Conventional wisdom is that such a port should be greater 
than 5,000, less than 49,152 and different from any registered port. 

One other subtlety is that the sin_port  and sin_addr fields in the sockaddr_in  structure 

must be stored in network byte order. The functions htonl, htons, ntohl, and ntohs can 

be used to convert long and short integers between host and network byte order. On 

big-endian machines (e.g., the IBM PowerPC family of processors) these are no-ops, but on 
little-endian machines (e.g., the Intel x86 family of processors) they perform byte swapping. 

Server tasks:  Servers are more complicated than clients. There are a number of different 

design choices for servers, with various tradeoffs between response time, scalability (how 

many clients can be supported), resource consumption, programming style, and robustness. 

Popular choices include a multithreaded server, a server that forks a new process for every 
connection, or a server that is invoked by the Internet daemon inetd. A few tasks are 

common to all these design choices: 

1. create a local socket, 

2. select a port number, 

3. bind the port number to the socket, 

4. make the port number known to clients, 

5. listen for connections (TCP only), 

6. accept connections (TCP only), and 
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7. send and receive data. 

Creating a local server socket is no different from creating a local client socket. The process 

of selecting a port number and making it known to clients is discussed above. Once a port 
number is selected, the server must call bind to associate the address with the socket. The 

caller must specify a complete address, including both the port number and IP address in the 
sockaddr_in structure. Usually, the IP address is set to the constant 

htonl(INADDR_ANY), which indicates that the socket should accept any connections (or 

datagrams for SOCK_DGRAM sockets) destined for any IP address associated with the host. 

(Recall that machines may have several IP addresses.) Other possibilities are 

htonl(INADDR_LOOPBACK)  or a value obtained from gethostname, gethostbyname,  

and the like.  
Communication with recvfrom and sendto: Once a SOCK_DGRAM socket is bound to an 

address, it is ready to send and receive datagrams. Read and write may be used to 
communicate with clients. The recvfrom call is particularly useful for servers because in 

addition to the contents of the datagram, it also supplies the caller with a return address, 

suitable for use in a subsequent call to sendto. 

Listening for and accepting connections: SOCK_STREAM sockets, on the other hand, must 

take a few more steps before they are ready for use. First, they must call listen to inform 

the operating system of their intention to accept connections. The accept  system call 

allocates a new file descriptor that can be used with read and write to communicate with 

the foreign entity. In addition, accept supplies the caller with the address of the connecting 

entity. 

Many of the design choices for server software architecture are concerned with the detailed 
behavior of accept. It can be made blocking or nonblocking, and upon acceptance of a 

connection, a new thread or process may or may not be created. Signals (including timer 
signals) may be used to force a premature return, and select can be used to learn about 

status changes. The large number of possibilities tends to make servers much more complex 

than clients. 

[1]ftp://ftp.isi.in-notes/iana/assignments/port-numbers 

6.3 Higher-Level Protocols 
Sockets form the lowest layer of user-level network programming. If you go any lower, you 

enter the realm of driver-writing and op erating system internals. Most Beowulf users don't 

write applications using sockets. Sockets are usually reserved for the systems programming 

arena, where basic client/server functions are implemented. Beowulf users depend on 

higher-level programming abstractions to develop applications. MPI (Message Passing 
Interface), discussed in Chapters 9 and 10, and PVM (Parallel Virtual Machine), discussed in 

Chapters 11 and 12, are the workhorses of scientific computing on Beowulfs, providing not 

only platform-independent message passing semantics, but also frequently used parallel 

programming constructs. These APIs are not familiar to the enterprise systems programmer 
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first entering the world of parallel computing. Enterprise network applications are distributed 

systems in the truest sense of the term and are developed by using higher-level protocols that 

do not require meddling with sockets. Remote procedure calls and distributed objects are the 
two most common programming interfaces applied in this vein; and they are equally suitable 

to parallel application development. If you come from a corporate computing or distributed 

applications development background, you will be happy to find that you can apply the same 

familiar software technologies to develop Beowulf applications. 

6.3.1 Remote Procedure Calls 

Programming with sockets is part of the client/server programming model, where all data 
exchange is explicitly performed with sends and receives. This model exposes the underlying 

transport mechanisms to the programmer and is sometimes compared with programming in 

assembly language. A remote procedure call (RPC) follows a different paradigm of distributed 

computation, removing the programmer from explicit message passing. The idea behind an 

RPC is to make distributed programs look like sequential programs. A procedure is called 

inside a program; rather than executing on the local machine, however, the local program 

suspends while the procedure executes on a remote machine. When the procedure returns, 

the local program wakes up and receives any results that may have been produced by the 

procedure. 

RPC was designed not so much for parallel programming as for distributed programming. 

Parallel programming is a more tightly coupled concept where a single program (conceptually) 

works on a problem, concurrently executing on multiple processors. Distributed programming 

is a looser concept where two or more programs may require services from one another and 

therefore need to communicate, but they are not necessarily working on the same problem. 

Web browsers and Web servers are examples of distributed programs. Nevertheless, RPC 

can be used effectively on Beowulf systems, especially for porting applications that are 

already designed to use it. 

In principle, the remote procedure call is a simple idea that should eliminate all the complexity 

of explicit message passing. As always, some difficulties exist. Byinvoking a remote 

procedure, you cause an action to be executed in a disjoint address space. This requires the 

caller to marshal procedure parameters, converting them to some platform -independent 

representation to allow for a heterogeneous environment. When marshaling parameters, if 

the native data representation format differs significantly from the platform -independent 

representation, buffer allocation and type conversion can be costly. In addition, procedures 

need to be exported through a naming service so that they may be located and invoked. All of 

this additional overhead can adversely impact performance. 

Two different RPC implementations are commonly found on Unix systems. The first is ONC 

RPC, originally known as Sun RPC, but later renamed ONC, for Open Network Computing. 

This is the RPC standard used by Linux and Beowulf systems. The second implementation is 
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DCE RPC, which is the standard remote procedure call interface for the Open Group's 

Distributed Computing Environment. The two systems are incompatible and offer different 

features. The advantages of the DCE version are that it permits asynchronous procedure 
calls and provides a more efficient parameter conversion protocol, which bypasses 

network -encoding when two communicating machines share the same binary data 

representation format. ONC RPC permits only synchronous procedure calls and requires 

parameter conversion regardless of homogeneity. This makes it a less attractive candidate 

for writing distributed programs on Beowulf clusters, even though it is standard software.  
Writing RPC programs is not without difficulty. Although they provide a conceptually familiar 

mechanism, the data-encoding process introduces additional complexity. Rather than simply 

call a procedure in your program, you must generate support code that performs data 
encoding and the actual network communication. ONC RPC provides a tool called rpcgen 

and a data representation format called XDR, for extended data representation, that 
automates this code generation. XDR provides a language specification to describe data, 
which you use to specify the types of parameters passed to a procedure. The rpcgen 

program then compiles your procedure definition, generating code that will encode and 

decode parameters. It also produces a header file that you include in your C program to 

reference the remote procedure. Using pregenerated procedures is rather painless because it 

is quite like calling normal library routines. Actually creating a remote procedure can be an 
involved process, requiring an understanding of XDR and rpcgen. 

The synchronous nature of ONC RPC calls makes it unsuitable for writing general parallel 
programs. Synchronous calls effectively serialize your program because the calling node 

stops doing all work while the called node executes a procedure. Asynchronous RPC allows 

you to initiate independent actions on a remote node without waiting for them to complete. 

This maps better to parallel programming on a Beowulf, because you can tell processors to 

perform arbitrary work without blocking, and interprocessor coordination can be relegated to 

synchronous calls. 

6.3.2 Distributed Objects: CORBA and Java RMI 

As the software development advantages of object-oriented programming languages became 

more evident during the late 1980s and early 1990s, programmers saw that they could extend 
the concept of a remote procedure call to that of a remote object allowing remote method 

invocations. You could represent network services as objects distributed across a network 

and use method invocations to perform transactions, rather than esoteric socket-based 

protocols or unwieldy collections of remote procedure calls. Again, the idea was to simplify 

the programming model by making distributed programs appear like sequential 
programs— you should be able to reference objects and invoke their methods independent of 

their location on the network. 
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Distributed objects are used mostly to build corporate enterprise applications that require 

access to data spread out in different locations across the network. Sometimes this process 

actually requires coordinating computation with machines in different parts of the world. A 
common use is to simplify the implementation of application-specific network databases that 

can become difficult to implement using a client/server approach and queries in the 

Structured Query Language (SQL). It is much easier for a programmer to write something like 

the following than to pass an embedded SQL query to a vendor-specific client API. 

EmployeeBenefits myBenefits; 

EmployeeRetirementPlan myRetirement; 

EmployeeID myID;  

SSN mySSN; 

 

mySSN = getSSN(); // Get my social security number from some input source 

myID  = employeeIDs.getID(mySSN);                  // Lookup my employee ID 

myBenefits   = employeeBenefits.getBenefits(myID); // Lookup my benefits 

myRetirement = myBenefits.getRetirementPlan();   // Lookup my retirement plan 
Here the program may be accessing anywhere from one to three databases in different parts 

of the network, but the programmer doesn't have to be aware of that fact. In a client/server 

program, the programmer would have to specifically set up connections to network databases, 

issue queries in SQL or some other query language, and convert results into a usable form. 

With distributed objects, a programmer can access network resources in a transparent 
manner. To the programmer, employeeIDs  is just another object to be used through its 

public methods. In reality, employeeIDs may represent a directory service on another 

machine. The employeeBenefits object may be a database located in yet another part of 

the network, and the result of the getBenefits()  call may be a reference to an additional 

database. Alternatively, all of the objects may actually reside in one location as one database. 

The point is that the programmer doesn't have to know. 

Several distributed object systems have been designed over the years, but the most 
promising ones for Beowulf application development are CORBA and Java RMI. Microsoft's 

DCOM is also a viable alternative for Windows-based clusters. The Object Management 

Group (OMG), established in 1989, saw the need to establish a vendor-independent standard 

for programming with distributed objects in heterogeneous systems. Their work has produced 

the Common Object Request Broker Architecture specification, or CORBA for short. 

The foundation of CORBA programming is tied to the CORBA Interface Definition Language 

(IDL), with which object interfaces are defined. Even though programmers manipulate 
CORBA objects as native language structures, IDL defines them in a language and 

operating-system-independent manner. An IDL definition specifies the relationships between 
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objects and their attributes. IDL definitions must be compiled with a preprocessor to generate 

native language code stubs with which objects are actually implemented.  

The other half of the CORB A system is the Object Request Broker (ORB), of which the 
programmer does not have to be explicitly aware. An ORB is a server process that provides 

the plumbing for distributed object communication. It provides services for locating objects, 

translating remote method invocations into local invocations, and converting parameters to 

and from platform independent representations. As you can probably guess, going through 

an intervening daemon to perform object instantiation and method invocation sacrifices 
performance. However, ORBs have proven effective in providing the middleware necessary 

for heterogeneous distributed application development. Many free CORBA implementations, 

as well as several commercial ones, are suitable for deployment on a Beowulf, but the fastest 

and most preferred appears to be OmniORB, freely available from Olivetti & Oracle Research 

Laboratory (www.orl.co.uk/omniORB/omniORB.html). 

In 1995, Sun Microsystems introduced the Java programming language and runtime 

environment. Since then, Java has gained enormous popularity and support in both industry 
and academia. Java's promise of platform -independent "write once, run everywhere" 

programming has made many programmers willing to put up with its growing pains and 

performance deficiencies. Java has been touted as an ideal Internet programming language 

because of its platform independence, dynamic binding, mobile code properties, and built-in 

security model. To achieve all of this, however, Java requires significant runtime support. 

Unlike programming languages such as C and Pascal, Java is normally not compiled to an 

assembly language that is native to the CPU's instruction set. Rather, it is compiled to a 
platform -independent byte-code that is interpreted by the Java Virtual Machine (JVM). [2]. A 

JVM will often be implemented with a just-in-time (JIT) compiler that will compile the 

byte-code into native code on the fly at runtime to improve performance. Even with this 

enhancement, Java has yet to match the performance of C or C++. Nevertheless, there is a 

good deal of interest in using Java to program computing clusters. 

Java has been used to write parallel programs from the very beginning since it has a built-in 

platform -independent thread API. This makes it much easier to write scalable multithreaded 
applications on symmetric multiprocessors. The Java thread model allows parallel 

programming only in shared-memory environments. Java threads cannot interact between 

disjoint address spaces, such as nodes in a Beowulf cluster. That is why Java includes its 

own distributed object API, called Remote Method Invocation (RMI). 

Like CORBA, Java RMI allows the invocation of methods on remote objects. Unlike CORBA, 
RMI is a language-intrinsic facility, built entirely in Java, and it does not require an interface 

definition language. RMI does require an additional server, called the Java Remote Object 
Registry. You can think of the RMI registry as a lightweight ORB. It allows objects to register 

themselves with names and for RMI programs to locate those objects. Java RMI programs 
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are easy to write because once you obtain a reference to a nam ed object, it operates exactly 

as though the object were local to your program. Some Beowulf users have already started 

using Java RMI to simulate molecular dynamics and future processor architectures. Using 
Java for these compute-intensive tasks is ill advised at this time, however, because the 

performance of the Java runtimes available for Linux, and therefore most Beowulfs, at this 

stage trails that of other platforms. 

Using distributed objects for parallel programming on Beowulf is a natural way to write 
nonperformance-oriented applications where the emphasis is placed on ease of development 

and code maintainability. Distributed object technologies have been designed with 

heterogeneous networks in mind. Beowulf clusters are largely homogeneous in terms of the 
operating system, data representation, and executable program format. Therefore, distributed 

object systems often contain additional overheads that are not necessary on Beowulf clusters. 

In the future, we may see distributed objects tailor their implementations for high performance 

on Beowulf-like systems as the use of PC clusters becomes more common in corporate 

computing. 

[2]For more information about the JVM, see the "Java Virtual Machine Specification" at 
java.sun.com/docs 

6.4 Distributed File System 

Every node in a Beowulf cluster equipped with a hard drive has a local file system that 
processes running on other nodes may want to access. Even diskless internal nodes require 

access to the worldly node's file system so that they may boot and execute programs. The 

need for internode file system access requires Beowulf clusters to adopt one or more 

distributed file systems. Most distributed file systems possess the following set of 

characteristics that make them appear indistinguishable from the local file system. 

§ Network transparency:  Remote files can be accessed using the same operations 

or system calls that are used to access local files. 

§ Location transparency:  The name of a file is not bound to its network location. The 

location of the file server host is not an intrinsic part of the file path. 

§ Location independence: When the physical location of a file changes, its name is 
not forced to change. The name of the file server host is not an intrinsic part of 

the file path. 

6.4.1 NFS 

Beowulf clusters almost always use the Network File System protocol to provide distributed 

file system services. NFS started its steady climb in popularity in 1985, after Sun 
Microsystems published the protocol specification for adoption as an open standard. This 

version of the protocol, NFS version 2 (NFSv2), has been widely adopted by every major 
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version of the Unix operating system. A revision of the protocol, NFSv3, was published in 

1993 and has been implemented by most vendors, including Linux. 

NFS is structured as a client/server architecture, using RPC calls to communicate between 
clients and servers. The server exports files to clients, which access the files as though they 

were local files. Unlike other protocols, an NFS server is stateless: it doesn't save any 

information about a client between requests. In other words, all client requests are considered 

independently and must therefore contain all the information necessary for execution. All NFS 

read and write requests must include file offsets, unlike local file reads and writes that 
proceed from where the last one left off. The stateless nature of the NFS server causes 

messages to be larger, potentially consuming network bandwidth. The advantage of 

statelessness is that the server is not affected when a client crashes. The best way to 

configure NFS on a Beowulf system is to minimize the number of mount points, set the read 

and write buffer sizes to the maximum allowable values (8,192 bytes), and use the autofs 
daemon discussed later in this section. You can set the buffer sizes using the rsize and 

wsize options for the NFS file systems listed /etc/fstab. A typical fstab entry for mounting 

'/home' may look like the following: 

b001:/home  /home nfs  rw,hard,intr,bg,rsize=8192,wsize=8192 0 0 
The original Linux NFS implementation allowed only a single NFS server to run at a time. This 

presented severe scaling problems for Beowulf clusters, where many internal nodes would 

mount home directories and other file systems from the worldly node. A single NFS server 
would serialize all network file system accesses, creating a severe bottleneck for disk writes. 

Disk reads were not as  adversely impacted because the clients would cache files locally. 

More recent versions of the Linux NFS implementation allowed multiple servers operating in 

read-only mode. While this was useful for certain local area network applications, where 

workstations might mount read-only '/usr/' partitions, it was not of such great benefit to 

Beowulf clusters, where internal nodes frequently require NFS for performing disk writes. The 

versions of the Linux NFS code released in 1998, starting with version 2.2beta32, have 

added support for multiple servers in read/write mode, though scaling remains an issue. 

While the stateless nature of the NFS approach provides a relatively simple way to achieve 

reliability in the presence of occasional failures, it introduces significant performance 

penalties because each operation must "start from scratch." To address the performance 

issues, NFS is normally operated in a mode that caches information at both the server (the 

system directly attached to the disk) and the client (the node that is accessing the 

NFS-mounted file). The mechanisms provided by NFS are usually sufficient when only one 

client is accessing a file; this is the usual situation encounter by users. Even in NFSv3, 
however, the mechanisms are not sufficient to maintain cache consistency between clients. 

Hence, problems can arise for parallel applications that attempt to write to a single 

NFS-mounted file.  

6.4.2 AFS 
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The Andrew File System (AFS) was originally developed at Carnegie Mellon University as a 

joint venture with IBM in the mid-1980s. Its purpose was to overcome the scaling problems of 

other network file systems such as NFS. AFS proved to be able to reduce CPU usage and 
network traffic while still delivering efficient file system access for larger numbers of clients. In 

1989, development of AFS was transferred to Transarc Corporation, which evolved AFS into 

the Distributed File System (DFS) included as part of the Distributed Computing Environment 

(DCE). AFS effectively became a proprietary technology before Linux was developed, so AFS 

never played much of a role in the design of Beowulf systems. Recently, however, 
AFS-based file systems have become available for Linux, and a new interest in this network 

file system has emerged in the Beowulf community. The inability of NFS to effectively scale to 

systems containing on the order of 100 processors has motivated this experimentation with 

more scalable file system architectures. However, improvements have been made in the 

Linux NFS code that may obviate the need to explore other network file systems. 

6.4.3 Autofs: The Automounter 

As more nodes are added to a Beowulf, the startup time of the system can increase 

dramatically because of contention for the NFS server on the worldly node that exports home 
directories to the rest of the system. NFS is implemented using ONC RPC, which supports 

only synchronous RPC calls. Therefore the NFS server becomes a single bottleneck through 

which the other systems must pass, one at a time. This phenomenon was a problem on local 

area networks until Sun Microsystems developed an automounting mechanism for NFS. The 

Linux version of this mechanism is the autofs service. Autofs mounts NFS partitions only 

when they are first accessed, rather than automatically at startup. If the NFS partition is not 
accessed for a configurable period of time (typically five minutes), autofs will unmount it. 

Using autofs can reduce system startup times as well as reduce overall system load. 

 
6.5 Remote Command Execution 

In the course of administering or using a Beowulf cluster, it is often necessary to execute 

commands on nodes without explicitly logging into them and typing on the command line. For 
example, the commands may be executed from within a shell script or by a cron job. 

6.5.1 BSD R Commands 

The BSD R commands are a set of programs that first appeared in 4.2BSD to execute 
commands and copy files on remote machines. The major commands areas follows: 

§ rsh: The remote shell allows you to execute shell commands on remote 

nodes and also initiate interactive login sessions. Interactive login sessions 
are initiated by invoking rlogin. 

§ rlogin: The remote login command allows you to start a terminal session by 

logging in to a remote node. 
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§ rcp: The remote copy command llows you to copy files from one node to the 

other. 
The rsh command is the standard way of executing commands and starting parallel 

applications on other nodes. A considerable amount of system software, including the PVM 

and some implementations of the MPI libraries, relies heavily on rsh for remote command 

execution. The rsh command requires that an rsh server ('/usr/sbin/in.rshd ' on most 

Linux systems) run on the remote node. The rsh program connects to the server, which then 

checks that the client's originating port is a privileged port before taking any further action. On 
Unix systems, only processes with root privileges may open privileged ports between 1 and 

1024. The rsh check is a historical artifact dating from the days when a connection 

originating from a privileged port could be trusted on that basis alone. After performing the 
check, the server compares the client's host address with a file called '/etc/hosts.equiv', 

which contains a list of trusted hosts. Connections originating from trusted hosts do not 
require a password to be granted system access. If the host is not in '/etc/hosts.equiv', 

the server checks the home directory of the user with the same user id as the user originating 

the connection for a file called '.rhosts '. The '.rhosts ' file can contain a list of hosts from 

which a user can connect without entering a password. It is like 'hosts.equiv ', but checked 

on a user basis rather than a global basis. If the host is not found in '.rhosts', then the user 

is challenged for a password in order to execute the remote command. The rsh command is 

extremely useful for performing system administration tasks and launching parallel 

applications. However, it allows the execution of a command only on one other node. Many 

times you will want to execute a command on multiple nodes at a time. Typically, Beowulf 
users will write shell scripts that spawn multiple copies of rsh to do this work. More 

comprehensive sets of parallel remote shell commands, designed to be more robust in the 

presence of failures and scalable to large numbers of nodes, have been described in [10] and 

implemented by several groups. In fact, the need to execute commands in parallel is so great 

that many groups have independently invented variations of the parallel remote shell 

command. 

6.5.2 SSH— The Secure Shell 
The secure shell, SSH, is a set of security-conscious drop-in replacements for the BSD rsh, 
rlogin, and rcp commands. The SSH counterparts are ssh, slogin, and scp. The main 

problem with the BSD R commands is that they transmit passwords across the network in 

plain text, which makes it extremely easy to steal passwords. In addition, the use of 
'.rhosts' files tends be a weak point in system security. Another problem is that the R 

commands have to be installed as suid root because they must open privileged ports on the 

client node. The R commands are more than adequate to use in an ostensibly secure 
environment, such as the internal nodes of a guarded Beowulf system (see Section 7.1.3), 

which are normally configured with their own private network. Nodes exposed to the external 

world, however, should be allowed access only via a secure mechanism such as SSH. 
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SSH is a commercial product developed by SSH Communications Security, Ltd., which offers 

both Win32 and Unix versions. The Unix version is available as open source software and 
can be downloaded from www.ssh.fi, with precompiled binaries available at many sites. 

SSH encrypts all network communication, including passwords, and uses a public key-based 

authentication system to verify host and user identities. Many Beowulf systems install SSH as 
standard system software, a practice we strongly recommend. Eventually, the use of rsh will 

have to be discarded because of its reliance on a fundamentally insecure authentication 

model. Also, rsh makes poor use of the limited number of privileged ports between 512 and 

1024, using two of them for every connection that maintains a standard error stream. Thus, 

the worldly node of a Beowulf with 32 internal nodes and only four users executing 

commands on all nodes would have its allowable rsh connections maxed out. Even if the 

additional security is unnecessary, SSH should be used to keep from running out of privileged 

ports. 
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Chapter 7: Setting Up Clusters— Installation and 

Configuration 

Overview 
Thomas Sterling and Daniel Savarese 

If building a Beowulf only involved assembling nodes, installing software on each one, and 

connecting the nodes to each other with a network, this book would end right here. But as you 

may have guessed, there is more to building a Beowulf than just those tasks. Once you have 

assembled a Beowulf, you have to keep it running, maintain software, add and remove user 

accounts, organize the file system layout, and perform countless other tasks that fall under 
the heading of system management. Some of these management tasks are very similar to 

those of traditional LAN administration, about which entire books have been written. But the 

rules have not yet been fully established for Beowulf system administration. It is still 

something of a black art, requiring not only familiarity with traditional LAN management 

concepts, but also some parallel programming skills and a creative ability to adapt 
workstation and LAN software to the Beowulf environment. This chapter describes some of 

the more common approaches applied by practitioners of this evolving craft and presents 

some other procedures that have not yet become common practice. 

Even though both corporate LANs and Beowulf systems comprise collections of networked 

PCs, they differ significantly in terms of their installation, use, maintenance, and overall 

management. A LAN is usually formed from a loosely coupled heterogeneous collection of 

computers that share disk and printing resources, in addition to some network services, such 
as Web and database servers. A Beowulf cluster is a more tightly coupled collection of 

computers where the majority of components are identically configured and collectively 

operate as a single machine.  

This chapter begins by discussing the choices available for connecting your Beowulf to the 

outside world. We then discuss the steps needed to set up the Beowulf nodes. The remaining 

sections cover the rudiments of system administration for a Beowulf. 

 
7.1 System Access Models 

Before assigning IP addresses to Beowulf nodes, designing the network topology, and 
booting the machine, you need to decide how the system will be accessed. System access 

literally refers to how a user can log in to a system and use the machine. Allowable system 

access modes relate directly to how you configure your system both logically and physically. 

There are three principal schemes for permitting user access to Beowulf machines, the first of 

which is seldom used. 
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7.1.1 The Standalone System 

The most basic way of configuring a Beowulf is to set it up as a standalone system 

unattached to any external networks. This design requires a user to be in the same room as 
the Beowulf, sitting at its front-end keyboard and monitor to write and execute programs. 

Usually this is done only when first assembling the system and when upgrading or debugging 

the system. Certain high-security environments may require that a system be configured in 

this manner, but the utility of the system becomes limited when the system cannot be 

accessed over an external network. Institutions that decide to configure a Beowulf in this 
manner should include multiple front-end nodes, so that multiple users may simultaneously 

use the machine. When a system is configured in this manner, it is not necessary to pay any 

special attention to the IP addresses used. Any valid set of network addresses will do, but it is 

advisable to use the reserved address ranges mentioned in Section 6.1.1. 

7.1.2 The Universally Accessible Machine 

At the opposite end of the spectrum from the standalo ne configuration lies the universally 
accessible machine. In this configuration, each system node draws its IP address from the 

pool of addresses assigned to an organization. This allows internal nodes to be directly 

accessible by outside connection reques ts. In other words, every node is accessible from the 

entire Internet. The primary negative aspect of this configuration is that it greatly increases 

management tasks associated with security. It also unnecessarily consumes a large quantity 

of IP addresses that could otherwise be used by the organization's local area network. If your 

local area network already sits behind a firewall and uses a reserved address range, then this 

may be an appropriate configuration, allowing access to any node from any machine on your 

LAN. Also, some applications, such as Web and database load-balancing servers, may 
require exposing all nodes to the external network. However, you will have to take care in 

arranging your network switches and associated connections so as to prevent LAN traffic 

congestion from interfering with Beowulf system traffic. In addition, if you choose to add 

multiple network interfaces to each node, you should probably not attach them to the external 

network. 

7.1.3 The Guarded Beowulf 

Somewhere in between the first two configurations stands the guarded Beowulf, which is 

probably the most commonly used configuration. The guarded Beowulf assigns reserved IP 

addresses to all of its internal nodes, even when using multiple networks. To communicate 

with the outside world, a single front-end, called the worldly node, is given an extra network 

interface with an IP address from the organization's local area network. Sometimes more than 
one worldly node is provided. But in all cases, to access the rest of the system, a user must 

first log in to a worldly node. The benefits of this approach are that you don't consume 

precious organizational IP addresses and you constrain system access to a limited number of 

controllable access points, facilitating overall system management and security policy 
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implementation. The disadvantage is that internal nodes cannot access the external network. 

But that feature can be remedied by using IP masquerading (discussed later). For increased 

security, it is often desirable to place the worldly nodes behind a firewall. In the rest of this 
chapter, we will use the Guarded Beowulf as the canonical example system unless explicitly 

stated otherwise. 

 
7.2 Assigning Names 

Beowulf system components need to communicate with each other. For intercomponent 
communication to be possible, each component, or node, requires a unique name. For the 

purposes of this chapter, node naming refers to the assignment of both IP addresses and 

hostnames. Naming workstations on a LAN can often be quite arbitrary, except that 

sometimes segmentation of the network restricts the IP addresses available to a set of 

workstations located on a particular segment. Naming Beowulf nodes requires a bit more 

thought and care. 

7.2.1 Statistically Assigned Addresses 
Beowulf clusters communicate internally over one or more private system area networks. One 

(or perhaps more, for redundancy and performance) of the nodes has an additional network 

connection to the outside. These nodes are referred to as worldly nodes to distinguish them 

from internal nodes, which are connected only to the private cluster network. Because the 

internal nodes are not directly connected to the outside, they can use the reserved IP 

addresses discussed in Chapter 6. Specifically, most clusters assign their worldly node to 

address 192.168.1.1, and assign internal nodes sequentially to addresses in the range 

192.168.1.2 to 192.168.1.253. The worldly node will always have a second network interface, 

possessing a routable IP address that provides connectivity to the organizational LAN. 

From long experience, we have found that internal hostnames should be trivial. Most Beowulf 

clusters have assigned very simple internal hostnames of the format 

<cluster-letter><node-number>. For instance, the first Beowulf named its nodes using simply 
the letter b as a prefix, but made the mistake of calling its first node b0. While it is natural for 

those steeped in the long-standing computer science tradition of starting indices at zero, it is 

better to map the numbers contained in hostnames directly to the last octet of the node IP 
address. For example, 198.168.1.1 becomes node b1, and 198.168.1.2 becomes b2. As you 

can see, there can be no b0 node, because 198.168.1.0 is a network number, and not a host 

address. Directly mapping the numbers starting from 1 facilitates the writing of custom system 

utilities, diagnostic tools, and other short programs usually implemented as shell scripts. If 

you plan to have more than 9 nodes in your system, it might be desirable to name all of your 
nodes using two digits. For example, b1 becomes b01 and b2 becomes b02. Similarly, for 

systems with more than 99 nodes, b1 should become b001 and b10 should become b010. 

When physically administrating a cluster, you often need to know the MAC addresses of the 

network cards in nodes, as well as their names and IP addresses. The simplest reason is that 
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when something goes wrong with a node, you have to walk into the machine room and 

diagnose the problem, often simply rebooting the culprit node. For this reason, you should 

label each node with its hostname, IP address, and the MAC addresses of the network 
interface cards. If you use a consistent IP address to hostname mapping, you can get by with 

labeling the nodes with their names and MAC addresses. MAC addresses go in the 
'bootptab' (see Section 7.3.3), so you will want to record them when you install the NICs 

into their cases. If you forgot to do this, the ifconfig command will report the MAC address 

of configured controllers. For small systems, labeling of nodes is superfluous, but for larger 
numbers of nodes, this simple measure could save you many hours. 

7.2.2 Dynamically Assigned Addresses 

So far we have discussed naming nodes with statically assigned addresses. Every time a 
node is booted, it obtains its hostname and IP address from its local configuration files. You 

need not always configure your system this way. If all of your internal nodes have identical 

software images, there is no reason why they necessarily require fixed IP addresses and 

hostnames. It is possible to configure a system so that every time an internal node boots, it 

receives an IP address from a pool of available addresses. Worldly nodes, however, need to 

continue using fixed IP addresses because they provide resources to internal nodes that 

must be accessed through a known host address. The advantage of using dynamically 

assigned addresses is that internal nodes become completely interchangeable, facilitating 

certain system maintenance procedures. If you decide to convert your universally accessible 

machine to a guarded Beowulf, all you have to do is change the IP addresses in the DHCP 

(Dynamic Host Configuration Protocol) or BOOTP server's configuration files, rather than 

update config files on every single node. The downside of dynamic addressing is that unless 
you take proper precautions, it can become difficult to determine what physical box in the 

machine room corresponds to a specific IP address. This is where the suggested labeling of 

nodes with MAC addresses comes in handy. If you know the MAC address of a misbehaving 

node, you can find it by visually scanning the labels. All in all, it is easier if the mapping 

between MAC addresses, hostnames, and IP addresses changes as infrequently as possible. 
 

7.3 Installing Node Software 

After choosing a configuration scheme, the next step in turning your mass of machines into a 

Beowulf is to install an operating system and standard software on all of the nodes. 

The internal nodes of a Beowulf cluster are almost always identically configured. [1] The 
hardware can be slightly different, incorporating different generation processors, disks, and 

network interface cards. But the file system layout, kernel version, and installed software are 

the same. Only the worldly node exhibits differences, since it generally serves as the 

repository of user home directories and centralized software installations exported via NFS. 
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In general, you will install the operating system and extra support software on the worldly 

node first. Once this is complete, you can begin to install software on the remainder of the 

nodes. 

Years ago this was a daunting task involving the installation of nodes one at a time by hand, 

building custom boot disks and installing over the network, or copying entire disks. Today, a 

number of packages automate a great deal of the process for most systems. Three examples 

of cluster installation packages are 
§ NPACI Rocks Clustering Toolkit, rocks.npaci.edu 

§ OSCAR Packaged Cluster Software Stack, 
www.csm.ornl.gov/oscar/software.html  

§ Scalable Cluster Environment, smile.cpe.ku.ac.th/research/sce  

All of these packages work in a similar manner. The desired configuration is described via 

either text files or a GUI. This includes how the disk will be organized into partitions and file 

systems, what packages should be installed, and what network addresses should be used. 

Defaults for these are available as a starting point. A boot floppy image for use in installation 

is provided. The nodes are booted and discovered by the server using DHCP or BOOTP and 

IP addresses are matched to MAC addresses. Finally, the package configures the nodes as 
specified. 

To provide a clearer picture of what goes on during this process, we will walk through the 

necessary steps, most of which are now handled by the above-mentioned software. You can 

skip to Section 7.4 if you do not need or want to know how this works. The approach is simple. 

First, a single internal node is configured. Once this is done, all other nodes are "cloned" from 
this installation. This way, only two systems are configured by hand. Aside from saving time 

up front, cloning also facilitates major system upgrades. Changes to the software 

configuration of internal nodes that require an update to all of the nodes may be performed by 

modifying a single node and pushing changes out to the remainder of the nodes. In addition, 

cloning makes it easier to recover from certain unexpected events such as disk failures or 
accidental file system corruption. Installing a new disk (in the case of a disk failure), then 

recloning the node, returns it to working order. 

Node cloning relies on the BOOTP protocol to provide a node with an IP address and a root 
file system for the duration of the cloning procedure. In brief, the following steps are involved: 

1. Manually configure a single internal node. 

2. Create tar files for each partition. 

3. Set up a clone root directory on the worldly node. 
4. Configure BOOTP on the worldly node. 

5. Install a special init script in the clone root directory on the worldly node. 

6. Create a boot disk with an NFSROOT kernel. 

The basic premise behind our example cloning procedure is for the new node to mount a root 

file system over NFS, which contains the cloning support programs, configuration files, and 



 131 

partition archives. When the Linux kernel finishes loading, it looks for a program called 

'/sbin/init ', which executes system initialization scripts and puts the system into multiuser 

mode. The cloning procedure replaces the standard '/sbin/init' with a program that 

partitions the hard drives, untars partition archives, and executes any custom cloning 

configuration scripts before rebooting the newly cloned system. 

7.3.1 Creating Tar Images 
After configuring the internal node, an archive of each disk partition is made, omitting '/proc ' 

because it is not a physical disk partition. The normal procedure is to change the current 

working directory to the partition mount point and use a tar command such as 

tar zlcf /worldly/nfsroot/partition-name.tgz . 
The l option tells the tar command to archive files only in directories stored on the local 

partition, avoiding files in directories that serve as mount points for other partitions. A potential 

pitfall of this archiving method is that there may not be enough room on the local disk to store 
the partitions. Rather than creating them locally, one should store the tar file on an NFS 

partition on the worldly node. Ultimately, the files must be moved to the worldly node, so it 

makes sense to store them there in the first place. 

7.3.2 Setting Up a Clone Root Partition 
Next we create a root directory on the worldly node for use in the cloning process. This 

directory is exported via NFS to the internal node network. The directory contains the 

following subdirectories: 'bin', 'dev', 'etc', 'lib', 'mnt', 'proc', 'sbin', 
'tmp'. The 'proc ' and 'mnt ' directories are empty, as they will be used as mount points 

during the cloning process. The 'dev' directory contains all the standard Linux device files. 

Device files are special, and cannot be copied normally. The easiest way to create this 

directory is by letting tar do the work by executing the following command as root: 

tar -C / -c -f - dev | tar xf - 
This will create a 'dev' directory containing all the device files found on the worldly node. All 

the remaining directories are copied normally, except for 'tmp' and 'etc', which are left empty. 

The 'usr ' directory tree should not be needed. An 'fstab ' file should also be created in 'etc ' 

containing only the following line, so that the '/proc ' file system may be mounted properly: 

none     /proc     proc     default     0 0 
You also may need to include a 'hosts' file. 

Once the NFS root file system is built, the partition archives are moved into the file system as 

well. We place these in a separate directory which will be accessed by our init script. We 
replace the 'sbin/init ' executable with our cloning init script. This script will be invoked by 

the clone node's kernel to perform the cloning process. Tasks performed by the script include 

drive partitioning, archive extraction, and configuration file tweaking. Some configuration files 
in the NFS root file system must be tweaked if nodes aren't set up to configure themselves 

through DHCP or BOOTP. The primary configuration files are ones dependent on the node IP 
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address, such as '/etc/sysconfig/network ' and 

'/etc/sysconfig/network-scripts/ifcfg-eth0' on Red Hat-based systems. 

7.3.3 Setting Up BOOTP 

BOOTP [2] was originally devised to allow the booting of diskless clients over a network. 

BOOTP provides a mapping between a hardware address and an IP address. A BOOTP 

client needs to fetch an IP address before making use of any additional information so that it 

may speak to NFS or other servers referenced by the configuration information. The BOOTP 

daemon further makes available the name of a directory on the BOOTP server containing a 
boot kernel, the name of the kernel file, and the name of a root directory structure exported 

via NFS that the diskless client can mount. We will utilize this facility in our install process in 

order to assign IP addresses to nodes as they are booted and to provide the location of our 

NFS root file system. 

The 'bootptab ' file tells the bootpd daemon how to map hardware addresses to IP 

addresses and hostnames. It also describes a root path entry for our NFS exported root 
directory. The 'bootptab' file will look something like the example shown in Figure 7.1. 

Figure 7.1: Sample bootptab for a system with three nodes: b002, b003, and b004. 

 
The .default entry is a macro defining a set of options common to all of the entries. Each 

entry includes these default options by including tc=.default. The other entries are simply 

hostnames followed by IP addresses and hardware addresses. The rp option specifies our 

NFS root partition.  

.default:\ 

        :sm=255.255.255.0:\ 

        :ht=ether:\ 

        :gw=192.168.1.1:\ 

        :rp=/export/nfsroot/: 

b002:ip=192.168.1.2:ha=0080c8638a2c:tc=.default 

b003:ip=192.168.1.3:ha=0080c86359d9:tc=.default 

b004:ip=192.168.1.4:ha=0080c86795c8:tc=.default 
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IP addresses to be used during the installation process are defined in this file. It is convenient 

to define the permanent mapping of IP addresses to nodes at this point and use these same 

addresses during the installation. 
The BOOTP software distributed with Linux is well documented, so we won't describe it in 

length. To activate the BOOTP daemon, create the '/etc/bootptab ' configuration file, 

uncomment the line in '/etc/inetd.conf' (see Section 4.3.1) that invokes bootpd, and 

restart the inetd server on the BOOTP server (i.e., the worldly node). At this point the 

worldly node is prepared to assign IP addresses and serve files during the installation 
process. 

On the client side, the diskless client boot sequence involves obtaining an IP address using 
BOOTP, establishing a TFTP connection to the boot server and fetching a kernel, loading the 

kernel, and mounting an NFS exported directory as a root file system. In general this process 

is initiated either by a ROM-based facility for operation without a drive or by a bootable floppy 

disk or CD-ROM. We will assume that a hardware facility is not available, so next we must 

create the boot floppy that will be used to initiate the cloning process on the client nodes. 

7.3.4 Building a Clone Boot Floppy 

The purpose of our boot disk is simply to bootstrap the cloning procedure by obtaining an IP 

address and NFS file system location from the BOOTP server and mounting this file system, 

over the network, as root. Unfortunately, it is not likely that the kernel installed on the worldly 

node has these capabilities built in, so it is necessary to build one. A kernel with these 

capabilities is commonly called an NFSROOT kernel. Compiling the Linux kernel is relatively 

easy, as discussed in Section 4.2.1. 

The configuration of this kernel must include NFS root file system support as well as support 
for the network interface cards. Once compiled, the kernel will be stored in a file called 

'zImage ' or 'bzImage' depending on the compression option used. This kernel must be 

further modified in order to force it to boot, using the NFS directory obtained via BOOTP. The 
root device used by a kernel is stored in the kernel image and can be altered with the rdev 

program, usually located in '/usr/sbin '. The root device must be the NFS file system, but 

no device file exists for this purpose by default, so you must create one. This is accomplished 
with mknod: 

mknod /dev/nfsroot b 0 255 

This creates a dummy block device with special major and minor device numbers that have 

special meaning to the Linux kernel. Once this device file is available, you should instruct the 

Linux kernel to use this as the root device with 

rdev zImage /dev/nfsroot 
Following this, write the kernel to a floppy with the dd command 

dd if=zImage of=/dev/fd0 bs=512 
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After creating your first clone disk, test it on a node to make sure everything works. After this 

test, you can duplicate the floppy to clone multiple nodes at once. Once the system is up and 

running, it is no longer necessary to use floppies for cloning. Instead, you can clone nodes 
that already have an active operating system by installing a clone kernel and rebooting; this 

can even be done remotely. 

[1]Management and use of a Beowulf are greatly simplified when all nodes are nearly identical. 

[2]"Bootstrap Protocol (BOOTP)," Internet Engineering Task Force RFC 951, 

info.internet.isi.edu/in-notes/rfc/files/rfc951.txt. 

7.4 Basic System Administration 

Simply getting a cluster up and running can be a challenging endeavor; but once you 've done 

it, it won't seem so difficult anymore. For your first cluster, it will probably be a lot easier to 

skip the cloning process. You can go ahead and install identical software from scratch on all 

of your nodes, including your worldly node. After you get a feel for how you are using the 

system, you can fine tune it by removing nonessential software from internal nodes and 

setting up a node cloning system. 

7.4.1 Booting and Shutting Down 

Perhaps one of the most inelegant features of a Beowulf cluster is how you turn it on and off. 
There is no master switch you can flip to turn on the entire system. This facility would be of 

limited usefulness in any case because Beowulfs usually consist of many parts some of which 

depend on others to boot properly. A robust and usable power management system is 
required, which also provides fine-grained control over each piece of the machine. The least 

expensive solution is to walk from machine to machine turning on or off individual nodes. 

While this method works out fairly well for small to medium sized clusters, however, it is not 

acceptable for any sizable cluster.  

For large machines, remote control over the power state of each node is required. Although 
some vendors are starting to support power management via special on-board hardware, 

most node hardware is not equipped with remote power management logic. When on-board 
support is unavailable, a network -accessible power strip can provide a useful alternative. 

Multiple vendors offer network-accessible power strips that allow you to control individual 

power ports over the network. While these provide complete control over the power supplied 

to each node, a few remaining details must be considered before deployment. One important 

issue when choosing a power management system is the "statefulness" of your node's power 

switch. Some motherboards do not automatically reboot on restoration of power; if this is the 

case with your hardware, then a network-enabled power strip is not a viable solution. Finally, 

it is important when using this configuration to ensure that your kernel does not power off the 

machine on shutdown. Otherwise extra trips to the machine room will be in order. 
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An example of a large cluster using remote power management can be found in Chapter 18. 

7.4.2 The Node File System 

The Linux operating system follows a convention called the Linux File system Hierarchy 
Standard. [3] Beowulf nodes by default follow the same convention with one or two twists. The 

main consideration in deciding how to set up node file systems isn't so much how to organize 

the directory structure, but rather how to partition the disks and what mount points to use for 

each partition. The primary partitions usually correspond to the following directories: 

/ The root partition, containing system configuration and log files 
/boot An optional partition for storing kernel images, often just a regular directory in the root 

partition 

/home A partition containing all user directories 

/opt An optional partition for additional software 

/usr A partition containing all standard system software 

/scratch A partition used as scratch space for large temporary data files (for nodes with a 

very large disk or multiple disks, it is common to have several scratch partitions, named 

'scratch1', 'scratch2' , and so on) 

The real issue with regard to file systems on the cluster is the availability of user home 
directories across the cluster. Typically, user data is stored in '/home' on the worldly node. 

Users log in to this node and perform any number of interactive tasks before spawning a 

parallel job on the cluster. Ideally, you would like the same file system space seen on the 

worldly node to be seen on the nodes by allowing networked access to the files. In practice, 

this is problematic, for two reasons. First, this introduces additional nonapplication traffic on 

the internal network, which leads to poorer and less predictable application communication 
performance. Second, the most popular mechanism for providing this functionality, NFS, has 

been shown to scale poorly to large clusters. This said, the convenience of globally 

accessible home directories leads many cluster administrators to provide this functionality, 

and one must hope that in the future an adequate "global file system" will become available. 

The most common alternative is to provide users with separate directory space on each node 
and to provide utilities for aiding in application and data migration onto the cluster. The 

advantages and disadvantages of this approach in the context of a large cluster are 

discussed in Chapter 18. 

Other less common file system configurations include "crossmounting" of file systems, which 

makes the file systems of each node available on every other node via NFS or some other 
network file system, and shared '/usr' partitions. Cross-mounting helps take advantage of 

unused disk space on nodes by making this space available across the cluster; however, this 

comes at the expense of some network performance due to the file system traffic. Shared 
'/usr' partitions helps save space on node disks. The drop in cost of storage space for 

commodity clusters has virtually eliminated the use of shared shared partitions such as this, 

however, since nodes tend to have more than adequate free space.  
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7.4.3 Account Management 

User account management generally is handled in one of two ways. The first is to assign an 
account to a user on the worldly node and then copy the '/etc/passwd ' file to every node. 

The second is to configure the internal nodes to use Network Information System, either NIS 

or NIS+, for user authentication. This approach requires that accounts be configured on the 

worldly node, which should be the home of the NIS server. Each method has advantages and 

disadvantages, which we will mention shortly. In both cases, setting up the account on the 

worldly node works the same way. You can use either the useradd  command, which 
supersedes the older adduser  command (this may be a symbolic link to useradd on some 

systems), or one of the emerging Linux system administration tools such as linuxconf. 

These commands will create a home directory for the new user containing system default 
config files and will create an entry in '/etc/passwd ' storing the user's encrypted password, 

home directory location, and shell. 
After a new user has an account on the worldly node, the internal nodes must have some 

mechanism for accessing this data for authentication purposes. The most commonly 

implemented method is to simply copy the '/etc/passwd' file to all the internal nodes, 

usually using one of rdist, rcp, or pdsh. The '/etc/group ' file is often modified in the 

process of adding a user, so it should be copied as well. When multiple administrators are 

granting or modifying accounts, care must be taken that these configurations files remain 
identical on all the nodes. The use of utilities such as userdel (or deluser) and groupdel 

helps to ensure that the worldly node files are not simultaneously updated, which is a good 

first step in maintaining consistency. 

The alternative method of managing user accounts is to use a directory service, such as NIS, 
to store user account information. NIS stores all directory data in a central server, which is 

contacted by clients (the nodes) to perform authentication. This eases system administration 

considerably, since only one point of control exists for account management. However, this 

has the side effect of generating extra network traffic. For example, every time a user logs 

into a node, the node must contact the server to verify the user exists and check the supplied 

password. The latency involved in this process can greatly slow parallel application launching 

as well. For these reasons, many Beowulf sites forego NIS for distributing account 
information. 

7.4.4 Running Unix Commands in Parallel 

Managing a Beowulf cluster involves an almost endless number of tasks that require 

execution of a command on multiple nodes at a time. Common operations include copying 

files to every node of a Beowulf (such as user applications, libraries, or configuration files) or 

checking for and killing runaway processes. Many groups have developed a command or 

suite of commands to run a program on every node (or a subset of nodes) in a Beowulf. One 

set, called the Scalable Unix Tools and defined in 1994 [10], was originally developed for 

massively parallel computers but is equally appropriate for Beowulf clusters. Several 
implementations of these tools are available at www.mcs.anl.gov/sut [25] and 
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smile.cpe.ku.ac.th. For example, ptexec may be used to execute the same command 

on any collection of nodes: 

ptexec -M "node1 node2" /sbin/shutdown -h now 

The command 

ptexec -all killall amok 
kills all versions of the process named amok on the cluster. The Scalable Unix Tools follow 

the Unix philosophy of tool building; it is easy to build tools by piping the output from one tool 

into the input of another. For example, 

ptpred -all '-f /home/me/myapp' | ptdisp 
presents a graphical display showing which nodes have the file '/home/me/myapp'. 

[3]The Linux FHS was formerly known as the Linux File System Standard (FSSTND). The latest 

version of the Linux FHS, as well as the older FSSTND, is published at 
www.pathname.com/fhs/. 

7.5 Avoiding Security Compromises 

After the number of computers connected to the Internet exploded in the mid-1990s, it 
became impossible to attach a computer to a network without paying some attention to 

preventive security measures. The situation is no different with Beowulf clusters and is even 

more important because making a Beowulf accessible via the Internet is like setting up one or 

more new departmental LANs. We have already made some minor referenc es to security but 

will discuss it now in more detail. 

Linux workstations and Beowulf clusters are not inherently more insecure than other 

computers. Any computer attached to a network has the potential to be broken into. Even if 
one takes measures to restrict access to a computer as tightly as possible, software running 

on it may have exploitable bugs that can grant unauthorized access to the system. The only 

way to maintain a secure network is to keep abreast of the latest CERT advisories [4] and take 

basic preventive measures. Several Beowulf systems have been victimized by crackers [5] in 

ways that could have been prevented by paying a little bit of attention to security issues. 

7.5.1 System Configuration 

How you defend your Beowulf from attack will depend on the choice of system access model. 
The universally accessible machine is the most vulnerable, while the standalone machine is 

the most secure, since it is not attached to an external network. The guarded Beowulf is the 

most practical configuration to defend, because its only entry points are its worldly nodes. It is 
possible to focus on implementing security measures for only the worldly nodes and allow the 

internal nodes to trust each other completely. Even though it is possible for an intruder to gain 

access to the internal nodes once a worldly node is compromised, it is not necessary to 
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completely secure the internal nodes. These nodes can easily be recreated through cloning 

and generally do not store sensitive persistent data. Despite the security advantages 

presented by the guarded Beowulf access model, however, other needs may demand the 
implementation of a universally accessible machine. For such a configuration, each individual 

node must be secured, since each one constitutes an external access point. 

7.5.2 Restricting Host Access 

The primary way crackers force access to a machine is by exploiting known bugs in 

commonly run server software. The easiest way to avoid compromises, then, is to carefully 

control the ways in which the machine may be accessed. The first step in controlling access is 

disabling unused services. This process has the side benefit of freeing up additional 

resources on your machine, which can lead to better performance. Chapter 4 thoroughly 

covers this process. 

Some services must be left so that users can access the machine remotely. For these 

remaining services it makes sense to limit who can connect to them; however, many servers 

permit universal access without authentication. Two mechanisms are commonly used to limit 

the hosts that can access these services: TCP wrappers and IP filtering (i.e., using a firewall). 
The TCP wrappers package, distributed as standard Linux software, acts as a intermediary 

between server daemons and potential clients, performing additional authentication and 

host-based access checks before allowing the client to communicate with the server. The 

TCP wrappers package requires that a daemon be able to treat its standard input and output 

as a socket connection. By requiring this, the TCP wrappers daemon, tcpd, can accept 

connections for another daemon, check for authorization, and then invoke the other daemon, 
turning the socket file descriptor into the daemon's standard input and output. The tcpd 

daemon is normally invoked by inetd and listed in '/etc/inetd.conf' in front of each 

daemon. This is because all daemons that support inetd launching are TCP wrappers 

compatible. The TCP wrappers package uses the '/etc/hosts.deny' and 
'/etc/hosts.allow' files to decide whether or not to allow a server connection to proceed. 

Rather than protecting every single one of the system daemons with TCP wrappers, one can 
shield the entire system behind a firewall. This is becoming an increasingly popular measure 

as security attacks become more common. Firewalls come in many shapes and sizes, 

including dedicated hardware running custom ROMs. An inexpensive option is to use the 

Linux operating system and a spare PC equipped with two network interface cards. The Linux 

Documentation Project [6] provides information on how to do this in its Firewall HOWTO 

document. Firewalls have two advantages over the use of TCP wrappers. First, firewalls allow 

control of access at both the packet and protocol levels, which can provide protection from a 

larger variety of attacks, including some denial-of-service attacks. Second, security policies 

may be implemented at a single administrative point, simplifying the maintenance of the 

system. 

7.5.3 Secure Shell 
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The easiest way to break into a system is to steal someone's password. Programs for 

capturing the traffic across networks and extracting password information are readily 

available on the Internet. While administrators have little control over the quality of passwords 
users choose, eliminating access to the system via services that transmit passwords in 

plaintext reduces the chances of passwords being "sniffed" off the network. 

Traditional host access protocols such as FTP, Telnet, and RSH require passwords to be 
transmitted over the network in the clear (in unencrypted plain text). Although the local 

network may be secure, once packets leave this safe area they travel through many other 

systems before reaching their ultimate destination. One of those systems may have had its 

security compromised. When a user logs into a Beowulf from across the country using such a 
service, all of his keystrokes might be actively monitored by some sniffer in an intervening 

network. For this reason, it is highly recommended not to allow Telnet, FTP, or RSH access to 

your Beowulf. A universally accessible machine should disable these services on all of the 

nodes, while a guarded Beowulf might disable the services only on the worldly node. 

The best alternative to these services for remote access to a Beowulf is SSH, which is now 
the standard remote login and remote execution method used on Unix machines on the 

Internet. SSH encrypts all communications between two endpoints, including the X-Window 

display protocol, eliminating the chance that passwords or other sensitive bits of information 

are discovered by intermediate eavesdroppers. Many SSH implementations are available, 

including implementations for the Windows platform. OpenSSH[7] is becoming the most 
widely used implementation for Unix systems, since it is well supported and current (it is also 

open source and released under an unrestrictive license). Since OpenSSH is easy to install 

and very portable, Beowulf machines have also started using it as an rsh replacement. Most 

SSH packages also include a program called 'scp' as a replacement for 'rcp', thus allowing 

secure file transfer as well as interactive login sessions. 

7.5.4 IP Masquerading 

If a guarded configuration is implemented and it is necessary for nodes to contact the outside 
world, network address translation is the best option. Network Address Translation, [8] 

commonly referred to as NAT, is a technique devised for reusing IP addresses as a stopgap 

measure to slow the depletion of the IPv4 address space. NAT permits IP address reuse by 
allowing multiple networks to use the same addresses but having them communicate 

between each other through a pair of nonshared IP address. IP masquerading is a type of 

NAT performed by the worldly node of a Beowulf cluster that  makes external network 

connections appear to originate from the single worldly node. This feature allows the internal 

nodes to originate network connections to external Internet hosts but provides security by not 
having a mechanism for an external host to set up a connection to an internal node.  

A nice feature about IP masquerading is that it doesn't involve too many steps to set up. Only 
the node performing the masquerading requires any amount of reconfiguration. The internal 
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nodes simply require their default route to be set to the internal network address of the worldly 

node, usually 192.168.1.1. You can do this with the route command as follows: 

route add default gw 192.168.1.1 
However, most Linux distributions perform gateway assignment at boot time based on a 

configuration file. Red Hat Linux stores gateway configuration information in the file 
'/etc/sysconfig/network ', which contains two variables: GATEWAY and GATEWAYDEV. 

These should be set to the IP address of the worldly node and the primary internal network 

interface name of the internal node. A typical network configuration file for an internal node 

might look something like the following: 

NETWORKING=yes 

FORWARD_IPV4=false 

HOSTNAME=b001 

DOMAINNAME=beowulf.org 

GATEWAY=192.168.1.1 

GATEWAYDEV=eth0 
Configuring the worldly node to perform the IP masquerading requires a little more work, but 

nothing particularly difficult. The first requirement is to compile your kernel with support for 
network firewalls, IP forwarding/gatewaying, and IP masquerading. There are also some 

additional options you may wish to include, but these are the essential ones. More information 

about the particulars of each option can be found in the Linux kernel source tree in the 
'masquerading.txt' documentation file and also in the IP Masquerade HOWTO.[9] 

After installing a kernel capable of IP masquerading, you need to enable IP forwarding. You 
can do this on Red Hat Linux systems by setting the FORWARD_IPV4 variable to true in 

'/etc/sysconfig/network '. IP forwarding is the process by which a host will forward to its 

destination a packet it receives for which it is not itself the destination. This allows internal 

node packets to be forwarded to external hosts. 

The last step is to configure IP masquerading rules. You don't want your worldly node to 
forward packets coming from just anywhere, so you have to tell it specifically what packets to 

forward. Currently, you can do this by using the iptables utility with 2.4.x Linux kernels; this 

is the evolution of the pre-2.4.x ipfwadm and ipchains  utilities. 

The program iptables configures firewall packet filtering and forwarding rules. It can 

specify rules based on the source and destination of a packet, the network interfaces on 
which a packet is received or transmitted, the network protocol used, destination and source 

ports, and quite a bit of other information. For the purposes of setting up a worldly node, you 

can use iptables to tell the kernel to masquerade only for packets originating from an 

internal node. Use a command like the following: 

iptables -t nat -P PREROUTING DROP 

iptables -t nat --source 192.168.1.0/24 -j ACCEPT 
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iptables -t nat -P PREROUTING -j LOG 

The first command sets the default forwarding policy to DROP for the nat (network address 

translation) table. This is a safety measure to make sure your worldly node doesn't forward 
packets not originating from internal nodes. The second command asks the kernel to 

masquerade only for packets originating from within the internal network (192.168.1.0) and 
destined for any location. iptables works on a system of routing chains, such as 

POSTROUTING and PREROUTING that have lists of rules to determine where packets 

matching given characteristics go. The -j switches specify the destination policy for any 

packet matching that rule. Packets move down the chain of rules until they find a matching 

one; a common and helpful debugging measure involves defining the last rule in a chain to 

have no constraints and send packets to the policy LOG. These are handled by iptables, 

which sends them to syslogd so that they can be examined. Ideally no packets should fall 

into this category. Typically, these commands are placed at the end of 
'/etc/rc.d/rc.local ', so that they will be executed at boot time, but you can also create 

a script suitable for use in the '/etc/rc.d/init.d' startup system. The meanings of the 

various iptables  options can be garnered from the iptables man page (iptables is a 

very complex utility, and a thorough perusal of the manual is highly recommended), but a 

quick summary is in order for the options necessary to configure a worldly node: 

-P sets the policy for a given chain.  

-A appends rules to the end of a selected chain. 

-D deletes a rule from the selected chain. 

-j target specifies the target of a rule. 

-s address/mask indicates that a rule applies only to packets originating from the given 
source address range. 

-d address/mask indicates that a rule applies only to packets destined for an address in the 

indicated range. 

While there is much more to system security than we have presented, these tips should get 

you started. Beowulf systems can easily be made as secure as the policies of your institution 
require. See Appendixes B and C for pointers to more specific guides to system administation 

and security. 

[4]CERT is the Computer Emergency Response Team, run by Carnegie Mellon's Software 

Engineering Institute. CERT posts regular bulletins reporting the latest Internet security 
vulnerabilities at www.cert.org/. 

[5]Cracker is the accepted term among computer programmers for a rogue hacker who tries to gain 

unauthorized access to computer systems. The term hacker is restricted to those computer 
programmers not seduced by the Dark Side of the Force. 

[6]The Linux Documentation Project pages are mirrored at many Web sites across the world, but 

the master page is located at www.linuxdoc.org. 
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[7]OpenSSH is available from www.openssh.com 

[8]"The IP Network Address Translator (NAT)," Internet Engineering Task Force RFC 1631, 
info.internet.isi.edu/in-notes/rfc/files/rfc1631.txt . 

[9]The IP Masquerade HOWTO can be found online at the Linux Documentation Project 

www.linuxdoc.org . Additional IP masquerading information is also stored at the Linux IP 
Masquerade Resource, ipmasq.cjb.net/. 

 
7.6 Job Scheduling 
Many Beowulf administrators are interested in better job scheduling functions. Beowulfs 

usually start out with only a few users in a single department, but as news about the system 

spreads to neighboring departments, more users are added to the system. Once that 

happens, it becomes important to keep user-developed applications from interfering with 

each other. This is usually done by funneling all user programs through a job scheduler, 
which decides in what order and on what processors to execute the programs. Part III of this 

book describes scheduling systems that are often used with Beowulf systems (as well as 

other kinds of parallel computers).  
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Chapter 8: How Fast Is My Beowulf? 
David Bailey 

One of the first questions that a user of a new Beowulf-type system asks is "How fast does 

my system run?" Performance is more than just a curiosity for cluster systems. It is arguably 

the central motivation for building a clustered system in the first place— a single node is not 

sufficient for the task at hand. Thus the measurement of performance, as well as 

comparisons of performance between various available system designs and constructions, is 

of paramount importance. 

8.1 Metrics 

Many different metrics for system performance exist, varying greatly in their meaningfulness 

and ease of measurement. We discuss here some of the more widely used metrics. 

1. Theoretical peak performance. This statistic is merely the maximum 

aggregate performance of the system. For scientific users, theoretical peak 

performance means the maximum aggregate floating-point operations per 

second, usually calculated as  

 

where P is the performance, N is the number of nodes, C is the number of CPUs 

per node, F is the number of floating-point operations per clock period, and R is 

the clock rate, measured in cycles per second. P is typically given in Mflops or 

Gflops. For nonscientific applications, integer operations are counted instead of 
floating-point operations per second, and rates are typically measured in Mops 

and Gops, variantly given as Mips and Gips. For nonhomogeneous systems, P is 

calculated as the total of the theoretical peak performance figures for each 

homogeneous subsystem. 

The advantage of this metric is that is very easy to calculate. What's more, there is 
little disputing the result: the relevant data is in many cases publicly available. The 

disadvantage of this metric is that by definition it is unattainable by ordinary 

application programs. Indeed, a growing concern of scientific users— in particular, 

users of parallel and distributed systems— is that the typical gap between peak 

and sustained performance seems to be increasing, not decreasing. 

2. Application performance.  This statistic is the number of operations 

performed while executing an application program, divided by the total run 

time. As with theoretical peak performance, it is typically given in Mflops, 

Gflops, Mops, or Gops. This metric, if calculated for an application program 

that reasonably closely resembles the program that the user ultimately 
intends to run on the system, is obviously a much more meaningful metric 

than theoretical peak performance. The metric is correspondingly harder to 

use, however, because you must first port the benchmark program to the 
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cluster system, often a laborious and time-consuming task. Moreover, you 

must determine fairly accurately the number of floating-point (or integer) 

operations actually performed by the code. Along this line, you should 
ascertain that the algorithms used in the code are really the most efficient 

available for this task, or you should use a floating-point operation count that 

corresponds to that of an efficient algorithm implementation; otherwise, the 

results can be questioned. One key difficulty with this metric is the extent to 

which the source code has been "tuned" for optimal performance on the given 
system: comparing results that on one system are based on a highly tuned 

implementation to those on another system where the application has not be 

highly tuned can be misleading. Nonetheless, if used properly, this metric can 

be very useful. 

3. Application run time.  This statistic simply means the total wall-clock run 
time for performing a given application. One advantage of this statistic is that 

it frees you from having to count operations performed. Also, it avoids the 

potential distortion of using a code to assess performance whose operation 

count is larger than it needs be. In many regards, this is the ultimate metric, in 

the sense that it is precisely the ultimate figure of merit for an application 

running on a system. The disadvantage of this metric is that  unless you are 

comparing two systems both of which have run exactly the same application, 

it is hard to meaningfully compare systems based solely on comparisons of 

runtime performance. Further, the issue of tuning also is present here: In 

comparing performance between systems, you have to ensure that both 
implementations have been comparably tuned. 

4. Scalability. Users often cite scalability statistics when describing the 

performance of their system. Scalability is usually computed as 

 
where T (1) is the wall clock run time for a particular program on a single processor 

and T(N) is the run time on N processors. A scalability figure close to N means that 

the program scales well. That is, the parallel implementation is very efficient, and 

the parallel overhead very low, so that nearly a linear speedup has been achieved. 
Scalability statistics can often provide useful information. For ex- ample, they can 

help you determine an optimal number of processors for a given application. But 

they can also be misleading, particularly if cited in the absence of application 

performance statistics. For example, an impressive speedup statistic may be due 

to a very low value of T(N), which appears in the denominator, but it may also be 

due to a large value of T (1)— in other words, an inefficient one-processor 

implementation. Indeed, researchers working with parallel systems commonly 

note that their speedup statistic worsens when they accelerate their parallel 
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program by clever tuning. Also, it is often simply impossible to compute this 

statistic because, while a benchmark test program may run on all or most of the 

processors in a system, it may require too much memory to run on a single node. 
5. Parallel efficiency.  A variant of the scalability metric is parallel efficiency, 

which is usually defined to be P (N)/N. Parallel efficiency statistics near one 

are ideal. This metric suffers from the same potential difficulties as the 

scalability metric. 

6. Percentage of peak. Sometimes application performance statistics are given 
in terms of the percentage of theoretical peak performance. Such statistics 

are useful in highlighting the extent to which an application is using the full 

computational power of the system. For example, a low percentage of peak 

may indicate a mismatch of the architecture and the application, deserving 

further study to determine the source of the difficulty. However, a 
percentage-of-peak figure by itself is not too informative. An embarrassingly 

parallel application can achieve a high percentage of peak, but this is not a 

notable achievement. In general, percentage-of-peak figures beg the 

question "What percentage of peak is a realistic target for a given type of 

application?" 

7. Latency and bandwidth. Many users are interested in the latency (time 

delay) and bandwidth (transfer rate) of the interprocessor communications 

network, since the network is one of the key elements of the system design. 

These metrics have the advantage of being fairly easy to determine. The 

disadvantage is that the network often performs differently under highly 
loaded situations from what the latency and bandwidth figures by themselves 

reveal. And, needless to say, these metrics characterize only the network and 

give no information on the computational speed of individual processors. 

8. System utilization. One common weakness of the cited metrics is that they 

tend to ignore system -level effects. These effects include competition 
between two different tasks running in the system, competition between 

I/O-intensive tasks and non-I/O-intensive tasks, inefficiencies in job 

schedulers, and job startup delays. To address this issue, some Beowulf 

system users have measured the performance of a system on a long-term 

throughput basis, as a contrast to conventional benchmark performance 
testing.  

Clearly, no single type of performance measurement— much less a single figure of merit— is 
simultaneously easy to determine and completely informative. In one sense, only one figure 

of merit matters, as emphasized above: the wall clock run time for your particular application 

on your particular system. But this is not easy to determine before a purchase or upgrade 

decision has been made. And even if you can make such a measurement, it is not clear how 
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to compare your results with the thousands of other Beowulf system users around the world, 

not to mention other types of systems and clusters. 

These considerations have led many users of parallel and cluster systems to compare 
performance based on a few standard benchmark programs. In this way, you can determine 

whether your particular system design is as effective (as measured by a handful of 

benchmarks) as another. Such comparisons might not be entirely relevant to your particular 

application, but with some experience you can find one or more well-known benchmarks that 

give performance figures that are well correlated with your particular needs. 

 
8.2 Ping-Pong Test 
One of the most widely used measurements performed on cluster systems is the Ping-Pong 

test, one of several test programs that measure the latency and band-width of the 

interprocessor communications network. There are a number of tools for testing TCP 
performance, including netperf and netpipe (see www.netperf.org and 

www.scl.ameslab.gov/netpipe). Ping-Pong tests that are appropriate for application 

developers measure the performance of the user API and are typically written in C and 

assume that the MPI communications library is installed on the system. More details on 

downloading and running these are given in Section 10.10. 

 

8.3 The LINPACK Benchmark 
The LINPACK benchmark dates back to the early 1980s, when Jack Dongarra (then at 

Argonne National Laboratory) began collecting performance results of systems, based on 

their speed in solving a 100 × 100 linear system using Fortran routines from the LINPACK 

library. While a problem of this size is no longer a supercomputer-class exercise, it is still 

useful for assessing the computational performance of a single-processor system. In 

particular, it is a reasonable way to measure the performance of a single node of a 

Beowulf-type system. One can obtain the LINPACK source code, plus instructions for running 
the LINPACK benchmark, from the www.netlib.org/benchmark . 

More recently, Dongarra has released the "highly parallel computing" benchmark. This 

benchmark was developed for medium -to-large parallel and distributed systems and has 
been tabulated on hundreds of computer systems [8, Table 3]. Unlike the basic LINPACK 

benchmark, the scalable version does not specify a matrix size. Instead, the user is invited to 

solve the largest problem that can reasonably be run on the available system, given 

limitations of memory. Further, the user is not restricted to running a fixed source code, as 

with the single-processor version. Instead, almost any reasonable programming language 
and parallel computation library can be run, including assembly-coded library routines if 

desired. 

A portable implementation of the highly parallel LINPACK benchmark, called the High 

Performance LINPACK (HPL) benchmark, is available. More details on downloading and 

running the HPL benchmark are given in Section 10.10.3. 
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During the past ten years, Dongarra and Strohmaier have compiled a running list of the 

world's so-called Top500 computers, based on the scalable LINPACK benchmark. The 
current listing is available from the www.top500.org. One of the top-ranking systems is the 

ASCI Red system at Sandia National Laboratories in Albuquerque, New Mexico. The ASCI 

Red system is a Pentium-based cluster system, although not truly a "Beowulf" system 

because it has a custom-designed interprocessor network. With an Rmax rating of 2.379 

Tflops, it currently ranks third in the Top500 list (based on the June 2001 listing). 

The LINPACK benchmarks are fairly easy to download and run. Once a timing figure is 

obtained, the calculation of performance is very easy. Most significant, there is a huge 

collection of results for comparison: it is very easy to determine how your system stacks up 
against other similar systems. 

The principal disadvantage of the LINPACK benchmarks, both single processor and parallel, 

is that they tend to overestimate the performance that real-world scientific applications can 

expect to achieve on a given system. This is because the LINPACK codes are "dense matrix" 

calculations, which have very favorable data locality characteristics. It is not uncommon for 

the scalable LINPACK benchmark, for example, to achieve 30 percent or more of the 

theoretical peak performance potential of a system. Real scientific application codes, in 
contrast, seldom achieve more than 10 percent of the peak figure on modern 

distributed-memory parallel systems such as Beowulf systems. 

 
8.4 The NAS Parallel Benchmark Suite 

The NAS Parallel Benchmark (NPB) suite was designed at NASA Ames Research Center in 

1990 to typify high-end aeroscience computations. This suite consists of eight individual 

benchmarks, including five general computational kernels and three simulated computational 
fluid dynamics applications: 

EP: An "embarrassingly parallel" calculation, it requires almost no interprocessor 

communication. 

MG: A multigrid calculation, it tests both short - and long-distance communication. 

CG: A conjugate gradient calculation, it tests irregular communication. 

FT: A three-dimensional fast Fourier transform calculation, it tests massive all-to-all 

communication. 

IS: An integer sort, it involves integer data and irregular communication. 

LU: A simulated fluid dynamics application, it uses the LU approach. 

SP: A simulated fluid dynamics application, it uses the SP approach. 
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BT: A simulated fluid dynamics application, it uses the BT approach. 

The original NPB suite was a "paper-and -pencil" specification— the specific calculations to be 

performed for each benchmark were specified in a technical document, even down to the 

detail of how to generate the initial data. Some straightforward one -processor sample 

program codes were provided in the original release, but it was intended that those 

implementing this suite would use one of several vendor -specific parallel programming 

models available at the time (1990). The original NPB problem set was deemed Class A size. 

Subsequently some larger problem sets were defined: Class B, which are about four times as 

large as the Class A problems, and Class C, which are about four times as large as Class B 

problems. The small single-processor sample codes are sometimes referred to as the Class 
W size.  

Since the original NPB release, implementations of the NPB using MPI and also OpenMP 

have been provided by the NASA team. These are available at 
www.nas.nasa.gov/Software/NPB/ . 

As with the LINPACK benchmark, the NPB suite can be used to measure the performance of 

either a single node of a Beowulf system or the entire system. In particular, the Class W 

problems can easily be run on a single-processor system. For a Beowulf system with, say, 32 
processors, the Class A problems are an appropriate test. The Class B problems are 

appropriate for systems with roughly 32–128 processors. The Class C problems can be used 

for systems with up to 256 CPUs. 

Unfortunately, almost the entire NASA research team that designed and championed the 
NPB suite has now left NASA. As a result, NASA is no longer actively supporting and 

promot ing the benchmarks. Thus, there probably will not be any larger problem sets 

developed. Further, NASA is no longer actively collecting results. 

The NPB suite does, however, continue to attract attention from the parallel computing 

research community. This is because the suite reflects real-world parallel scientific 

computation to a significantly greater degree than do most other available benchmarks. 

We recommend that users of Beowulf-type systems use the MPI version of the NPB suite. 
Instructions for downloading, installing, and running the suite are given at the NPB Web site. 
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Chapter 9: Parallel Programming with MPI 

Overview 
William Gropp and Ewing Lusk  

Parallel computation on a Beowulf is accomplished by dividing a computation into parts and 

making use of multiple processes, each executing on a separate processor, to carry out these 

parts. Sometimes an ordinary program can be used by all the processes, but with distinct 

input files or parameters. In such a situation, no communication occurs among the separate 

tasks. When the power of a parallel computer is needed to attack a large problem with a more 

complex structure, however, such communication is necessary. 

One of the most straightforward approaches to communication is to have the processes 
coordinate their activities by sending and receiving messages, much as a group of people 

might cooperate to perform a complex task. This approach to achieving parallelism is called 

message passing. 

In this chapter and the next, we show how to write parallel programs using MPI, the Message 
Passing Interface. MPI is a message-passing library specification. All three parts of this 

description are significant. 

§ MPI addresses the message-passing model of parallel computation, in which 
processes with separate address spaces synchronize with one another and 

move data from the address space of one process to that of another by 

sending and receiving messages.[1] 

§ MPI specifies a library interface, that is, a collection of subroutines and their 

arguments. It is not a language; rather, MPI routines are called from 
programs written in conventional languages such as Fortran, C, and C++. 

§ MPI is a specification, not a particular implementation. The specification was 

created by the MPI Forum, a group of parallel computer vendors, computer 

scientists, and users who came together to cooperatively work out a 

community standard. The first phase of meetings resulted in a release of the 

standard in 1994 that is sometimes referred to as MPI-1. Once the standard 
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was implemented and in wide use a second series of meetings resulted in a 

set of extensions, referred to as MPI-2. MPI refers to both MPI-1 and MPI-2. 

As a specification, MPI is defined by a standards document, the way C, Fortran, or POSIX are 
defined. The MPI standards documents are available at www.mpi-forum.org and may be 

freely downloaded. The MPI-1 and MPI-2 standards are also available as journal issues [21,  

22] and in annotated form as books in this series [29, 11]. Implementations of MPI are 

available for almost all parallel computers, from clusters to the largest and most powerful 

parallel computers in the world. In Section 9.8 we provide a summary of the most popular 
cluster implementations. 

A goal of the MPI Forum was to create a powerful, flexible library that could be implemented 
efficiently on the largest computers and provide a tool to attack the most difficult problems in 

parallel computing. It does not always do the simplest things in the simplest way but comes 

into its own as more complex functionality is needed. In this chapter and the next we work 

through a set of examples, starting with the simplest. 

[1]Processes may be single threaded, with one program counter, or multithreaded, with multiple 

program counters. MPI is for communication among processes rather than threads. Signal 

handlers can be thought of as executing in a separate thread. 

9.1 Hello World in MPI 
To see what an MPI program looks like, we start with the classic "hello world" program. MPI 

specifies only the library calls to be used in a C, Fortran, or C++ program; consequently, all of 

the capabilities of the language are available. The simplest "Hello World" program is shown in 

Figure 9.1. 

#include "mpi.h" 

#include <stdio.h> 

 

int main( int argc, char *argv[] ) 

{ 

MPI_Init( &argc, &argv ); 

printf( "Hello World\n" ); 

MPI_Finalize(); 

return 0; 
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} 

 

Figure 9.1: Simple "Hello World" program in MPI. 
All MPI programs must contain one call to MPI_Init and one to MPI_Finalize. All other[2] 

MPI routines must be called after MPI_Init  and before MPI_Finalize. All C and C++ 

programs must also include the file 'mpi.h '; Fortran programs must either use the MPI 

module or include mpif.h. 

The simple program in Figure 9.1 is not very interesting. In particular, all processes print the 

same text. A more interesting version has each process identify itself. This version, shown in 
Figure 9.2, illustrates several important points. Of particular note are the variables rank and 

size. Because MPI programs are made up of communicating processes, each process has 

its own set of variables. In this case, each process has its own address space containing its 
own variables rank and size (and argc, argv, etc.). The routine MPI_Comm_size 

returns the number of processes in the MPI job in the second argument. Each of the MPI 

processes is identified by a number, called the rank , ranging from zero to the value of size 

minus one. The routine MPI_Comm_rank returns in the second argument the rank of the 

process. The output of this program might look something like the following: 

Hello World from process 0 of 4 

Hello World from process 2 of 4 

Hello World from process 3 of 4 

Hello World from process 1 of 4 
Note that the output is not ordered from processes 0 to 3. MPI does not specify the behavior 

of other routines or language statements such as printf; in particular, it does not specify 

the order of output from print statements. 

#include "mpi.h" 

#include <stdio.h> 

 

int main( int argc, char *argv[] ) 

{ 

int rank, size; 

 

MPI_Init( &argc, &argv ); 

MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
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MPI_Comm_size( MPI_COMM_WORLD, &size ); 

printf( "Hello World from process %d of %d\n", rank, size ); 

MPI_Finalize(); 

return 0; 

} 

 

Figure 9.2: A more interesting version of "Hello World". 

9.1.1 Compiling and Running MPI Programs 

The MPI standard does not specify how to compile and link programs (neither do C or 
Fortran). However, most MPI implementations provide tools to compile and link programs. 

For example, one popular implementation, MPICH, provides scripts to ensure that the correct 

include directories are specified and that the correct libraries are linked. The script mpicc can 

be used just like cc to compile and link C programs. Similarly, the scripts mpif77, mpif90,  
and mpiCC may be used to compile and link Fortran 77, Fortran, and C++ programs. 

If you prefer not to use these scripts, you need only ensure that the correct paths and libraries 
are provided. The MPICH implementation provides the switch-show for mpicc that shows the 

command lines used with the C compiler and is an easy way to find the paths. Note that the 

name of the MPI library may be 'libmpich.a', 'libmpi.a', or something similar and 
that additional libraries, such as 'libsocket.a' or 'libgm.a', may be required. The include 

path may refer to a specific installation of MPI, such as 

'/usr/include/local/mpich-1.2.2/include '. 

Running an MPI program (in most implementations) also requires a special program, 

particularly when parallel programs are started by a batch system as described in Chapter 13.  
Many implementations provide a program mpirun that can be used to start MPI programs. 

For example, the command 

mpirun -np 4 helloworld 
runs the program helloworld using four processes. Most MPI implementations will attempt 

to run each process on a different processor; most MPI implementations provide a way to 

select particular processors for each MP I process. 

The name and command-line arguments of the program that starts MPI programs were not 
specified by the original MPI standard, just as the C standard does not specify how to start C 

programs. However, the MPI Forum did recommend, as part of the MPI-2 standard, an 

mpiexec command and standard command-line arguments to be used in starting MPI 

programs. By 2002, most MPI implementations should provide mpiexec. This name was 

selected because no MPI implementation was using it (many are using mpirun, but with 
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incompatible arguments). The syntax is almost the same as for the MPICH version of mpirun; 

instead of using -np to specify the number of processes, the switch -n is used: 

mpiexec -n 4 helloworld 
The MPI standard defines additional switches for mpiexec; for more details, see Section 4.1, 

"Portable MPI Process Startup", in the MPI-2 standard. 

9.1.2 Adding Communication to Hello World 

The code in Figure 9.2 does not guarantee that the output will be printed in any particular 

order. To force a particular order for the output, and to illustrate how data is communicated 
between processes, we add communication to the "Hello World" program. The revised 

program implements the following algorithm: 

Find the name of the processor that is running the process 

If the process has rank > 0, then 

send the name of the processor to the process with rank 0 

Else 

print the name of this processor 

for each rank, 

receive the name of the processor and print it 

Endif 
This program is shown in Figure 9.3. The new MPI calls are to MPI_Send  and MPI_Recv and 

to MPI_Get_processor_name. The latter is a convenient way to get the name of the 

processor on which a process is running. MPI_Send and MPI_Recv can be understood by 

stepping back and considering the two requirements that must be satisfied to communicate 

data between two processes: 

1. Describe the data to be sent or the location in which to receive the data 
2. Describe the destination (for a send) or the source (for a receive) of the data. 

#include "mpi.h" 

#include <stdio.h> 

 

int main( int argc, char *argv[] ) 

{ 

int  numprocs, myrank, namelen, i; 

char processor_name[MPI_MAX_PROCESSOR_NAME]; 
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char greeting[MPI_MAX_PROCESSOR_NAME + 80]; 

MPI_Status status; 

 

MPI_Init( &argc, &argv ); 

MPI_Comm_size( MPI_COMM_WORLD, &numprocs ); 

MPI_Comm_rank( MPI_COMM_WORLD, &myrank ); 

MPI_Get_processor_name( processor_name, &namelen ); 

 

sprintf( greeting, "Hello, world, from process %d of %d on %s", 

myrank, numprocs, processor_name ); 

 

if ( myrank == 0 ) { 

printf( "%s\n", greeting ); 

for ( i = 1; i < numprocs; i++ ) { 

MPI_Recv( greeting, sizeof( greeting ), MPI_CHAR, 

i, 1, MPI_COMM_WORLD, &status ); 

printf( "%s\n", greeting ); 

} 

} 

else { 

MPI_Send( greeting, strlen( greeting ) + 1, MPI_CHAR, 

0, 1, MPI_COMM_WORLD ); 

} 
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MPI_Finalize( ); 

return( 0 ); 

} 

 

Figure 9.3: A more complex "Hello World" program in MPI. Only process 0 writes to stdout; each 

process sends a message to process 0. 

In addition, MPI provides a way to tag messages and to discover information about the size 

and source of the message. We will discuss each of these in turn. 

Describing the Data Buffer. A data buffer typically is described by an address and a length, 
such as "a,100," where a is a pointer to 100 bytes of data. For example, the Unix write call 

describes the data to be written with an address and length (along with a file descriptor). MPI 

generalizes this to provide two additional capabilities: describing noncontiguous regions of 

data and describing data so that it can be communicated between processors with different 

data representations. To do this, MPI uses three values to describe a data buffer: the address, 
the (MPI) datatype, and the number or count of the items of that datatype. For example, a 

buffer containing four C ints is described by the triple "a, 4, MPI_INT." There are 

predefined MPI datatypes for all of the basic datatypes defined in C, Fortran, and C++. The 

most common datatypes are shown in Table 9.1. 

 
 

Table 9.1: The most common MPI datatypes. C and Fortran types on the same row are 

often but not always the same type. The type MPI_BYTE is used for raw data bytes and 

does not coorespond to any particular datatype. The C++ MPI datatypes have the same 
name as the C datatype, but without the MPI_ prefix, for example, MPI::INT. 

 
C Fortran 

 
MPI type 

 
MPI type  

 

int 
MPI_INT 

INTEGER 
MPI_INTEGER  

double 
MPI_DOUBLE 

DOUBLE 
PRECISION 

MPI_DOUBLE_PRECISION 

float  MPI_FLOAT REAL MPI_REAL 
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Table 9.1: The most common MPI datatypes. C and Fortran types on the same row are 

often but not always the same type. The type MPI_BYTE is used for raw data bytes and 

does not coorespond to any particular datatype. The C++ MPI datatypes have the same 
name as the C datatype, but without the MPI_ prefix, for example, MPI::INT. 

 
C Fortran 

 
MPI type 

 
MPI type  

 

long 
MPI_LONG    

char 
MPI_CHAR  

CHARACTER 
MPI_CHARACTER 

  LOGICAL 
MPI_LOGICAL  

—  MPI_BYTE  —  MPI_BYTE 

 

Describing the Destination or Source . The destination or source is specified by using the 

rank of the process. MPI generalizes the notion of destination and source rank by making the 

rank relative to a group of processes. This group may be a subset of the original group of 

processes. Allowing subsets of processes and using relative ranks make it easier to use MPI 

to write component-oriented software (more on this in Section 10.4). The MPI object that 

defines a group of processes (and a special communication context that will be discussed in 

Section 10.4) is called a communicator. Thus, sources and destinations are given by two 
parameters: a rank and a communicator. The communicator MPI_COMM_WORLD is predefined 

and contains all of the processes started by mpirun or mpiexec. As a source, the special 

value MPI_ANY_SOURCE may be used to indicate that the message may be received from 

any rank of the MPI processes in this MPI program. 
Selecting among Messages. The "extra" argument for MPI_Send  is a nonnegative integer 
tag value. This tag allows a program to send one extra number with the data. MPI_Recv can 

use this value either to select which message to receive (by specifying a specific tag value) or 
to use the tag to convey extra data (by specifying the wild card value MPI_ANY_TAG). In the 

latter case, the tag value of the received message is stored in the status argument (this is 

the last parameter to MPI_Recv in the C binding). This is a structure in C, an integer array in 

Fortran, and a class in C++. The tag and rank of the sending process can be accessed by 
referring to the appropriate element of status as shown in Table 9.2. 

Table 9.2: Accessing the source and tag after an MPI_Recv. 

C Fortran C++ 

 

status.MPI_SOURCE status(MPI_SOURCE) status.Get_source() 
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Table 9.2: Accessing the source and tag after an MPI_Recv. 

C Fortran C++ 

 

status.MPI_TAG status(MPI_TAG) status.Get_tag() 

Determining the Amount of Data Received. The amount of data received can be found by 
using the routine MPI_Get_count . For example, 

MPI_Get_count( &status, MPI_CHAR, &num_chars );  
returns in num_chars the number of characters sent. The second argument should be the 

same MPI datatype that was used to receive the message. (Since many applications do not 

need this information, the use of a routine allows the implementation to avoid computing 
num_chars unless the user needs the value.) 

Our example provides a maximum -sized buffer in the receive. It is also possible to find the 
amount of memory needed to receive a message by using MPI_Probe, as shown in Figure 

9.4. 

char *greeting; 

int num_chars, src; 

MPI_Status status; 

... 

MPI_Probe( MPI_ANY_SOURCE, 1, MPI_COMM_WORLD, &status ); 

MPI_Get_count( &status, MPI_CHAR, &num_chars ); 

greeting = (char *)malloc( num_chars ); 

src      = status.MPI_SOURCE; 

MPI_Recv( greeting, num_chars, MPI_CHAR, 

src, 1, MPI_COMM_WORLD, &status ); 

 
Figure 9.4: Using MPI_Probe to find the size of a message before receiving it. 

MPI guarantees that messages are ordered and that an MPI_Recv  after an MPI_Probe  will 

receive the message that the probe returned information on as long as the same message 

selection criteria (source rank, communicator, and message tag) are used. Note that in this 
example, the source for the MPI_Recv is specified as status.MPI_SOURCE, not 

MPI_ANY_SOURCE , to ensure that the message received is the same as the one about which 

MPI_Probe returned information. 
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[2]There are a few exceptions, including MPI_Initialized. 

9.2 Manager/Worker Example 

We now begin a series of examples illustrating approaches to parallel computations that 
accomplish useful work. While each parallel application is unique, a number of paradigms 

have emerged as widely applicable, and many parallel algo rithms are variations on these 

patterns. 

One of the most universal is the "manager/worker" or "task parallelism" approach. The idea is 

that the work that needs to be done can be divided by a "manager" into separate pieces and 
the pieces can be assigned to individual "worker" processes. Thus the manager executes a 

different algorithm from that of the workers, but all of the workers execute the same algorithm. 

Most implementations of MPI (including MPICH) allow MPI processes to be running different 

programs (executable files), but it is often convenient (and in some cases required) to 

combine the manager and worker code into a single program with the structure shown in 

Figure 9.5. 

#include "mpi.h" 

 

int main( int argc, char *argv[] ) 

{ 

int numprocs, myrank; 

 

MPI_Init( &argc, &argv ); 

MPI_Comm_size( MPI_COMM_WORLD, &numprocs ); 

MPI_Comm_rank( MPI_COMM_WORLD, &myrank ); 

 

if ( myrank == 0 )          /* manager process */ 

manager_code ( numprocs ); 

else                        /* worker process */ 

worker_code ( ); 
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MPI_Finalize( ); 

return 0; 

} 

 

Figure 9.5: Framework of the matrix-vector multiply program. 

Sometimes the work can be evenly divided into exactly as many pieces as there are workers, 

but a more flexible approach is to have the manager keep a pool of units of work larger than 

the number of workers, and assign new work dynamically to workers as they complete their 

tasks and send their results back to the manager. This approach, called self -scheduling,  

works well in the presence of tasks of varying sizes and/or workers of varying speeds. 

We illustrate this technique with a parallel program to multiply a matrix by a vector. (A Fortran 

version of this same program can be found in [13].) This program is not a particularly good 

way to carry out this operation, but it illustrates the approach and is simple enough to be 
shown in its entirety. The program multiplies a square matrix a by a vector b and stores the 

result in c. The units of work are the individual dot products of the rows of a with the vector b. 

Thus the manager, code for which is shown in Figure 9.6, starts by initializing a. The manager 

then sends out initial units of work, one row to each worker. We use the MPI tag on each such 

message to encode the row number we are sending. Since row numbers start at 0 but we 
wish to reserve 0 as a tag with the special meaning of "no more work to do", we set the tag to 

one greater than the row number. When a worker sends back a dot product, we store it in the 

appropriate place in c and send that worker another row to work on. Once all the rows have 

been assigned, workers completing a task are sent a "no more work" message, indicated by a 

message with tag 0. 

#define SIZE 1000 

#define MIN( x, y ) ((x) < (y) ? x : y) 

 

void manager_code( int numprocs ) 

{ 

double a[SIZE][SIZE], c[SIZE]; 

 

int i, j, sender, row, numsent = 0; 

double dotp; 
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MPI_Status status; 

 

/* (arbitrary) initialization of a */ 

for (i = 0; i < SIZE; i++ ) 

for ( j = 0; j < SIZE; j++ ) 

a[i][j] = ( double ) j; 

 

for ( i = 1; i < MIN( numprocs, SIZE ); i++ ) { 

MPI_Send( a[i-1], SIZE, MPI_DOUBLE, i, i, MPI_COMM_WORLD ); 

numsent++; 

} 

/* receive dot products back from workers */ 

for ( i = 0; i < SIZE; i++ ) { 

MPI_Recv( &dotp, 1, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG, 

MPI_COMM_WORLD, &status ); 

sender = status.MPI_SOURCE; 

row    = status.MPI_TAG - 1; 

c[row] = dotp; 

/* send another row back to this worker if there is one */ 

if ( numsent < SIZE ) { 

MPI_Send( a[numsent], SIZE, MPI_DOUBLE, sender, 

numsent + 1, MPI_COMM_WORLD ); 

numsent++; 
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} 

else                    /* no more work */ 

MPI_Send( MPI_BOTTOM, 0, MPI_DOUBLE, sender, 0, 

MPI_COMM_WORLD ); 

} 

} 

 

Figure 9.6: The matrix-vector multiply program, manager code. 
The code for the worker part of the program is shown in Figure 9.7. A worker initializes b, 

receives a row of a in a message, computes the dot product of that row and the vector b, and 

then returns the answer to the manager, again using the tag to identify the row. A worker 

repeats this until it receives the "no more work" message, identified by its tag of 0. 

void worker_code( void ) 

{ 

double b[SIZE], c[SIZE]; 

int i, row, myrank; 

double dotp; 

MPI_Status status; 

 

for ( i = 0; i < SIZE; i++ ) /* (arbitrary) b initialization */ 

b[i] = 1.0; 

 

MPI_Comm_rank( MPI_COMM_WORLD, &myrank ); 

if ( myrank <= SIZE ) { 

MPI_Recv( c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG, 

MPI_COMM_WORLD, &status ); 
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while ( status.MPI_TAG > 0 ) { 

row = status.MPI_TAG - 1; 

dotp = 0.0; 

for ( i = 0; i < SIZE; i++ ) 

dotp += c[i] * b[i]; 

MPI_Send( &dotp, 1, MPI_DOUBLE, 0, row + 1, 

MPI_COMM_WORLD ); 

MPI_Recv( c, SIZE, MPI_DOUBLE, 0, MPI_ANY_TAG, 

MPI_COMM_WORLD, &status ); 

} 

} 

} 

 
Figure 9.7: The matrix-vector multiply program, worker code. 

This program requires at least two processes to run: one manager and one worker. 

Unfortunately, adding more workers is unlikely to make the job go faster. We can analyze the 

cost of computation and communication mathematically and see what happens as we 

increase the number of workers. Increasing the number of workers will decrease the amount 

of computation done by each worker, and since they work in parallel, this should decrease 

total elapsed time. On the other hand, more workers mean more communication, and the cost 

of communicating a number is usually much greater than the cost of an arithmetical operation 

on it. The study of how the total time for a parallel algorithm is affected by changes in the 

number of processes, the problem size, and the speed of the processor and communication 
network is called scalability analysis. We analyze the matrix-vector program as a simple 

example. 

First, let us compute the number of floating-point operations. For a matrix of size n, we have 

to compute n dot products, each of which requires n multiplications and n - 1 additions. Thus 

the number of floating-point operations is n×(n+(n - 1)) = n×(2n - 1) = 2n2 - n. If Tcalc is the time 
it takes a processor to do one floating-point operation, then the total computation time is (2n2 - 

n) × Tcalc. Next, we compute the number of communications, defined as sending one 

floating-point number. (We ignore for this simple analysis the effect of message lengths.) 
Leaving aside the cost of communicating b (perhaps it is computed locally in a preceding 
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step), we have to send each row of a and receive back one dot product answer. So the 

number of floating-point numbers communicated is (n × n) + n = n2 + n. If Tcomm is the time to 

communicate one number, we get (n2 + n) × Tcomm for the total communication time. Thus the 
ratio of communication time to computation time is 

 

In many computations the ratio of communication to computation can be reduced almost to 0 

by making the problem size larger. Our analysis shows that this is not the case here. As n 

gets larger, the term on the left approaches ½. Thus we can expect communication costs to 

prevent this algorithm from showing good speedups, even on large problem sizes. 

The situation is better in the case of matrix-matrix multiplication, which could be carried out by 
a similar algorithm. We would replace the vectors b and c by matrices, send the entire matrix 

b to the workers at the beginning of the computation, and then hand out the rows of a as work 

units, just as before. The workers would compute an entire row of the product, consisting of 
the dot products of the row of a with all of the column of b, and then return a row of c to the 

manager. 

Let us now do the scalability analysis for the matrix-matrix multiplication. Again we ignore the 
initial communication of b. The number of operations for one dot product is n + (n + 1) as 

before, and the total number of dot products calculated is n2. Thus the total number of 

operations is n2 × (2n - 1) = 2n3 - n2. The number of numbers communicated has gone up to 

(n × n) + (n × n) = 2n2. So the ratio of communication time to computation time has become 

 

which does tend to 0 as n gets larger. Thus, for large matrices the communication costs play 

less of a role. 

Two other difficulties with this algorithm might occur as we increase the size of the problem 

and the number of workers. The first is that as messages get longer, the workers waste more 
time waiting for the next row to arrive. A solution to this problem is to "double buffer" the 

distribution of work, having the manager send two rows to each worker to begin with, so that a 

worker always has some work to do while waiting for the next row to arrive. 

Another difficulty for larger numbers of processes can be that the manager can become 
overloaded so that it cannot assign work in a timely manner. This problem can most easily be 

addressed by increasing the size of the work unit, but in some cases it is necessary to 

parallelize the manager task itself, with multiple managers handling subpools of work units. 
A more subtle problem has to do with fairness: ensuring that all worker processes are fairly 

serviced by the manager. MPI provides several ways to ensure fairness; see [13, Section 

7.1.4]. 
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9.3 Two-Dimensional Jacobi Example with One-Dimensional 
Decomposition 

A common use of parallel computers in scientific computation is to approximate the solution 

of a partial differential equation (PDE). One of the most common PDEs, at least in textbooks, 

is the Poisson equation (here shown in two dimensions): 

(9.3.1) 

(9.3.2) 

 
This equation is used to describe many physical phenomena, including fluid flow and 

electrostatics. The equation has two parts: a differential equation applied everywhere within a 

domain G (9.3.1) and a specification of the value of the unknown u along the boundary of G 
(the notation ?G means "the boundary of G"). For example, if this equation is used to model 

the equilibrium distribution of temperature inside a region, the boundary condition g(x,  y) 

specifies the applied temperature along the boundary, f(x, y) is zero, and u(x, y) is the 

temperature within the region. To simplify the rest of this example, we will consider only a 

simple domain G consisting of a square (see Figure 9.8). 

 
Figure 9.8: Domain and 9 × 9 computational mesh for approximating the solution to the Poisson 

problem. 
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To compute an approximation to u(x, y), we must first reduce the problem to finite size. We 

cannot determine the value of u everywhere; instead, we will approximate u at a finite number 

of points (xi, yj) in the domain, where xi = i × h and yj = j × h. (Of course, we can define a value 
for u at other points in the domain by interpolating from these values that we determine, but 

the approximation is defined by the value of u at the points (xi, yj).) These points are shown as 

black disks in Figure 9.8. Because of this reg ular spacing, the points are said to make up a 

regular mesh. At each of these points, we approximate the partial derivatives with finite 

differences. For example, 

 

If we now let ui,j stand for our approximation to solution of Equation 9.3.1 at the point (xi,  yj), 

we have the following set of simultaneous linear equations for the values of u: 
(9.3.3)

For values of u along the boundary (e.g., at x = 0 or y = 1), the value of the boundary 

condition g is used. If h = 1/(n + 1) (so there are n × n points in the interior of the mesh), this 

gives us n2 simultaneous linear equations to solve.  
Many methods can be used to solve these equations. In fact, if you have this particular 

problem, you should use one of the numerical libraries described in Table 10.1. In this section, 

we describe a very simple (and inefficient) algorithm because, from a parallel computing 

perspective, it illustrates how to program more effective and general methods. The method 

that we use is called the Jacobi method for solving systems of linear equations. The Jacobi 
method computes successive approximations to the solution of Equation 9.3.3 by rewriting 

the equation as follows: 

(9.3.4) 

Each step in the Jacobi iteration computes a new approximation to in terms of the 

surrounding values of uN: 

(9.3.5)
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This is our algorithm for computing the approximation to the solution of the Poisson problem. 

We emphasize that the Jacobi method is a poor numerical method but that the same 

communication patterns apply to many finite difference, volume, or element discretizations 
solved by iterative techniques. 

In the uniprocessor version of this algorithm, the solution u is represented by a 
two-dimensional array u[max_n][max_n], and the iteration is written as follows: 

double u[NX+2][NY+2], u_new[NX+2][NY+2], f[NX+2][NY+2]; 

int    i, j; 

... 

for (i=1;i<=NX;i++) 

for (j=1;j<=NY;j++) 

u_new[i][j] = 0.25 * (u[i+1][j] + u[i-1][j] + 

u[i][j+1] + u[i][j-1] - h*h*f[i][j]); 
Here, we let u[0][j], u[n+1][j], u[i][0], and u[i][n+1] hold the values of the 

boundary conditions g (these correspond to u(0, y), u(1, y), u(x, 0), and u(x, 1) in Equation 

9.3.1). To parallelize this method, we must first decide how to decompose the data structure 

u and u_new across the processes. Many possible decompositions exist. One of the simplest 

is to divide the domain into strips as shown in Figure 9.8. 
Let the local representation of the array u be ulocal; that is, each process declares an array 

ulocal that contains the part of u held by that process. No process has all of u; the data 

structure representing u is decomposed among all of the processes. The code that is used on 

each process to implement the Jacobi method is 

for (i=i_start;i<=i_end;i++) 

for (j=1;j<=NY;j++) 

ulocal_new[i-i_start][j] = 

0.25 * (ulocal[i-i_start+1][j] + ulocal[i-i_start-1][j] + 

ulocal[i-i_start][j+1] + ulocal[i-i_start][j-1] - 

h*h*flocal[i-i_start][j]); 

where i_start and i_end describe the strip on this process (in practice, the loop would be 
from zero to i_end-i_start; we use this formulation to maintain the correspondence with 

the uniprocessor code). We have defined ulocal so that ulocal[0][j] corresponds to 

u[i_start][j] in the uniprocessor version of this code. Using variable names such as 

ulocal that make it obvious which variables are part of a distributed data structure is often a 

good idea. 
From this code, we can see what data we need to communicate. For i=i_start we need 

the values of u[i_start-1][j], and for i=i_end we need u[i_end+1][j] . These 

values belong to the adjacent processes and must be communicated. In addition, we need a 
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location in which to store these values. We could use a separate array, but for regular 

meshes the most common approach is to use ghost or halo cells, where extra space is set 
aside in the ulocal array to hold the values from neighboring processes. In this case, we 
need only a single column of neighboring data, so we will let u_local[1][j]  correspond to 

u[i_start][j]. This changes the code for a single iteration of the loop to 

exchange_nbrs( ulocal, i_start, i_end, left, right ); 

for (i_local=1; i_local<=i_end-i_start+1; i_local++) 

for (j=1; j<=NY; j++) 

ulocal_new[i_local][j] = 

0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] + 

ulocal[i_local][j+1] + ulocal[i_local][j-1] - 

h*h*flocal[i_local][j]); 
where we have converted the i index to be relative to the start of ulocal rather than u. All 

that is left is to describe the routine exchange_nbrs  that exchanges data between the 

neighboring processes. A very simple routine is shown in Figure 9.9. 

void exchange_nbrs( double ulocal[][NY+2], int i_start, int i_end, 

int left, int right ) 

{ 

MPI_Status status; 

int c; 

 

/* Send and receive from the left neighbor */ 

MPI_Send( &ulocal[1][1], NY, MPI_DOUBLE, left, 0, 

MPI_COMM_WORLD ); 

MPI_Recv( &ulocal[0][1], NY, MPI_DOUBLE, left, 0, 

MPI_COMM_WORLD, &status ); 

 

/* Send and receive from the right neighbor */ 

c = i_end - i_start + 1; 
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MPI_Send( &ulocal[c][1], NY, MPI_DOUBLE, right, 0, 

MPI_COMM_WORLD ); 

MPI_Recv( &ulocal[c+1][1], NY, MPI_DOUBLE, right, 0, 

MPI_COMM_WORLD, &status ); 

} 

 

Figure 9.9: A simple version of the neighbor exchange code. See the text for a discussion of the 

limitations of this routine. 

We note that ISO/ANSI C (unlike Fortran) does not allow runtime dimensioning of 

multidimensional arrays. To keep these examples simple in C, we use compile-time 
dimensioning of the arrays. An alternative in C is to pass the arrays a one-dimensional arrays 

and compute the appropriate offsets. 

The values left and right are used for the ranks of the left and right neighbors, 

respectively. These can be computed simply by using the following:  

int rank, size, left, right; 

... 

MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

MPI_Comm_size( MPI_COMM_WORLD, &size ); 

left  = rank - 1; 

right = rank + 1; 

if (left < 0)      left = MPI_PROC_NULL; 

if (right >= size) right = MPI_PROC_NULL; 
The special rank MPI_PROC_NULL  indicates the edges of the mesh. If MPI_PROC_NULL is 

used as the source or destination rank in an MPI communication call, the operation is ignored. 

MPI also provides routines to compute the neighbors in a regular mesh of arbitrary dimension 

and to help an application choose a decomposition that is efficient for the parallel computer. 
The code in exchange_nbrs  will work with most MPI implementations for small values of n 

but, as described in Section 10.3, is not good practice (and will fail for values of NY greater 

than an implementation-defined threshold). A better approach in MPI is to use the 
MPI_Sendrecv routine when exchanging data between two processes, as shown in Figure 

9.10. 

/* Better exchange code.  */ 

void exchange_nbrs( double ulocal[][NY+2], int i_start, int i_end, 
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int left, int right ) 

{ 

MPI_Status status; 

int c; 

 

/* Send and receive from the left neighbor */ 

MPI_Sendrecv( &ulocal[1][1], NY, MPI_DOUBLE, left, 0, 

&ulocal[0][1], NY, MPI_DOUBLE, left, 0, 

MPI_COMM_WORLD, &status ); 

 

/* Send and receive from the right neighbor */ 

c = i_end - i_start + 1; 

MPI_Sendrecv( &ulocal[c][1], NY, MPI_DOUBLE, right, 0, 

&ulocal[c+1][1], NY, MPI_DOUBLE, right, 0, 

MPI_COMM_WORLD, &status ); 

} 

 

Figure 9.10: A better version of the neighbor exchange code. 

In Sections 10.3 and 10.7, we discuss other implementations of the exchange routine that 

can provide higher performance. MPI support for more scalable decompositions of the data is 

described in Section 10.3.2. 

 
9.4 Collective Operations 
A collective operation is an MPI function that is called by all processes belonging to a 

communicator. (If the communicator is MPI_COMM_WORLD, this means all processes, but MPI 

allows collective operations on other sets of processes as well.) Collective operations involve 

communication and also sometimes computation, but since they describe particular patterns 

of communication and computation, the MPI implementation may be able to optimize them 
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beyond what is possible by expressing them in terms of MPI point -to-point operations such as 

MPI_Send and MPI_Recv. The patterns are also easier to express with collective operations. 

Here we introduce two of the most commonly used collective operations and show how the 
communication in a parallel program can be expressed entirely in terms of collective 

operations with no individual MPI_Sends or MPI_Recvs at all. The program shown in Figure 

9.11 computes the value of p by numerical integration. Since 

 

we can compute p  by integrating the function f(x) = 4/(1 + x2) from 0 to 1. We compute an 

approximation by dividing the interval [0,1] into some number of subintervals and then 

computing the total area of these rectangles by having each process compute the areas of 

some subset. We could do this with a manager/worker algorithm, but here we preassign the 
work. In fact, each worker can compute its set of tasks, and so the "manager" can be a worker, 

too, instead of just managing the pool of work. The more rectangles there are, the more work 

there is to do and the more accurate the resulting approximation of p  is. To experiment, let us 

make the number of subintervals a command-line argument. (Although the MPI standard 

does not guarantee that any process receives command-line arguments, in most 

implementations, especially for Beowulf clusters, one can assume that at least the process 
with rank 0 can use argc and argv, although they may not be meaningful until after 

MPI_Init is called.) In our example, process 0 sets n, the number of subintervals, to 

argv[1]. Once a process knows n, it can claim approximately of the work by claiming 

every nth rectangle, starting with the one numbered by its own rank. Thus process j computes 

the areas of rectangles j , j + n , j + 2n, and so on. 

#include "mpi.h" 

#include <stdio.h> 

#include <math.h> 

double f(double a) { return (4.0 / (1.0 + a*a)); } 

 

int main(int argc,char *argv[]) 

{ 

int  n, myid, numprocs, i; 

double PI25DT = 3.141592653589793238462643; 
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double mypi, pi, h, sum, x; 

double startwtime = 0.0, endwtime; 

 

MPI_Init(&argc,&argv); 

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 

MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

if (myid == 0) { 

startwtime = MPI_Wtime(); 

n = atoi(argv[1]); 

} 

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 

h   = 1.0 / (double) n; 

sum = 0.0; 

for (i = myid + 1; i <= n; i += numprocs) { 

x = h * ((double)i - 0.5); 

sum += f(x); 

} 

mypi = h * sum; 

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); 

if (myid == 0) { 

endwtime = MPI_Wtime(); 

printf("pi is approximately %.16f, Error is %.16f\n", 

pi, fabs(pi - PI25DT)); 
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printf("wall clock time = %f\n", endwtime-startwtime); 

} 

MPI_Finalize(); 

return 0; 

} 

 

Figure 9.11: Comput ing p using collective operations. 

Not all MPI implementations make the command-line arguments available to all processes, 

however, so we start by having process 0 send n to each of the other processes. We could 

have a simple loop, sending n to each of the other processes one at a time, but this is 

inefficient. If we know that the same message is to be delivered to all the other processes, we 

can ask the MPI implementation to do this in a more efficient way than with a series of 
MPI_Sends and MPI_Recvs. 
Broadcast (MPI_Bcast) is an example of an MPI collective operation. A collective operation 

must be called by all processes in a communicator. This allows an implementation to arrange 

the communication and computation specified by a collective operation in a special way. In 
the case of MPI_Bcast, an implementation is likely to use a tree of communication, 

sometimes called a spanning tree, in which process 0 sends its message to a second process, 
then both processes send to two more, and so forth. In this way most communication takes 

place in parallel, and all the messages have been delivered in log2 n steps. 

The precise semantics of MPI_Bcast is sometimes confusing. The first three arguments 

specify a message with (address, count, datatype) as usual. The fourth argument (called the 

root of the broadcast) specifies which of the processes owns the data that is being sent to the 
other processes. In our case it is process 0. MPI_Bcast  acts like an MPI_Send on the root 

process and like an MPI_Recv on all the other processes, but the call itself looks the same on 

each process. The last argument is the communicator that the collective call is over. All 

processes in the communicator must make this same call. Before the call, n is valid only at 
the root; after MPI_Bcast has returned, all processes have a copy of the value of n. 

Next, each process, including process 0, adds up the areas of its rectangles into the local 
variable mypi. Instead of sending these values to one process and having that process add 

them up, however, we use another collective operation, MPI_Reduce. MPI_Reduce 

performs not only collective communication but also collective computation. In the call 

MPI_Reduce( &mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

MPI_COMM_WORLD);  
the sixth argument is again the root. All processes call MPI_Reduce, and the root process 

gets back a result in the second argument. The result comes from performing an arithmetic 
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operation, in this case summation (specified by the fifth argument), on the data items on all 

processes specified by the first, third, and fourth arguments. 

Process 0 concludes by printing out the answer, the difference between this approximation 
and a previously computed accurate value of p, and the time it took to compute it. This 

illustrates the use of MPI_Wtime. 

MPI_Wtime returns a double-precision floating-point number of seconds. This value has no 

meaning in itself, but the difference between two such values is the wallclock time between 

the two calls. Note that calls on two different processes are not guaranteed to have any 
relationship to one another, unless the MPI implementation promises that the clocks on 

different processes are synchronized (see MPI_WTIME_IS_GLOBAL in any of the MPI 

books).  
The routine MPI_Allreduce  computes the same result as MPI_Reduce but returns the 

result to all processes, not just the root process. For example, in the Jacobi iteration, it is 
common to use the two-norm of the difference between two successive iterations as a 

measure of the convergence of the solution. 

... 

norm2local = 0.0; 

for (ii=1; ii<i_end-i_start+1; ii++) 

for (jj=1; jj<NY; jj++) 

norm2local += ulocal[ii][jj] * ulocal[ii][jj]; 

MPI_Allreduce( &norm2local, &norm2, 1, MPI_DOUBLE, 

MPI_COMM_WORLD, MPI_SUM ); 

norm2 = sqrt( norm2 ); 

Note that MPI_Allreduce is not a routine for computing the norm of a vector. It merely 

combines values contributed from each process in the communicator. 

 

9.5 Parallel Monte Carlo Computation 
One of the types of computation that is easiest to parallelize is the Monte Carlo family of 

algorithms. In such computations, a random number generator is used to create a number of 
independent trials. Statistics done with the outcomes of the trials provide a solution to the 

problem. 

We illustrate this technique with another computation of the value of p . If we select points at 

random in the unit square [0, 1] × [0, 1] and compute the percentage of them that lies inside 

the quarter circle of radius 1, then we will be approximating . (See [13] for a more detailed 

discussion together with an approach that does not use a parallel random number generator.) 
We use the SPRNG parallel random number generator (sprng.cs.fsu.edu ). The code is 

shown in Figure 9.12. 
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#include "mpi.h" 

#include <stdio.h> 

#define SIMPLE_SPRNG            /* simple interface  */ 

#define USE_MPI                 /* use MPI           */ 

#include "sprng.h"              /* SPRNG header file */ 

#define BATCHSIZE 1000000 

 

int main( int argc, char *argv[] ) 

{ 

int i, j, numin = 0, totalin, total, numbatches, rank, numprocs; 

double x, y, approx, pi = 3.141592653589793238462643; 

 

MPI_Init( &argc, &argv ); 

MPI_Comm_size( MPI_COMM_WORLD, &numprocs ); 

MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 

if ( rank == 0 ) { 

numbatches = atoi( argv[1] ); 

} 

MPI_Bcast( &numbatches, 1, MPI_INT, 0, MPI_COMM_WORLD ); 

for ( i = 0; i < numbatches; i++ ) { 

for ( j = 0; j < BATCHSIZE; j++ ) { 

x = sprng( ); y = sprng( ); 

if ( x * x + y * y < 1.0 ) 



 175 

numin++; 

} 

MPI_Reduce( &numin, &totalin, 1, MPI_INT, MPI_SUM, 0, 

MPI_COMM_WORLD ); 

if ( rank == 0 ) { 

total = BATCHSIZE * ( i + 1 ) * numprocs; 

approx = 4.0 * ( (double) totalin / total ); 

printf( "pi = %.16f; error = %.16f, points = %d\n", 

approx, pi - approx, total ); 

} 

} 

MPI_Finalize( ); 

} 

 

Figure 9.12: Computing p using the Monte Carlo method. 
The defaults in SPRNG make it extremely easy to use. Calls to the sprng function return a 

random number between 0.0 and 1.0, and the stream of random numbers on the different 

processes is independent. We control the grain size of the parallelism by the constant 
BATCHSIZE, which determines how much computation is done before the processes 

communicate. Here a million points are generated, tested, and counted before we collect the 

results to print them. We use MPI_Bcast to distribute the command -line argument specifying 

the number of batches, and we use MPI_Reduce to collect at the end of each batch the 

number of points that fell inside the quarter circle, so that we can print the increasingly 
accurate 

 

9.6 Installing MPICH under Linux 
The MPICH implementation of MPI [12] is one of the most popular versions of MPI. In this 

section we describe how to obtain, build, and install MPICH on a Beowulf cluster. We then 

describe how to set up an MPICH environment in which MPI programs can be compiled, 

executed, and debugged. 
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9.6.1 Obtaining and Installing MPICH 

The current version of MPICH is available at www.mcs.anl.gov/mpi/mpich .[3] From there 

one can download a gzipped tar file containing the complete MPICH distribution, which 

contains 

§ all source code for MPICH, 

§ configure scripts for building MPICH on a wide variety of environments, 

including Linux clusters, 

§ simple example programs like the ones in this chapter, 
§ MPI compliance test programs, 

§ performance benchmarking programs, 

§ several MPI profiling libraries, 

§ the MPE library of MPI extensions for event logging and X graphics, 

§ some more elaborate examples, using the MPE library for graphic output, 
§ the Jumpshot performance visualization system, and 

§ the MPD parallel process management system. 

MPICH is architected so that a number of communication infrastructures can be used. These 
are called "devices." The devices most relevant for the Beowulf environment are the ch_p4 

and ch_p4mpd devices. The ch_p4 device has a few more features, including the ability to 

exploit shared-memory communication and to have different processes execute different 
binaries. The ch_p4mpd  device, on the other hand, provides much faster startup via the MPD 

process manager (see Section 9.6.3) and supports debugging via gdb (see Section 9.6.5). To 

run your first MPI program, carry out the following steps: 
1. Download mpich.tar.gz from www.mcs.anl.gov/mpi/mpich or from 

ftp://ftp.mcs.anl.gov/pub/mpi/mpich.tar.gz 

2. tar xvfz mpich.tar.gz; cd mpich 

3. configure <configure options> > configure.log. Most users will 

want to specify a prefix for the installation path when configuring: 

4. configure --prefix=/usr/local/mpich-1.2.2 >& configure.log 
By default, this creates the ch_p4 device. 

4. make >& make.log 

5. make install >& install.log 

6. Add the '<prefix>/bin ' directory to your path; for example, for tcsh, do 

7. setenv PATH <prefix>/bin:$PATH 

8. rehash 
9. cd examples/basic  

10.  make cpi 

11.  If you configured using the ch_p4mpd  device, start the mpds (see Section 

9.6.3). 
12.  mpirun -np 4 cpi  
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9.6.2 Running MPICH Jobs with the ch_p4 Device 

By default, on Beowulf systems MPICH is built to use the ch_p4 device for process startup 

and communication. This device can be used in multiple ways. The mpirun command starts 
process 0 on the local machine (the one where mpirun is executed). The first process reads 

a file (called the procgroup file) and uses rsh (or ssh) to start the other processes. The 

procgroup file contains lines specifying the processes that are to be started on remote 

machines. For example,  

mpirun -p4pg cpi.pg cpi 1000 
executed on the machine donner, where 'cpi.pg' contains 

local  0 

mentat 1 /home/lusk/progs/cpi 

flute  1 /home/lusk/progs/cpi rusty 
will run cpi with an MPI_COMM_WORLD containing three processes. The first runs on donner, 

the second runs on mentat, and the third on flute. Note that this mechanism allows 

different executables to be run on different machines, and indeed the ch_p4 device in MPICH 

is "heterogeneous"; that is, the machines do not even have to be of the same hardware 
architecture. The "rusty" in the third line of the file specifies an alternate user id on that 

machine. 

If all the executables and user ids are the same, one can use a shorthand form: 

mpirun -np 3 cpi 1000 

This will use a machine's file specified at installation time to select the hosts to run on. 

Finally, process startup time can be improved by using the p4 secure server. This program is 
assumed to be running on each target machine ahead of time. See the MPICH 

documentation for how to use the p4 secure server. 

The ch_p4 device supports communication through shared memory when that is possible. 

To allow for this case, MPICH must be configured with the options 

--with-device=ch_p4 comm=shared 

Then processes specified to share memory will use it for MPI communication, which is more 

efficient that using TCP. The number of processes that should share memory is specified in 
the 'machines' file For more detailed control of which processes should use shared memory, 

you should use the "procgroup" method of starting processes. Thus  

mpirun -p4pg cpi.pg cpi 1000 
where the file cpi.pg contains 

local 1 

castenet 2 /home/lusk/mpich/examples/basic/cpi 
starts four processes, two of them sharing memory on the local machine and two sharing 
memory on the machine castenet . 
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9.6.3 Starting and Managing MPD 

Running MPI programs with the ch_p4mpd device assumes that the mpd  daemon is running 

on each machine in your cluster. In this section we describe how to start and manage these 
daemons. The mpd and related executables are built when you build and install MPICH after 

configuring with 

--with-device=ch_p4mpd -prefix=<prefix directory> <other options> 
and are found in <prefix-directory>/bin, which you should ensure is in your path. A 

set of MPD daemons can be started with the command 

mpichboot <file> <num> 
where file is the name of a file containing the host names of your cluster and num is the 

number of daemons you want to start. The startup script uses rsh to start the daemons, but if 

it is more convenient, they can be started in other ways. The first one can be started with mpd 
-t. The first daemon, started in this way, will print out the port it is listening on for new mpds 

to connect to it. Each subsequent mpd is given a host and port to connect to. The mpichboot 

script automates this process. At any time you can see what mpds are running by using 

mpdtrace. 

An mpd is identified by its host and a port. A number of commands are used to manage the 
ring of mpds: 

mpdhelp prints this information 

mpdcleanup deletes Unix socket files '/tmp/mpd.*' if necessary. 

mpdtrace causes each mpd in the ring to respond with a message identifying itself and its 

neighbors. 
mpdshutdown mpd_id shuts down the specified mpd; mpd_id is specified as 

host_portnum. 

mpdallexit causes all mpds to exit gracefully. 

mpdlistjobs lists active jobs managed by mpds in ring. 

mpdkilljob job_id aborts the specified job. 

Several options control the behavior of the daemons, allowing them to be run either by 

individual users or by root without conflicts. The current set of command-line options 

comprises the following:  
-h <host to connect to> 

-p <port to connect to> 
-c allow console (the default) 

-n don't allow console 

-d <debug (0 or 1)> 

-w <working directory>  

-l <listener port>  
-b background; daemonize 

-e don't let this mpd start processes, unless root 

-t echo listener port at startup 
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The -n option allows multiple mpds to be run on a single host by disabling the console on the 

second and subsequent daemons. 

9.6.4 Running MPICH Jobs under MPD 

Because the MPD daemons are already in communication with one another before the job 
starts, job startup is much faster than with the ch_p4 device. The mpirun command for the 

ch_p4mpd device has a number of special command-line arguments. If you type mpirun 

with no arguments, they are displayed: 

% mpirun 

Usage: mpirun <args> executable <args_to_executable> 

Arguments are: 

-np num_processes_to_run (required as first two args) 

[-s]  (close stdin; can run in bkgd w/o tty input problems) 

[-g group_size]  (start group_size processes per mpd) 

[-m machine_file]  (filename for allowed machines) 

[-l]  (line labels; unique id for each process' output 

[-1]  (do NOT start first process locally) 

[-y]  (run as Myrinet job) 
The -1 option allows you, for example, to run mpirun on a "login" or "development" node on 

your cluster but to start all the application processes on "computation" nodes. 
The program mpirun runs in a separate (non-MPI) process that starts the MPI processes 

running the specified executable. It serves as a single-process representative of the parallel 
MPI processes in that signals sent to it, such as ^Z and ^C are conveyed by the MPD system 

to all the processes. The output streams stdout and stderr from the MPI processes are 

routed back to the stdout and stderr of mpirun. As in most MPI implementations, 

mpirun 's stdin is routed to the stdin of the MPI process with rank 0. 

9.6.5 Debugging MPI Programs 

Debugging parallel programs is notoriously difficult. Parallel programs are subject not only to 
the usual kinds of bugs but also to new kinds having to do with timing and synchronization 

errors. Often, the program "hangs," for example when a process is waiting for a message to 

arrive that is never sent or is sent with the wrong tag. Parallel bugs often disappear precisely 

when you adds code to try to identify the bug, which is particularly frustrating. In this section 

we discuss three approaches to parallel debugging. 
The printf Approach. Just as in sequential debugging, you often wish to trace interesting 

events in the program by printing trace messages. Usually you wish to identify a message by 

the rank of the process emitting it. This can be done explicitly by putting the rank in the trace 
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message. As noted above, using the "line labels" option (-l) with mpirun in the ch_p4mpd 

device in MPICH adds the rank automatically. 

Using a Commercial Debugger. The TotalView© debugger from Etnus, Ltd. [36] runs on a 
variety of platforms and interacts with many vendor implementations of MPI, including MPICH 

on Linux clusters. For the ch_p4 device you invoke TotalView with 

mpirun -tv <other arguments> 
and with the ch_p4mpd device you use 

totalview mpirun <other arguments> 
That is, again mpirun represents the parallel job as a whole. TotalView has special 

commands to display the message queues of an MPI process. It is possible to attach 

TotalView to a collection of processes that are already running in parallel; it is also possible to 

attach to just one of those processes. 
Using mpigdb. The ch_p4mpd device version of MPICH features a "parallel debugger" that 

consists simply of multiple copies of the gdb debugger, together with a mechanism for 

redirecting stdin. The mpigdb command is a version of mpirun that runs each user 

process under the control of gdb and also takes control of stdin for gdb. The 'z' command 

allows you to direct terminal input to any specified process or to broadcast it to all processes. 
We demonstrate this by running the p  example under this simple debugger. 

donner% mpigdb -np 5 cpi                # default is stdin bcast 

(mpigdb) b 29                           # set breakpoint for all 

0–4: Breakpoint 1 at 0x8049e93: file cpi.c, line 29. 

(mpigdb) r                              # run all 

0–4: Starting program: /home/lusk/mpich/examples/basic/cpi 

0: Breakpoint 1, main (argc=1, argv=0xbffffa84) at cpi.c:29 

1–4: Breakpoint 1, main (argc=1, argv=0xbffffa74) at cpi.c:29 

0–4: 29     n = 0;                      # all reach breakpoint 

(mpigdb) n                              # single step all 

0: 38               if (n==0) n=100; else n=0; 

1–4: 42         MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 

(mpigdb) z 0                            # limit stdin to rank 0 

(mpigdb) n                              # single step process 0 

0: 40               startwtime = MPI_Wtime(); 

(mpigdb) n                              # until  caught up 

0: 42           MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 

(mpigdb) z                              # go back to bcast stdin 
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(mpigdb) n                              # single step all 

...                     # until interesting spot 

(mpigdb) n 

0–4: 52                 x = h * ((double)i - 0.5); 

(mpigdb) p x                            # bcast print command 

0: $1 = 0.0050000000000000001           # 0's value of x 

1: $1 = 0.014999999999999999            # 1's value of x 

2: $1 = 0.025000000000000001            # 2's value of x 

3: $1 = 0.035000000000000003            # 3's value of x 

4: $1 = 0.044999999999999998            # 4's value of x 

(mpigdb) c                              # continue all 

0: pi is approximately 3.141600986923, Error is 0.000008333333 

0-4: Program exited normally. 

(mpigdb) q                              # quit 

donner% 

If the debugging process hangs (no mpigdb prompt) because the current process is waiting 
for action by another process, ctl-C will bring up a menu that allows you to switch processes. 

The mpigdb is not nearly as advanced as TotalView, but it is often useful, and it is freely 

distributed with MPICH.  

9.6.6 Other Compilers 
MPI implementations are usually configured and built by using a particular set of compilers. 
For example, the configure  script in the MPICH implementation determines many of the 

characteristics of the compiler and the associated runtime libraries. As a result, it can be 

difficult to use a different C or Fortran compiler with a particular MPI implementation. This can 
be a problem for Beowulf clusters because it is common for several different compilers to be 

used. 
The compilation scripts (e.g., mpicc) accept an argument to select a different compiler. For 

example, if MPICH is configured with gcc but you want to use pgcc to compile and build an 

MPI program, you can use 

mpicc -cc=pgcc -o hellow hellow.c 

mpif77 -fc=pgf77 -o hellowf hellowf.f 
This works as long as both compilers have similar capabilities and properties. For example, 

they must use the same lengths for the basic datatypes, and their runtime libraries must 
provide the functions that the MPI implementation requires. If the compilers are similar in 
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nature but require slightly different libraries or compiler options, then a configuration file can 

be provided with the -config=name option: 

mpicc -config=pgcc -o hellow hellow.c 

Details on the format of the configuration fi les can be found in the MPICH installation manual. 
The same approach can be used with Fortran as for C. If, however, the Fortran compilers are 
not compatible (for example, they use different values for Fortran .true. and .false.), 

then you must build new libraries. MPICH provides a way to build just the necessary Fortran 
support. See the MPICH installation manual for details. 

[3]As this chapter is being written, the current version is version 1.2.2. 

9.7 Tools 

A number of tools are available for developing, testing, and tuning MPI programs. Although 
they are distributed with MPICH, they can be used with other MPI implementations as well. 

9.7.1 Profiling Libraries 

The MPI Forum decided not to standardize any particular tool but rather to provide a general 
mechanism for intercepting calls to MPI functions, which is the sort of capability that tools 

need. The MPI standard requires that any MPI implementation provide two entry points for 
each MPI function: its normal MPI_ name and a corresponding PMPI version. This strategy 

allows a user to write a custom version of MPI_Send, for example, that carries out whatever 

extra functions might be desired, calling PMPI_Send to perform the usual operations of 
MPI_Send. When the user's custom versions of MPI functions are placed in a library and the 

library precedes the usual MPI library in the link path, the user's custom code will be invoked 

around all MPI functions that have been replaced. 

MPICH provides three such "profiling libraries" and some tools for creating more. These 

libraries are easily used by passing an extra argument to MPICH's mpicc command for 

compiling and linking. 
-mpilog causes a file to be written containing timestamped events. The log file can be 

examined with tools such as Jumpshot (see below). 
-mpitrace causes a trace of MPI calls, tagged with process rank in MPI_COMM_WORLD to 

be written to stdout. 

-mpianim shows a simple animation of message traffic while the program is running. 

The profiling libraries are part of the MPE subsystem of MPICH, which is separately 
distributable and works with any MPI implementation. 

9.7.2 Visualizing Parallel Program Behavior 

The detailed behavior of a parallel program is surprisingly difficult to predict. It is often useful 
to examine a graphical display that shows the exact sequence of states that each process 
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went through and what messages were exchanged at what times and in what order. The data 

for such a tool can be collected by means of a profiling library. One tool for looking at such log 

files is Jumpshot [39]. A screenshot of Jumpshot in action is shown in Figure 9.13. 

 

Figure 9.13: Jumpshot displaying message traffic 

The horizontal axis represents time, and there is a horizontal line for each process. The 

states that processes are in during a particular time interval are represented by colored 

rectangles. Messages are represented by arrows. It is possible to zoom in for 

microsecond-level resolution in time. 
 

9.8 MPI Implementations for Clusters 
Many implementations of MPI are available for clusters; Table 9.3 lists some of the available 

implementations. These range from commercially supported software to supported, freely 

available software to distributed research project software. 

 

Table 9.3: Some MPI implementation for Linux. 

Name URL 

 

BeoMPI 
www.scyld.com 

LAM www.lam-mpi.org 

MPICH www.mcs.anl.gov/mpi/mpich 

MPICH-GM www.myricom.com 

MPICH-G2 
www.niu.edu/mpi 

MPICH-Madeleine 
www.ens-lyon.fr/~mercierg/mpi.html 

MPI/GAMMA 
www.disi.unige.it/project/gamma/mpigamma/ 
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Table 9.3: Some MPI implementation for Linux. 

Name URL 

 

MPI/Pro 
www.mpi-softtech.com  

MPI-BIP 
lhpca.univ-lyon1.fr/mpibip.html 

MP-MPICH 
www.lfbs.rwth-aachen.de/users/joachim/MP-MPICH/ 

MVICH 
www.nersc.gov/research/ftg/mvich/ 

ScaMPI 
www.scali.com 

 

9.9 MPI Routine Summary 

This section provide a quick summary of the MPI routines used in this chapter for C, Fortran, 

and C++. Although these are only a small fraction of the routines available in MPI, they are 
sufficient for many applications. 

C Routines.  

int MPI_Init(int *argc, char ***argv) 

 

int MPI_Comm_size(MPI_Comm comm, int *size) 

 

int MPI_Comm_rank(MPI_Comm comm, int *rank) 

 

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int root, 

MPI_Comm comm) 

 

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, 

MPI_Op op, int root, MPI_Comm comm) 

 

int MPI_Finalize() 

 

double MPI_Wtime() 

 

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, 

MPI_Comm comm) 

 

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, 

MPI_Comm comm, MPI_Status *status) 

 

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status) 

 



 185 

int MPI_Sendrecv(void  *sendbuf, int sendcount,MPI_Datatype sendtype, int dest, 

int sendtag, void *recvbuf, int recvcount, MPI_Datatype recvtype, 

int source, MPI_Datatype recvtag, MPI_Comm comm, 

MPI_Status *status) 

 

int MPI_Allreduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, 

MPI_Op op, MPI_Comm comm) 

 
Fortran routines.  

MPI_INIT(ierror) 

integer ierror 

 

MPI_COMM_SIZE(comm, size, ierror) 

integer comm, size, ierror 

 

MPI_COMM_RANK(comm, rank, ierror) 

integer comm, rank, ierror 

 

MPI_BCAST(buffer, count, datatype, root, comm, ierror) 

<type> buffer(*) 

integer count, datatype, root, comm, ierror 

 

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, ierror) 

<type> sendbuf(*), recvbuf(*) 

integer count, datatype, op, root, comm, ierror 

 

MPI_FINALIZE(ierror) 

integer ierror 
double precision MPI_WTIME() 

 

MPI_SEND(buf, count, datatype, dest, tag, comm, ierror) 

<type> buf(*) 

integer count, datatype, dest, tag, comm, ierror 

 

MPI_RECV(buf, count, datatype, source, tag, comm, status, ierror) 

<type> buf(*) 

integer count, datatype, source, tag, comm, 

status(MPI_STATUS_SIZE), ierror 

 

MPI_PROBE(source, tag, comm, status, ierror) 

logical flag 
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integer source, tag, comm, status(MPI_STATUS_SIZE), ierror 

 

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,recvcount, 

recvtype, source, recvtag, comm, status, ierror) 

<type> sendbuf(*), recvbuf(*) 

integer sendcount, sendtype, dest, sendtag, recvcount, recvtype, 

source, recvtag, comm, status(MPI_STATUS_SIZE), ierror 

 
MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm, ierror) 

<type> sendbuf(*), recvbuf(*) 

integer count, datatype, op, comm, ierror 

 

C++ routines. 
void MPI::Init(int& argc, char**& argv) 

 

void MPI::Init() 

 

int MPI::Comm::Get_rank() const 

 

int MPI::Comm::Get_size() const 

 

void MPI::Intracomm::Bcast(void * buffer, int count, const Datatype& datatype, 

int root) const 

 

void MPI::Intracomm::Reduce(const void* sendbuf, void* recvbuf, int count, 

const Datatype& datatype, const Op& op, int root) const 

 

void MPI::Finalize() 

 

double MPI::Wtime() 

 

int MPI::Status::Get_source() const 

 
int MPI::Status::Get_tag() const 

 

void MPI::Comm::Recv(void* buf, int count, const Datatype& datatype, 

int source, int tag, Status& status) const 

 

void MPI::Comm::Recv(void* buf, int count, const Datatype& datatype, 

int source, int tag) const 
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void MPI::Comm::Send(const void* buf, int count, const Datatype& datatype, 

int dest, int tag) const 

 
void MPI::Comm::Probe(int source,int tag, Status& status) const 

 

void MPI::Comm::Sendrecv(const void *sendbuf, int sendcount, 

const Datatype& sendtype, int dest, int sendtag, void *recvbuf, 

int recvcount, const Datatype& recvtype, int source, int recvtag, 

Status& status) const 

 

void MPI::Intracomm::Allreduce(const void* sendbuf, void* recvbuf, int count, 

const Datatype& datatype, const Op& op) const 
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Chapter 10: Advanced Topics in MPI 

Programming 
William Gropp and Ewing Lusk  

In this chapter we continue our exploration of parallel programming with MPI. We describe 
capabilities that are more specific to MPI rather than part of the messagepassing 

programming mod el in general. We cover the more advanced features of MPI sometimes 

called MPI-2, such as dynamic process management, parallel I/O, and remote memory 

access. 
10.1 Dynamic Process Management in MPI 
A new aspect of the MPI-2 standard is the ability of an MPI program to create new MPI 

processes and communicate with them. (In the original MPI specification, the number of 

processes was fixed at startup.) MPI calls this capability (together with related capabilities 

such as connecting two independently started MPI jobs) dynamic process management . 
Three main issues are introduced by this collection of features: 

§ maintaining simplicity and flexibility; 

§ interacting with the operating system, a parallel process manager, and perhaps a 

job scheduler; and 

§ avoiding race conditions that could compromise correctness. 

The key to avoiding race conditions is to make creation of new processes a collective 

operation, over both the processes creating the new processes and the new processes being 
created. 

10.1.1 Intercommunicators 

Recall that an MPI communicator consists of a group of processes together with a 

communication context. Strictly speaking, the communicators we have dealt with so far are 

intracommunicators . There is another kind of communicator, called an intercommunicator. An 

intercommunicator binds together a communication context and two groups of processes, 

called (from the point of view of a particular process) the local group and the remote group. 

Processes are identified by rank in group, but ranks in an intercommunicator always refer to 
the processes in the remote group. That is, an MPI_Send using an intercommunicator sends 

a message to the process with the destination rank in the remote group of the 

intercommunicator. Collective operations are also defined for intercommunicators; see [14, 

Chapter 7] for details. 

10.1.2 Spawning New MPI Processes 

We are now in a position to explain exactly how new MPI processes are created by an 
already running MPI program. The MPI function that does this is MPI_Comm_spawn. Its key 

features are the following. 
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§ It is collective over the communicator of processes initiating the operation 

(called the parents) and also collective with the calls to MPI_Init in the 

processes being created (called the children). That is, the MPI_Comm_spawn 

does not return in the parents until it has been called in all the parents and 

MPI_Init has been called in all the children.  

§ It returns an intercommunicator in which the local group contains the parents 

and the remote group contains the children. 

§ The new processes, which must call MPI_Init , have their own 
MPI_COMM_WORLD , consisting of all the processes created by this one 

collective call to MPI_Comm_spawn . 

§ The function MPI_Comm_get_parent, called by the children, returns an 

intercommunicator with the children in the local group and the parents in the 

remote group. 
§ The collective function MPI_Intercomm_merge may be called by parents 

and children to create a normal (intra)communicator containing all the 

processes, both old and new, but for many communication patterns this is not 

necessary. 

10.1.3 Revisiting Matrix-Vector Multiplication 
Here we illustrate the use of MPI_Comm_spawn  by redoing the matrix-vector multiply 

program of Section 9.2. Instead of starting with a fixed number of processes, we compile 

separate executables for the manager and worker programs, start the manager with 

mpiexec -n 1 manager <number-of-workers> 

and then let the manager create the worker processes dynamically. The program for the 

manager is shown in Figure 10.1, and the code for the workers is shown in Figure 10.2. Here 

we assume that only the manager has the matrix a and the vector b and broadcasts them to 

the workers after the workers have been created. 

#include "mpi.h" 

#include <stdio.h> 

#define SIZE 10000 

 

int main( int argc, char *argv[] ) 

{ 

double a[SIZE][SIZE], b[SIZE], c[SIZE]; 

int i, j, row, numworkers; 



 190 

MPI_Status status; 

MPI_Comm workercomm; 

 

MPI_Init( &argc, &argv ); 

if ( argc != 2 || !isnumeric( argv[1] )) 

printf( "usage: %s <number of workers>\n", argv[0] ); 

else 

numworkers = atoi( argv[1] ); 

 

MPI_Spawn( "worker", MPI_ARGV_NULL, numworkers, MPI_INFO_NULL, 

0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE ); 

... 

/* initialize a and b */ 

... 

/* send b to each worker */ 

MPI_Bcast( b, SIZE, MPI_DOUBLE, MPI_ROOT, workercomm ); 

... 

/* then normal manager code as before*/ 

... 

MPI_Finalize(); 

return 0; 

} 

 
Figure 10.1: Dynamic process matrix-vector multiply program, manager part. 
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#include "mpi.h" 

 

int main( int argc, char *argv[] ) 

{ 

int numprocs, myrank; 

double b[SIZE], c[SIZE]; 

int i, row, myrank; 

double dotp; 

MPI_Status status; 

MPI_Comm parentcomm; 

 

MPI_Init( &argc, &argv ); 

MPI_Comm_size( MPI_COMM_WORLD, &numprocs ); 

MPI_Comm_rank( MPI_COMM_WORLD, &myrank ); 

 

MPI_Comm_get_Parentp &parentcomm ); 

 

MPI_Bcast( b, SIZE, MPI_DOUBLE, 0, parentcomm ); 

 

... 

/* same as worker code from original matrix-vector multiply */ 

... 
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MPI_Comm_free(parentcomm ); 

MPI_Finalize( ); 

return 0; 

} 

 

Figure 10.2: Dynamic process matrix-vector multiply program, worker part. 

Let us consider in detail the call in the manager that creates the worker processes. 

MPI_Spawn( "worker", MPI_ARGV_NULL, numworkers, MPI_INFO_NULL, 

0, MPI_COMM_SELF, &workercomm, MPI_ERRCODES_IGNORE ); 

It has eight arguments. The first is the name of the executable to be run by the new processes. 

The second is the null-terminated argument vector to be passed to all of the new processes; 
here we are passing no argum ents at all, so we specify the special value MPI_ARGV_NULL. 

Next is the number of new processes to create. The fourth argument is an MPI "Info" object, 

which can be used to specify special environment - and/or implementation-dependent 
parameters, such as the names of the nodes to start the new processes on. In our case we 

leave this decision to the MPI implementation or local process manager, and we pass the 
special value MPI_INFO_NULL. The next argument is the "root" process for this call to 

MPI_Comm_spawn ; it specifies which process in the communicator given in the following 

argument is supplying the valid arguments for this call. The communicator we are using 
consists here of just the one manager process, so we pass MPI_COMM_SELF. Next is the 

address of the new intercommunicator to be filled in, and finally an array of error codes for 

examining possible problems in starting the new processes. Here we use 
MPI_ERRCODES_IGNORE to indicate that we will not be looking at these error codes. 

Code for the worker processes that are spawned is shown in Figure 10.2. It is essentially the 
same as the worker subroutine in the preceding chapter but is an MPI program  in itself. Note 
the use of intercommunicator broadcast in order to receive the vector b from the parents. We 

free the parent intercommunicator with MPI_Comm_free  before exiting. 

10.1.4 More on Dynamic Process Management 
For more complex examples of the use of MPI_Comm_spawn , including how to start 

processes with different executables or different argument lists, see [14, Chapter 7]. 
MPI_Comm_spawn  is only the most basic of the functions provided in MPI for dealing with a 

dynamic MPI environment. By querying the attribute MPI_UNIVERSE_SIZE, you can find out 

how many processes can be usefully created. Separately started MPI computations can find 
each other and connect with MPI_Comm_connect and MPI_Comm_accept. Processes can 

exploit non-MPI connections to "bootstrap" MPI communication. These features are 

explained in detail in [14]. 
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10.2 Fault Tolerance 

Communicators are a fundamental concept in MPI. Their sizes are fixed at the time they are 
created, and the efficiency and correctness of collective operations rely on this fact. Users 

sometimes conclude from the fixed size of communicators that MPI provides no mechanism 

for writing fault-tolerant programs. Now that we have introduced intercommunicators, 

however, we are in a position to discuss how this topic might be addressed and how you 

might write a manager-worker program with MPI in such a way that it would be fault tolerant. 

In this context we mean that if one of the worker processes terminates abnormally, instead of 

terminating the job you will be able to carry on the computation with fewer workers, or 
perhaps dynamically replace the lost worker. 

The key idea is to create a separate (inter)communicator for each worker and use it for 

communications with that worker rather than use a communicator that contains all of the 
workers. If an implementation returns "invalid communicator" from an MPI_Send or 

MPI_Recv call, then the manager has lost contact only with one worker and can still 

communicate with the other workers through the other, stillintact communicators. Since the 

manager will be using separate communicators rather than separate ranks in a larger 

communicator to send and receive message from the workers, it might be convenient to 

maintain an array of communicators and a parallel array to remember which row has been 

last sent to a worker, so that if that worker disappears, the same row can be assigned to a 
different worker. Figure 10.3 shows these arrays and how they might be used. What we are 

doing with this approach is recognizing that two-party communication can be made fault 

tolerant, since one party can recognize the failure of the other and take appropriate action. A 

normal MPI communicator is not a two-party system and cannot be made fault tolerant 

without changing the semant ics of MPI communication. If, however, the communication in an 

MPI program can be expressed in terms of intercommunicators, which are inherently 

two-party (the local group and the remote group), then fault tolerance can be achieved. 

/* highly incomplete */ 

MPI_Comm worker_comms[MAX_WORKERS]; 

int last_row_sent[MAX_WORKERS]; 

rc = MPI_Send( a[numsent], SIZE, MPI_DOUBLE, 0, numsent+1, 

worker_comms[sender] ); 

if ( rc != MPI_SUCCESS ) { 

/* Check that error class is one we can recover from */ 

... 
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MPI_Comm_spawn( "worker" , ... ); 

Figure 10.3: Fault-tolerant manager.  

Note that while the MPI standard, through the use of intercommunicators, makes it possible to 
write an implementation of MPI that encourages fault-tolerant programming, the MPI standard 

itself does not require MPI implementations to continue past an error. This is a "quality of 
implementation" issue and allows the MPI implementor to trade performance for the ability to 

continue after a fault. As this section makes clear, however, there is nothing in the MPI 

standard that stands in the way of fault tolerance, and the two primary MPI implementations 

for Beowulf clusters, MPICH and LAM/MPI, both endeavor to support some style of fault 

tolerance for applications. 
 

10.3 Revisiting Mesh Exchanges 
The discussion of the mesh exchanges for the Jacobi problem in Section 9.3 concentrated on 

the algorithm and data structures, particularly the ghost-cell exchange. In this section, we 

return to that example and cover two other important issues: the use of blocking and 

nonblocking communications and communicating noncontiguous data. 

10.3.1 Blocking and Nonblocking Communication 

Consider the following simple code (note that this is similar to the simple version of 
exchange_nbrs in Section 9.3): 

if (rank == 0) { 

MPI_Send( sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD ); 

MPI_Recv( rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status ); 

} 

else if (rank == 1) { 

MPI_Send( sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD ); 

MPI_Recv( rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status ); 

} 

What happens with this code? It looks like process 0 is sending a message to process 1 and 

that process 1 is sending a message to process 0. But more is going on here. Consider the 

steps that the MPI implementation must take to make this code work: 
1. Copy the data from the MPI_Send into a temporary, system-managed 

buffer. 
2. Once the MPI_Send completes (on each process), start the MPI_Recv. The 

data that was previously copied into a system buffer by the MPI_Send 

operation can now be delivered into the user's buffer (rbuf in this case). 
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This approach presents two problems, both related to the fact that data must be copied into a 

system buffer to allow the MPI_Send to complete. The first problem is obvious: any data 

motion takes time and reduces the performance of the code. The second problem is more 
subtle and important: the amount of available system buffer space always has a limit. For 

values of n in the above example that exceed the available buffer space, the above code will 
hang: neither MPI_Send  will complete, and the code will wait forever for the other process to 

start an MPI_Recv . This is true for any message-passing system, not just MPI. The amount 

of buffer space available for buffering a message varies among MPI implementations, ranging 
from many megabytes to as little as 128 bytes. 

How can we write code that sends data among several processes and that does not rely on 

the availability of system buffers? One approach is to carefully order the send and receive 

operations so that each send is guaranteed to have a matching receive. For example, we can 

swap the order of the MPI_Send and MPI_Recv in the code for process 1: 

if (rank == 0) { 

MPI_Send( sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD ); 

MPI_Recv( rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &status ); 

} 

else if (rank == 1) { 

MPI_Recv( rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &status ); 

MPI_Send( sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD ); 

} 
However, this can be awkward to implement, particularly for more complex communication 
patterns; in addition, it does not address the extra copy that may be performed by MPI_Send. 

The approach used by MPI, following earlier message-passing systems as well as 
nonblocking sockets (see [13, Chapter 9]), is to split the send and receive operations into two 

steps: one to initiate the operation and one to complete the operation. Other operations, 

including other communication operations, can be issued between the two steps. For 
example, an MPI receive operation can be initiated by a call to MPI_Irecv and completed 

with a call to MPI_Wait . Because the routines that initiate these operations do not wait for 

them to complete, they are called nonblocking  operations. The "I" in the routine name stands 

for "immediate"; this indicates that the routine may return immediately without completing the 

operation. The arguments to MPI_Irecv are the same as for MPI_Recv except for the last 

(status) argument. This is replaced by an MPI_Request value; it is a handle that is used to 

identify an initiated operation. To complete a nonblocking operation, the request is given to 
MPI_Wait, along with a status argument; the status argument serves the same purpose 

as status for an MPI_Recv. Similarly, the nonblocking counterpart to MPI_Send is 

MPI_Isend; this has the same arguments as MPI_Send with the addition of an 

MPI_Request as the last argument (in C). Using these routines, our example becomes the 

following: 
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if (rank == 0) { 

MPI_Request req1, req2; 

MPI_Isend( sbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req1 ); 

MPI_Irecv( rbuf, n, MPI_INT, 1, 0, MPI_COMM_WORLD, &req2 ); 

MPI_Wait( &req1, &status ); 

MPI_Wait( &req2, &status ); 

} 

else if (rank == 1) { 

MPI_Request req1, req2; 

MPI_Irecv( rbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req1 ); 

MPI_Isend( sbuf, n, MPI_INT, 0, 0, MPI_COMM_WORLD, &req2 ); 

MPI_Wait( &req1, &status ); 

MPI_Wait( &req2, &status ); 

} 
The buffer sbuf provided to MPI_Isend must not be modified until the operation is 

completed with MPI_Wait. Similarly, the buffer rbuf provided to MPI_Irecv must not be 

modified or read until the MPI_Irecv is completed. 

The nonblocking communication routines allow the MPI implementation to wait until the 
message can be sent directly from one user buffer to another (e.g., from sbuf to rbuf) 

without requiring any copy or using any system buffer space. 

Because it is common to start multiple nonblocking operations, MPI provides routines to test 
or wait for completion of any one, all, or some of the requests. For example, MPI_Waitall 

waits for all requests in an array of requests to complete. Figure 10.4 shows the use of 

nonblocking communication routines for the Jacobi example.[1] 

void exchange_nbrs( double ulocal[][NY+2], int i_start, int i_end, 

int left, int right ) 

{ 

MPI_Status  statuses[4]; 

MPI_Request requests[4]; 

int c; 
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/* Begin send and receive from the left neighbor */ 

MPI_Isend( &ulocal[1][1], NY, MPI_DOUBLE, left, 0, 

MPI_COMM_WORLD, &requests[0] ); 

MPI_Irecv( &ulocal[0][1], NY, MPI_DOUBLE, left, 0, 

MPI_COMM_WORLD, &requests[1] ); 

 

/* Begin send and receive from the right neighbor */ 

c = i_end - i_start + 1; 

MPI_Isend( &ulocal[c][1], NY, MPI_DOUBLE, right, 0, 

MPI_COMM_WORLD, &requests[2] ); 

MPI_Irecv( &ulocal[c+1][1], NY, MPI_DOUBLE, right, 0, 

MPI_COMM_WORLD, &requests[3] ); 

 

/* Wait for all communications to complete */ 

MPI_Waitall( 4, requests, statuses ); 

} 

 

Figure 10.4: Nonblocking exchange code for the Jacobi example. 

MPI nonblocking operations are not the same as asynchronous operations. The MPI standard 

does not require that the data transfers overlap computation with communication. MPI 
specifies only the semantics of the operations, not the details of the implementation choices. 

The MPI nonblocking routines are provided primarily for correctness (avoiding the limitations 

of system buffers) and performance (avoidance of copies). 

10.3.2 Communicating Noncontiguous Data in MPI 

The one-dimensional decomposition used in the Jacobi example (Section 9.3) is simple but 

does not scale well and can lead to performance problems. We can analyze the performance 

of the Jacobi following the discussion in Section 9.2. Let the time to communicate n bytes be 
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Tcomm = s + rn, 

where s is the latency and r is the (additional) time to communicate one byte. The time to 

compute one step of the Jacobi method, using the one-dimensional decomposition in Section 
9.3, is 

 

where f is the time to perform a floating-point operation and p is the number of processes. 

Note that the cost of communication is independent of the number of processes; eventually, 

this cost will dominate the calculation. Hence, a better approach is to use a two-dimensional 

decomposition, as shown in Figure 10.5. 

 
Figure 10.5: Domain and 9 × 9 computational mesh for approximating the solution to the Poisson 

problem using a two-dimensional decomposition. 

The time for one step of the Jacobi method with a two-dimensional decomposition is just 

 

This is faster than the one-dimensional decomposition as long as 
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(assuming p = 16). To implement this decomposition, we need to communicate data to four 

neighbors, as shown in Figure 10.6. 

 
Figure 10.6: Locations of mesh points in ulocal for a two-dimensional decomposition. 

The left and right edges can be sent and received by using the same code as for the 

one-dimensional case. The top and bottom edges have noncontiguous data. For example, 
the top edge needs to send the tenth, sixteenth, and twenty-second element. There are four 

ways to move this data:  

1. Each value can be sent separately. Because of the high 
latency of message passing, this approach is inefficient 
and normally should not be used. 

2. The data can be copied into a temporary buffer using a simple 
loop, for example, 

3. for (i=0; i<3; i++) { 

4. tmp[i] = u_local[i][6]; 

5. } 

6. MPI_Send( tmp, 3, MPI_DOUBLE, ..  ); 

This is a common approach and, for some systems and MPI implementations, 
may be the most efficient. 

7. MPI provides two routines to pack and unpack a buffer. These 

routines are MPI_Pack and MPI_Unpack. A buffer created with 
these routines should be sent and received with MPI datatype 

MPI_PACKED. We note, however, that these routines are most 
useful for complex data layouts that change frequently 
within a program. 



 200 

8. MPI provides a way to construct new datatypes representing 

any data layout. These routines can be optimized by the MPI 
implementation, in principle providing better performance 
than the user can achieve using a simple loop [37]. In 

addition, using these datatypes is crucial to achieving 
high performance with parallel I/O. 

MPI provides several routines to create datatypes representing common patterns of memory. 

These new datatypes are called derived datatypes. For this case, MPI_Type_vector is 

what is needed to create a new MPI datatype representing data values separated by a 

constant stride. In this case, the stride is NY+2, and the number of elements is 

i_end-i_start+1. 

MPI_Type_vector( i_end - i_start + 1, 1, NY+2, 

MPI_DOUBLE, &vectype ); 

MPI_Type_commit( &vectype ); 

The second argument is a block count  and is the number of the basic datatype items 
(MPI_DOUBLE in this case); this is useful particularly in multicomponent PDE problems. The 

routine MPI_Type_commit must be called to commit the MPI datatype; this call allows the 

MPI implementation to optimize the datatype (the optimization is not included as part of the 

routines that create MPI datatypes because some complex datatypes are created recursively 
from other derived datatypes). 

Using an MPI derived datatype representing a strided data pattern, we can write a version of 
exchange_nbr for a two-dimensional decomposition of the mesh; the code is shown in 

Figure 10.7. Note that we use the same derived datatype vectype for the sends and 

receives at the top and bottom by specifying the first element into which data is moved in the 
array u_local in the MPI calls. 

void exchange_nbrs2d( double ulocal[][NY+2], 

int i_start, int i_end, int j_start, int j_end, 

int left, int right, int top, int bottom, 

MPI_Datatype vectype ) 

{ 

MPI_Status  statuses[8]; 

MPI_Request requests[8]; 

int c; 
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/* Begin send and receive from the left neighbor */ 

MPI_Isend( &ulocal[1][1], NY, MPI_DOUBLE, left, 0, 

MPI_COMM_WORLD, &requests[0] ); 

MPI_Irecv( &ulocal[0][1], NY, MPI_DOUBLE, left, 0, 

MPI_COMM_WORLD, &requests[1] ); 

 

/* Begin send and receive from the right neighbor */ 

c = i_end - i_start + 1; 

MPI_Isend( &ulocal[c][1], NY, MPI_DOUBLE, right, 0, 

MPI_COMM_WORLD, &requests[2] ); 

MPI_Irecv( &ulocal[c+1][1], NY, MPI_DOUBLE, right, 0, 

MPI_COMM_WORLD, &requests[3] ); 

 

/* Begin send and receive from the top neighbor */ 

MPI_Isend( &ulocal[1][NY], 1, vectype, top, 0, 

MPI_COMM_WORLD, &requests[4] ); 

MPI_Irecv( &ulocal[1][NY+1], 1, vectype, top, 0, 

MPI_COMM_WORLD, &requests[5] ); 

 

/* Begin send and receive from the bottom neighbor */ 

MPI_Isend( &ulocal[1][1], 1, vectype, bottom, 0, 

MPI_COMM_WORLD, &requests[6] ); 

MPI_Irecv( &ulocal[1][0], 1, vectype, bottom, 0, 
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MPI_COMM_WORLD, &requests[7] ); 

 

/* Wait for all communications to complete */ 

MPI_Waitall( 8, requests, statuses ); 

} 

 

Figure 10.7: Nonblocking exchange code for the Jacobi problem for a two-dimensional 

decomposition of the mesh. 
When a derived datatype is no longer needed, it should be freed with MPI_Type_free.  

Many other routines are available for creating datatypes; for example, MPI_Type_indexed 

is useful for scatter-gather patterns, and MPI_Type_create_struct can be used for an 

arbitrary collection of memory locations. 

[1]On many systems, calling MPI_Isend before MPI_Irecv will improve performance. 

10.4 Motivation for Communicators 
Communicators in MPI serve two purposes. The most obvious purpose is to describe a 
collection of processes. This feature allows collective routines, such as MPI_Bcast or 

MPI_Allreduce, to be used with any collection of processes. This capability is particularly 

important for hierarchical algorithms, and also facilitates dividing a computation into subtasks, 

each of which has its own collection of processes. For example, in the manager-worker 

example in Section 9.2, it may be appropriate to divide each task among a small collection of 

processes, particularly if this causes the problem description to reside only in the fast memory 
cache. MPI communicators are perfect for this; the MPI routine MPI_Comm_split is the only 

routine needed when creating new communicators. Using ranks relative to a communicator 

for specifying the source and destination of messages also facilitates dividing parallel tasks 

among smaller but still parallel subtasks, each with its own communicator. 
A more subtle but equally important purpose of the MPI communicator involves the 

communication context  that each communicator contains. This context is essential for writing 

software libraries that can be safely and robustly combined with other code, both other 

libraries and user-specific application code, to build complete applications. Used properly, the 

communication context guarantees that messages are received by appropriate routines even 
if other routines are not as careful. Consider the example in Figure 10.8 (taken from [13,  

Section 6.1.2]). In this example, there are two routines, provided by separate libraries or 
software modules. One, SendRight, sends a message to the right neighbor and receives 

from the left. The other, SendEnd, sends a message from process 0 (the leftmost) to the last 

process (the rightmost). Both of these routines use MPI_ANY_SOURCE instead of a particular 
source in the MPI_Recv  call. As Figure 10.8 shows, the messages can be confused, causing 
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the program to receive the wrong data. How can we prevent this situation? Several 

approaches will not work. One is to avoid the use of MPI_ANY_SOURCE. This fixes this 

example, but only if both SendRight and SendEnd follow this rule. The approach may be 

adequate (though fragile) for code written by a single person or team, but it isn't adequate for 

libraries. For example, if SendEnd was written by a commercial vendor and did not use 

MPI_ANY_SOURCE , but SendRight, written by a different vendor or an inexperienced 

programmer, did use MPI_ANY_SOURCE , then the program would still fail, and it would look 

like SendEnd was at fault (because the message from SendEnd was received first). 

 

Figure 10.8: Two possible message-matching patterns when MPI_ANY_SOURCE is used in the 

MPI_Recv calls (from [13]). 

Another approach that does not work is to use message tags to separate messages. Again, 

this can work if one group writes all of the code and is very careful about allocating message 

tags to different software modules. However, using MPI_ANY_TAG in an MPI receive call can 
still bypass this approach. Further, as shown in Figure 6.5 in [13], even if MPI_ANY_SOURCE 

and MPI_ANY_TAG  are not used, it is still possible for separate code modules to receive the 

wrong message. 

The communication context in an MPI communicator provides a solution to these problems. 

The routine MPI_Comm_dup creates a new communicator from an input communicator that 

contains the same processes (in the same rank order) but with a new communication context. 

MPI messages sent in one communication context can be received only in that context. Thus, 

any software module or library that wants to ensure that all of its messages will be seen only 
within that library needs only to call MPI_Comm_dup at the beginning to get a new 

communicator. All well-written libraries that use MPI create a private communicator used only 

within that library. 

Enabling the development of libraries was one of the design goals of MPI. In that respect MPI 

has been very successful. Many libraries and applications now use MPI, and, because of 
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MPI's portability, most of these run on Beowulf clusters. Table 10.1 provides a partial list of 

libraries that use MPI to provide parallelism. More complete descriptions and lists are 
available at www.mcs.anl.gov/mpi/libraries  and at sal.kachinatech.com/C/3 . 

Table 10.1: A sampling of libraries that use MPI. 

Library Description URL 

PETSc Linear and 

nonlinear 

solvers for 

PDEs 

www.mcs.anl.gov/petsc  

Aztec Parallel 

iterative 

solution of 

sparse linear 

systems  

www.cs.sandia.gov/CRF/aztec1.htm
l 

Cactus  Framework for 

PDE solutions  

www.cactuscode.org 

FFTW Parallel FFT 
www.fftw.org 

PPFPrint Parallel print 
www.llnl.gov/sccd/lc/ptcprint  

HDF Parallel I/O for 

Hierarchical 

Data Format 

(HDF) files  

hdf.ncsa.uiuc.edu/Parallel_HDF 

NAG Numerical 

library 

www.nag.co.uk/numeric/fd/FDdescr

iption.asp 

ScaLAPA

CK 

SPRNG 

Parallel linear 

algebra 

Scalable 

pseudorandom 

number 

generator 

www.netlib.org/scalapacksprng.cs
.fsu.edu 

 
 

10.5 More on Collective Operations 
One of the strengths of MPI is its collection of scalable collective communication and 

computation routines. Figure 10.9 shows the capabilities of some of the most important 
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collective communication routines. As an example of their utility, we consider a simple 

example. 

 

Figure 10.9: Schematic representation of collective data movement in MPI. 
Suppose we want to gather the names of all of the nodes that our program is running on, and 

we want all MPI processes to have this list of names. This is an easy task using 

MPI_Allgather: 

char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN]; 

MPI_Allgather( my_hostname, MAX_LEN, MPI_CHAR, 

all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD ); 
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This code assumes that no hostname is longer than MAX_LEN characters (including the 

trailing null). A better code would check this: 

char my_hostname[MAX_LEN], all_names[MAX_PROCS][MAX_LEN]; 

MPI_Allreduce( &my_name_len, &max_name_len, 1, MPI_INT, MPI_MAX, 

MPI_COMM_WORLD ); 

if (max_name_len > MAX_LEN) { 

 

printf( "Error: names too long (%d)", max_name_len ); 

} 

MPI_Allgather( my_hostname, MAX_LEN, MPI_CHAR, 

all_names, MAX_LEN, MPI_CHAR, MPI_COMM_WORLD ); 
Both of these approaches move more data than necessary, however. An even better 

approach is to first gather the size of each processor's name and then gather exactly the 

number of characters needed from each processor. This uses the "v" (for vector) version of 
the allgather routine, MPI_Allgatherv , as shown in Figure 10.10. 

mylen = strlen(my_hostname) + 1;  /* Include the trailing null */ 

MPI_Allgather( &mylen, 1, MPI_INT, all_lens, 1, MPI_INT, 

MPI_COMM_WORLD ); 

totlen = all_lens[size-1]; 

for (i=0; i<size-1; i++) { 

displs[i+1] = displs[i] + all_lens[i]; 

totlen      += all_lens[i]; 

} 

all_names = (char *)malloc( totlen ); 

if (!all_names) MPI_Abort( MPI_COMM_WORLD, 1 ); 

MPI_Allgatherv( my_hostname, mylen, MPI_CHAR, 

all_names, all_lens, displs, MPI_CHAR, 

MPI_COMM_WORLD ); 
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/* Hostname for the jth process is &all_names[displs[j]] */ 

 

Figure 10.10: Using MPI_Allgather and MPI_Allgatherv. 

This example provides a different way to accomplish the action of the example in Section 9.3. 

Many parallel codes can be written with MPI collective routines ins tead of MPI point -to-point 

communication; such codes often have a simpler logical structure and can benefit from 

scalable implementations of the collective communications routines. 

 

10.6 Parallel I/O 
MPI-2 provides a wide variety of parallel I/O operations, more than we have space to cover 

here. See [14, Chapter 3] for a more thorough discussion of I/O in MPI. 

The fundamental idea in MPI's approach to parallel I/O is that a file is opened collectively by a 

set of processes that are all given access to the same file. MPI thus associates a 

communicator with the file, allowing a flexible set of both individual and collective operations 

on the file. 

10.6.1 A Simple Example 

We first provide a simple example of how processes write contiguous blocks of data into the 
same file in parallel. Then we give a more complex example, in which the data in each 

process is not contiguous but can be described by an MPI datatype. 

For our first example, let us suppose that after solving the Poisson equation as we did in 
Section 9.3, we wish to write the solution to a file. We do not need the values of the ghost 

cells, and in the one-dimensional decomposition the set of rows in each process makes up a 

contiguous area in memory, which greatly simplifies the program. The I/O part of the program 

is shown in Figure 10.11. 

MPI_File outfile; 

size = NX * (NY + 2); 

MPI_File_open( MPI_COMM_WORLD, "solutionfile", 

MPI_MODE_CREATE | MPI_MODE_WRONLY, 

MPI_INFO_NULL, &outfile ); 

MPI_File_set_view( outfile, 

rank * (NY+2) * (i_end - i_start) * sizeof(double), 

MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL ); 
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MPI_File_write( outfile, &ulocal[1][0], size, MPI_DOUBLE, 

MPI_STATUS_IGNORE ); 

MPI_File_close( &outfile ); 

 

Figure 10.11: Parallel I/O of Jacobi solution. Note that this choice of file view works only for a 

single output step; if output of multiple steps of the Jacobi method are needed, the arguments to 
MPI_File_set_view must be modified. 

Recall that the data to be written from each process, not counting ghost cells but inc luding the 
boundary data, is in the array ulocal[i][j]  for i=i_start  to i_end and j=0 to NY+1. 

Note that the type of an MPI file object is MPI_File . Such file objects are opened and closed 

much the way normal files are opened and closed. The most significant difference is that 

opening a file is a collective operation over a group of processes specified by the 
communicator in the first argument of MPI_File_open. A single process can open a file by 
specifying the single-process communicator MPI_COMM_SELF. Here we want all of the 

processes to share the file, and so we use MPI_COMM_WORLD . 

In our discussion of dynamic process management, we mentioned MPI_Info objects. An 

MPI info object is a collection of key=value pairs that can be used to encapsulate a variety 

of special-purpose information that may not be applicable to all MPI implementations. In this 
section we will use MPI_INFO_NULL whenever this type of argument is required, since we 

have no special information to convey. For details about MPI_Info , see [14, Chapter 2]. 

The part of the file that will be seen by each process is called the file view and is set for each 
process by a call to MPI_File_set_view. In our example the call is 

MPI_File_set_view( outfile, rank * (NY+2) * ( ... ), 

MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL ) 

The first argument identifies the file; the second is the displacement (in bytes) into the file of 

where the process's view of the file is to start. Here we simply multiply the size of the data to 

be written by the process's rank, so that each process's view starts at the appropriate place in 
the file. The type of this argument is MPI_Offset, which can be expected to be a 64 -bit 

integer on systems that support large files. 

The next argument is called the etype of the view; it specifies the unit of data in the file. Here it 
is just MPI_DOUBLE, since we will be writing some number of doubles. The next argument is 

called the filetype; it is a flexible way of describing noncontiguous views in the file. In our case, 
with no noncontiguous units to be written, we can just use the etype, MPI_DOUBLE. In general, 

any MPI predefined or derived datatype can be used for both etypes and filetypes. We 

explore this use in more detail in the next example.  

The next argument is a string defining the data representation to be used. The native 

representation says to represent data on disk exactly as it is in memory, which provides the 
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fastest I/O performance, at the possible expense of portability. We specify that we have no 

extra information by providing MPI_INFO_NULL for the final argument. 

The call to MPI_File_write  is then straightforward. The data to be written is a contiguous 

array of doubles, even though it consists of several rows of the (distributed) matrix. On each 

process it starts at &ulocal[0][1] so the data is described in (address, count, datatype) 

form, just as it would be for an MPI message. We ignore the status by passing 
MPI_STATUS_IGNORE. Finally we (collectively) close the file with MPI_File_close. 

10.6.2 A More Complex Example 
Parallel I/O requires more than just calling MPI_File_write  instead of write. The key idea 

is to identify the object (across processes), rather than the contribution from each process. 

We illustrate this with an example of a regular distributed array. 

The code in Figure 10.12 writes out an array that is distributed among processes with a 

two-dimensional decomposition. To illustrate the expressiveness of the MPI interface, we 

show a complex case where, as in the Jacobi example, the distributed array is surrounded by 

ghost cells. This example is covered in more depth in Chapter 3 of Using MPI 2 [14], including 

the simpler case of a distributed array without ghost cells. 

/* no. of processes in vertical and horizontal dimensions 

of process grid */ 

dims[0] = 2;   dims[1] = 3; 

periods[0] = periods[1] = 1; 

MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &comm); 

MPI_Comm_rank(comm, &rank); 

MPI_Cart_coords(comm, rank, 2, coords); 

/* global indices of the first element of the local array */ 

 

/* no. of rows and columns in global array*/ 

gsizes[0] = m;    gsizes[1] = n; 

 

lsizes[0] = m/dims[0];   /* no. of rows in local array */ 

lsizes[1] = n/dims[1];   /* no. of columns in local array */ 
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start_indices[0] = coords[0] * lsizes[0]; 

start_indices[1] = coords[1] * lsizes[1]; 

MPI_Type_create_subarray(2, gsizes, lsizes, start_indices, 

MPI_ORDER_C, MPI_FLOAT, &filetype); 

MPI_Type_commit(&filetype); 

 

MPI_File_open(comm, "/pfs/datafile", 

MPI_MODE_CREATE | MPI_MODE_WRONLY, 

MPI_INFO_NULL, &fh); 

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native", 

MPI_INFO_NULL); 

 

/* create a derived datatype that describes the layout of the local 

array in the memory buffer that includes the ghost area. This is 

another subarray datatype! */ 

memsizes[0] = lsizes[0] + 8; /* no. of rows in allocated array */ 

memsizes[1] = lsizes[1] + 8; /* no. of columns in allocated array */ 

start_indices[0] = start_indices[1] = 4; 

/* indices of the first element of the local array in the 

allocated array */ 

MPI_Type_create_subarray(2, memsizes, lsizes, start_indices, 

MPI_ORDER_C, MPI_FLOAT, &memtype); 
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MPI_Type_commit(&memtype); 

MPI_File_write_all(fh, local_array, 1, memtype, &status); 

MPI_File_close(&fh); 

 

Figure 10.12: C program for writing a distributed array that is also noncontiguous in memory 

because of a ghost area (derived from an example in [14]).  

This example may look complex, but each step is relatively simple.  

1. Set up a communicator that represents a virtual array of processes that 

matches the way that the distributed array is distributed. This approach 

uses the MPI_Cart_create routine and uses MPI_Cart_coords to find 

the coordinates of the calling process in this array of processes. This 

particular choice of process ordering is important because it matches the 

ordering required by MPI_Type_create_subarray. 

2. Create a file view that describes the part of the file that this process will write 
to. The MPI routine MPI_Type_create_subarray  makes it easy to 

construct the MPI datatype that describes this region of the file. The 

arguments to this routine specify the dimensionality of the array (two in our 

case), the global size of the array, the local size (that is, the size of the part 

of the array on the calling process), the location of the local part 
(start_indices), the ordering of indices (column major is 
MPI_ORDER_FORTRAN and row major is MPI_ORDER_C), and the basic 

datatype. 
3. Open the file for writing (MPI_MODE_WRONLY), and set the file view with the 

datatype we have just constructed. 

4. Create a datatype that describes the data to be written. We can use 
MPI_Type_create_subarray  here as well to define the part of the local 

array that does not include the ghost points. If there were no ghost points, 

we could instead use MPI_FLOAT as the datatype with a count of 

lsizes[0]*lsizes[1] in the call to MPI_File_write_all. 

5. Perform a collective write to the file with MPI_File_write_all, and close 

the file. 

By using MPI datatypes to describe both the data to be written and the destination of the data 

in the file with a collective file write operation, the MPI implementation can make the best use 

of the I/O system. The result is that file I/O operations performed with MPI I/O can achieve 

hundredfold improvements in performance over using individual Unix I/O operations [35]. 

 

10.7 Remote Memory Access 
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The message-passing programming model requires that both the sender and the receiver (or 

all members of a communicator in a collective operation) participate in moving data between 

two processes. An alternative model where one process controls the communication, called 
one-sided communication, can offer better performance and in some cases a simpler 

programming model. MPI-2 provides support for this one -sided approach. The MPI-2 model 

was inspired by the work on the bulk synchronous programming (BSP) model [17] and the 

Cray SHMEM library used on the massively parallel Cray T3D and T3E computers [6]. 

In one-sided communication, one process may put  data directly into the memory of another 
process, without that process using an explicit receive call. For this reason, this also called 

remote memory access (RMA). 

Using RMA involves four steps: 

1. Describe the memory into which data may be put. 

2. Allow access to the memory. 
3. Begin put operations (e.g., with MPI_Put). 

4. Complete all pending RMA operations. 
The first step is to describe the region of memory into which data may be placed by an 

MPI_Put operation (also accessed by MPI_Get or updated by MPI_Accumulate). This is 

done with the routine MPI_Win_create: 

MPI_Win win; 

double ulocal[MAX_NX][NY+2]; 

 

MPI_Win_create( ulocal, (NY+2)*(i_end-i_start+3)*sizeof(double), 

sizeof(double), MPI_INFO_NULL, MPI_COMM_WORLD, &win ); 
The input arguments are, in order, the array ulocal, the size of the array in bytes, the size of 

a basic unit of the array (sizeof(double) in this case), a "hint" object, and the 

communicator that specifies which processes may use RMA to access the array. 
MPI_Win_create  is a collective call over the communicator. The output is an MPI window 

object win. When a window object is no longer needed, it should be freed with 

MPI_Win_free. 

RMA operations take place between two sentinels. One begins a period where access is 
allowed to a window object, and one ends that period. These periods are called epochs .[2] 

The easiest routine to use to begin and end epochs is MPI_Win_fence. This routine is 

collective over the processes that created the window object and both ends the previous 

epoch and starts a new one. The routine is called a "fence" because all RMA operations 

before the fence complete before the fence returns, and any RMA operation initiated by 
another process (in the epoch begun by the matching fence on that process) does not start 

until the fence returns. This may seem complex, but it is easy to use. In practice, 

MPI_Win_fence is needed only to separate RMA operations into groups. This model closely 
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follows the BSP and Cray SHMEM models, though with the added ability to work with any 

subset of processes. 
Three routines are available for initiating the transfer of data in RMA. These are MPI_Put, 
MPI_Get, and MPI_Accumulate. All are nonblocking in the same sense MPI point -to-point 

communication is nonblocking (Section 10.3.1). They complete at the end of the epoch that 
they start in, for example, at the closing MPI_Win_fence. Because these routines specify 

both the source and destination of data, they have more arguments than do the point -to-point 

communication routines. The arguments can be easily understood by taking them a few at a 
time. 

1. The first three arguments describe the origin data; that is, the data on the 

calling process. These are the usual "buffer, count, datatype" arguments. 

2. The next argument is the rank of the target process. This serves the same 

function as the destination of an MPI_Send. The rank is relative to the 

communicator used when creating the MPI window object. 
3. The next three arguments describe the destination buffer. The count and 

datatype arguments have the same meaning as for an MPI_Recv, but the 

buffer location is specified as an offset from the beginning of the memory 
specified to MPI_Win_create on the target process. This offset is in units of 

the displacement argument of the MPI_Win_create and is usually the size 

of the basic datatype. 

4. The last argument is the MPI window object. 

Note that there are no MPI requests; the MPI_Win_fence completes all preceding RMA 

operations. MPI_Win_fence provides a collective synchronization model for RMA 

operations in which all processes participate. This is called active target synchronization.  

With these routines, we can create a version of the mesh exchange that uses RMA instead of 

point-to-point communication. Figure 10.13 shows one possible implementation. 

void exchang_nbrs( double u_local[][NY+2], int i_start, int i_end, 

int left, int right, MPI_Win win ) 

{ 

MPI_Aint left_ghost_disp, right_ghost_disp; 

int      c; 

 

MPI_Win_fence( 0, win ); 

/* Put the left edge into the left neighbors rightmost 

ghost cells. See text about right_ghost_disp */ 
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right_ghost_disp = 1 + (NY+2) * (i_end-i-start+2); 

MPI_Put( &u_local[1][1], NY, MPI_DOUBLE, 

left, right_ghost_disp, NY, MPI_DOUBLE, win ); 

/* Put the right edge into the right neighbors leftmost ghost 

cells */ 

left_ghost_disp = 1; 

c = i_end - i_start + 1; 

MPI_Put( &u_local[c][1], NY, MPI_DOUBLE, 

right, left_ghost_disp, NY, MPI_DOUBLE, win ); 

 

MPI_Win_fence( 0, win ) 

} 

Figure 10.13: Neighbor exchange using MPI remote memory access. 
Another form of access requires no MPI calls (not even a fence) at the target process. This is 
called passive target  synchronization. The origin process uses MPI_Win_lock to begin an 

access epoch and MPI_Win_unlock to end the access epoch.[3] Because of the passive 

nature of this type of RMA, the local memory (passed as the first argument to 
MPI_Win_create) should be allocated with MPI_Alloc_mem and freed with 

MPI_Free_mem. For more information on passive target RMA operations, see [14, Chapter 

6]. Also note that as of 2001, few MPI implementations support passive target RMA operation. 

More implementations are expected to support these operations in 2002.  

A more complete discussion of remote memory access can be found in [14, Chapters 5 and 

6]. Note that MPI implementations are just beginning to provide the RMA routines described 
in this section. Most current RMA implementations emphasize functionality over performance. 

As implementations mature, however, the performance of RMA operations will also improve. 

[2]MPI has two kinds of epochs for RMA: an access epoch and an exposure epoch. For the 

example used here, the epochs occur together, and we refer to both of them as just epochs. 

[3]The names MPI_Win_lock and MPI_Win_unlock are really misnomers; think of them as 

begin-RMA and end-RMA. 
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10.8 Using C++ and Fortran 90 

MPI-1 defined bindings to C and Fortran 77. These bindings were very similar; the only major 

difference was the handling of the error code (returned in C, set through the last argument in 

Fortran 77). In MPI-2, a binding was added for C++, and an MPI module was defined for 

Fortran 90. 

The C++ binding provides a lightweight model that is more than just a C++ version of the C 
binding but not a no-holds-barred object-oriented model. MPI objects are defined in the MPI 

namespace. Most MPI objects have corresponding classes, such as Datatype for 

MPI_Datatype. Communicators and requests are slightly different. There is an abstract 

base class Comm for general communicators with four derived classes: Intracomm, 
Intercomm, Graphcomm, and Cartcomm . Most communicators are Intracomms; 

GraphComm and CartComm  are derived from Intracomm . Requests have two derived 

classes: Prequest for persistent requests and Grequest for generalized requests (new in 

MPI-2). Most MPI operations are methods on the appropriate objects; for example, most 

point-to-point and collective communications are methods on the communicator. A few 
routines, such as Init and Finalize, stand alone. A simple MPI program in C++ is shown 

in Figure 10.14. 

#include "mpi.h" 

#include <iostream.h> 

 

int main( int argc, char *argv[] ) 

{ 

int data; 

MPI::Init(); 

 

if (MPI::COMM_WORLD.Get_rank() == 0) { 

// Broadcast data from process 0 to all others 

cout << "Enter an int" << endl; 

data << cin; 

} 
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MPI::COMM_WORLD.Bcast( data, 1, MPI::INT, 0 ); 

 

MPI::Finalize(); 

return 0; 

} 

 

Figure 10.14: Simple MPI program in C++. 

The C++ binding for MPI has a few quirks. One is that the multiple completion operations 
such as MPI::Waitall  are methods on requests, even though there is no unique request to 

use for these methods. Another is the C++ analogue to MPI_Comm_dup. In the C++ binding, 

MPI::Comm is an abstract base class (ABC). Since it is impossible to create an instance of 

an abstract base class, there can be no general "dup" function that returns a new MPI::Comm. 

Since it is possible in C++ to create a reference to an ABC, however, MPI defines the routine 
(available only in the C++ binding) MPI::Clone that returns a reference to a new 

communicator. 

Two levels of Fortran 90 support are provided in MPI. The basic support provides an 
'mpif.h ' include file. The extended support provides an MPI module. The module makes it 

easy to detect the two most common errors in Fortran MPI programs: forgetting to provide the 
variable for the error return value and forgetting to declare status as an array of size 

MPI_STATUS_SIZE. There are a few drawbacks. Fortran derived datatypes cannot be 

directly supported (the Fortran 90 language provides no way to handle an arbitrary type). 

Often, you can use the first element of the Fortran 90 derived type. Array sections should not 

be used in receive operations, particularly nonblocking communication (see Section 10.2.2 in 
the MPI-2 standard for more information). Another problem is that while Fortran 90 enables 

the user to define MPI interfaces in the MPI module, a different Fortran 90 interface file must 

be used for each combination of Fortran datatype and array dimension (scalars are different 

from arrays of dimension one, etc.). This leads to a Fortran 90 MPI module library that is often 

(depending on the Fortran 90 compiler) far larger than the entire MPI library. However, 

particularly during program development, the MPI module is very helpful. 

 

10.9 MPI, OpenMP, and Threads 
The MPI standard was carefully written to be a thread-safe specification. That means that the 

design of MPI doesn't include concepts such as "last message" or "current pack buffer" that 
are not well defined wh en multiple threads are present. MPI implementations can choose 

whether to provide thread-safe implementations . Allowing this choice is particularly important 

because thread safety usually comes at the price of performance due to the extra overhead 
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required to ensure that internal data structures are not modified inconsistently by two different 

threads. Most early MPI implementations were not thread safe. 

MPI-2 introduced four levels of thread safety that an MPI implementation could provide. The 
lowest level, MPI_THREAD_SINGLE, allows only single threaded programs. The next level, 

MPI_THREAD_FUNNELED, allows multiple threads provided that all MPI calls are made in a 

single thread; most MPI implementations provide MPI_THREAD_FUNNELED. The next level, 

MPI_THREAD_SERIALIZED, allows many user threads to make MPI calls, but only one 

thread at a time. The highest level of support, MPI_THREAD_MULTIPLE, allows any thread to 

call any MPI routine. 

Understanding the level of thread support is important when combining MPI with approaches 

to thread-based parallelism. OpenMP [26] is a popular and powerful language for specifying 

thread-based parallelism. While OpenMP provides some tools for general threaded 

parallelism, one of the most common uses is to parallelize a loop. If the loop contains no MPI 
calls, then OpenMP may be combined with MPI. For example, in the Jacobi example, 

OpenMP can be used to parallelize the loop computation: 

exchange_nbrs( u_local, i_start, i_end, left, right ); 

#pragma omp for 

for (i_local=1; i<=i_end-i_start+1; i++) 

for (j=1; j<=NY; j++) 

ulocal_new[i_local][j] = 

0.25 * (ulocal[i_local+1][j] + ulocal[i_local-1][j] + 

ulocal[i_local][j+1] + ulocal[i_local][j-1] - 

h*h*flocal[i_local][j]); 

This exploits the fact that MPI was designed to work well with other tools, leveraging 

improvements in compilers and threaded parallelism. 

 
10.10 Measuring MPI Performance 
Many tools have been developed for measuring performance. The best is always your own 

application, but a number of tests are available that can give a more general overview of the 

performance of MPI on a cluster. Measuring communication performance is actually quite 

tricky; see [15] for a discussion of some of the issues in making reproducible measurements 
of performance. That paper describes the methods used in the mpptest program for 

measuring MPI performance.  

10.10.1 mpptest 
The mpptest program allows you to measure many aspects of the performance of any MPI 

implementation. The most common MPI performance test is the Ping-Pong test (see Section 
8.2). The mpptest program provides Ping-Pong tests for the different MPI communication 
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modes, as well as providing a variety of tests for collective operations and for more realistic 

variations on point -to-point communication, such as halo communication (like that in Section 

9.3) and communication that does not reuse the same memory locations (thus benefiting from 
using data that is already in memory cache). The mpptest program can also test the 

performance of some MPI-2 functions, including MPI_Put and MPI_Get. 

Using mpptest. The mpptest program is distributed with MPICH in the directory 

'examples/perftest'. You can also download it separately from 

www.mcs.anl.gov/mpi/perftest. Building and using mpptest is very simple:  

% tar zxf perftest.tar.gz 

% cd perftest-1.2.1 

% ./configure --with-mpich 

% make 

% mpirun -np 2 ./mpptest -logscale 

% mpirun -np 16 ./mpptest -bisect 

% mpirun -np 2 ./mpptest -auto 
To run with LAM/MPI, simply configure with the option --with-lammpi. The 'README' file 

contains instructions for building with other MPI implementations. 

10.10.2 SKaMPI 

The SKaMPI test suite [27] is a comprehensive test of MPI performance, covering virtually all 

of the MPI-1 communication functions. 

One interesting feature of the SKaMPI benchmarks is the online tables showing the 

performance of MPI implementations on various parallel computers, ranging from Beowulf 

clusters to parallel vector supercomputers. 

10.10.3 High Performance LINPACK 

Perhaps the best known benchmark in technical computing is the LINPACK Benchmark, 

discussed in Section 8.3. The version of this benchmark that is appropriate for clusters is the 
High Performance LINPACK (HPL). Obtaining and running this benchmark is relatively easy, 

though getting good performance can require a significant amount of effort. In addition, as 

pointed out in Section 8.3, while the LINPACK benchmark is widely known, it tends to 

significantly overestimate the achieveable performance for many applications. 

The HPL benchmark depends on another library, the basic linear algebra subroutines (BLAS), 

for much of the computation. Thus, to get good performance on the HPL benchmark, you 

must have a high-quality implementation of the BLAS. Fortunately, several sources of these 
routines are available. You can often get implementations of the BLAS from the CPU vendor 

directly, sometimes at no cost. 
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Another possibility is to use the ATLAS implementation of the BLAS. 
ATLAS. ATLAS is available from www.netlib.org/atlas. If prebuilt binaries fit your 

system, you should use those. Note that ATLAS is tuned for specific system characteristics 
including clock speed and cache sizes; if you have any doubts about whether your 

configuration matches that of a prebuilt version, you should build ATLAS yourself. 

To build ATLAS, first download ATLAS from the Web site and then extract it. This will create 
an 'ATLAS ' directory into which the libraries will be built, so extract this where you want the 

libraries to reside.  

% tar zxf atlas3.2.1.tgz 

% cd ATLAS 
Check the 'errata.html' file at www.netlib.org/atlas/errata.html  for updates. 

You may need to edit various files (no patches are supplied for ATLAS). Next, have ATLAS 
configure itself. Select a compiler; note that you should not use the Portland Group compiler 

here. 

% make config CC=gcc 
Answer yes to most questions, including threaded and express setup, and accept the 

suggested architecture name. Next, make ATLAS: 

% make install arch=<thename> >&make.log 

Note that this is not an "install" in the usual sense; the ATLAS libraries are not copied to 
'/usr/local/lib ' and the like by the install. This step may take as long as several hours, 

unless ATLAS finds a precomputed set of parameters that fits your machine. At the end of 
this step, the BLAS are in 'ATLAS/lib/<archname>'. You are ready for the next step. 

HPL. Download the HPL package from www.netlib.org/benchmark/hpl: 

% tar zxf hpl.tgz 

% cd hpl 
Create a 'Make.<archname> ' in the 'hpl ' directory. Consider an archname like 

Linux_P4_CBLAS_p4 for a Linux system on Pentium 4 processors, using the C version of 

the BLAS constructed by ATLAS, and using the ch_p4 device from the MPICH 

implementation of MPI. To create this file, look at the samples in the 'hpl/makes' directory, 

for example,  

% cp makes/Make.Linux_PII_CBLAS_gm Make.Linux_P4_CBLAS_p4 

Edit this file, changing ARCH to the name you selected (e.g., Linux_P4_CBLAS_p4), and set 
LAdir to the location of the ATLAS libraries. Then do the following:  

% make arch=<thename> 

% cd bin/<thename> 

% mpirun -np 4 ./xhpl 
Check the output to make sure that you have the right answer. The file 'HPL.dat ' controls the 

actual test parameters. The version of 'HPL.dat ' that comes with the hpl package is 
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appropriate for testing hpl. To run hpl for performance requires modifying 'HPL.dat '. The 

file 'hpl/TUNING' contains some hints on setting the values in this file for performance. Here 

are a few of the most important: 
1. Change the problem size to a large value. Don't make it too large, however, 

since the total computational work grows as the cube of the problem size 

(doubling the problem size increases the amount of work by a factor of 

eight). Problem sizes of around 5,000–10,000 are reasonable. 

2. Change the block size to a modest size. A block size of around 64 is a good 
place to start. 

3. Change the processor decomposition and number of nodes to match your 

configuration. In most cases, you should try to keep the decomposition 

close to square (e.g., P and Q should be about the same value), with P = 

Q. 
4. Experiment with different values for RFACT and PFACT. On some systems, 

these parameters can have a significant effect on performance. For one 

large cluster, setting both to right was preferable. 

 

10.11 MPI-2 Status 

MPI-2 is a significant extension of the MPI-1 standard. Unlike the MPI-1 standard, where 

complete implementations of the entire standard were available when the standard was 
released, complete implementations of all of MPI-2 have been slow in coming. As of June 

2001, there are few complete implementations of MPI-2 and none for Beowulf clusters. Most 

MPI implementations include the MPI-IO routines, in large part because of the ROMIO 

implementation of these routines. Significant parts of MPI-2 are available, however, including 

the routines described in this book. Progress continues in both the completeness and 

performance of MPI-2 implementations, and we expect full MPI-2 implementations to appear 

in 2002. 

 

10.12 MPI Routine Summary 

This section provides a quick summary in C, Fortran, C++, and other MPI routines used in this 
chapter. Although these are only a small fraction of the routines available in MPI, they are 

sufficient for many applications. 

C Routines.  
int MPI_Irecv(void* buf, int count, MPI Datatype datatype, int source, int tag, 

MPI Comm comm, MPI_Request *request) 

 

int MPI_Wait(MPI Request *request, MPI_Status *status) 

 

int MPI_Test(MPI Request *request, int *flag, MPI_Status *status) 
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int MPI_Waitall(int count, MPI_Request *array_of_requests, 

MPI_Status *array_of_statuses) 

 
int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info, 

MPI_Comm comm, MPI_Win *win) 

 

int MPI_Win_free(MPI_Win *win) 

 
int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype origin_datatype, 

int target_rank, MPI_Aint target_disp, int target_count, 

MPI_Datatype target_datatype, MPI_Win win) 

 

int MPI_Get(void *origin_addr, int origin_count,MPI_Datatype origin_datatype, 

int target_rank, MPI_Aint target_disp, int target_count, 

MPI_Datatype target_datatype, MPI_Win win) 

 

int MPI_Win_fence(int assert, MPI_Win win) 

 

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info, 

MPI_File *fh) 

 

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype, 

MPI_Datatype filetype, char *datarep, MPI_Info info) 

 

int MPI_File_read(MPI File fh, void *buf, int count, MPI_Datatype datatype, 

MPI_Status *status) 

 

int MPI_File_write(MPI_File fh, void *buf, int count, MPI_Datatype datatype, 

MPI_Status *status) 

 

int MPI_File_read_all(MPI_File fh, void *buf, int count, MPI_Datatype datatype, 

MPI_Status *status) 

 
int MPI_File_write_all(MPI_File fh, void *buf, int count, MPI_Datatype datatype, 

MPI_Status *status) 

 

int MPI_File_close(MPI_File *fh) 

 

int MPI_Comm_spawn(char *command, char *argv[], int maxprocs, MPI_Info info, 

int root, MPI_Comm comm, MPI_Comm *intercomm, 

int array_of_errcodes[]) 
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int MPI_Comm_get_parent(MPI_Comm *parent) 

 
Fortran routines.  

MPI_ISEND(buf, count, datatype, dest, tag, comm, request, ierror) 

<type> buf(*) 

integer count, datatype, dest, tag, comm, request, ierror 

 
MPI_IRECV(buf, count, datatype, source, tag, comm, request,ierror) 

<type> buf(*) 

integer count, datatype, source, tag, comm, request, ierror 

 

MPI_WAIT(request, status, ierror) 

integer request,status(MPI_STATUS_SIZE), ierror 

 

MPI_TEST(request, flag, status, ierror) 

logical flag 

integer request, status(MPI_STATUS_SIZE), ierror 

 

MPI_WAITALL(count, array_of_requests, array_of_statuses,ierror) 

integer count, array_of_requests(*), 

array_of_statuses(MPI_STATUS_SIZE,*), ierror 

 
MPI_WIN_CREATE(base, size, disp_unit, info, comm, win, ierror) 

<type> base(*) 

integer(kind=MPI_ADDRESS_KIND) size 

integer disp_unit, info, comm, win, ierror 

 
MPI_WIN_FREE(win, ierror) 

integer win, ierror 

 

MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, 

target_count, target_datatype, win, ierror) 

<type> origin_addr(*) 

integer(kind=MPI_ADDRESS_KIND) target_disp 

integer origin_count, origin_datatype, target_rank, target_count, 

target_datatype, win, ierror 

 

MPI_GET(origin_addr, origin_count, origin_datatype,target_rank, target_disp, 

target_count, target_datatype, win, ierror) 

<type> origin_addr(*) 
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integer(kind=MPI_ADDRESS_KIND) target_disp 

integer origin_count, origin_datatype, target_rank, target_count, 

target_datatype, win, ierror 

 

MPI_WIN_FENCE(assert, win, ierror) 

integer assert, win, ierror 

 

MPI_FILE_OPEN(comm, filename, amode, info, fh, ierror) 

character*(*) filename 

integer comm, amode, info, fh, ierror 

 

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info, ierror) 

integer fh, etype, filetype, info, ierror 

character*(*) datarep 

integer(kind=MPI_OFFSET_KIND) disp 

 

MPI_FILE_READ(fh, buf, count, datatype, status, ierror) 

<type> buf(*) 

integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror 

 

MPI_FILE_WRITE(fh, buf, count, datatype, status, ierror) 

<type> buf(*) 

integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror 

 

MPI_FILE_READ_ALL(fh, buf, count, datatype, status, ierror) 

<type> buf(*) 

integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror 

 
MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status, ierror) 

<type> buf(*) 

integer fh, count, datatype, status(MPI_STATUS_SIZE), ierror 

 

MPI_FILE_CLOSE(fh, ierror) 

integer fh, ierror 

 

MPI_COMM_SPAWN(command, argv, maxprocs, info, root, comm, intercomm, 

array_of_errcodes, ierror) 

character*(*) command, argv(*) 

integer info, maxprocs, root, comm, intercomm, array_of_errcodes(*), 

ierror 

 



 224 

MPI_COMM_GET_PARENT(parent, ierror) 

integer parent, ierror 

 
C++ routines. 

Request MPI::Comm::Isend(const void* buf, int count, 

const Datatype& datatype, int dest, int tag) const 

 

Request MPI::Comm::Irecv(void* buf, int count, const Datatype& datatype, 

int source, int tag) const 

 

void MPI::Request::Wait(Status& status) 

 

void MPI::Request::Wait() 

 

bool MPI::Request::Test(Status& status) 

 

bool MPI::Request::Test() 

 

void MPI::Request::Waitall(int count, Request array_of_requests[], 

Status array of statuses[]) 

 

void MPI::Request::Waitall(int count, Request array_of_requests[]) 

 
MPI::Win MPI::Win::Create(const void* base, Aint size, int disp_unit, 

const Info& info, const Intracomm& comm) 

 

void MPI::Win::Free() 

 
void MPI::Win::Put(const void* origin_addr, int 

origin_count, const Datatype& origin_datatype, int target_rank, Aint 

target_disp, int target_count, const Datatype& target_datatype) const 

 

void MPI::Win::Get(void *origin_addr, int 

origin_count, const MPI::Datatype& origin_datatype, int target_rank, 

MPI::Aint target_disp, int target_count, 

const MPI::Datatype& target_datatype) const 

 

void MPI::Win::Fence(int assert) const 

 

MPI::File MPI::File::Open(const MPI::Intracomm& comm, const char* filename, 

int amode, const MPI::Info& info) 
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MPI::Offset MPI::File::Get_size const 

 
void MPI::File::Set_view(MPI::Offset disp, const MPI::Datatype& etype, 

const MPI::Datatype& filetype, const char* datarep, 

const MPI::Info& info) 

 

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype, 

MPI::Status& status) 

 

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype) 

 

void MPI::File::Write(void* buf, int count, const MPI::Datatype& datatype, 

MPI::Status& status) 

 

void MPI::File::Write(void* buf, int count, const MPI::Datatype& datatype) 

 

void MPI::File::Read_all(void* buf, int count, const MPI::Datatype& datatype, 

MPI::Status& status) 

 

void MPI::File::Read_all(void* buf, int count, const MPI::Datatype& datatype) 

 

void MPI::File::Write_all(const void* buf, int count, 

const MPI::Datatype& datatype, MPI::Status& status) 

 

void MPI::File::Write_all(const void* buf, int count, const MPI::Datatype& 

datatype) 

 
void MPI::File::Close 

 

MPI::Intercomm MPI::Intracomm::Spawn(const char* command, 

const char* argv[], int maxprocs, const MPI::Info& info, int root, 

int array_of_errcodes[]) const 

 

MPI::Intercomm MPI::Intracomm::Spawn(const char* command, 

const char* argv[], int maxprocs, const MPI::Info& info, int root) const 

 

MPI::Intercomm MPI::Comm::Get_parent() 
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Chapter 11: Parallel Programming with PVM 
Al Geist and Stephen Scott 

PVM (Parallel Virtual Machine) is an outgrowth of an ongoing computing research project 

involving Oak Ridge National Laboratory, the University of Tennessee, and Emory University. 

The general goals of this project are to investigate issues in, and develop solutions for, 

heterogeneous concurrent computing. PVM is an integrated set of software tools and libraries 

that emulates a general-purpose, flexible, heterogeneous parallel computing framework on 

interconnected computers of varied architecture. The overall objective of the PVM system is 

to enable such a collection of computers to be used cooperatively for a concurrent or parallel 
computation. This chapter provides detailed descriptions and discussions of the concepts, 

logistics, and methodologies involved in programming with PVM. 

11.1 Overview 

PVM is based on the following principles: 
§ User-configured host pool: The application's computational tasks execute on a 

set of machines that are selected by the user for a given run of the PVM 

program. Both single-CPU machines and hardware multiprocessors (including 
shared memory and distributed-memory computers) may be part of the host 

pool. The host pool may be altered by adding and deleting machines during 

operation (an important feature for fault tolerance). When PVM is used on 

Beowulf clusters, the nodes make up the host pool. 

§ Translucent access to hardware: Application programs may view the hardware 

environment as an attributeless collection of virtual processing elements or may 

exploit the capabilities of specific machines in the host pool by positioning 
certain computational tasks on the most appropriate computers. 

§ Process-based computation: The unit of parallelism in PVM is a task, an 

independent sequential thread of control that has communication and 

computation capabilities. No process-to-processor mapping is implied or 

enforced by PVM; in particular, multiple tasks may execute on a single 

processor. 

§ Explicit message -passing model: Collections of computational tasks, each 
performing a part of an application's workload, cooperate by explicitly sending to 

and receiving messages from one another. PVM dynamically allocates space 

for message buffers so message size is limited only by the amount of available 

memory. 

§ Heterogeneity support: The PVM system supports heterogeneity in terms of 
machines, networks, and applications. With regard to message passing, PVM 
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permits messages containing more than one datatype to be exchanged 

between machines having different data representations. 

§ Multiprocessor support: PVM uses the native message-passing facilities on 
multiprocessors to take advantage of the underlying hardware. For example, on 

the IBM SP, PVM transparently uses IBM's MPI to move data. On the SGI 

Origin, PVM uses shared memory to move data.  
The PVM system is composed of two parts. The first part is a daemon, called pvmd3 and 

sometimes abbreviated pvmd, that resides on all the computers making up the virtual 

machine. (An example of a daemon program is the mail program that runs in the background 

and handles all the incoming and outgoing electronic mail on a computer.) The daemon 
pvmd3 is designed so any user with a valid login can install this daemon on a machine. To run 

a PVM application, you first create a virtual machine by starting up PVM (Section 11.7.2 

details how this is done). You can then start the PVM application on any of the hosts. Multiple 

users can configure virt ual machines that overlap the same cluster nodes, and each user can 

execute several PVM applications simultaneously. 

The second part of the system is a library of PVM interface routines. It contains a functionally 

complete repertoire of primitives that are needed for cooperation between tasks of an 
application. This library contains user-callable routines for message passing, spawning 

processes, coordinating tasks, and modifying the virtual machine. 

The PVM computing model is based on the notion that an application consists of several 
tasks each responsible for a part of the application's computational work-load. Sometimes an 

application is parallelized along its functions. That is, each task performs a different function, 

for example, input, problem setup, solution, output, or display. This is often called functional 

parallelism. A more common method of parallelizing an application is called data parallelism. 
In this method all the tasks are the same, but each one knows and solves only a small part of 

the data. This is also referred to as the SPMD (single program, multiple data) model of 

computing. PVM supports either or a mixture of both these methods. Depending on their 

functions, tasks may execute in parallel and may need to synchronize or exchange data.  

The PVM system currently supports C, C++, and Fortran languages. These language 

interfaces have been included based on the observation that the predominant majority of 

target applications are written in C and Fortran, with an emerging trend in experimenting with 
object-based languages and methodologies. Third-party groups have created freely available 

Java, Perl, Python, and IDL interfaces to PVM. 

The C and C++ language bindings for the PVM user interface library are implemented as 

functions, following the general conventions used by most C systems. To elaborate, function 

arguments are a combination of value parameters and pointers as appropriate, and function 
result values indicate the outcome of the call. In addition, macro definitions are used for 

system constants, and global variables such as errno and pvm_errno are the mechanism 
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for discriminating between multiple possible outcomes. Application programs written in C and 

C++ access PVM library functions by linking against an archival library (libpvm3.a) that is 

part of the standard distribution. 
Fortran language bindings are implemented as subroutines rather than as functions. This 

approach was taken because some compilers on the supported architectures would not 

reliably interface Fortran functions with C functions. One immediate implication of this is that 

an additional argument is introduced into each PVM library call for status results to be 

returned to the invoking program. Another difference is that library routines for the placement 
and retrieval of typed data in message buffers are unified, with an additional parameter 

indicating the datatype. Apart from these differences (and the standard naming prefixes pvm_ 

for C, and pvmf for Fortran), a one-t o-one correspondence exists between the two language 

bindings. Fortran interfaces to PVM are implemented as library stubs that in turn invoke the 

corresponding C routines, after casting and/or dereferencing arguments as appropriate. Thus, 
Fortran applications are required to link against the stubs library (libfpvm3.a) as well as the 

C library. 

All PVM tasks are identified by an integer task identifier tid. Messages are sent to tids and 

received from tids. Since tids must be unique across the entire virtual machine, they are 

supplied by the local pvmd and are not user chosen. Although PVM encodes information into 

each tid, the user is expected to treat the tids as opaque integer identifiers. PVM contains 

several routines that return tid values so that the user application can identify other tasks in 

the system. 

In some applications it is natural to think of a group of tasks. And there are cases where you 

would like to identify your tasks by the numbers 0 to (p - 1), where p is the number of tasks. 
PVM includes the concept of user-named groups. When a task joins a group, it is assigned a 

unique "instance" number in that group. Instance numbers start at 0 and count up. In keeping 

with the PVM philosophy, the group functions are designed to be very general and 

transparent to the user. For example, any PVM task can join or leave any group at any time 

without having to inform any other task in the affected groups, groups can overlap, and tasks 
can broadcast messages to groups of which they are not a member. To use any of the group 

functions, a program must be linked with libgpvm3.a. 

The general paradigm for application programming with PVM is as follows. You write one or 

more sequential programs in C, C++, or Fortran 77 that contain embedded calls to the PVM 

library. Each program corresponds to a task making up the application. These programs are 

compiled for each architecture in the host pool, and the resulting object files are placed at a 

location accessible from machines in the host pool. To execute an application, you typically 
start one copy of one task (typically the "manager" or "initiating" task) by hand from a machine 

within the host pool. This process subsequently starts other PVM tasks eventually resulting in 

a collection of active tasks that then compute locally and exchange messages with each other 

to solve the problem. 
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Note that while this scenario is typical, as many tasks as appropriate may be started manually. 

As mentioned earlier, tasks interact through explicit message passing, identifying each other 

with a system -assigned, opaque tid. 
Shown in Figure 11.1 is the body of the PVM program 'hello.c ', a simple example that 

illustrates the basic concepts of PVM programming. This program is intended to be invoked 
manually; after printing its task id (obtained with pvm_mytid()), it initiates a copy of another 

program called 'hello_other.c' using the pvm_spawn() function. A successful spawn 

causes the program to execute a blocking receive using pvm_recv. After receiving the 

message, the program prints the message sent by its counterpart, as well its task id; the 

buffer is extracted from the message using pvm_upkstr. The final pvm_exit call 

dissociates the program from the PVM system. 

#include "pvm3.h" 

main() 

{ 

int cc, tid, msgtag; 

char buf[100]; 

printf("i'm t%x\n", pvm_mytid()); 

cc = pvm_spawn("hello_other", (char**)0, 0, "", 1, &tid); 

if (cc == 1) { 

msgtag = 1; 

pvm_recv(tid, msgtag); 

pvm_upkstr(buf); 

printf("from t%x: %s\n", tid, buf); 

} else 

printf("can't start hello_other\n"); 

pvm_exit(); 

} 

Figure 11.1: PVM program 'hello.c '. 
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Figure 11.2 is a listing of the "slave," or spawned program; its first PVM action is to obtain the 

task id of the "master" using the pvm_parent call. This program then obtains its hostname 

and transmits it to the master using the three-call sequence: pvm_initsend to initialize the 
(transparent) send buffer; pvm_pkstr to place a string in a strongly typed and architecture 

independent manner into the send buffer; and pvm_send to transmit it to the destination 

process specified by ptid, "tagging" the message with the number 1. 

#include "pvm3.h" 

main() 

{ 

int ptid, msgtag; 

char buf[100]; 

ptid = pvm_parent(); 

strcpy(buf, "hello, world from "); 

gethostname(buf + strlen(buf), 64); 

msgtag = 1; 

pvm_initsend(PvmDataDefault); 

pvm_pkstr(buf); 

pvm_send(ptid, msgtag); 

pvm_exit(); 

} 

Figure 11.2: PVM program 'hello_other.c '. 

 

 
11.2 Program Examples 
In this section we discuss several complete PVM programs in detail. The first example, 

forkjoin.c, shows how to spawn off processes and synchronize with them. We then 

discuss a Fortran dot product program PSDOT.F and a matrix multiply example. Lastly, we 

show how PVM can be used to compute heat diffusion through a wire. 
 

11.3 Fork/Join 
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The fork/join example demonstrates how to spawn off PVM tasks and synchronize with them. 

The program spawns several tasks, three by default. The children then synchronize by 

sending a message to their parent task. The parent receives a message from each of the 
spawned tasks and prints out information about the message from the child tasks. 

This program contains the code for both the parent and the child tasks. Let's examine it in 
more detail. The very first thing the program does is call pvm_mytid(). In fork/join we check 

the value of mytid; if it is negative, indicating an error, we call pvm_perror() and exit the 

program. The pvm_perror() call will print a message indicating what went wrong with the 
last PVM call. In this case the last call was pvm_mytid(), so pvm_perror() might print a 

message indicating that PVM hasn't been started on this machine. The argument to 

pvm_perror() is a string that will be prepended to any error message printed by 

pvm_perror(). In this case we pass argv[0], which is the name of the program as it was 

typed on the command-line. The pvm_perror() function is modeled after the Unix 
perror() function. 

Assuming we obtained a valid result for mytid, we now call pvm_parent(). The 

pvm_parent() function will return the tid of the task that spawned the calling task. Since we 

run the initial forkjoin program from a command prompt, this initial task will not have a 

parent; it will not have been spawned by some other PVM task but will have been started 
manually by the user. For the initial fork/join task the result of pvm_parent() will not be any 

particular task id but an error code, PvmNoParent. Thus we can distinguish the parent 

fork/join task from the children by checking whether the result of the pvm_parent() call is 

equal to PvmNoParent . If this task is the parent, then it must spawn the children. If it is not 

the parent, then it must send a message to the parent. 
Let's examine the code executed by the parent task. The number of tasks is taken from the 

command-line as argv[1]. If the number of tasks is not legal then we exit the program, 

calling pvm_exit() and then returning. The call to pvm_exit() is important because it tells 

PVM this program will no longer be using any of the PVM facilities. (In this case the task exits 

and PVM will deduce that the dead task no longer needs its services. Regardless, it is good 
style to exit cleanly.) Assuming the number of tasks is valid, fork/join will then attempt to 

spawn the children. 

The pvm_spawn() call tells PVM to start ntask tasks named argv[0]. The second 

parameter is the argument list given to the spawned tasks. In this case we don't care to give 

the children any particular command-line arguments, so this value is null. The third parameter 
to spawn, PvmTaskDefault , is a flag telling PVM to spawn the tasks in the default location. 

Had we been interested in placing the children on a specific machine or a machine of a 

particular architecture, we would have used PvmTaskHost or PvmTaskArch for this flag and 

specified the host or architecture as the fourth parameter. Since we don't care where the 
tasks execute, we use PvmTaskDefault for the flag and null for the fourth parameter. 

Finally, ntask tells spawn how many tasks to start, and the integer array child will hold the 

task ids of the newly spawned children. The return value of pvm_spawn() indicates how 

many tasks were successfully spawned. If info is not equal to ntask, then some error 
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occurred during the spawn. In case of an error, the error code is placed in the task id array, 

child, instead of the actual task id; forkjoin  loops over this array and prints the task ids or 

any error codes. If no tasks were successfully spawned, then the program exits. 
For each child task, the parent receives a message and prints out information about that 

message. The pvm_recv() call receives a message from any task as long as the tag for that 

message is JOINTAG. The return value of pvm_recv() is an integer indicating a message 

buffer. This integer can be used to find out information about message buffers. The 

subsequent call to pvm_bufinfo() does just this; it gets the length, tag, and task id of the 
sending process for the message indicated by buf. In forkjoin the messages sent by the 

children contain a single integer value, the task id of the child task. The pvm_upkint() call 

unpacks the integer from the message into the mydata variable. As a sanity check, 

forkjoin tests the value of mydata and the task id returned by pvm_bufinfo(). If the 

values differ, the program has a bug, and an error message is printed. Finally, the information 
about the message is printed, and the parent program exits. 
The last segment of code in forkjoin  will be executed by the child tasks. Before data is 

placed in a message buffer, the buffer must be initialized by calling pvm_initsend(). The 

parameter PvmDataDefault  indicates that PVM should do whatever data conversion is 

needed to assure that the data arrives in the correct format on the destination processor. In 

some cases this may result in unnecessary data conversions. If you are sure no data 

conversion will be needed since the destination machine uses the same data format, then you 
can use PvmDataRaw  as a parameter to pvm_initsend(). The pvm_pkint() call places 

a single integer, mytid, into the message buffer. It is important to make sure the 

corresponding unpack call exactly matches the pack call. Packing an integer and unpacking it 
as a float will not work correctly. There should be a one-to-one correspondence between pack 

and unpack calls. Finally, the message is sent to the parent task using a message tag of 
JOINTAG. 

/* 

Fork Join Example 

Demonstrates how to spawn processes and exchange messages 

*/ 

 

/* defines and prototypes for the PVM library */ 

#include <pvm3.h> 

 

/* Maximum number of children this program will spawn */ 

#define MAXNCHILD   20 

/* Tag to use for the joing message */ 

#define JOINTAG     11 



 233 

 

int 

main(int argc, char* argv[]) 

{ 

 

/* number of tasks to spawn, use 3 as the default */ 

int ntask = 3; 

/* return code from pvm calls */ 

int info; 

/* my task id */ 

int mytid; 

/* my parents task id */ 

int myparent; 

/* children task id array */ 

int child[MAXNCHILD]; 

int i, mydata, buf, len, tag, tid; 

 

/* find out my task id number */ 

mytid = pvm_mytid(); 

 

/* check for error */ 

if (mytid < 0) { 

/* print out the error */ 

pvm_perror(argv[0]); 

/* exit the program */ 

return -1; 

} 

/* find my parent's task id number */ 

myparent = pvm_parent(); 

 

/* exit if there is some error other than PvmNoParent */ 

if ((myparent < 0) && (myparent != PvmNoParent) 
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&& (myparent != PvmParentNotSet)) { 

pvm_perror(argv[0]); 

pvm_exit(); 

return -1; 

} 

 

/* if i don't have a parent then i am the parent */ 

if (myparent == PvmNoParent || myparent == PvmParentNotSet) { 

/* find out how many tasks to spawn */ 

if (argc == 2) ntask = atoi(argv[1]); 

 

/* make sure ntask is legal */ 

if ((ntask < 1) || (ntask > MAXNCHILD)) { pvm_exit(); return 0; } 

 

/* spawn the child tasks */ 

info = pvm_spawn(argv[0], (char**)0, PvmTaskDefault, (char*)0, 

ntask, child); 

/* print out the task ids */ 

for (i = 0; i < ntask; i++) 

if (child[i] < 0) /* print the error code in decimal*/ 

printf(" %d", child[i]); 

else  /* print the task id in hex */ 

printf("t%x\t", child[i]); 

putchar('\n'); 

 

/* make sure spawn succeeded */ 

if (info == 0) { pvm_exit(); return -1; } 

 

/* only expect responses from those spawned correctly */ 

ntask = info; 

 

for (i = 0; i < ntask; i++) { 
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/* recv a message from any child process */ 

buf = pvm_recv(-1, JOINTAG); 

if (buf < 0) pvm_perror("calling recv"); 

info = pvm_bufinfo(buf, &len, &tag, &tid); 

if (info < 0) pvm_perror("calling pvm_bufinfo"); 

info = pvm_upkint(&mydata, 1, 1); 

if (info < 0) pvm_perror("calling pvm_upkint"); 

if (mydata != tid) printf("This should not happen!\n"); 

printf("Length %d, Tag %d, Tid t%x\n", len, tag, tid); 

} 

pvm_exit(); 

return 0; 

} 

 

/* i'm a child */ 

info = pvm_initsend(PvmDataDefault); 

if (info < 0) { 

pvm_perror("calling pvm_initsend"); pvm_exit(); return -1; 

} 

info = pvm_pkint(&mytid, 1, 1); 

if (info < 0) { 

pvm_perror("calling pvm_pkint"); pvm_exit(); return -1; 

} 

info = pvm_send(myparent, JOINTAG); 

if (info < 0) { 

pvm_perror("calling pvm_send"); pvm_exit(); return -1; 

} 

pvm_exit(); 

return 0; 

} 

Figure 11.3 shows the output of running fork/join. Notice that the order the messages were 
received is nondeterministic. Since the main loop of the parent processes messages on a 
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first-come first-served basis, the order of the prints are determined simply by the time it takes 

messages to travel from the child tasks to the parent. 

% forkjoin 

t10001c t40149  tc0037 

Length 4, Tag 11, Tid t40149 

Length 4, Tag 11, Tid tc0037 

Length 4, Tag 11, Tid t10001c 

% forkjoin 4 

t10001e t10001d t4014b  tc0038 

Length 4, Tag 11, Tid t4014b 

Length 4, Tag 11, Tid tc0038 

Length 4, Tag 11, Tid t10001d 

Length 4, Tag 11, Tid t10001e 

 

Figure 11.3: Output of fork/join program. 

11.4 Dot Product 
Here we show a simple Fortran program, PSDOT, for computing a dot product. The program 

computes the dot product of two arrays, X and Y. First PSDOT calls PVMFMYTID() and 
PVMFPARENT(). The PVMFPARENT call will return PVMNOPARENT if the task wasn't 

spawned by another PVM task. If this is the case, then PSDOT task is the master and must 

spawn the other worker copies of PSDOT. PSDOT then asks the user for the number of 

processes to use and the length of vectors to compute. Each spawned process will receive 

n/nproc  elements of X and Y, where n is the length of the vectors and nproc is the number of 

processes being used in the computation. If nproc does not divide n evenly, then the master 

will compute the dot product on extra the elements. The subroutine SGENMAT randomly 

generates values for X and Y. PSDOT then spawns nproc - 1 copies of itself and sends each 

new task a part of the X and Y arrays. The message contains the length of the subarrays in 

the message and the subarrays themselves. After the master spawns the worker processes 
and sends out the subvectors, the master then computes the dot-product on its portion of X 

and Y. The master process then receives the other local dot products from the worker 

processes. Notice that the PVMFRECV call uses a wild card (-1) for the task id parameter. 

This indicates that a message from any task will satisfy the receive. Using the wild card in this 
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manner results in a race condition. In this case the race condition does not cause a problem 

since addition is commutative. In other words, it doesn't matter in which order we add up the 

partial sums from the workers. Unless one is certain that the race will not affect the program 
adversely, race conditions should be avoided.  

Once the master receives all the local dot products and sums them into a global dot product, 

it then calculates the entire dot product locally. These two results are then subtracted and the 

difference between the two values is printed. A small difference can be expected due to the 

variation in floating -point roundoff errors. 

If the PSDOT program is a worker, then it receives a message from the master process 

containing subarrays of X and Y. It calculates the dot product of these subarrays and sends 

the result back to the master process. In the interests of brevity we do not include the 

SGENMAT and SDOT subroutines. 

PROGRAM PSDOT 

*  PSDOT performs a parallel inner (or dot) product, where the vectors 

*  X and Y start out on a master node, which then sets up the virtual 

*  machine, farms out the data and work, and sums up the local pieces 

*  to get a global inner product. 

* 

*     .. External Subroutines .. 

EXTERNAL PVMFMYTID, PVMFPARENT, PVMFSPAWN, PVMFEXIT, PVMFINITSEND 

EXTERNAL PVMFPACK, PVMFSEND, PVMFRECV, PVMFUNPACK, SGENMAT 

* 

*     .. External Functions .. 

INTEGER ISAMAX 

REAL SDOT 

EXTERNAL ISAMAX, SDOT 

* 

*     .. Intrinsic Functions .. 

INTRINSIC MOD 

* 

*     .. Parameters .. 

INTEGER MAXN 

PARAMETER ( MAXN = 8000 ) 
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INCLUDE 'fpvm3.h' 

* 

*     .. Scalars .. 

INTEGER N, LN, MYTID, NPROCS, IBUF, IERR 

INTEGER I, J, K 

REAL LDOT, GDOT 

* 

*     .. Arrays .. 

INTEGER TIDS(0:63) 

REAL X(MAXN), Y(MAXN) 

* 

*     Enroll in PVM and get my and the master process' task ID number 

* 

CALL PVMFMYTID( MYTID ) 

CALL PVMFPARENT( TIDS(0) ) 

* 

*     If I need to spawn other processes (I am master process) 

* 

IF ( TIDS(0) .EQ. PVMNOPARENT ) THEN 

* 

*        Get starting information 

* 

WRITE(*,*) 'How many processes should participate (1–64)?' 

READ(*,*) NPROCS 

WRITE(*,2000) MAXN 

READ(*,*) N 

TIDS(0) = MYTID 

IF ( N .GT. MAXN ) THEN 

WRITE(*,*) 'N too large.  Increase parameter MAXN to run'// 

$                 'this case.' 

STOP 

END IF 
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* 

*        LN is the number of elements of the dot product to do 

*        locally.  Everyone has the same number, with the master 

*        getting any left over elements.  J stores the number of 

*        elements rest of procs do. 

* 

J = N / NPROCS 

LN = J + MOD(N, NPROCS) 

I = LN + 1 

* 

*        Randomly generate X and Y 

*        Note: SGENMAT() routine is not provided here 

* 

CALL SGENMAT( N, 1, X, N, MYTID, NPROCS, MAXN, J ) 

CALL SGENMAT( N, 1, Y, N, I, N, LN, NPROCS ) 

* 

*        Loop over all worker processes 

* 

DO 10 K = 1, NPROCS-1 

* 

*           Spawn process and check for error 

* 

CALL PVMFSPAWN( 'psdot', 0, 'anywhere', 1, TIDS(K), IERR ) 

IF (IERR .NE. 1) THEN 

WRITE(*,*) 'ERROR, could not spawn process #',K, 

$                    '.  Dying . . .' 

CALL PVMFEXIT( IERR ) 

STOP 

END IF 

* 

*           Send out startup info 

* 
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CALL PVMFINITSEND( PVMDEFAULT, IBUF ) 

CALL PVMFPACK( INTEGER4, J, 1, 1, IERR ) 

CALL PVMFPACK( REAL4, X(I), J, 1, IERR ) 

CALL PVMFPACK( REAL4, Y(I), J, 1, IERR ) 

CALL PVMFSEND( TIDS(K), 0, IERR ) 

I = I + J 

10    CONTINUE 

* 

*        Figure master's part of dot product 

*        SDOT() is part of the BLAS Library (compile with -lblas) 

* 

GDOT = SDOT( LN, X, 1, Y, 1 ) 

* 

*        Receive the local dot products, and 

*        add to get the global dot product 

* 

DO 20 K = 1, NPROCS-1 

CALL PVMFRECV( -1, 1, IBUF ) 

CALL PVMFUNPACK( REAL4, LDOT, 1, 1, IERR ) 

GDOT = GDOT + LDOT 

20    CONTINUE 

* 

*        Print out result 

* 

WRITE(*,*) '  ' 

WRITE(*,*) '<x,y> = ',GDOT 

* 

*        Do sequential dot product and subtract from 

*        distributed dot product to get desired error estimate 

* 

LDOT = SDOT( N, X, 1, Y, 1 ) 

WRITE(*,*) '<x,y> : sequential dot product.  <x,y>^ : '// 
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$               'distributed dot product.' 

WRITE(*,*) '| <x,y> - <x,y>^ | = ',ABS(GDOT - LDOT) 

WRITE(*,*) 'Run completed.' 

* 

*     If I am a worker process (i.e. spawned by master process) 

* 

ELSE 

* 

*        Receive startup info 

* 

CALL PVMFRECV( TIDS(0), 0, IBUF ) 

CALL PVMFUNPACK( INTEGER4, LN, 1, 1, IERR ) 

CALL PVMFUNPACK( REAL4, X, LN, 1, IERR ) 

CALL PVMFUNPACK( REAL4, Y, LN, 1, IERR ) 

* 

*        Figure local dot product and send it in to master 

* 

LDOT = SDOT( LN, X, 1, Y, 1 ) 

CALL PVMFINITSEND( PVMDEFAULT, IBUF ) 

CALL PVMFPACK( REAL4, LDOT, 1, 1, IERR ) 

CALL PVMFSEND( TIDS(0), 1, IERR ) 

END IF 

* 

CALL PVMFEXIT( 0 ) 

* 

1000  FORMAT(I10,' Successfully spawned process #',I2,', TID =',I10) 

2000  FORMAT('Enter the length of vectors to multiply (1 -',I7,'):') 

STOP 

* 

*     End program PSDOT 

* 

END 
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11.5 Matrix Multiply 
In this example we program a matrix multiply algorithm described by Fox et al. in [9]. The 
mmult program can be found at the end of this section. The mmult program will calculate C = 

AB where C, A, and B are all square matrices. For simplicity we assume that m × m tasks are 

used to calculate the solution. Each task calculates a subblock of the resulting matrix C. The 

block size and the value of m are given as a command-line argument to the program. The 

matrices A and B are also stored as blocks distributed over the m2 tasks. Before delving into 

the details of the program, let us first describe the algorithm at a high level. 
In our grid of m × m tasks, each task (tij, where 0 = i, j < m), initially contains blocks Cij, Aij, and 

Bij. In the first step of the algorithm the tasks on the diagonal (tij where i = j) send their block A ii 

to all the other tasks in row i. After the transmission of Aii, all tasks calculate A ii × Bij and add 

the result into Cij. In the next step, the column blocks of B are rotated. That is, tij sends its 

block of B to t(i-1)j. (Task t0j sends its B block to t(m-1)j). The tasks now return to the first step, 
Ai(i+1) is multicast to all other tasks in row i, and the algorithm continues. After m iterations the 

C matrix contains A × B, and the B matrix has been rotated back into place. 

Let us now go over the matrix multiply as it is programmed in PVM. In PVM there is no 

restriction on which tasks may communicate with which other tasks. However, for this 

program we would like to think of the tasks as a two-dimensional conceptual torus. In order to 
enumerate the tasks, each task joins the group mmult. Group ids are used to map tasks to 

our torus. The first task to join a group is given the group id of zero. In the mmult program, 

the task with group id zero spawns the other tasks and sends the parameters for the matrix 

multiply to those tasks. The parameters are m and bklsize, the square root of the number of 

blocks and the size of a block, respectively. After all the tasks have been spawned and the 
parameters transmitted, pvm_barrier() is called to make sure all the tasks have joined the 

group. If the barrier is not performed, later calls to pvm_gettid() might fail, since a task 

may not have yet joined the group. 
After the barrier, the task ids for the other tasks are stored in the row in the array myrow. 

Specifically, the program calculates group ids for all the tasks in the row, and we ask PVM for 
the task id for the corresponding group id. Next the program allocates the blocks for the 

matrices using malloc(). (In an actual application program we would expect that the 

matrices would already be allocated.) Then the program calculates the row and column of the 

block of C it will be computing; this is based on the value of the group id. The group ids range 

from 0 to m - 1 inclusive. Thus, the integer division of (mygid/m) will give the task's row and 
(mygid mod m) will give the column if we assume a row major mapping of group ids to tasks. 

Using a similar mapping, we calculate the group id of the task directly above and below in the 

torus and store their task ids in up and down, respectively. 

Next the blocks are initialized by calling InitBlock(). This function simply initializes A to 

random values, B to the identity matrix, and C to zeros. This will allow us to verify the 

computation at the end of the program by checking that A = C. 

Finally we enter the main loop to calculate the matrix multiply. First the tasks on the diagonal 
multicast their block of A to the other tasks in their row. Note that the array myrow actually 
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contains the task id of the task doing the multicast. Recall that pvm_mcast() will send to all 

the tasks in the tasks array except the calling task. This works well in the case of mmult, 

since we don't want to have to needlessly handle the extra message coming into the 
multicasting task with an extra pvm_recv(). Both the multicasting task and the tasks 

receiving the block calculate the AB for the diagonal block and the block of B residing in the 

task. 

After the subblocks have been multiplied and added into the C block, we now shift the B 

blocks vertically. This is done by packing the block of B into a message and sending it to the 
up task id and then receiving a new B block from the down task id. 

Note that we use different message tags for sending the A blocks and the B blocks as well as 

for different iterations of the loop. We also fully specify the task ids when doing a 
pvm_recv(). It's tempting to use wild cards for the fields of pvm_recv(); however, such 

use can be dangerous. For instance, had we incorrectly calculated the value for up and used 
a wild card for the pvm_recv() instead of down, it is possible that we would be sending 

messages to the wrong tasks without knowing it. In this example we fully specify messages, 

thereby reducing the possibility of receiving a message from the wrong task or the wrong 

phase of the algorithm. 

Once the computation is complete, we check to see that A = C just to verify that the matrix 

multiply correctly calculated the values of C. This step would not be done in a matrix multiply 

library routine, for example. 
You do not have to call pvm_lvgroup() because PVM will realize that the task has exited 

and will remove it from the group. It is good form, however, to leave the group before calling 
pvm_exit(). The reset command from the PVM console will reset all the PVM groups. The 
pvm_gstat command will print the status of any groups that currently exist. 

/* 

Matrix Multiply 

*/ 

 

/* defines and prototypes for the PVM library */ 

#include <pvm3.h> 

#include <stdio.h> 

 

/* Maximum number of children this program will spawn */ 

#define MAXNTIDS    100 

#define MAXROW      10 

 

/* Message tags */ 
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#define ATAG        2 

#define BTAG        3 

#define DIMTAG      5 

 

void 

InitBlock(float *a, float *b, float *c, int blk, int row, int col) 

{ 

int len, ind; 

int i,j; 

 

srand(pvm_mytid()); 

len = blk*blk; 

for (ind = 0; ind < len; ind++) 

{ a[ind] = (float)(rand()%1000)/100.0; c[ind] = 0.0; } 

for (i = 0; i < blk; i++) { 

for (j = 0; j < blk; j++) { 

if (row == col) 

b[j*blk+i] = (i==j)? 1.0 : 0.0; 

else 

b[j*blk+i] = 0.0; 

} 

} 

} 

 

void 

BlockMult(float* c, float* a, float* b, int blk) 

{ 

int i,j,k; 

 

for (i = 0; i < blk; i++) 

for (j = 0; j < blk; j ++) 

for (k = 0; k < blk; k++) 
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c[i*blk+j] += (a[i*blk+k] * b[k*blk+j]); 

} 

 

int 

main(int argc, char* argv[]) 

{ 

 

/* number of tasks to spawn, use 3 as the default */ 

int ntask = 2; 

/* return code from pvm calls */ 

int info; 

/* my task and group id */ 

int mytid, mygid; 

/* children task id array */ 

int child[MAXNTIDS-1]; 

int i, m, blksize; 

/* array of the tids in my row */ 

int myrow[MAXROW]; 

float *a, *b, *c, *atmp; 

int row, col, up, down; 

 

/* find out my task id number */ 

mytid = pvm_mytid(); 

pvm_setopt(PvmRoute, PvmRouteDirect); 

/* check for error */ 

if (mytid < 0) { 

/* print out the error */ 

pvm_perror(argv[0]); 

/* exit the program */ 

return -1; 

} 
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/* join the mmult group */ 

mygid = pvm_joingroup("mmult"); 

if (mygid < 0) { 

pvm_perror(argv[0]); pvm_exit(); return -1; 

} 

 

/* if my group id is 0 then I must spawn the other tasks */ 

if (mygid == 0) { 

/* find out how many tasks to spawn */ 

if (argc == 3) { 

m = atoi(argv[1]); 

blksize = atoi(argv[2]); 

} 

if (argc < 3) { 

fprintf(stderr, "usage: mmult m blk\n"); 

pvm_lvgroup("mmult"); pvm_exit(); return -1; 

} 

 

/* make sure ntask is legal */ 

ntask = m*m; 

if ((ntask < 1) || (ntask >= MAXNTIDS)) { 

fprintf(stderr, "ntask = %d not valid.\n", ntask); 

pvm_lvgroup("mmult"); pvm_exit(); return -1; 

} 

/* no need to spawn if there is only one task */ 

if (ntask == 1) goto barrier; 

 

/* spawn the child tasks */ 

info = pvm_spawn("mmult", (char**)0, PvmTaskDefault, (char*)0, 

ntask-1, child); 

 

/* make sure spawn succeeded */ 
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if (info != ntask-1) { 

pvm_lvgroup("mmult"); pvm_exit(); return -1; 

} 

/* send the matrix dimension */ 

pvm_initsend(PvmDataDefault); 

pvm_pkint(&m, 1, 1); 

pvm_pkint(&blksize, 1, 1); 

pvm_mcast(child, ntask-1, DIMTAG); 

} 

else { 

/* recv the matrix dimension */ 

pvm_recv(pvm_gettid("mmult", 0), DIMTAG); 

pvm_upkint(&m, 1, 1); 

pvm_upkint(&blksize, 1, 1); 

ntask = m*m; 

} 

 

/* make sure all tasks have joined the group */ 

 

info = pvm_barrier("mmult",ntask); 

if (info < 0) pvm_perror(argv[0]); 

 

/* find the tids in my row */ 

for (i = 0; i < m; i++) 

myrow[i] = pvm_gettid("mmult", (mygid/m)*m + i); 

 

/* allocate the memory for the local blocks */ 

a = (float*)malloc(sizeof(float)*blksize*blksize); 

b = (float*)malloc(sizeof(float)*blksize*blksize); 

c = (float*)malloc(sizeof(float)*blksize*blksize); 

atmp = (float*)malloc(sizeof(float)*blksize*blksize); 

/* check for valid pointers */ 
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if (!(a && b && c && atmp)) { 

fprintf(stderr, "%s: out of memory!\n", argv[0]); 

free(a); free(b); free(c); free(atmp); 

pvm_lvgroup("mmult"); pvm_exit(); return -1; 

} 

 

/* find my block's row and column */ 

row = mygid/m; col = mygid % m; 

/* calculate the neighbor's above and below */ 

up = pvm_gettid("mmult", ((row)?(row-1):(m-1))*m+col); 

down = pvm_gettid("mmult", ((row == (m-1))?col:(row+1)*m+col)); 

 

/* initialize the blocks */ 

InitBlock(a, b, c, blksize, row, col); 

/* do the matrix multiply */ 

for (i = 0; i < m; i++) { 

/* mcast the block of matrix A */ 

if (col == (row + i)%m) { 

pvm_initsend(PvmDataDefault); 

pvm_pkfloat(a, blksize*blksize, 1); 

pvm_mcast(myrow, m, (i+1)*ATAG); 

BlockMult(c,a,b,blksize); 

} 

else { 

pvm_recv(pvm_gettid("mmult", row*m + (row +i)%m), (i+1)*ATAG); 

pvm_upkfloat(atmp, blksize*blksize, 1); 

BlockMult(c,atmp,b,blksize); 

} 

/* rotate the columns of B */ 

pvm_initsend(PvmDataDefault); 

pvm_pkfloat(b, blksize*blksize, 1); 

pvm_send(up, (i+1)*BTAG); 
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pvm_recv(down, (i+1)*BTAG); 

pvm_upkfloat(b, blksize*blksize, 1); 

} 

 

/* check it */ 

for (i = 0 ; i < blksize*blksize; i++) 

if (a[i] != c[i]) 

printf("Error a[%d] (%g) != c[%d] (%g) \n", i, a[i],i,c[i]); 

 

printf("Done.\n"); 

free(a); free(b); free(c); free(atmp); 

pvm_lvgroup("mmult"); 

pvm_exit(); 

return 0; 

} 

11.6 One-Dimensional Heat Equation 

Here we present a PVM program that calculates heat diffusion through a substrate, in this 

case a wire. Consider the one -dimensional heat equation on a thin wire: 
(11.6.1) 

and a discretization of the form 

(11.6.2) 

giving the explicit formula 

(11.6.3) 

The initial and boundary conditions are 
§ A(t, 0) = 0, A(t, 1) = 0 for all t 

§ A(0, x) = sin(p x) for 0 = x = 1. 

The pseudocode for this computation is as follows: 

for i = 1:tsteps-1; 
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t = t+dt; 

a(i+1,1)=0; 

a(i+1,n+2)=0; 

for j = 2:n+1; 

a(i+1,j)=a(i,j) + mu*(a(i,j+1)-2*a(i,j)+a(i,j-1)); 

end; 

end 
For this example we use a master/worker programming model. The master, heat.c, spawns 

five copies of the program heatslv. The workers compute the heat diffusion for subsections 

of the wire in parallel. At each time step the workers exchange boundary information, in this 

case the temperature of the wire at the boundaries between processors. 
Let's take a closer look at the code. In heat.c the array solution  will hold the solution for 

the heat diffusion equation at each time step. First the heatslv tasks are spawned. Next, the 

initial dataset is computed. Notice the ends of the wires are given initial temperature values of 

zero. 
The main part of the program is then executed four times, each with a different value for ? t. A 

timer is used to compute the elapsed time of each compute phase. The initial datasets are 
sent to the heatslv tasks. The left and right neighbor task ids are sent along with the initial 

dataset. The heatslv tasks use these to communicate boundary information. Alternatively, 

we could have used the PVM group calls to map tasks to segments of the wire. By using this 
approach we would have avoided explicitly communicating the task ids to the slave 

processes. 

After sending the initial data, the master process waits for results. When the results arrive, 

they are integrated into the solution matrix, the elapsed time is calculated, and the solution is 

written to the output file.  

Once the data for all four phases have been computed and stored, the master program prints 
out the elapsed times and kills the slave processes. 

/* 

heat.c 

 

Use PVM to solve a simple heat diffusion differential equation, 

using 1 master program and 5 slaves. 

 

The master program sets up the data, communicates it to the slaves 

and waits for the results to be sent from the slaves. 
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Produces xgraph ready files of the results. 

 

*/ 

 

#include "pvm3.h" 

#include <stdio.h> 

#include <math.h> 

#include <time.h> 

#define SLAVENAME "heatslv" 

#define NPROC 5 

#define TIMESTEP 100 

#define PLOTINC 10 

#define SIZE 1000 

 

int num_data = SIZE/NPROC; 

 

main() 

{   int mytid, task_ids[NPROC], i, j; 

int left, right, k, l; 

int step = TIMESTEP; 

int info; 

 

double init[SIZE], solution[TIMESTEP][SIZE]; 

double result[TIMESTEP*SIZE/NPROC], deltax2; 

FILE *filenum; 

char *filename[4][7]; 

double deltat[4]; 

time_t t0; 

int etime[4]; 

filename[0][0] = "graph1"; 

filename[1][0] = "graph2"; 

filename[2][0] = "graph3"; 
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filename[3][0] = "graph4"; 

 

deltat[0] = 5.0e-1; 

deltat[1] = 5.0e-3; 

deltat[2] = 5.0e-6; 

deltat[3] = 5.0e-9; 

 

/* enroll in pvm */ 

mytid = pvm_mytid(); 

 

/* spawn the slave tasks */ 

info = pvm_spawn(SLAVENAME,(char **)0,PvmTaskDefault,"", 

NPROC,task_ids); 

/* create the initial data set */ 

for (i = 0; i < SIZE; i++) 

init[i] = sin(M_PI * ( (double)i / (double)(SIZE-1) )); 

init[0] = 0.0; 

init[SIZE-1] = 0.0; 

 

/* run the problem 4 times for different values of delta t */ 

for (l = 0; l < 4; l++) { 

deltax2 = (deltat[l]/pow(1.0/(double)SIZE,2.0)); 

/* start timing for this run */ 

time(&t0); 

etime[l] = t0; 

/* send the initial data to the slaves. */ 

/* include neighbor info for exchanging boundary data */ 

for (i = 0; i < NPROC; i++) { 

pvm_initsend(PvmDataDefault); 

left = (i == 0) ? 0 : task_ids[i-1]; 

pvm_pkint(&left, 1, 1); 

right = (i == (NPROC-1)) ? 0 : task_ids[i+1]; 
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pvm_pkint(&right, 1, 1); 

pvm_pkint(&step, 1, 1); 

pvm_pkdouble(&deltax2, 1, 1); 

pvm_pkint(&num_data, 1, 1); 

pvm_pkdouble(&init[num_data*i], num_data, 1); 

pvm_send(task_ids[i], 4); 

} 

 

/* wait for the results */ 

for (i = 0; i < NPROC; i++) { 

pvm_recv(task_ids[i], 7); 

pvm_upkdouble(&result[0], num_data*TIMESTEP, 1); 

/* update the solution */ 

for (j = 0; j < TIMESTEP; j++) 

for (k = 0; k < num_data; k++) 

solution[j][num_data*i+k] = result[wh(j,k)]; 

} 

 

/* stop timing */ 

time(&t0); 

etime[l] = t0 - etime[l]; 

 

/* produce the output */ 

filenum = fopen(filename[l][0], "w"); 

fprintf(filenum,"TitleText: Wire Heat over Delta Time: %e\n", 

deltat[l]); 

fprintf(filenum,"XUnitText: Distance\nYUnitText: Heat\n"); 

for (i = 0; i < TIMESTEP; i = i + PLOTINC) { 

fprintf(filenum,"\"Time index: %d\n",i); 

for (j = 0; j < SIZE; j++) 

fprintf(filenum,"%d %e\n",j, solution[i][j]); 

fprintf(filenum,"\n"); 
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} 

fclose (filenum); 

} 

 

/* print the timing information */ 

printf("Problem size: %d\n",SIZE); 

for (i = 0; i < 4; i++) 

printf("Time for run %d: %d sec\n",i,etime[i]); 

 

/* kill the slave processes */ 

for (i = 0; i < NPROC; i++) pvm_kill(task_ids[i]); 

pvm_exit(); 

} 

 

int wh(x, y) 

int x, y; 

{ 

return(x*num_data+y); 

} 
The heatslv programs do the actual computation of the heat diffusion through the wire. The 

worker program consists of an infinite loop that receives an initial dataset, iteratively 

computes a solution based on this dataset (exchanging boundary information with neighbors 

on each iteration), and sends the resulting partial solution back to the master process. As an 

alternative to using an infinite loop in the worker tasks, we could send a special message to 
the slave ordering it to exit. Instead, we simply use the infinite loop in the worker tasks and kill 

them off from the master program. A third option would be to have the workers execute only 

once, exiting after processing a single dataset from the master. This would require placing the 
master's spawn call inside the main for loop of heat.c. While this option would work, it 

would needlessly add overhead to the overall computation. 

For each time step and before each compute phase, the boundary values of the temperature 

matrix are exchanged. The left-hand boundary elements are first sent to the left neighbor task 
and received from the right neighbor task. Symmetrically, the right -hand boundary elements 

are sent to the right neighbor and then received from the left neighbor. The task ids for the 

neighbors are checked to make sure no attempt is made to send or receive messages to 

nonexistent tasks. 
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/* 

 

heatslv.c 

 

The slaves receive the initial data from the host, 

exchange boundary information with neighbors, 

and calculate the heat change in the wire. 

This is done for a number of iterations, sent by the master. 

 

*/ 

 

#include "pvm3.h" 

#include <stdio.h> 

 

int num_data; 

 

main() 

{ 

int mytid, left, right, i, j, master; 

int timestep; 

 

double *init, *A; 

double leftdata, rightdata, delta, leftside, rightside; 

 

/* enroll in pvm */ 

mytid = pvm_mytid(); 

master = pvm_parent(); 

 

/* receive my data from the master program */ 

while(1) { 

pvm_recv(master, 4); 

pvm_upkint(&left, 1, 1); 
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pvm_upkint(&right, 1, 1); 

pvm_upkint(&timestep, 1, 1); 

pvm_upkdouble(&delta, 1, 1); 

pvm_upkint(&num_data, 1, 1); 

init = (double *) malloc(num_data*sizeof(double)); 

pvm_upkdouble(init, num_data, 1); 

 

/* copy the initial data into my working array */ 

 

A = (double *) malloc(num_data * timestep * sizeof(double)); 

for (i = 0; i < num_data; i++) A[i] = init[i]; 

 

/* perform the calculation */ 

 

for (i = 0; i < timestep-1; i++) { 

/* trade boundary info with my neighbors */ 

/*  send left, receive right    */ 

if (left != 0) { 

pvm_initsend(PvmDataDefault); 

pvm_pkdouble(&A[wh(i,0)],1,1); 

pvm_send(left, 5); 

} 

if (right != 0) { 

pvm_recv(right, 5); 

pvm_upkdouble(&rightdata, 1, 1); 

/* send right, receive left */ 

pvm_initsend(PvmDataDefault); 

pvm_pkdouble(&A[wh(i,num_data-1)],1,1); 

pvm_send(right, 6); 

} 

if (left != 0) { 

pvm_recv(left, 6); 
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pvm_upkdouble(&leftdata,1,1); 

} 

 

/* do the calculations for this iteration */ 

 

for (j = 0; j < num_data; j++) { 

leftside = (j == 0) ? leftdata : A[wh(i,j-1)]; 

rightside = (j == (num_data-1)) ? rightdata : A[wh(i,j+1)]; 

if ((j==0)&&(left==0)) 

A[wh(i+1,j)] = 0.0; 

else if ((j==(num_data-1))&&(right==0)) 

A[wh(i+1,j)] = 0.0; 

else 

A[wh(i+1,j)]= 

A[wh(i,j)]+delta*(rightside-2*A[wh(i,j)]+leftside); 

} 

} 

 

/* send the results back to the master program */ 

 

pvm_initsend(PvmDataDefault); 

pvm_pkdouble(&A[0],num_data*timestep,1); 

pvm_send(master,7); 

} 

 

/* just for good measure */ 

pvm_exit(); 

} 

 

int wh(x, y) 

int x, y; 

{ 
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return(x*num_data+y); 

} 

In this section we have given a variety of example programs written in both Fortran and C. 

These examples demonstrate various ways of writing PVM programs. Some divide the 

application into two separate programs while others use a single program with conditionals to 

handle spawning and computing phases. These examples show different styles of 

communication, both among worker tasks and between worker and master tasks. In some 
cases messages are used for synchronization, and in others the master processes simply kill 

of the workers when they are no longer needed. We hope that these examples will help you 

understand how to write better PVM programs and to evaluate the design tradeoffs involved. 

 

11.7 Using PVM 

This section describes how to set up the PVM software package, how to configure a simple 

virtual machine, and how to compile and run the example programs supplied with PVM. The 
first part describes the straightforward use of PVM and the most common problems in setting 

up and running PVM. The latter part describes some of the more advanced options available 

for customizing your PVM environment. 

11.7.1 Setting Up PVM 

One of the reasons for PVM's popularity is that it is simple to set up and use. PVM does not 

require special privileges to be installed. Anyone with a valid login on the hosts can do so. In 

addition, only one person at an organization needs to get and install PVM for everyone at that 

organization to use it. 

PVM uses two environment variables when starting and running. Each PVM user needs to set 
these two variables to use PVM. The first variable is PVM_ROOT, which is set to the location of 

the installed pvm3 directory. The second variable is PVM_ARCH, which tells PVM the 

architecture of this host and thus what executables to pick from the PVM_ROOT  directory. 

The easiest method is to set these two variables in your .cshrc file (this assumes you are 

using csh). Here is an example for setting PVM_ROOT: 

setenv PVM_ROOT /home/hostnme/username/pvm3 
The recommended method to set PVM_ARCH is to append the file 

PVM_ROOT/lib/cshrc.stub onto your .cshrc file. The stub should be placed after PATH 
and PVM_ROOT are defined. This stub automatically determines the PVM_ARCH for this host 

and is particularly useful when the user shares a common file system (such as NFS) across 

several different architectures. 

If PVM is already installed at your site, you can skip ahead to "Starting PVM." The PVM 

source comes with directories and makefiles for Linux and most architectures you are likely to 

have. Building for each architecture type is done automatically by logging on to a host, going 
into the PVM_ROOT directory, and typing make. The makefile will automatically determine 
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which architecture it is being executed on, create appropriate subdirectories, and build pvmd3, 

libpvm3.a, and libfpvm3.a, pvmgs, and libgpvm3.a. It places all these files in 

PVM_ROOT/lib/PVM_ARCH with the exception of pvmgs, which is placed in 
PVM_ROOT/bin/PVM_ARCH. 

Setup Summary 
§ Set PVM_ROOT and PVM_ARCH in your .cshrc file.  

§ Build PVM for each architecture type. 

§ Create an .rhosts file on each host listing all the hosts. 
§ Create a $HOME/.xpvm_hosts file listing all the hosts prepended by an "&". 

11.7.2 Starting PVM 

Before we go over the steps to compile and run parallel PVM programs, you should be sure 
you can start up PVM and configure a virtual machine. On any host on which PVM has been 

installed you can type 

% pvm 

and you should get back a PVM console prompt signifying that PVM is now running on this 
host. You can add hosts to your virtual machine by typing at the console prompt 

pvm> add hostname 

You also can delete hosts (except the one you are on) from your virtual machine by typing 

pvm> delete hostname 
If you get the message "Can't Start pvmd," PVM will run autodiagnostics and report the 

reason found. 

To see what the present virtual machine looks like, you can type 

pvm> conf 

To see what PVM tasks are running on the virtual machine, you type 

pvm> ps -a 

Of course, you don't have any tasks running yet. If you type "quit" at the console prompt, the 
console will quit, but your virtual machine and tasks will continue to run. At any command 

prompt on any host in the virtual machine you can type 

% pvm 

and you will get the message "pvm already running" and the console prompt. When you are 
finished with the virtual machine you should type 

pvm> halt 
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This command kills any PVM tasks, shuts down the virtual machine, and exits the console. 

This is the recommended method to stop PVM because it makes sure that the virtual machine 

shuts down cleanly. 
You should practice starting and stopping and adding hosts to PVM until you are comfortable 

with the PVM console. A full description of the PVM console and its many command options 

is given in Sections 11.8 and 11.9. 

If you don't wish to type in a bunch of hostnames each time, there is a hostfile option. You can 
list the hostnames in a file one per line and then type 

% pvm hostfile 

PVM will then add all the listed hosts simultaneously before the console prompt appears. 

Several options can be specified on a per host basis in the hostfile; see Section 11.9 if you 

wish to customize your virtual machine for a particular application or environment. 

PVM may also be started in other ways. The functions of the console and a performance 

monitor have been combined in a graphical user interface called XPVM, which is available 
from the PVM web site. If XPVM has been installed at your site, then it can be used to start 

PVM. To start PVM with this interface type: 

% xpvm 
The menu button labeled "hosts" will pull down a list of hosts you can add. By clicking on a 

hostname it is added and an icon of the machine appears in an animation of the virtual 

machine. A host is deleted if you click on a hostname that is already in the virtual machine. 
On startup XPVM reads the file $HOME/.xpvm_hosts, which is a list of hosts to display in 

this menu. Hosts without leading "&" are added all at once at start up. 

The quit and halt buttons work just like the PVM console. If you quit XPVM and then restart it, 

XPVM will automatically display what the running virtual machine looks like. Practice starting 

and stopping and adding hosts with XPVM. If there are errors they should appear in the 

window where you started XPVM. 

11.7.3 Running PVM Programs 

In this section you will learn how to compile and run the example programs supplied with the 
PVM software. These example programs make useful templates on which to base your own 

PVM programs. 

The first step is to copy the example programs into your own area: 

% cp -r $PVM_ROOT/examples $HOME/pvm3/examples 

% cd $HOME/pvm3/examples 
The examples directory contains a Makefile.aimk and Readme file that describe how to 

build the examples. PVM supplies an architecture independent make, aimk that 

automatically determines PVM_ARCH and links any operating system specific libraries to your 
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application. aimk was automatically added to your $PATH when you placed the cshrc.stub 

in your .cshrc file. Using aimk allows you to leave the source code and makefile 

unchanged as you compile across different architectures. 

The master/worker programming model is the most popular model used in cluster computing. 

To compile the master/slave C example, type 

% aimk master slave 

If you prefer to work with Fortran, compile the Fortran version with 

% aimk fmaster fslave 
Depending on the location of PVM_ROOT , the INCLUDE statement at the top of the Fortran 

examples may need to be changed. If PVM_ROOT is not HOME/pvm3 , then change the include 

to point to $PVM_ROOT/include/fpvm3.h. Note that PVM_ROOT is not expanded inside the 

Fortran, so you must insert the actual path. 
The makefile moves the executables to $HOME/pvm3/bin/PVM_ARCH which is the default 

location PVM will look for them on all hosts. If your file system is not common across all your 

PVM hosts, then you will have to build or copy (depending on the architecture) these 

executables on all your PVM hosts. 

From one window start up PVM and configure some hosts. These examples are designed to 
run on any number of hosts, including one. In another window, cd to the location of the PVM 

executables and type 

% master 

The program will ask about the number of tasks. This number does not have to match the 

number of hosts in these examples. Try several combinations. 

The first example illustrates the ability to run a PVM program from a prompt on any host in the 
virtual machine. This is how you would run a serial a.out program on a workstation. Te next 

example, which is also a master/slave model called hitc, shows how to spawn PVM jobs 

from the PVM console and also from XPVM. 

The model hitc illustrates dynamic load balancing using the pool of tasks paradigm. In this 

paradigm, the master program manages a large queue of tasks, always sending idle slave 

programs more work to do until the queue is empty. This paradigm is effective in situations 

where the hosts have very different computational powers because the least-loaded or more 
powerful hosts do more of the work and all the hosts stay busy until the end of the problem. 
To compile hitc, type 

% aimk hitc hitc_slave 
Since hitc does not require any user input, it can be spawned directly from the PVM console. 

Start the PVM console, and add a few hosts. At the PVM console prompt, type 

pvm> spawn -> hitc 
The "->" spawn option causes all the print statements in hitc and in the slaves to appear in 

the console window. This can be a useful feature when debugging your first few PVM 
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programs. You may wish to experiment with this option by placing print statements in hitc.f 

and hitc_slave.f and recompiling. 

To get an idea of XPVM's real-time animation capabilities, you again can use hitc. Start up 

XPVM, and build a virtual machine with four hosts. Click on the "tasks" button and select 

"spawn" from the menu. Type "hitc" where XPVM asks for the command, and click on "start". 

You will see the host icons light up as the machines become busy. You will see the 
hitc_slave tasks get spawned and see all the messages that travel between the tasks in 

the Space Time display. Several other views are selectable from the XPVM "views" menu. 
The "task output" view is equivalent to the "->" option in the PVM console. It causes the 

standard output from all tasks to appear in the window that pops up. 

Programs that are spawned from XPVM (and the PVM console) are subject to one restriction: 

they must not contain any interactive input, such as asking for how many slaves to start up or 

how big a problem to solve. This type of information can be read from a file or put on the 

command-line as arguments, but there is nothing in place to get user input from the keyboard 

to a potentially remote task. 
 

11.8 PVM Console Details 
The PVM console, called pvm, is a standalone PVM task that allows you to inter-actively start, 

query, and modify the virtual machine. The console may be started and stopped multiple 

times on any of the hosts in the virtual machine without affecting PVM or any applications that 
may be running. 
When the console is started, pvm determines whether PVM is already running and, if not, 

automatically executes pvmd on this host, passing pvmd the command-line options and 

hostfile. Thus, PVM need not be running to start the console. 

pvm [-n<hostname>] [hostfile] 
The -n option is useful for specifying another name for the master pvmd (incase hostname 

doesn't match the IP address you want). This feature becomes very useful with Beowulf 
clusters because the nodes of the cluster sometime are on their own network. In this case the 

front-end node will have two hostnames: one for the cluster and one for the external network. 

The -n option lets you specify the cluster name directly during PVM atartup. 

Once started, the console prints the prompt 

pvm> 

and accepts commands from standard input. The available commands are as follows: 
add followed by one or more hostnames, adds these hosts to the virtual machine. 

alias defines or lists command aliases. 

conf lists the configuration of the virtual machine including hostname, pvmd task 

ID, architecture type, and a relative speed rating. 

delete followed by one or more hostnames, deletes these hosts from the virtual 

machine. PVM processes still running on these hosts are lost. 
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echo echoes arguments. 

halt kills all PVM processes including console and then shuts down PVM. All daemons 

exit. 
help can be used to get information about any of the interactive commands. The 

help command may be followed by a command name that will list options and flags 

available for this command. 

id prints console task id. 

jobs lists running jobs. 

kill can be used to terminate any PVM process. 

mstat shows status of specified hosts. 

ps -a lists all processes currently on the virtual machine, their locations, their 

task IDs, and their parents' task IDs. 

pstat shows status of a single PVM process. 

quit exits the console, leaving daemons and PVM jobs running. 

reset kills all PVM processes except consoles, and resets all the internal PVM 

tables and message queues. The daemons are left in an idle state. 

setenv displays or sets environment variables. 

sig followed by a signal number and tid, sends the signal to the task. 

spawn starts a PVM application. Options include the following: 

-count shows the number of tasks; default is 1 

-(host) spawn on host; default is any 

-(PVM_ARCH) spawn of hosts of type PVM_ARCH 

-? enable debugging 

-> redirect task output to console 

->file redirect task output to file 

->>file redirect task output append to file 

- trace job; display output on console 

-file trace job; output to file 

unalias undefines command alias. 

version prints version of PVM being used. 

The console reads $HOME/.pvmrc before reading commands from the tty, so you can 

do things like 

alias ? help 

alias h help 

alias j jobs 

setenv PVM_EXPORT DISPLAY 

# print my id 

echo new pvm shell 

id 
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PVM supports the use of multiple consoles. It is possible to run a console on any host in an 

existing virtual machine and even multiple consoles on the same machine. It is possible to 

start up a console in the middle of a PVM application and check on its progress. 
 

11.9 Host File Options 

As noted earlier, only one person at a site needs to install PVM, but each PVM user can have 
his own hostfile, which describes his personal virtual machine.  

The hostfile defines the initial configuration of hosts that PVM combines into a virtual machine. 
It also contains information about hosts that you may wish to add to the configuration later. 

The hostfile in its simplest form is just a list of hostnames one to a line. Blank lines are 
ignored, and lines that begin with a # are comment lines. This approach allows you to 

document the hostfile and also provides a handy way to modify the initial configuration by 

commenting out various hostnames. 

# Configuration used for my PVM run 

node4 

node6 

node9 

node10 

node11 

Several options can be specified on each line after the hostname. The options are separated 
by white space. 

lo= userid allows you to specify another login name for this host; otherwise, your login name 

on the startup machine is used. 
so=pw causes PVM to prompt you for a password on this host. This is useful when you have 

a different userid and password on a remote system. PVM uses rsh by default to start up 

remote pvmds, but when pw is specified, PVM will use rexec() instead.  

dx= location of pvmd allows you to specify a location other than the default for this host. 

This is useful if you wish to use your own copy of pvmd. 

ep= paths to user executables allows you to specify a series of paths to search down to find 

the requested files to spawn on this host. Multiple paths are separated by a colon. If ep= is 

not specified, then PVM looks for the application tasks in $HOME/pvm3/bin/PVM_ARCH. 

sp= value specifies the relative computational speed of the host compared with other hosts in 

the configuration. The range of possible values is 1 to 1,000,000, with 1,000 as the default. 
bx= location of debugger specifies which debugger script to invoke on this host if 

debugging is requested in the spawn routine. Note that the environment variable 

PVM_DEBUGGER can also be set. The default debugger is pvm3/lib/debugger. 
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wd= working directory  specifies a working directory in which all spawned tasks on this host 

will execute. The default is $HOME. 

so=ms specifies that a slave pvmd will be started manually on this host. This is useful if rsh 
and rexec network services are disabled but IP connectivity exists. When using this option 

you will see the following in the tty of the pvmd3: 

[t80040000] ready   Fri Aug 27 18:47:47 1993 

*** Manual startup *** 

Login to "honk" and type: 

pvm3/lib/pvmd -S -d0 -nhonk 1 80a9ca95:0cb6 4096 2 80a95c43:0000 

Type response: 

On honk, after typing the given line, you should see 

ddpro<2312> arch<ALPHA> ip<80a95c43:0a8e> mtu<4096> 
which you should relay back to the master pvmd. At that point, you will see 

Thanks 
and the two pvmds should be able to communicate.  

If you wish to set any of the above options as defaults for a series of hosts, you can place 

these options on a single line with a * for the hostname field. The defaults will be in effect for 

all the following hosts until they are overridden by another set -defaults line. 

Hosts that you don't want in the initial configuration but may add later can be specified in the 
hostfile by beginning those lines with an &. An example hostfile displaying most of these 

options is shown below.  

# Comment lines start with a # (blank lines ignored) 

gstws 

ipsc dx=/usr/geist/pvm3/lib/I860/pvmd3 

ibm1.scri.fsu.edu lo=gst so=pw 

# set default options for following hosts with * 

* ep=$sun/problem1:~/nla/mathlib 

sparky 

#azure.epm.ornl.gov 

midnight.epm.ornl.gov 

 

# replace default options with new values 

* lo=gageist so=pw ep=problem1 
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thud.cs.utk.edu 

speedy.cs.utk.edu 

 

# machines for adding later are specified with & 

# these only need listing if options are required 

&sun4   ep=problem1 

&castor dx=/usr/local/bin/pvmd3 

&dasher.cs.utk.edu lo=gageist 

&elvis  dx=~/pvm3/lib/SUN4/pvmd3 
 

11.10 XPVM 

It is often useful and always reassuring to be able to see the present configuration of the 
virtual machine and the status of the hosts. It would be even more useful if you could also see 

what your program is doing— what tasks are running, where messages are being sent, and 

the like. The PVM GUI called XPVM was developed to display this information and more.  

XPVM combines the capabilities of the PVM console, a performance monitor, and a call-level 
debugger in single, easy-to-use graphical user interface. XPVM is available from Netlib 
(www.netlib.org) in the directory pvm3/xpvm. It is distributed as precompiled 

ready-to-run executables for SUN4, RS6K, ALPHA, SUN-SOL2, and SGI5. The XPVM 

source is also available for compiling on other machines. 

XPVM is written entirely in C using the TCL/TK toolkit and runs as just another PVM task. If 

you want to build XPVM from the source, you must first obtain and install the TCL/TK 

software on your system. TCL and TK were developed by John Ousterhout and can be 
obtained from www.scriptics.com. The TCL and XPVM source distributions each contain 

a README file that describes the most up-to-date installation procedure for each package, 

respectively. 
Figure 11.4 shows a snapshot of XPVM in use. 
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Figure 11.4: Snapshot of XPVM interface during use 

Like the PVM console, XPVM will start PVM if it is not already running or just attach to the 
local pvmd if it is. The console can take an optional hostfile argument, whereas XPVM always 

reads $HOME/.xpvm_hosts  as its hostfile. If this file does not exist, XPVM just starts PVM 

on the local host (or attaches to the existing PVM). In typical use, the hostfile .xpvm_hosts 

contains a list of hosts prepended with an &. These hostnames then get added to the Hosts 

menu for addition and deletion from the virtual machine by clicking on them. 

The top row of buttons performs console-like functions. The Hosts button displays a menu of 

hosts. Clicking on a host toggles whether it is added or deleted from the virtual machine. At 
the bottom of the menu is an option for adding a host not listed. The Tasks button brings up a 

menu whose most used selection is spawn. Selecting spawn brings up a window where the 

executable name, spawn flags, starting place, number of copies to start, and so forth can be 

set. By default XPVM turns on tracing in all tasks (and their children) that are started inside 

XPVM. Clicking on Start in the spawn window starts the task, which will then appear in the 
Space-time view. The Reset button has a menu for resetting PVM (i.e., kill all PVM tasks) or 

resetting different parts of XPVM. The Quit button exits XPVM while leaving PVM running. If 

XPVM is being used to collect trace information, the information will not be collected if XPVM 

is stopped. The Halt button is to be used when you are through with PVM. Clicking on this 

button kills all running PVM tasks, shuts down PVM cleanly, and exits the XPVM interface. 
The Help button brings up a menu of topics for which information is available. 

While an application is running, XPVM collects and displays the information in real time. 
Although XPVM updates the views as fast as it can, there are cases when XPVM cannot keep 

up with the events and falls behind the actual run time. 

In the middle of the XPVM interface are tracefile controls. Here you can specify a tracefile; a 
default tracefile in '/tmp' is initially displayed. There are buttons to specify whether the 

specified tracefile is to be played back or overwritten by a new run. XPVM saves trace events 
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in a file using the "self-defining data format" (SDDF) described in Dan Reed's Pablo trace 

displaying package (other packages such as Pablo can be used to analyze the PVM traces). 

XPVM can play back its own SDDF files. The tape playerlike buttons allow you to rewind the 
tracefile, stop the display at any point, and step through the execution. A time display 

specifies the number of seconds from when the trace display began. 

The Views  button allows you to open or close any of several views presently supplied with 

XPVM. These views are described below. 
During startup, XPVM joins a group called xpvm. This is done so tasks that are started 

outside the XPVM interface can get the tid of XPVM by doing tid = pvm_gettid( xpvm, 
0 ) . This tid would be needed if you wanted to manually turn on tracing inside such a task and 

pass the events back to XPVM for display. The expected TraceCode for these events is 666. 

11.10.1 Network View 

The Network  view displays the present virtual machine configuration and the activity of the 
hosts. Each host is represented by an icon that includes the PVM_ARCH and hostname inside 

the icon. In the current release of XPVM, the icons are arranged arbitrarily on both sides of a 

bus network. In future releases the view will be extended to visualize network activity as well. 

At that time you will be able to specify the network topology to display. 

These icons are illuminated in different colors to indicate their status in executing PVM tasks. 
Green implies that at least one task on that host is busy executing useful work. Yellow 

indicates that no tasks are executing user computation but at least one task is busy executing 

PVM system routines. When there are no tasks on a given host, its icon is left uncolored or 

white. The specific colors used in each case are user customizable.  

You can tell at a glance how well the virtual machine is being utilized by your PVM application. 
If all the hosts are green most of the time, then machine utilization is good. The Network view 

does not display activity due to other users' PVM jobs or other processes that may be running 

on the hosts. 

In future releases the view will allow you to click on a multiprocessor icon and get information 
about the number of processors, number of PVM tasks, and the like that are running on the 

host. 

11.10.2 Space-Time View 

The Space-time view displays the activities of individual PVM tasks that are running on the 

virtual machine. Listed on the left -hand side of the view are the executable names of the tasks 

preceded by the host they are running on. The task list is sorted by host so that it is easy to 
see whether tasks are being clumped on one host. This list also shows the task to host 

mappings (which are not available in the Network view).  
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The Space-time view combines three different displays. The first is like a Gantt chart. Beside 

each listed task is a horizontal bar stretching out in the "time" direction. The color of this bar at 

any time indicates the state of the task. Green indicates that user computations are being 
executed. Yellow marks the times when the task is executing PVM routines. White indicates 

when a task is waiting for messages. The bar begins at the time when the task starts 

executing and ends when the task exits normally. The specific colors used in each case are 

user customizable. 

The second display overlays the first display with the communication activity among tasks. 
When a message is sent between two tasks, a red line is drawn starting at the sending task's 

bar at the time the message is sent and ending at the receiving task's bar when the message 

is received. Note that this is not the time the message arrived, but rather the time the task 
called pvm_recv(). Visually, the patterns and slopes of the red lines combined with white 

"waiting" regions reveal a lot about the communication efficiency of an application. 

The third display appears only when you click on interesting features of the Space-time view 

with the left mouse button. A small "pop-up" window appears, giving detailed information 
regarding specific task states or messages. If a task bar is clicked on, the state begin and end 

times are displayed along with the last PVM system call information. If a message line is 

clicked on, the window displays the send and receive time as well as the number of bytes in 

the message and the message tag. 

When the mouse is moved inside the Space-time view, a blue vertical line tracks the cursor, 
and the time corresponding to this vertical line is displayed as Query time at the bottom of the 

display. This vertical line also appears in the other "some-thing vs. time" views so you can 
correlate a feature in one view with information given in another view. 

You can zoom into any area of the Space-time view by dragging the vertical line with the 
middle mouse button. The view will unzoom back one level when the right mouse button is 

clicked. Often, very fine communication or waiting states are visible only when the view is 

magnified with the zoom feature. As with the Query time, the other views also zoom along 

with the Space-time view. 

11.10.3 Other Views 

XPVM is designed to be extensible. New views can be created and added to the Views  menu. 

At present, there are three other views: Utilization, Call Trace, and Task Output. Unlike the 

Network and Space-time views, these views are closed by default. Since XPVM attempts to 

draw the views in real time, the fewer open views the faster XPVM can draw. 

The Utilization view shows the number of tasks computing, in overhead, or waiting for each 

instant. It is a summary of the Space-time view for each instant. Since the number of tasks in 

a PVM application can change dynamically, the scale on the Utilization view will change 

dynamically when tasks are added, but not when they exit. When this happens, the displayed 

portion of the Utilization view is completely redrawn to the new scale. 
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The Call Trace view provides a textual record of the last PVM call made in each task. The list 

of tasks is the same as in the Space-time view. As an application runs, the text changes to 

reflect the most recent activity in each task. This view is useful as a call-level debugger to 
identify where a PVM program's execution hangs. 

XPVM automatically tells all tasks it spawns to redirect their standard output back to XPVM 

when the Task Output view is opened. This view gives you the option of redirecting the output 

into a file. If you type a file name in the "Task Output" box, the output is printed in the window 

and into the file. 

As with the trace events, a task started outside XPVM can be programmed to send standard 
output to XPVM for display by using the options in pvm_setopt().XPVM expects the 

OutputCode to be set to 667.  
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Chapter 12: Fault-Tolerant and Adaptive 

Programs with PVM 

Overview 
Al Geist and Jim Kohl 

The use of Beowulf clusters has expanded rapidly in the past several years. Originally 

created by researchers to do scientific computing, today these clusters are being used in 

business and commercial settings where the requirements and expectations are quite 

different. For example, at a large Web hosting company the reliability and robustness of their 

applications are often more important than their raw performance. 

A number of factors must be considered when you are developing applications for Beowulf 

clusters. In the preceding chapters the basic methods of message passing were illustrated so 
that you could create your own parallel programs. This chapter describes the issues and 

common methods for making parallel programs that are fault tolerant and adaptive.  

Fault tolerance is the ability of an application to continue to run or make progress even if a 

hardware or software problem causes a node in the cluster to fail. It is also the ability to 

tolerate failures within the application itself. For example, one task inside a parallel 
application may get an error and abort. Because Beowulf clusters are built from commodity 

components that are designed for the desktop rather than heavy-duty computing, failures of 

components inside a cluster are higher than in a more expensive multiprocessor system that 

has an integrated RAS (Reliability, Availability, Serviceability) system. 

While fault-tolerant programs can be thought of as adaptive, the term "adaptive programs" is 
used here more generally to mean parallel (or serial) programs that dynamically change their 

characteristics to better match the application's needs and the available resources. Examples 
include an application that adapts by adding or releasing nodes of the cluster according to its 

present computational needs and an application that creates and kills tasks based on what 

the computation needs. 

In later chapters you will learn about Condor and other resource management tools that 
automatically provide some measure of fault tolerance and adaptability to jobs submitted to 

them. This chapter teaches the basics of how to write such tools yourself.  

PVM is based on a dynamic computing model in which cluster nodes can be added and 

deleted from the computation on the fly and parallel tasks can be spawned or killed during the 

computation. PVM doesn't have nearly as rich a set of message-passing features as MPI; but, 
being a virtual machine model, PVM has a number of features that make it attractive for 

creating dynamic parallel programs. For this reason, PVM will be used to illustrate the 

concepts of fault tolerance and adaptability in this chapter. 
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12.1 Considerations for Fault Tolerance 

A computational biologist at Oak Ridge National Laboratory wants to write an parallel 

application that runs 24/7 on his Beowulf cluster. The application involves calculations for the 

human genome and is driven by a constant stream of new data arriving from researchers all 

around the world. The data is not independent since new data helps refine and extend 

previously calculated sequences. How can he write such a program? 

A company wants to write an application to process a constant stream of sales orders coming 
in from the Web. The program needs to be robust, since down time costs not only the lost 

revenue stream but also wages of workers who are idle. The company has recently 

purchased a Beowulf cluster to provide a reliable cost effective solution. But how do they 

write the fault-tolerant parallel program to run on the cluster? 

When you are developing algorithms that must be reliable the first consideration is the 

hardware. The bad news is that your Beowulf cluster will have failures; it will need 

maintenance. It is not a matter of whether some node in the cluster will fail but when.  

Experience has shown that the more nodes the cluster has, the more likely one will fail within 

a given time. How often a hardware failure occurs varies widely between clusters. Some have 

failures every week; others run for months. It is not uncommon for several nodes to fail at 
about the same time with similar hardware problems. Evaluate your particular cluster under a 

simulated load for a couple of weeks to get data on expected mean time between failures 

(MTBF). If the MTBF is many times longer than your average application run time, then it may 

not make sense to restructure the application to be fault tolerant. In most cases it is more 

efficient simply to rerun a failed application if it has a short run time.  

The second consideration is the fault tolerance of the underlying software environment. If the 

operating system is not stable, then the hardware is the least of your problems. The PVM 
system sits between the operating system and the application and, among other things, 

monitors the state of the virtual machine. The PVM system is designed to be fault tolerant and 

to reconfigure itself automatically when a failure is detected. It was discovered early in the 

PVM project that it doesn't help your fault-tolerant application if the underlying failure 

detection system crashes during a failure. The PVM failure detection system is responsible 
for detecting problems and notifying running applications about the problem. It makes no 

attempt to recover a parallel application automatically. 

The third consideration is the application. Not every parallel application can recover from a 

failure; recovery depends on the design of the application and the nature of the failure. For 

example, in the manager/worker programs of the preceding chapters, if the node that fails 

was running a worker, then recovery is possible; but if the node was running the manager, 

then key data may be lost that can't be recovered. 

At the least, any parallel program can be made fault tolerant by restarting it automatically from 

the beginning if a failure in detected. 
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Recovery of parallel programs is complicated because data in messages may be in flight 

when the recovery begins. There is a race condition. If the data did not arrive, then it will need 

to be resent as part of the recovery. But if the data managed to be received just before the 
recovery, then there isn't an outstanding receive call, and the data shouldn't be resent. 

File I/O is another problem that complicates recovery. File pointers may need to be reset to 

the last checkpoint to avoid getting a repeated set of output data in the file. 

Despite all these issues, a few common methods can be used to improve the fault tolerance 
of many parallel applications. 

 

12.2 Building Fault-Tolerant Parallel Applications 

From the application's view three steps must be performed for fault tolerance: notification, 

recovery, and continue.  

The PVM system has a monitoring and notification feature built into it. Any or all tasks in an 
application can asked to be notified of specific events. These include the exiting of a task 

within the application. The requesting task can specify a particular task or set of tasks or can 

ask to be notified if any task within the application fails. In the last case the notification 
message contains the ID of the task that failed. There is no need for the notified task and the 

failed task ever to have communicated in order to detect the failure.  

The failure or deletion of a node in the cluster is another notify event that can be specified. 

Again the requesting application task can specify a particular node, set of nodes, or all nodes. 

And, as before, the notification message returns the ID of the failed node(s). 

The addition of one or more cluster nodes to the application's computational environment is 
also an event that PVM can notify an application about. In this case no ID can be specified, 

and the notification message returns the ID of the new node(s). 

int info = pvm_notify( int EventType, int msgtag, int cnt, int *ids ) 
The EventType options are PvmTaskExit, PvmHostDelete, or PvmHostAdd. A separate 

notify call must be made for each event type that the application wishes to be notified about. 
The msgtag argument specifies what message tag the task will be using to listening for 

events. The cnt argument is the number task or node IDs in the ids list for which notification 

is requested.  
Given the flexibility of the pvm_notify command, there are several options for how the 

application can be designed to receive notification from the PVM system. The first option is 

designing a separate watcher task. One or more of these watcher tasks are spawned across 

the cluster and often have the additional responsibility of managing the recovery phase of the 

application. The advantage of this approach is that the application code can remain cleaner. 

Note that in the manager/worker scheme the manager often assumes the additional duty as 

watcher. 
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A second option is for the application tasks to watch each other. A common method is to have 

each task watch its neighbor in a logical ring. Thus each task just watches one or two other 

tasks. Another common, but not particularly efficient, method is to have every task watch all 
the other tasks. Remember that the PVM system is doing the monitoring, not the application 

tasks. So the monitoring overhead is the same with all these options. The difference is the 

number of notification messages that get sent in the event of a failure. 

Recovery is very dependent on the type of parallel algorithm used in the application. The 
most commonly used options are restart from the beginning, roll back to the last checkpoint, 

or reassign the work of a failed task. 

The first option is the simplest to implement but the most expensive in the amount of 
calculation that must be redone. This option is used by many batch systems because it 

requires no knowledge of the application. It guarantees that the application will complete even 

if failures occur, although it does not guarantee how long this will take. On average the time is 

less than twice the normal run time. For short -running applications this is the best option.  

For longer-running applications, checkpointing is a commonly used option. With this option 
you must understand the parallel application and modify it so that the application can restart 

from a input data file. You then have to modify the application to write out such a data file 

periodically. In the event of a failure, only computations from the last checkpoint are lost. The 

application restarts itself from the last successful data file written out. How often checkpoints 

are written out depends on the size of the restart fi le and how long the application is going to 

run. For large, scientific applications that run for days, checkpointing is typically done every 

few hours. 

Note that if a failure is caused by the loss of a cluster node, then the application cannot be 

restarted until the node is repaired or is replaced by another node in the cluster. The restart 

file is almost always written out assuming that the same number of nodes are available during 

the restart. 

In the special case where an application is based on a manager/worker scheme, it is often 

possible to reassign the job sent to the failed worker to another worker or to spawn a 
replacement worker to take its place. Manager/worker is a very popular parallel programming 

scheme for Beowulf clusters, so this special case arises often. Below is an example of a 

fault-tolerant manager/worker program. 

/* Fault Tolerant Manager / Worker Example 

* using notification and task spawning. 

* example1.c 

*/ 
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#include <stdio.h> 

#include <math.h> 

#include <pvm3.h> 

 

#define NWORK        4 

#define NPROB        10000 

#define MSGTAG       123 

 

int main() 

{ 

double sum = 0.0, result, input = 1.0; 

int tids[NWORK], numt, probs[NPROB], sent=0, recvd=0; 

int aok=0, cc, bufid, done=0, i, j, marker, next, src; 

 

/* If I am a Manager Task */ 

if ( (cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet ) { 

 

/* Spawn NWORK Worker Tasks */ 

numt = pvm_spawn( "example1", (char **) NULL, PvmTaskDefault, 

(char *) NULL, NWORK, tids ); 

 

/* Set Up Notify for Spawned Tasks */ 

pvm_notify( PvmTaskExit, MSGTAG, numt, tids ); 

 

/* Send Problem to Spawned Workers */ 

for ( i=0 ; i < NPROB ; i++ ) probs[i] = -1; 

for ( i=0 ; i < numt ; i++ ) { 

pvm_initsend( PvmDataDefault ); 

pvm_pkint( &aok, 1, 1 );  /* Valid Problem Marker */ 

input = (double) (i + 1); 

pvm_pkdouble( &input, 1, 1 ); 

pvm_send( tids[i], MSGTAG ); 



 276 

probs[i] = i;  sent++;  /* Next Problem */ 

} 

 

/* Collect Results / Handle Failures */ 

do { 

/* Receive Result */ 

bufid = pvm_recv( -1, MSGTAG ); 

pvm_upkint( &marker, 1, 1 ); 

 

/* Handle Notify */ 

if ( marker > 0 ) { 

/* Find Failed Task Index */ 

for ( i=0, next = -1 ; i < numt ; i++ ) 

if ( tids[i] == marker ) 

/* Find Last Problem Sent to Task */ 

for ( j=(sent-1) ; j > 0 ; j-- ) 

if ( probs[j] == i ) { 

/* Spawn Replacement Task */ 

if ( pvm_spawn( "example1", (char **) NULL, 

PvmTaskDefault, (char *) NULL, 1, 

&(tids[i]) ) == 1 ) { 

pvm_notify( PvmTaskExit, MSGTAG, 1, 

&(tids[i]) ); 

next = i;  sent--; 

} 

probs[j] = -1; /* Reinsert Prob */ 

break; 

} 

} else { 

/* Get Source Task & Accumulate Solution */ 

pvm_upkdouble( &result, 1, 1 ); 

sum += result; 
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recvd++; 

/* Get Task Index */ 

pvm_bufinfo( bufid, (int *) NULL, (int *) NULL, &src ); 

for ( i=0 ; i < numt ; i++ ) 

if ( tids[i] == src ) next = i; 

} 

 

/* Send Another Problem */ 

if ( next >= 0 ) { 

for ( i=0, input = -1.0 ; i < NPROB ; i++ ) 

if ( probs[i] < 0 ) { 

input = (double) (i + 1); 

probs[i] = next;  sent++;  /* Next Problem */ 

break; 

} 

pvm_initsend( PvmDataDefault ); 

pvm_pkint( &aok, 1, 1 );  /* Valid Problem Marker */ 

pvm_pkdouble( &input, 1, 1 ); 

pvm_send( tids[next], MSGTAG ); 

if ( input < 0.0 ) tids[next] = -1; 

} 

 

} while ( recvd < sent ); 

 

printf( "Sum = %lf\n", sum ); 

} 

 

/* If I am a Worker Task */ 

else if ( cc > 0 ) { 

/* Notify Me If Manager Fails */ 

pvm_notify( PvmTaskExit, MSGTAG, 1, &cc ); 

/* Solve Problems Until Done */ 
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do { 

/* Get Problem from Master */ 

pvm_recv( -1, MSGTAG ); 

pvm_upkint( &aok, 1, 1 ); 

if ( aok > 0 )  /* Master Died */ 

break; 

pvm_upkdouble( &input, 1, 1 ); 

if ( input > 0.0 ) { 

/* Compute Result */ 

result = sqrt( ( 2.0 * input ) - 1.0 ); 

/* Send Result to Master */ 

pvm_initsend( PvmDataDefault ); 

pvm_pkint( &aok, 1, 1 );    /* Ask for more... */ 

pvm_pkdouble( &result, 1, 1 ); 

pvm_send( cc, MSGTAG ); 

} else 

done = 1; 

} while ( !done ); 

} 

pvm_exit(); 

 

return( 0 ); 

} 
This example illustrates another useful function: pvm_spawn(). The ability to spawn a 

replacement task is a powerful capability in fault tolerance. It is also a key function in adaptive 

programs, as we will see in the next section. 

int numt = pvm_spawn( char *task, char **argv, int flag, 

char *node, int ntasks, int *tids ) 
The routine pvm_spawn() starts up ntasks copies of an executable file task on the virtual 

machine. The PVM virtual machine is assumed to be running on the Beowulf cluster. Here 
argv is a pointer to an array of arguments to task with the end of the array specified by 
NULL. If task takes no arguments then argv is NULL. The flag argument is used to specify 

options and is a sum of the following options: 
PvmTaskDefault : has PVM choose where to spawn processes 
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PvmTaskHost: uses a where argument to specify a particular host or cluster node to spawn 

on 
PvmTaskArch: uses a where argument to specify an architecture class to spawn on 
PvmTaskDebug: starts up these processes under debugger 

PvmTaskTrace: uses PVM calls to generate trace data 

PvmMppFront: starts process on MPP front-end/service node 

PvmHostComp: starts process on complementary host set 

For example, flag = PvmTaskHost + PvmHostCompl spawns tasks on every node but the 

specified node (which may be the manager, for instance). 

On return, numt is set to the number of tasks successfully spawned or an error code if no 

tasks could be started. If tasks were started, then pvm_spawn()  returns a vector of the 

spawned tasks' tids. If some tasks could not be started, the corresponding error codes are 

placed in the last (ntask  —  numt) positions of the vector.  
In the example above, pvm_spawn() is used by the manager to start all the worker tasks and 

also is used to replace workers who fail during the computation. This type of fault-tolerant 

method is useful for applications that run continuously with a steady stream of new work 

coming in, as was the case in our two initial examples. Both used a variation on the above 

PVM example code for their solution. 

 

12.3 Adaptive Programs 

In this section, we use some more of the PVM virtual machine functions to illustrate how 
cluster programs can be extended to adapt not only to faults but also to many other metrics 

and circumstances. The first example demonstrates a parallel application that dynamically 

adapts the size of the virtual machine through adding and releasing nodes based on the 

computational needs of the application. Such a feature is used every day on a 128-processor 

Beowulf cluster at Oak Ridge National Laboratory that is shared by three research groups. 

int numh = pvm_addhosts( char **hosts, int nhost, int *infos) 

int numh = pvm_delhosts( char **hosts, int nhost, int *infos) 
The PVM addhosts and delhosts routines add or delete a set of hosts in the virtual 

machine. In a Beowulf cluster this corresponds to adding or deleting nodes from the 
computation; numh is returned as the number of nodes successfully added or deleted. The 

argument infos is an array of length nhost that contains the status code for each individual 

node being added or deleted. This allows you to check whether only one of a set of hosts 

caused a problem, rather than trying to add or delete the entire set of hosts again. 

/* 

* Adaptive Host Allocation Example adds and removes cluster nodes 

* from computation on the fly for different computational phases 

*/ 
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#include <stdio.h> 

#include <pvm3.h> 

 

static char *host_set_A[] = { "msr", "nova", "sun4" }; 

static int nhosts_A = sizeof( host_set_A ) / sizeof( char ** ); 

 

static char *host_set_B[] = { "davinci", "nimbus" }; 

static int nhosts_B = sizeof( host_set_B ) / sizeof( char ** ); 

 

#define MAX_HOSTS    255 

#define MSGTAG        123 

 

double phase1( int prob ) { 

return( (prob == 1) ? 1 : ((double) prob * phase1( prob - 1 )) ); } 

 

double phase2( int prob ) { 

return( (prob == 1) ? 1 : ((double) prob + phase2( prob - 1 )) ); } 

 

int main( int argc, char **argv ) 

{ 

double sum1 = 0.0, sum2 = 0.0, result; 

int status[MAX_HOSTS], prob, cc, i; 

char *args[3], input[16]; 

 

/* If I am the Manager Task */ 

if ( (cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet ) { 

 

/* Phase #1 of computation - Use Host Set A */ 

pvm_addhosts( host_set_A, nhosts_A, status ); 

 

/* Spawn Worker Tasks - One Per Host */ 
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args[0] = "phase1";  args[1] = input;  args[2] = (char *) NULL; 

for ( i=0, prob=0 ; i < nhosts_A ; i++ ) 

if ( status[i] > 0 ) {  /* Successful Host Add */ 

sprintf( input, "%d", prob++ ); 

pvm_spawn( "example2", args, PvmTaskDefault | PvmTaskHost, 

host_set_A[i], 1, (int *) NULL ); 

} 

/* Collect Results */ 

for ( i=0 ; i < prob ; i++ ) { 

pvm_recv( -1, MSGTAG ); 

pvm_upkdouble( &result, 1, 1 ); 

sum1 += result; 

} 

 

/* Remove Host Set A after Phase #1 */ 

for ( i=0 ; i < nhosts_A ; i++ ) 

if ( status[i] > 0 )  /* Only Delete Successful Hosts */ 

pvm_delhosts( &(host_set_A[i]), 1, (int *) NULL ); 

 

/* Phase #2 of Computation - Use Host Set B */ 

pvm_addhosts( host_set_B, nhosts_B, status ); 

 

/* Spawn Worker Tasks - One Per Host (None Locally) */ 

args[0] = "phase2"; 

for ( i=0, prob=0 ; i < nhosts_B ; i++ ) 

if ( status[i] > 0 ) {  /* Successful Host Add */ 

sprintf( input, "%d", prob++ ); 

pvm_spawn( "example2", args, PvmTaskDefault | PvmTaskHost, 

host_set_B[i], 1, (int *) NULL ); 

} 

/* Collect Results */ 

for ( i=0 ; i < prob ; i++ ) { 
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pvm_recv( -1, MSGTAG ); 

pvm_upkdouble( &result, 1, 1 ); 

sum2 += result; 

} 

 

/* Remove Host Set B from Phase #2 */ 

for ( i=0 ; i < nhosts_B ; i++ ) 

if ( status[i] > 0 )  /* Only Delete Successful Hosts */ 

pvm_delhosts( &(host_set_B[i]), 1, (int *) NULL ); 

 

/* Done */ 

printf( "sum1 (%lf) / sum2 (%lf) = %lf\n", sum1, sum2, sum1/sum2); 

} 

 

/* If I am a Worker Task */ 

else if ( cc > 0 ) { 

/* Compute Result */ 

prob = atoi( argv[2] ); 

if ( !strcmp( argv[1], "phase1" ) ) 

result = phase1( prob + 1 ); 

else if ( !strcmp( argv[1], "phase2" ) ) 

result = phase2( 100 * ( prob + 1 ) ); 

/* Send Result to Master */ 

pvm_initsend( PvmDataDefault ); 

pvm_pkdouble( &result, 1, 1 ); 

pvm_send( cc, MSGTAG ); 

} 

 

pvm_exit(); 

 

return( 0 ); 

} 
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One of the main difficulties of writing libraries for message-passing applications is that 

messages sent inside the application may get intercepted by the message -passing calls 

inside the library. The same problem occurs when two applications want to cooperate, for 
example, a performance monitor and a scientific application or an airframe stress application 

coupled with an aerodynamic flow application. Whenever two or more programmers are 

writing different parts of the overall message-passing application, there is the potential that a 

message will be inadvertently received by the wrong part of the application. The solution to 

this problem is communication context. As described earlier in the MPI chapters, 
communication context in MPI is handled cleanly through the MPI communicator. 

In PVM 3.4, pvm_recv() requests a message from a particular source with a user-chosen 

message tag (either or both of these fields can be set to accept anything). In addition, 

communication context is a third field that a receive must match on before accepting a 

message; the context cannot be specified by a wild card. By default there is a base context 
that is a predefined and is similar to the default MPI_COMM_WORLD communicator in MPI. 

PVM has four routines to manage communication contexts. 

new_context = pvm_newcontext() 

old_context = pvm_setcontext( new_context ) 

info        = pvm_freecontext( context ) 

context     = pvm_getcontext() 
Pvm_newcontext() returns a systemwide unique context tag generated by the local 

daemon (in a way similar to the way the local daemon generates systemwide unique task 
IDs). Since it is a local operation, pvm_newcontext is very fast. The returned context can 

then be broadcast to all the tasks that are cooperating on this part of the application. Each of 
the tasks calls pvm_setcontext , which switches the active context and returns the old 

context tag so that it can be restored at the end of the module by another call to 

pvm_setcontext. Pvm_freecontext and pvm_getcontext are used to free memory 

associated with a context tag and to get the value of the active context tag, respectively. 

Spawned tasks inherit the context of their parent. Thus, if you wish to add context to an 
existing parallel routine already written in PVM, you need to add only four lines to the source: 

int mycxt, oldcxt; 

/* near the beginning of the routine set a new context */ 

mycxt = pvm_newcontext(); 

oldcxt = pvm_setcontext( mycxt ); 

 

/* spawn slave tasks to help */ 

/* slave tasks require no source code change */ 
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/* leave all the PVM calls in master unchanged */ 

 

/* just before exiting the routine restore previous context */ 

mycxt = pvm_setcontext( oldcxt ); 

pvm_freecontext( mycxt ); 

 

return; 

PVM has always had message handlers internally, which were used for controlling the virtual 
machine. In PVM 3.4 the ability to define and delete message handlers was raised to the user 

level so that parallel programs can be written that can add new features while the program is 

running. 

The two new message handler functions are 

mhid = pvm_addmhf( src, tag, context, *function ); 

pvm_delmhf( mhid ); 

Once a message handler has been added by a task, whenever a message arrives at this task 

with the specified source, message tag, and communication context, the specified function is 

executed. The function is passed the message so that it may unpack the message if desired. 

PVM places no restrictions on the complexity of the function, which is free to make system 

calls or other PVM calls. A message handler ID is returned by the add routine, which is used 

in the delete message handler routine. 

There is no limit on the number of handlers you can set up, and handlers can be added and 

deleted dynamically by each application task independently. 

By setting up message handlers, you can now write programs that can dynamically change 

the features of the underlying virtual machine. For example, message handlers could be 
added that implement active messages; the application then could use this form of 

communication rather than the typical send/receive. Similar opportunities exist for almost 

every feature of the virtual machine. 

The ability of the application to adapt features of the virtual machine to meet its present needs 

is a powerful capability that has yet to be fully exploited in Beowulf clusters. 

/* Adapting available Virtual Machine features with 

* user redefined message handlers. 

*/ 

#include <stdio.h> 
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#include <pvm3.h> 

 

#define NWORK            4 

#define MAIN_MSGTAG    123 

#define CNTR_MSGTAG    124 

int counter = 0; 

 

int handler( int mid ) { 

int ack, incr, src; 

 

/* Increment Counter */ 

pvm_upkint( &incr, 1, 1 ); 

counter += incr; 

printf( "counter = %d\n", counter ); 

 

/* Acknowledge Counter Task */ 

pvm_bufinfo( mid, (int *) NULL, (int *) NULL, &src ); 

pvm_initsend( PvmDataDefault ); 

ack = ( counter > 1000 ) ? -1 : 1; 

pvm_pkint( &ack, 1, 1 ); 

pvm_send( src, CNTR_MSGTAG ); 

 

return( 0 ); 

} 

 

int main( int argc, char **argv ) 

{ 

int ack, cc, ctx, bufid, incr=1, iter=1, max, numt, old, value=1, src; 

char *args[2]; 

 

/* If I am a Manager Task */ 

if ( (cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet ) { 
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/* Generate New Message Context for Counter Task messages */ 

ctx = pvm_newcontext(); 

 

/* Register Message Handler Function for Independent Counter */ 

pvm_addmhf( -1, CNTR_MSGTAG, ctx, handler ); 

 

/* Spawn 1 Counter Task */ 

args[0] = "counter";  args[1] = (char *) NULL; 

old = pvm_setcontext( ctx );  /* Set Message Context for Task */ 

if ( pvm_spawn( "example3", args, PvmTaskDefault, 

(char *) NULL, 1, (int *) NULL ) != 1 ) 

counter = 1001;  /* Counter Failed to Spawn, Trigger Exit */ 

pvm_setcontext( old );  /* Reset to Base Message Context */ 

 

/* Spawn NWORK Worker Tasks */ 

args[0] = "worker"; 

numt = pvm_spawn( "example3", args, PvmTaskDefault, 

(char *) NULL, NWORK, (int *) NULL ); 

 

/* Increment & Return Worker Values */ 

do { 

/* Get Value */ 

bufid = pvm_recv( -1, MAIN_MSGTAG ); 

pvm_upkint( &value, 1, 1 ); 

max = ( value > max ) ? value : max; 

printf( "recvd value = %d\n", value ) 

 

/* Send Reply */ 

pvm_bufinfo( bufid, (int *) NULL, (int *) NULL, &src ); 

if ( counter <= 1000 ) value += iter++; 

else { value = -1; numt--; }  /* Tell Workers to Exit */ 
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pvm_initsend( PvmDataDefault ); 

pvm_pkint( &value, 1, 1 ); 

pvm_send( src, MAIN_MSGTAG ); 

} while ( numt > 0 ); 

 

printf( "Max Value = %d\n", max ); 

} 

 

/* If I am a Worker Task */ 

else if ( cc > 0 && !strcmp( argv[1], "worker" ) ) { 

/* Grow Values Until Done */ 

do { 

/* Send Value to Master */ 

value *= 2; 

pvm_initsend( PvmDataDefault ); 

pvm_pkint( &value, 1, 1 ); 

pvm_send( cc, MAIN_MSGTAG ); 

/* Get Incremented Value from Master */ 

pvm_recv( cc, MAIN_MSGTAG ); 

pvm_upkint( &value, 1, 1 ); 

} while ( value > 0 ); 

} 

 

/* If I am a Counter Task */ 

else if ( cc > 0 && !strcmp( argv[1], "counter" ) ) { 

/* Grow Values Until Done */ 

do { 

/* Send Counter Increment to Master */ 

pvm_initsend( PvmDataDefault ); 

pvm_pkint( &incr, 1, 1 ); 

pvm_send( cc, CNTR_MSGTAG ); 

incr *= 2; 
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/* Check Ack from Master */ 

pvm_recv( cc, CNTR_MSGTAG ); 

pvm_upkint( &ack, 1, 1 ); 

} while ( ack > 0 ); 

} 

 

pvm_exit(); 

 

return( 0 ); 

} 

In a typical message-passing system, messages are transient, and the focus is on making 
their existence as brief as possible by decreasing latency and increasing bandwidth. But 

there are a growing number of situations in the parallel applications seen today in which 

programming would be much easier if there was a way to have persistent messages. This is 

the purpose of the Message Box feature in PVM. The Message Box is an internal tuple space 

in the virtual machine. 

Four functions make up the Message Box: 

index = pvm_putinfo( name, msgbuf, flag ) 

pvm_recvinfo( name, index, flag ) 

pvm_delinfo( name, index, flag ) 

pvm_getmboxinfo( pattern, matching_names, info ) 

Tasks can use regular PVM pack routines to create an arbitrary message and then use 
pvm_putinfo() to place this message into the Message Box with an associated name. 

Copies of this message can be retrieved by any PVM task that knows the name. If the name 

is unknown or is changing dynamically, then pvm_getmboxinfo() can be used to find the 

list of names active in the Message Box. The flag defines the properties of the stored 
message, such as who is allowed to delete this message, whether this name allows multiple 

instances of messages, and whether a put to the same name can overwrite the message.  

The Message Box has been used for many other purposes. For example, the PVM group 
server functionality has all been implemented in the new Message Box functions; the 

Cumulvs computational steering tool uses the Message Box to query for the instructions on 

how to attach to a remote distributed simulation; and performance monitors leave their 

findings in the Message Box for other tools to use. 
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The capability to have persistent messages in a parallel computing opens up many new 

application possibilities not only in high-performance computing but also in collaborative 

technologies. 

/* Example using persistent messages to adapt to change 

* Monitor tasks are created and killed as needed 

* Information is exchanged between these tasks using persistent messages 

*/ 

 

#include <stdio.h> 

#include <sys/time.h> 

#include <pvm3.h> 

 

#define MSGBOX        "load_stats" 

 

int main() 

{ 

int cc, elapsed, i, index, load, num; 

struct timeval start, end; 

double value; 

 

/* If I am a Manager Task */ 

if ( (cc = pvm_parent()) == PvmNoParent || cc == PvmParentNotSet ) { 

 

/* Periodically Spawn Load Monitor, Check Current System Load */ 

do { 

/* Spawn Load Monitor Task */ 

if ( pvm_spawn( "example4", (char **) NULL, PvmTaskDefault, 

(char *) NULL, 1, (int *) NULL ) != 1 ) { 

perror( "spawning load monitor" );  break; 

} 

sleep( 1 ); 
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/* Check System Load (Microseconds Per Megaflop) */ 

for ( i=0, load=0.0, num=0 ; i < 11 ; i++ ) 

if ( pvm_recvinfo( MSGBOX, i, PvmMboxDefault ) >= 0 ) { 

pvm_upkint( &elapsed, 1, 1 ); 

load += elapsed;  num++; 

} 

if ( num ) 

printf( "Load Avg = %lf usec/Mflop\n", 

(double) load / (double) num ); 

sleep( 5 ); 

} while ( 1 ); 

} 

/* If I am a Load Monitor Task */ 

else if ( cc > 0 ) { 

/* Time Simple Computation */ 

gettimeofday( &start, (struct timezone *) NULL ); 

for ( i=0, value=1.0 ; i < 1000000 ; i++ ) 

value *= 1.2345678; 

gettimeofday( &end, (struct timezone *) NULL ); 

elapsed = (end.tv_usec - start.tv_usec) 

+ 1000000 * (end.tv_sec - start.tv_sec); 

 

/* Dump Into Next Available Message Mbox */ 

pvm_initsend( PvmDataDefault ); 

pvm_pkint( &elapsed, 1, 1 ); 

index = pvm_putinfo( MSGBOX, pvm_getsbuf(), 

PvmMboxDefault | PvmMboxPersistent 

| PvmMboxMultiInstance | PvmMboxOverWritable ); 

 

/* Free Next Mbox Index for Next Instance (Only Save 10) */ 

pvm_delinfo( MSGBOX, (index + 1) % 11, PvmMboxDefault ); 

} 
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pvm_exit(); 

 

return( 0 ); 

} 
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Chapter 13: Cluster Workload Management 

Overview 
James Patton Jones, David Lifka, Bill Nitzberg, and Todd Tannenbaum  

A Beowulf cluster is a powerful (and attractive) tool. But managing the workload can present 

significant challenges. It is not uncommon to run hundreds or thousands of jobs or to share 
the cluster among many users. Some jobs may run only on certain nodes because not all the 

nodes in the cluster are identical; for instance, some nodes have more memory than others. 

Some nodes temporarily may not be functioning correctly. Certain users may require priority 

access to part or all of the cluster. Certain jobs may have to be run at certain times of the day 

or only after other jobs have completed. Even in the simplest environment, keeping track of all 

these activities and resource specifics while managing the ever-increasing web of priorities is 

a complex problem. Workload management software attacks this problem by providing a way 

to monitor and manage the flow of work through the system, allowing the best use of cluster 

resources as defined by a supplied policy. 

Basically, workload management software maximizes the delivery of resources to jobs, given 
competing user requirements and local policy restrictions. Users package their work into sets 

of jobs, while the administrator (or system owner) describes local use policies (e.g., Tom's 

jobs always go first). The software monitors the state of the cluster, schedules work, enforces 

policy, and tracks usage. 

A quick note on terminology: Many terms have been used to describe this area of 
management software. All of the following topics are related to workload management: 

distributed resource management, batch queuing, job scheduling, and, resource and task 

scheduling. 

 

13.1 Goal of Workload Management Software 
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The goal of workload management software is to make certain the submitted jobs ultimately 

run to completion by utilizing cluster resources according to a supplied policy. But in order to 

achieve this goal, workload management systems usually must perform some or all of the 
following activities: 

§ Queuing 

§ Scheduling 

§ Monitoring 

§ Resource management  
§ Accounting 

The typical relationship between users, resources, and these workload management 

activities is depicted in Figure 13.1. As shown in this figure, workload management software 

sits between the cluster users and the cluster resources. First, users submit jobs to a queue 

in order to specify the work to be performed. (Once a job has been submitted, the user can 
request status information about that job at any time.) The jobs then wait in the queue until 

they are scheduled to start on the cluster. The specifics of the scheduling process are defined 

by the policy rules. At this point, resource management mechanisms handle the details of 

properly launching the job and perhaps cleaning up any mess left behind after the job either 

completes or is aborted. While all this is going on, the workload management system is 

monitoring the status of system resources and accounting for which users are using what 

resources. 

 

Figure 13.1: Activities performed by a workload management system. 

 

13.2 Workload Management Activities 

Now let us take a look in more detail at each of the major activities performed by a cluster 
workload management system. 

13.2.1 Queueing 
The first of the five aspects of workload management is queuing, or the process of collecting 

together "work" to be executed on a set of resources. This is also the portion most visible to 

the user. 

The tasks the user wishes to have the computer perform, the work, is submitted to the 
workload management system in a container called a "batch job". The batch job consists of 
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two primary parts: a set of resource directives (such as the amount of memory or number of 

CPUs needed) and a description of the task to be executed. This description contains all the 

information the workload management system needs in order to start a user's job when the 
time comes. For instance, the job description may contain information such as the name of 

the file to execute, a list of data files required by the job, and environment variables or 

command-line arguments to pass to the executable. 

Once submitted to the workload management system, the batch jobs are held in a "queue" 
until the matching resources (e.g., the right kind of computers with the right amount of 

memory or number of CPUs) become available. Examples of real-life queues are lines at the 

bank or grocery store. Sometimes you get lucky and there's no wait, but usually you have to 
stand in line for a few minutes. And on days when the resources (clerks) are in high demand 

(like payday), the wait is substantially longer. 

The same applies to computers and batch jobs. Sometimes the wait is very short, and the 
jobs run immediately. But more often (and thus the need for the workload management 

system) resources are oversubscribed, and so the jobs have to wait. 

One important aspect of queues is that limits can be set that restrict access to the queue. This 

allows the cluster manager greater control over the usage policy of the cluster. For example, 

it may be desirable to have a queue that is available for short jobs only. This would be 

analogous to the "ten items or fewer express lane" at the grocery store, providing a shorter 

wait for "quick tasks." 

Each of the different workload management systems discussed later in this volume offers a 
rich variety of queue limits and attributes. 

13.2.2 Scheduling 

The second area of workload management is scheduling, which is simply the process of 
choosing the best job to run. Unlike in our real-life examples of the bank and grocery store 

(which employ a simple first-come, first-served model of deciding who's next), workload 

management systems offer a variety of ways by which the best job is identified. 

As we have discussed earlier, however, best can be a tricky goal, and depends on the usage 

policy set by local management, the available workload, the type and availability of cluster 
resources, and the types of application being run on the cluster. In general, however, 

scheduling can be broken into two primary activities: policy enforcement  and resource 

optimization. 

Policy encapsulates how the cluster resources are to be used, addressing such issues as 
priorities, traffic control, and capability vs. high throughput. Scheduling is then the act of 

enforcing the policy in the selection of jobs, ensuring the priorities are met and policy goals 

are achieved. 
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While implementing and enforcing the policy, the scheduler has a second set of goals. These 

are resource optimization goals, such as "pack jobs efficiently" or "exploit underused 

resources." 
The difficult part of scheduling, then, is balancing policy enforcement with resource 

optimization in order to pick the best job to run. 

Logically speaking, one could think  of a scheduler as performing the following loop:  
1. Select the best job to run, according to policy and available resources. 

2. Start the job. 

3. Stop the job and/or clean up after a completed job. 

4. Repeat. 

The nuts and bolts of scheduling is, of course, choosing and tuning the policy to meet your 

needs. Although different workload management systems each have their own idiosyncrasies, 

they typically all provide ways in which their scheduling policy can be customized. 

Subsequent chapters of this book will discuss the various scheduling policy mechanisms 

available in several popular workload management systems. 

13.2.3 Monitoring 

Resource monitoring is the third part of any cluster workload management system. It provides 
necessary information to administrators, users and the scheduling system itself on the status 

of jobs and resources. There are basically three critical times that resource monitoring comes 

into play: 

1. When nodes are idle, to verify that they are in working order before starting 

another job on them. 
2. When nodes are busy running a job. Users and administrators may want to 

check memory, CPU, network, I/O, and utilization of other system 

resources. Such checks often are useful in parallel programming when 

users wish to verify that they have balanced their workload correctly and 

are effectively using all the nodes they've been allocated. 

3. When a job completes. Here, resource monitoring is used to ensure that 

there are no remaining processes from the completed job and that the 

node is still in working order before starting another job on it. 

Workload management systems query the compute resources at these times and use the 

information to make informed decisions about running jobs. Much of the information is cached 

so that it can be reported quickly in answer to status requests. Some information is saved for 

historical analysis purposes. Still other bits of the information are used in the enforcement of 

local policy. The method of collection may differ between different workload management 

systems, but the general purposes are the same. 

13.2.4 Resource Management 
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The fourth area, resource management, is essentially responsible for the starting, stopping, 

and cleaning up after jobs that are run on cluster nodes. In a batch system resource 

management involves running a job for a user, under the identity of the user, on the resources 
the user was allocated in such a way that the user need not be present at that time.  

Many cluster workload management systems provide mechanisms to ensure the successful 

startup and cleanup of jobs and to maintain node status data internally, so that jobs are 

started only on nodes that are available and functioning correctly. 

In addition, limits may need to be placed on the job and enforced by the workload 
management system. These limits are yet another aspect of policy enforcement, in addition to 

the limits on queues and those enacted by the scheduling component. 

Another aspect of resource management is providing the ability to remove or add compute 

resources to the available pool of systems. Clusters are rarely static; systems go down, or 

new nodes are added. The "registration" of new nodes and the marking of nodes as 

unavailable are both additional aspects of resource management. 

13.2.5 Accounting 

The fifth aspect of workload management is accounting and reporting. Workload accounting 

is the process of collecting resource usage data for the batch jobs that run on the cluster. 

Such data includes the job owner, resources requested by the job, and total amount of 

resources consumed by the job. Other data about the job may also be available, depending 

on the specific workload managment system in use. 

Cluster workload accounting data can used for a variety of purposes, such as 

1. producing weekly system usage reports, 

2. preparing monthly per user usage reports, 

3. enforcing per project allocations, 

4. tuning the scheduling policy, 

5. calculating future resource allocations, 

6. anticipating future computer component requirements, and 

7. determining areas of improvement within the computer system. 

The data for these purposes may be collected as part of the resource monitoring tasks or may 
be gathered separately. In either case, data is pulled from the available sources in order to 

meet the objectives of workload accounting. Details of using the workload accounting 

features  of specific workload management systems are discussed in subsequent chapters of 

this book. 
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Chapter 14: Condor— A Distributed Job 

Scheduler 

Overview 
Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny 

Condor is a sophisticated and unique distributed job scheduler developed by the Condor 

research project at the University of Wisconsin-Madison Department of Computer Sciences. 

A public-domain version of the Condor software and complete documentation is freely 
available from the Condor project's Web site at www.cs.wisc.edu/condor. Organizations 

may purchase a commercial version of Condor with an accompanying support contract; for 

additional information see www.condorcomputing.com . 

This chapter introduces all aspects of Condor, from its ability to satisfy the needs and desires 

of both submitters and resource owners, to the management of Condor on clusters. Following 

an overview of Condor and Condor's ClassAd mechanism is a description of Condor from the 

user's perspective. The architecture of the software is presented along with overviews of 
installation and management. The chapter ends with configuration scenarios specific to 

clusters. 

 

14.1 Introduction to Condor 

Condor is a specialized workload management system for compute-intensive jobs. Like other 
full-featured batch systems, Condor provides a job queuing mechanism, scheduling policy, 

priority scheme, resource monitoring, and resource management. Users submit their jobs to 
Condor, and Condor places them into a queue, chooses when and where to run them based 

upon a policy, monitors their progress, and ultimately informs the user upon completion. 

While providing functionality similar to that of a more traditional batch queuing system, 
Condor's novel architecture allows it to succeed in areas where traditional scheduling 

systems fail. Condor can be used to manage a cluster of dedicated Beowulf nodes. In 

addition, several unique mechanisms enable Condor to effectively harness wasted CPU 

power from otherwise idle desktop workstations. Condor can be used to seemlessly combine 
all of your organization's computational power into one resource. 

Condor is the product of the Condor Research Project at the University of Wisconsin-Madison 

(UW-Madison) and was first installed as a production system in the UW-Madison Department 

of Computer Sciences nearly ten years ago. This Condor installation has since served as a 

major source of computing cycles to UW-Madison faculty and students. Today, just in our 

department alone, Condor manages more than one thousand workstations, including the 

department's 500-CPU Linux Beowulf cluster. On a typical day, Condor delivers more than 

650 CPU-days to UW researchers. Addition al Condor installations have been established 
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over the years across our campus and the world. Hundreds of organizations in industry, 

government, and academia have used Condor to establish compute environments ranging in 

size from a handful to hundreds of workstations. 

14.1.1 Features of Condor 

Condor's features are extensive. Condor provides great flexibility for both the user submitting 
jobs and for the owner of a machine that provides CPU time toward running jobs. The 

following list summarizes some of Condor's capabilities. 

Distributed submission: There is no single, centralized submission machine. Instead, 

Condor allows jobs to be submitted from many machines, and each machine contains its own 

job queue. Users may submit to a cluster from their own desktop machines. 

Job priorities:  Users can assign priorities to their submitted jobs in order to control the 

execution order of the jobs. A "nice-user" mechanism requests the use of only those 

machines that would have otherwise been idle. 

User priorities: Administrators may assign priorities to users using a flexible mechanism that 

enables a policy of fair share, strict ordering, fractional ordering, or a combination of policies. 

Job dependency: Some sets of jobs require an ordering because of dependencies betwe en 
jobs. "Start job X only after jobs Y and Z successfully complete" is an example of a 

dependency. Enforcing dependencies is easily handled.  

Support for multiple job models:  Condor handles both serial jobs and parallel jobs 

incorporating PVM, dynamic PVM, and MPI. 

ClassAds: The ClassAd mechanism in Condor provides an extremely flexible and expressive 
framework for matching resource requests (jobs) with resource offers (machines). Jobs can 

easily state both job requirements and job preferences. Likewise, machines can specify 

requirements and preferences about the jobs they are willing to run. These requirements and 

preferences can be described in powerful expressions, resulting in Condor's adaptation to 
nearly any desired policy. 

Job checkpoint and migration: With certain types of jobs, Condor can transparently take a 

checkpoint and subsequently resume the application. A checkpoint is a snapshot of a job's 

complete state. Given a checkpoint, the job can later continue its execution from where it left 

off at the time of the checkpoint. A checkpoint also enables the transparent migration of a job 

from one machine to another machine. 

Periodic checkpoint: Condor can be configured to periodically produce a checkpoint for a 
job. This provides a form of fault tolerance and safeguards the accumulated computation time 
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of a job. It reduces the loss in the event of a system failure such as the machine being shut 

down or hardware failure. 

Job suspend and resume: Based on policy rules, Condor can ask the operating system to 
suspend and later resume a job. 

Remote system calls: Despite running jobs on remote machines, Condor can often preserve 
the local execution environment via remote system calls. Users do not need to make data 

files available or even obtain a login account on remote workstations before Condor executes 
their programs there. The program behaves under Condor as if it were running as the user 

that submitted the job on the workstation where it was originally submitted, regardless of 

where it really executes. 

Pools of machines working together:  Flocking allows jobs to be scheduled across multiple 

Condor pools. It can be done across pools of machines owned by different organizations that 

impose their own policies. 

Authentication and authorization: Administrators have fine-grained control of access 
permissions, and Condor can perform strong network authentication using a variety of 

mechanisms including Kerberos and X.509 public key certificates. 

Heterogeneous platforms: In addition to Linux, Condor has been ported to most of the other 
primary flavors of Unix as well as Windows NT. A single pool can contain multiple platforms. 

Jobs to be executed under one platform may be submitted from a different platform. As an 

example, an executable that runs under Windows 2000 may be submitted from a machine 

running Linux. 

Grid computing: Condor incorporates many of the emerging Grid-based computing 

methodologies and protocols. It can interact with resources managed by Globus. 

14.1.2 Understanding Condor ClassAds 

The ClassAd is a flexible representation of the characteristics and constraints of both 

machines and jobs in the Condor system. Matchmaking is the mechanism by which Condor 

matches an idle job with an available machine. Understanding this unique framework is the 

key to harness the full flexibility of the Condor system. ClassAds are employed by users to 

specify which machines should service their jobs. Administrators use them to customize 

scheduling policy. 

Conceptualizing Condor ClassAds: Just Like the Newspaper. Condor's ClassAds are 
analogous to the classified advertising section of the newspaper. Sellers advertise specifics 

about what they have to sell, hoping to attract a buyer. Buyers may advertise specifics about 

what they wish to purchase. Both buyers and sellers list constraints that must be satisfied. For 

instance, a buyer has a maximum spending limit, and a seller requires a minimum purchase 

price. Furthermore, both want to rank requests to their own advantage. Certainly a seller 
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would rank one offer of $50 higher than a different offer of $25. In Condor, users submitting 

jobs can be thought of as buyers of compute resources and machine owners are sellers. 

All machines in a Condor pool advertise their attributes, such as available RAM memory, 
CPU type and speed, virtual memory size, current load average, current time and date, and 

other static and dynamic properties. This machine ClassAd also advertises under what 

conditions it is willing to run a Condor job and what type of job it prefers. These policy 

attributes can reflect the individual terms and preferences by which the different owners have 

allowed their machines to participate in the Condor pool. 

After a job is submitted to Condor, a job ClassAd is created. This ClassAd includes attributes 

about the job, such as the amount of memory the job uses, the name of the program to run, 
the user who submitted the job, and the time it was submitted. The job can also specify 

requirements and preferences (or rank) for the machine that will run the job. For instance, 

perhaps you are looking for the fastest floating-point performance available. You want Condor 

to rank available machines based on floating-point performance. Perhaps you care only that 

the machine has a minimum of 256 MBytes of RAM. Or, perhaps you will take any mac hine 
you can get! These job attributes and requirements are bundled up into a job ClassAd. 

Condor plays the role of matchmaker by continuously reading all the job ClassAds and all the 
machine ClassAds, matching and ranking job ads with machine ads. Condor ensures that the 

requirements in both ClassAds are satisfied. 

Structure of a ClassAd. A ClassAd is a set of uniquely named expressions. Each named 

expression is called an attribute. Each attribute has an attribute name and an attribute value.  

The attribute value can be a simple integer, string, or floating-point value, such as 

Memory = 512 

OpSys = "LINUX" 

NetworkLatency = 7.5 

An attribute value can also consist of a logical expression that will evaluate to TRUE, FALSE, 

or UNDEFINED. The syntax and operators allowed in these expressions are similar to those 
in C or Java, that is, == for equals, != for not equals, && for logical and, || for logical or, and so 

on. Furthermore, ClassAd expressions can incorporate attribute names to refer to other 

attribute values. For instance, consider the following small sample ClassAd: 

MemoryInMegs = 512 

MemoryInBytes = MemoryInMegs * 1024 * 1024 

Cpus = 4 

BigMachine = (MemoryInMegs > 256) && (Cpus >= 4) 

VeryBigMachine = (MemoryInMegs > 512) && (Cpus >= 8) 

FastMachine = BigMachine && SpeedRating 
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In this example, BigMachine evaluates to TRUE and VeryBigMachine  evaluates to 

FALSE. But, because attribute SpeedRating  is not specified, FastMachine would evaluate 

to UNDEFINED. 
Condor provides meta-operators  that allow you to explicitly compare with the UNDEFINED 

value by testing both the type and value of the operands. If both the types and values match, 
the two operands are considered identical; =?= is used for meta-equals (or, is-identical-to) 

and =!= is used for meta-not-equals (or, is-not-identical-to). These operators always return 

TRUE or FALSE and therefore enable Condor administrators to specify explicit policies given 
incomplete information.  

A complete description of ClassAd semantics and syntax is documented in the Condor 
manual. 

Matching ClassAds.  ClassAds can be matched with one another. This is the fundamental 

mechanism by which Condor matches jobs with machines. Figure 14.1 displays a ClassAd 

from Condor representing a machine and another representing a queued job. Each ClassAd 

contains a MyType attribute, describing what type of resource the ad represents, and a 
TargetType attribute. The TargetType specifies the type of resource desired in a match. 

Job ads want to be matched with machine ads and vice versa.  

Job ClassAd Machine ClassAd 

 

MyType = "Job"  MyType  = "Machine" 

TargetType  = "Machine" TargetType = "Job" 

Requirements = ((Arch=="INTEL" && 
Op-Sys=="LINUX") && Disk > DiskUsage) 

Requirements = Start 

Rank = (Memory * 10000) + KFlops Rank = TAGRET 

Department==M.Y.Department 

Args = "-ini ./ies.ini" Activity = "Idle" 

ClusterId = 680 Arch = "INTEL" 

Cmd = "/home/tannenba/bin/sim-exe"  ClockDay = 0 

Department = "CompSci" ClockMin = 614 

DiskUsage  = 465 CondorLoadAvg = 0.000000 

StdErr = "sim.err" Cpus = 1 

ExitStatus = 0 CurrentRank = 0.000000 

FileReadBytes = 0.000000 Department = "CompSci" 

FileWriteBytes = 0.000000 Disk = 3076076 

ImageSize  = 465 EnteredCurrentActivity = 

990371564 

StdIn = "/dev/null" EnteredCurrentState = 
990330615 
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Job ClassAd Machine ClassAd 

 

Iwd = "/home/tannenba/sim-m/run_55" FileSystemDomain = 

"cs.wisc.edu" 

JobPrio = 0 IsInstructional = FALSE 

JobStartDate  = 971403010 KeyboardIdle = 15 

JobStatus = 2 KFlops = 145811 

StdOut = "sim.out" LoadAvg = 0.220000 

Owner = "tannenba" Machine  = "nostos.cs.wisc.edu" 

ProcId = 64 Memory = 511 

QDate = 971377131 Mips = 732 

RemoteSysCpu = 0.000000 OpSys = "LINUX"  

RemoteUserCpu = 0.000000 Start = (LoadAvg <= 0.300000) 

&&(KeyboardIdle > (15 * 60)) 

RemoteWallClockTime = 
2401399.000000 

State = "Unclaimed" 

TransferFiles = "NEVER" Subnet = "128.105.165" 

WantCheckpoint = FALSE TotalVirtualMemory = 787144 

WantRemoteSyscalls = FALSE ?  

?   

 

Figure 14.1: Examples of ClassAds in Condor. 

Each ClassAd engaged in matchmaking specifies a Requirements  and a Rank attribute. In 

order for two ClassAds to match, the Requirements expression in both ads must evaluate 

to TRUE. An important component of matchmaking is the Requirements  and Rank 

expression can refer not only to attributes in their own ad but also to attributes in the 
candidate matching ad. For instance, theRequirements  expression for the job ad specified 

in Figure 14.1 refers to Arch, OpSys , and Disk, which are all attributes found in the 

machine ad.  

What happens if Condor finds more than one machine ClassAd that satisfies the constraints 
specified by Requirements? That is where the Rank expression comes into play. The Rank 

expression specifies the desirability of the match (where higher numbers mean better 

matches). For example, the job ad in Figure 14.1 specifies 

Requirements = ((Arch=="INTEL" && OpSys=="LINUX") && Disk > DiskUsage) 

Rank         = (Memory * 100000) + KFlops 

In this case, the job requires a computer running the Linux operating system and more local 

disk space than it will use. Among all such computers, the user prefers those with large 
physical memories and fast floating-point CPUs (KFlops is a metric of floating-point 
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performance). Since the Rank is a user-specified metric, any expression may be used to 

specify the perceived desirability of the match. Condor's matchmaking algorithms deliver the 

best resource (as defined by the Rank expression) while satisfying other criteria. 
 

14.2 Using Condor 

The road to using Condor effectively is a short one. The basics are quickly and easily learned. 

14.2.1 Roadmap to Using Condor 

The following steps are involved in running jobs using Condor: 

Prepare the Job to Run Unattended. An application run under Condor must be able to 

execute as a batch job. Condor runs the program unattended and in the background. A 
program that runs in the background will not be able to perform interactive input and output. 

Condor can redirect console output (stdout and stderr) and keyboard input (stdin ) to 

and from files. You should create any needed files that contain the proper keystrokes needed 

for program input. You should also make certain the program will run correctly with the files. 

Select the Condor Universe. Condor has five runtime environments from which to choose. 
Each runtime environment is called a Universe. Usually the Universe you choose is 

determined by the type of application you are asking Condor to run. There are six job 

Universes in total: two for serial jobs (Standard and Vanilla), one for parallel PVM jobs (PVM), 

one for parallel MPI jobs (MPI), one for Grid applications (Globus), and one for 

meta-schedulers (Scheduler). Section 14.2.4 provides more information on each of these 

Universes. 

Create a Submit Description File. The details of a job submission are defined in a submit 

description file. This file contains information about the job such as what executable to run, 
which Universe to use, the files to use for stdin, stdout, and stderr, requirements and 

preferences about the machine which should run the program, and where to send e-mail 

when the job completes. You can also tell Condor how many times to run a program; it is 

simple to run the same program multiple times with different data sets. 
Submit the Job. Submit the program to Condor with the condor_submit command. 

Once a job has been submitted, Condor handles all aspects of running the job. You can 
subsequently monitor the job's progress with the condor_q  and condor_status 
commands. You may use condor_prio to modify the order in which Condor will run your 

jobs. If desired, Condor can also record what is being done with your job at every stage in its 

lifecycle, through the use of a log file specified during submission. 

When the program completes, Condor notifies the owner (by e-mail, the user-specified log file, 

or both) the exit status, along with various statistics including time used and I/O performed. 
You can remove a job from the queue at any time with condor_rm. 

14.2.2 Submitting a Job 
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To submit a job for execution to Condor, you use the condor_submit command. This 

command takes as an argument the name of the submit description file, which contains 

commands and keywords to direct the queuing of jobs. In the submit description file, you 
define everything Condor needs to execute the job. Items such as the name of the executable 

to run, the initial working directory, and command-line arguments to the program all go into 
the submit description file. The condor_submit command creates a job ClassAd based on 

the information, and Condor schedules the job. 

The contents of a submit description file can save you considerable time when you are using 
Condor. It is easy to submit multiple runs of a program to Condor. To run the same program 

500 times on 500 different input data sets, the data files are arranged such that each run 

reads its own input, and each run writes its own output. Every individual run may have its own 
initial working directory, stdin, stdout, stderr, command-line arguments, and shell 

environment. 

The following examples illustrate the flexibility of using Condor. We assume that the jobs 

submitted are serial jobs intended for a cluster that has a shared file system across all nodes. 
Therefore, all jobs use the Vanilla Universe, the simplest one for running serial jobs. The 

other Condor Universes are explored later. 

Example 1. Example 1 is the simplest submit description file possible. It queues up one copy 
of the program 'foo ' for execution by Condor. A log file called 'foo.log ' is generated by 

Condor. The log file contains events pertaining to the job while it runs inside of Condor. When 
the job finishes, its exit conditions are noted in the log file. We recommend that you always 

have a log file so you know what happened to your jobs. The queue statement in the submit 

description file tells Condor to use all the information specified so far to create a job ClassAd 

and place the job into the queue. Lines that begin with a pound character (#) are comments 
and are ignored by condor_submit. 

# Example 1 : Simple submit file 

universe = vanilla 

executable = foo 

log = foo.log 

queue 
Example 2.  Example 2 queues two copies of the program 'mathematica'. The first copy 

runs in directory 'run_1 ', and the second runs in directory 'run_2'. For both queued copies, 

'stdin' will be 'test.data', 'stdout'  will be 'loop.out ', and 'stderr ' will be 

'loop.error '. Two sets of files will be written, since the files are each written to their own 

directories. This is a convenient way to organize data for a large group of Condor jobs. 

# Example 2: demonstrate use of multiple 

# directories for data organization.  

universe = vanilla 
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executable = mathematica 

# Give some command line args, remap stdio 

arguments = -solver matrix 

input = test.data 

output = loop.out 

error = loop.error 

log = loop.log 

 

initialdir = run_1 

queue 

initialdir = run_2 

queue 
Example 3. The submit description file for Example 3 queues 150 runs of program 'foo '. This 

job requires Condor to run the program on machines that have greater than 128 megabytes 

of physical memory, and it further requires that the job not be scheduled to run on a specific 
node. Of the machines that meet the requirements, the job prefers to run on the fastest 

floating-point nodes currently available to accept the job. It also advises Condor that the job 

will use up to 180 megabytes of memory when running. Each of the 150 runs of the program 

is given its own process number, starting with process number 0. Several built-in macros can 

be used in a submit description file; one of them is the $(Process) macro which Condor 
expands to be the process number in the job cluster. This causes files 'stdin', 'stdout', 

and 'stderr ' to be 'in.0', 'out.0', and 'err.0 ' for the first run of the program, 'in.1', 
'out.1', and 'err.1' for the second run of the program, and so forth. A single log file will list 

events for all 150 jobs in this job cluster. 

# Example 3: Submit lots of runs and use the 

# pre-defined $(Process) macro. 

universe = vanilla 

executable = foo 

requirements = Memory > 128 && Machine != "server-node.cluster.edu" 

rank = KFlops 

image_size = 180 

 

Error   = err.$(Process) 

Input   = in.$(Process) 
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Output  = out.$(Process) 

Log = foo.log 

 

queue 150 
Note that the requirements and rank entries in the submit description file will become the 

requirements and rank attributes of the subsequently created ClassAd for this job. These are 

arbitrary expressions that can reference any attributes of either the machine or the job; see 

Section 14.1.2 for more on requirements and rank expressions in ClassAds. 

14.2.3 Overview of User Commands 
Once you have jobs submitted to Condor, you can manage them and monitor their progress. 

Table 14.1 shows several commands available to the Condor user to view the job queue, 

check the status of nodes in the pool, and perform several other activities. Most of these 
commands have many command-line options; see the Command Reference chapter of the 

Condor manual for complete documentation. To provide an introduction from a user 

perspective, we give here a quick tour showing several of these commands in action. 

Table 14.1: List of user commands.  

Command Description 

condor_checkpoint 
Checkpoint 

jobs running 

on the 

specified 

hosts 

condor_compile 
Create a 
relinked 

executable 

for 

submission 

to the 

Standard 

Univers e 

condor_glidein 
Add a 

Globus 

resource to 

a Condor 

pool 

condor_history 
View log of 
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Table 14.1: List of user commands.  

Command Description 

Condor jobs 

completed 

to date 

condor_hold 
Put jobs in 

the queue in 

hold state 

condor_prio 
Change 
priority of 

jobs in the 

queue 

condor_qedit  
Modify 
attributes of 

a previ ously 

submitted 
job 

condor_q  Display 

information 

about jobs in 

the queue 

condor_release Release 

held jobs in 

the queue 

condor_reschedule 
Update 
scheduling 

information 
to the 

central 

manager 

condor_rm 
Remove 
jobs from 

the queue 

condor_run 
Submit a 
shell 

command-li
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Table 14.1: List of user commands.  

Command Description 

ne as a 

Condor job 

condor_status 
Display 
status of the 

Condor pool 

condor_submit_dag Manage and 

queue jobs 
within a 

specified 

DAG for 

interjob 

dependenci
es. 

condor_submit 
Queue jobs 
for 

execution 

condor_userlog 
Display and 
summarize 

job statistics 

from job log 

files 

When jobs are submitted, Condor will attempt to find resources to service the jobs. A list of all 

users with jobs submitted may be obtained through condor_status with the -submitters 

option. An example of this would yield output similar to the following: 

% condor_status -submitters 

 

Name                 Machine     Running IdleJobs HeldJobs 

 

ballard@cs.wisc.edu  bluebird.c        0       11        0 

nice-user.condor@cs. cardinal.c        6      504        0 

wright@cs.wisc.edu   finch.cs.w        1        1        0 

jbasney@cs.wisc.edu  perdita.cs        0        0        5 

RunningJobs          IdleJobs           HeldJobs 
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ballard@cs.wisc.edu               0                11                  0 

jbasney@cs.wisc.edu               0                 0                  5 

nice-user.condor@cs.               6               504                  0 

wright@cs.wisc.edu               1                 1                  0 

 

Total               7               516                  5 
Checking on the Progress of Jobs.  The condor_q command displays the status of all jobs 

in the queue. An example of the output from condor_q is 

% condor_q 

 

-- Schedd: uug.cs.wisc.edu : <128.115.121.12:33102> 

ID        OWNER            SUBMITTED     RUN_TIME ST PRI SIZE CMD 

55574.0   jane            6/23 11:33   4+03:35:28 R  0   25.7 seycplex seymour.d 

55575.0   jane            6/23 11:44   0+23:24:40 R  0   26.8 seycplexpseudo sey  

83193.0   jane            3/28 15:11  48+15:50:55 R  0   17.5 cplexmip test1.mp 

83196.0   jane            3/29 08:32  48+03:16:44 R  0   83.1 cplexmip test3.mps 

83212.0   jane            4/13 16:31  41+18:44:40 R  0   39.7 cplexmip test2.mps 

5 jobs; 0 idle, 5 running, 0 held 

This output contains many columns of information about the queued jobs. The ST column (for 
status) shows the status of current jobs in the queue. An R in the status column means the the 

job is currently running. An I stands for idle. The status H is the hold state. In the hold state, 

the job will not be scheduled to run until it is released (via the condor_release command). 

The RUN_TIME time reported for a job is the time that job has been allocated to a machine as 

DAYS+HOURS+MINS+SECS. 
Another useful method of tracking the progress of jobs is through the user log. If you have 
specified a log command in your submit file, the progress of the job may be followed by 

viewing the log file. Various events such as execution commencement, checkpoint, eviction, 

and termination are logged in the file along with the time at which the event occurred. Here is 

a sample snippet from a user log file 

000 (8135.000.000) 05/25 19:10:03 Job submitted from host: <128.105.146.14:1816> 

... 

001 (8135.000.000) 05/25 19:12:17 Job executing on host: <128.105.165.131:1026>  

... 

005 (8135.000.000) 05/25 19:13:06 Job terminated. 
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(1) Normal termination (return value 0) 

Usr 0 00:00:37, Sys 0 00:00:00 - Run Remote Usage 

Usr 0 00:00:00, Sys 0 00:00:05 - Run Local Usage 

Usr 0 00:00:37, Sys 0 00:00:00 - Total Remote Usage 

Usr 0 00:00:00, Sys 0 00:00:05 - Total Local Usage 

9624  -  Run Bytes Sent By Job 

7146159  -  Run Bytes Received By Job 

9624  -  Total Bytes Sent By Job 

7146159  -  Total Bytes Received By Job 

... 
The condor_jobmonitor tool parses the events in a user log file and can use the 

information to graphically display the progress of your jobs. Figure 14.2 contains a screenshot 

of condor_jobmonitor in action. 

 

Figure 14.2: Condor jobmonitor tool. 
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You can locate all the machines that are running your job with the condor_status 

command. For example, to find all the machines that are running jobs submitted by 
breach@cs.wisc.edu , type 

% condor_status -constraint 'RemoteUser == "breach@cs.wisc.edu"' 

 

Name       Arch    OpSys        State      Activity   LoadAv Mem  ActvtyTime 

 

alfred.cs. INTEL   LINUX        Claimed   Busy        0.980  64    0+07:10:02 

biron.cs.w INTEL   LINUX        Claimed   Busy        1.000  128   0+01:10:00 

cambridge. INTEL   LINUX        Claimed   Busy        0.988  64    0+00:15:00 

falcons.cs INTEL   LINUX        Claimed   Busy        0.996  32    0+02:05:03 

happy.cs.w INTEL   LINUX        Claimed   Busy        0.988  128   0+03:05:00 

istat03.st INTEL   LINUX        Claimed   Busy        0.883  64    0+06:45:01 

istat04.st INTEL   LINUX        Claimed   Busy        0.988  64    0+00:10:00 

istat09.st INTEL   LINUX        Claimed   Busy        0.301  64    0+03:45:00 

... 

To find all the machines that are running any job at all, type 

% condor_status -run 

 

Name       Arch      OpSys        LoadAv RemoteUser           ClientMachine 

 

adriana.cs INTEL     LINUX        0.980  hepcon@cs.wisc.edu   chevre.cs.wisc. 

alfred.cs. INTEL     LINUX        0.980  breach@cs.wisc.edu   neufchatel.cs.w 

amul.cs.wi INTEL     LINUX        1.000  nice-user.condor@cs. chevre.cs.wisc. 

anfrom.cs. INTEL     LINUX        1.023  ashoks@jules.ncsa.ui jules.ncsa.uiuc  

anthrax.cs INTEL     LINUX        0.285  hepcon@cs.wisc.edu   chevre.cs.wisc. 

astro.cs.w INTEL     LINUX        1.000  nice-user.condor@cs. chevre.cs.wisc. 

aura.cs.wi INTEL     LINUX        0.996  nice-user.condor@cs. chevre.cs.wisc. 

balder.cs. INTEL     LINUX        1.000  nice-user. condor@cs. chevre.cs.wisc. 

bamba.cs.w INTEL     LINUX        1.574  dmarino@cs.wisc.edu  riola.cs.wisc.e 

bardolph.c INTEL     LINUX        1.000  nice-user.condor@cs. chevre.cs.wisc. 

... 
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Removing a Job from the Queue. You can remove a job from the queue at  any time using 

the condor_rm command. If the job that is being removed is currently running, the job is 

killed without a checkpoint, and its queue entry is removed. The following example shows the 
queue of jobs before and after a job is removed. 

% condor_q 

 

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu 

ID      OWNER            SUBMITTED    RUN_TIME  ST PRI SIZE CMD 

125.0   jbasney         4/10 15:35   0+00:00:00 I  -10 1.2  hello.remote 

132.0   raman           4/11 16:57   0+00:00:00 R  0   1.4  hello 

 

2 jobs; 1 idle, 1 running, 0 held 

 

%  condor_rm 132.0 

Job 132.0 removed. 

 

% condor_q 

 

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu 

ID      OWNER            SUBMITTED    RUN_TIME  ST PRI SIZE CMD 

125.0   jbasney         4/10 15:35   0+00:00:00 I  -10 1.2  hello.remote 

 

1 jobs; 1 idle, 0 running, 0 held 

Changing the Priority of Jobs.  In addition to the priorities assigned to each user, Condor 

provides users with the capability of assigning priorities to any submitted job. These job 

priorities are local to each queue and range from -20 to +20, with higher values meaning 

better priority. 
The default priority of a job is 0. Job priorities can be modified using the condor_prio 

command. For example, to change the priority of a job to -15, type 

% condor_q raman 

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu 

ID      OWNER            SUBMITTED    RUN_TIME  ST PRI SIZE CMD 

126.0   raman           4/11 15:06   0+00:00:00 I  0   0.3  hello 
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1 jobs; 1 idle, 0 running, 0 held 

 

%  condor_prio -p -15 126.0 

 

%  condor_q raman 

 

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu 

ID      OWNER            SUBMITTED    RUN_TIME  ST PRI SIZE CMD 

126.0   raman           4/11 15:06   0+00:00:00 I  -15 0.3  hello 

 

1 jobs; 1 idle, 0 running, 0 held 
We emphasize that these job  priorities are completely different from the user priorities 

assigned by Condor. Job priorities control only which one of your jobs should run next; there 
is no effect whatsoever on whether your jobs will run before another user's jobs. 

Determining Why a Job Does Not Run. A specific job may not run for several reasons. 

These reasons include failed job or machine constraints, bias due to preferences, insufficient 
priority, and the preemption throttle that is implemented by the condor_negotiator  to 

prevent thrashing. Many of these reasons can be diagnosed by using the -analyze option of 
condor_q. For example, the following job submitted by user jbasney had not run for several 

days. 

% condor_q 

 

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu 

ID      OWNER            SUBMITTED    RUN_TIME  ST PRI SIZE CMD 

125.0   jbasney         4/10 15:35   0+00:00:00 I  -10 1.2  hello.remote 

 

1 jobs; 1 idle, 0 running, 0 held 
Running condor_q's analyzer provided the following information: 

% condor_q 125.0 -analyze 

 

-- Submitter: froth.cs.wisc.edu : <128.105.73.44:33847> : froth.cs.wisc.edu 

--- 

125.000:  Run analysis summary.  Of 323 resource offers, 

323 do not satisfy the request's constraints 
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0 resource offer constraints are not satisfied by this request 

0 are serving equal or higher priority customers 

0 are serving more preferred customers 

0 cannot preempt because preemption has been held 

0 are available to service your request 

 

WARNING:  Be advised: 

No resources matched request's constraints 

Check the Requirements expression below: 

 

Requirements = Arch == "INTEL" && OpSys == "IRIX6" && 

Disk >= ExecutableSize && VirtualMemory >= ImageSize 
The Requirements expression for this job specifies a platform that does not exist. Therefore, 

the expression always evaluates to FALSE. 

While the analyzer can diagnose most common problems, there are some situations that it 
cannot reliably detect because of the instantaneous and local nature of the information it uses 

to detect the problem. The analyzer may report that resources are available to service the 

request, but the job still does not run. In most of these situations, the delay is transient, and 

the job will run during the next negotiation cycle. 

If the problem persists and the analyzer is unable to detect the situation, the job may begin to 

run but immediately terminates and return to the idle state. Viewing the job's error and log 
files (specified in the submit command file) and Condor's SHADOW_LOG file may assist in 

tracking down the problem. If the cause is still unclear, you should contact your system 

administrator. 

Job Completion. When a Condor job completes (either through normal means or abnormal 

means), Condor will remove it from the job queue (therefore, it will no longer appear in the 

output of condor_q) and insert it into the job history file. You can examine the job history file 
with the condor_history command. If you specified a log file in your submit description file, 

then the job exit status will be recorded there as well. 

By default, Condor will send you an e-mail message when your job completes. You can 
modify this behavior with the condor_submit "notification" command. The message will 

include the exit status of your job or notification that your job terminated abnormally. 

14.2.4 Submitting Different Types of Jobs: Alternative Universes 

A Universe in Condor defines an execution environment. Condor supports the following 

Universes on Linux: 

§ Vanilla 
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§ MPI 

§ PVM 

§ Globus 
§ Scheduler 

§ Standard 
The Universe attribute is specified in the submit description file. If the Universe is not 

specified, it will default to Standard. 

Vanilla Universe. The Vanilla Universe is used to run serial (nonparallel) jobs. The examples 
provided in the preceding section use the Vanilla Universe. Most Condor users prefer to use 

the Standard Universe to submit serial jobs because of several helpful features of the 

Standard Universe. However, the Standard Universe has several restrictions on the types of 

serial jobs supported. The Vanilla Universe, on the other hand, has no such restrictions. Any 

program that runs outside of Condor will run in the Vanilla Universe. Binary executables as 
well as scripts are welcome in the Vanilla Universe.  

A typical Vanilla Universe job relies on a shared file system between the submit machine and 

all the nodes in order to allow jobs to access their data. However, if a shared file system is not 

available, Condor can transfer the files needed by the job to and from the execute machine. 

See Section 14.2.5 for more details on this. 

MPI Universe. The MPI Universe allows parallel programs written with MPI to be managed 

by Condor. To submit an MPI program to Condor, specify the number of nodes to be used in 
the parallel job. Use the machine_count attribute in the submit description file, as in the 

following example:  

# Submit file for an MPI job which needs 8 large memory nodes 

universe = mpi 

executable = my-parallel-job 

requirements = Memory >= 512 

machine_count = 8 

queue 

Further options in the submit description file allow a variety of parameters, such as the job 

requirements or the executable to use ac ross the different nodes. 

By late 2001, Condor expects your MPI job to be linked with the MPICH implementation of 

MPI configured with the ch_p4 device (see Section 9.6.1). Support for different devices and 

MPI implementations is expected, however, so check the documentation included with your 

specific version of Condor for additional information on how your job should be linked with 

MPI for Condor. 

If your Condor pool consists of both dedicated compute machines (that is, Beowulf cluster 

nodes) and opportunistic machines (that is, desktop workstations), by default Condor will 

schedule MPI jobs to run on the dedicated resources only. 
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PVM Universe. Several different parallel programming paradigms exist. One of the more 

common is the "master/worker" or "pool of tasks" arrangement. In a master/worker program 

model, one node acts as the controlling master for the parallel application and sends out 
pieces of work to worker nodes. The worker node does some computation and sends the 

result back to the master node. The master has a pool of work that needs to be done, and it 

assigns the next piece of work out to the next worker that becomes available. 

The PVM Universe allows master/worker style parallel programs written for the Parallel 

Virtual Machine interface (see Chapter 11) to be used with Condor. Condor runs the master 
application on the machine where the job was submitted and will not preempt the master 

application. Workers are pulled in from the Condor pool as they become available. 

Specifically, in the PVM Universe, Condor acts as the resource manager for the PVM daemon. 
Whenever a PVM program asks for nodes via a pvm_addhosts() call, the request is 

forwarded to Condor. Using ClassAd matching mechanisms, Condor finds a machine in the 
Condor pool and adds it to the virtual machine. If a machine needs to leave the pool, the PVM 
program is notified by normal PVM mechanisms, for example, the pvm_notify() call. 

A unique aspect of the PVM Universe is that PVM jobs submitted to Condor can harness both 
dedicated and nondedicated (opportunistic) workstations throughout the pool by dynamically 

adding machines to and removing machines from the parallel virtual machine as machines 

become available.  

Writing a PVM program that deals with Condor's opportunistic environment can be a tricky 
task. For that reason, the MW framework has been created. MW is a tool for making 

master-worker style applications in Condor's PVM Universe. For more information, see the 

MW Home page online at www.cs.wisc.edu/condor/mw. 

Submitting to the PVM Universe is similar to submitting to the MPI Universe, except that the 
syntax for machine_count is different to reflect the dynamic nature of the PVM Universe. 

Here is a simple sample submit description file: 

# Require Condor to give us one node before starting 

# the job, but we'll us e up to 75 nodes if they are 

# available. 

universe = pvm 

executable = master.exe 

machine_count = 1..75 

queue 
By using machine_count = <min>..<max>, the submit description file tells Condor that 
before the PVM master is started, there should be at least <min> number of machines given 

to the job. It also asks Condor to give it as many as <max> machines. 

More detailed information on the PVM Universe is available in the Condor manual as well as 
on the Condor-PVM home page at URL www.cs.wisc.edu/condor/pvm. 
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Globus Universe. The Globus Universe in Condor is intended to provide the standard 

Condor interface to users who wish to submit jobs to machines being managed by Globus 
(www.globus.org). 

Scheduler Universe. The Scheduler Universe is used to submit a job that will immediately 

run on the submit machine, as opposed to a remote execution machine. The purpose is to 

provide a facility for job meta-schedulers  that desire to manage the submission and removal 

of jobs into a Condor queue. Condor includes one such meta-scheduler that utilizes the 

Scheduler Universe: the DAGMan scheduler, which can be used to specify complex 
interdependencies between jobs. See Section 14.2.6 for more on DAGMan. 

Standard Universe. The Standard Universe requires minimal extra effort on the part of the 

user but provides a serial job with the following highly desirable services: 

§ Transparent process checkpoint  and restart 

§ Transparent process migration 
§ Remote system calls 

§ Configurable file I/O buffering 

§ On-the-fly file compression/inflation 

Process Checkpointing in the Standard Universe. A checkpoint of an executing program 

is a snapshot of the program's current state. It provides a way for the program to be continued 

from that state at a later time. Using checkpoints gives Condor the freedom to reconsider 

scheduling decisions through preemptive-resume scheduling. If the scheduler decides to 

rescind a machine that is running a Condor job (for example, when the owner of that machine 

returns and reclaims it or when a higher-priority user desires the same machine), the 

scheduler can take a checkpoint of the job and preempt the job without losing the work the job 
has already accomplished. The job can then be resumed later when the Condor scheduler 

allocates it a new machine. Additionally, periodic checkpoints provide fault tolerance. 

Normally, when performing long-running computations, if a machine crashes or must be 

rebooted for an administrative task, all the work that has been done is lost. The job must be 

restarted from the beginning, which can mean days, weeks, or even months of wasted 
computation time. With checkpoints, Condor ensures that progress is always made on jobs 

and that only the computation done since the last checkpoint is lost. Condor can be take 

checkponts periodically, and after an interruption in service, the program can continue from 

the most recent snapshot. 

To enable taking checkpoints, you do not need to change the program's source code. Instead, 
the program must be relinked with the Condor system call library (see below). Taking the 

checkpoint of a process is implemented in the Condor system call library as a signal handler. 
When Condor sends a checkpoint signal to a process linked with this library, the provided 

signal handler writes the state of the process out to a file or a network socket. This state 

includes the contents of the process's stack and data segments, all CPU state (including 

register values), the state of all open files, and any signal handlers and pending signals. 

When a job is to be continued using a checkpoint, Condor reads this state from the file or 
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network socket, restoring the stack, shared library and data segments, file state, signal 

handlers, and pending signals. The checkpoint signal handler then restores the CPU state 

and returns to the user code, which continues from where it left off when the checkpoint signal 
arrived. Condor jobs submitted to the Standard Universe will automatically perform a 

checkpoint when preempted from a machine. When a suitable replacement execution 

machine is found (of the same architecture and operating system), the process is restored on 

this new machine from the checkpoint, and computation is resumed from where it left off.  

By default, a checkpoint is written to a file on the local disk of the submit machine. A Condor 

checkpoint server is also available to serve as a repository for checkpoints. 

Remote System Calls in the Standard Universe.  One hurdle to overcome when placing an 
job on a remote execution workstation is data access. In order to utilize the remote resources, 

the job must be able to read from and write to files on its submit machine. A requirement that 

the remote execution machine be able to access these files via NFS, AFS, or any other 

network file system may significantly limit the number of eligible workstations and therefore 

hinder the ability of an environment to achieve high throughput. Therefore, in order to 
maximize throughput, Condor strives to be able to run any application on any remote 

workstation of a given platform without relying upon a common administrative setup. The 

enabling technology that permits this is Condor's Remote System Calls mechanism. This 

mechanism provides the benefit that Condor does not require a user to possess a login 

account on the execute workstation. 
When a Unix process needs to access a file, it calls a file I/O system function such as open(), 
read(), or write(). These functions are typically handled by the standard C library, which 

consists primarily of stubs that generate a corresponding system call to the local kernel. 

Condor users link their applications with an enhanced standard C library via the 
condor_compile  command. This library does not duplicate any code in the standard C 

library; instead, it augments certain system call stubs (such as the ones that handle file I/O) 

into remote system call stubs. The remote system call stubs package the system call number 
and arguments into a message that is sent over the network to a condor_shadow  process 

that runs on the submit machine. Whenever Condor starts a Standard Universe job, it also 

starts a corresponding shadow process on the initiating host where the user originally 
submitted the job (see Figure 14.3). This shadow process acts as an agent for the remotely 

executing program in performing system calls. The shadow then executes the system call on 

behalf of the remotely running job in the normal way. The shadow packages up the results of 

the system call in a message and sends it back to the remote system call stub in the Condor 

library on the remote machine. The remote system call stub returns its result to the calling 
procedure, which is unaware that the call was done remotely rather than locally. In this 

fashion, calls in the user's program to open(), read(), w rite(), close(), and all other 

file I/O calls transparently take place on the machine that submitted the job instead of on the 

remote execution machine. 
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Figure 14.3: Remote System calls in the Standard Universe. 

Relinking and Submitting for the Standard Universe. To convert a program into a 
Standard Universe job, use the condor_compile command to relink with the Condor 

libraries. Place condor_compile  in front of your usual link command. You do not need to 

modify the program's source code, but you do need access to its unlinked object files. A 

commercial program that is packaged as a single executable file cannot be converted into a 

Standard Universe job. 

For example, if you normally link your job by executing 

% cc main.o tools.o -o program 

You can relink your job for Condor with 

% condor_compile cc main.o tools.o -o program 

After you have relinked your job, you can submit it. A submit description file for the Standard 

Universe is similar to one for the Vanilla Universe. However, several additional submit 

directives are available to perform activities such as on-the-fly compression of data files. Here 
is an example: 

# Submit 100 runs of my-program to the Standard Universe 

universe = standard 

executable = my-program.exe 

# Each run should take place in a seperate subdirectory: run0, run1, ... 

initialdir = run$(Process) 

# Ask the Condor remote syscall layer to automatically compress 

# on-the-fly any writes done by my-program.exe to file data.output 
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compress_files = data.output  

queue 100 

Standard Universe Limitations.  Condor performs its process checkpoint and migration 

routines strictly in user mode; there are no kernel drivers with Condor. Because Condor is not 

operating at the kernel level, there are limitations on what process state it is able to 
checkpoint. As a result, the following restrictions are imposed upon Standard Universe jobs: 

1. Multiprocess jobs are not allowed. This includes system calls such as 

fork(), exec(), and system(). 

2. Interprocess communication is not allowed. This includes pipes, 

semaphores, and shared memory. 

3. Network communication must be brief. A job may make network connections 
using system calls such as socket() , but a network connection left open 

for long periods will delay checkpoints and migration. 

4. Multiple kernel-level threads are not allowed. However, multiple user-level 

threads (green threads) are allowed. 
5. All files should be accessed read -only or write-only. A file that is both read 

and written to can cause trouble if a job must be rolled back to an old 

checkpoint image. 

6. On Linux, your job must be statically linked. Dynamic linking is allowed in the 

Standard Universe on some other platforms supported by Condor, and 
perhaps this restriction on Linux will be removed in a future Condor 

release. 

14.2.5 Giving Your Job Access to Its Data Files 

Once your job starts on a machine in your pool, how does it access its data files? Condor 

provides several choices. 

If the job is a Standard Universe job, then Condor solves the problem of data access 

automatically using the Remote System call mechanism described above. Whenever the job 
tries to open, read, or write to a file, the I/O will actually take place on the submit machine, 

whether or not a shared file system is in place. 

Condor can use a shared file system, if one is available and permanently mounted across the 

machines in the pool. This is usually the case in a Beowulf cluster. But what if your Condor 

pool includes nondedicated (desktop) machines as well? You could specify a 
Requirements expression in your submit description file to require that jobs run only on 

machines that actually do have access to a common, shared file system. Or, you could 

request in the submit description file that Condor transfer your job's data files using the 

Condor File Transfer mechanism. 

When Condor finds a machine willing to execute your job, it can create a temporary 
subdirectory for your job on the execute machine. The Condor File Transfer mechanism will 
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then send vi a TCP the job executable(s) and input files from the submitting machine into this 

temporary directory on the execute machine. After the input files have been transferred, the 

execute machine will start running the job with the temporary directory as the job's current 
working directory. When the job completes or is kicked off, Condor File Transfer will 

automatically send back to the submit machine any output files created or modified by the job. 

After the files have been sent back successfully, the temporary working directory on the 

execute machine is deleted. 

Condor's File Transfer mechanism has several features to ensure data integrity in a 

nondedicated environment. For instance, transfers of multiple files are performed atomically. 

Condor File Transfer behavior is specified at job submission time using the submit description 
file and condor_submit. Along with all the other job submit description parameters, you can 

use the following File Transfer commands in the submit description file: 

transfer_input_files = < file1, file2, file… >: Use this parameter to list all the files that 
should be transferred into the working directory for the job before the job is started. 

transfer_output_files = < file1, file2, file… >: Use this parameter to explicitly list which 

output files to transfer back from the temporary working directory on the execute machine to 

the submit machine. Most of the time, however, there is no need to use this parameter. If 
transfer_output_files is not specified, Condor will automatically transfer in the job's 

temporary working directory all files that have been modified or created by the job. 
transfer_files = <ONEXIT | ALWAYS | NEVER: If transfer_files  is set to ONEXIT,  

Condor will transfer the job's output files back to the submitting machine only when the job 

completes (exits). Specifying ALWAYS tells Condor to transfer back the output files when the 

job completes or when Condor kicks off the job (preempts) from a machine prior to job 

completion. The ALWAYS option is specifically intended for fault-tolerant jobs that 

periodocially write out their state to disk and can restart where they left off. Any output files 

transferred back to the submit machine when Condor preempts a job will automatically be 

sent back out again as input files when the job restarts. 

14.2.6 The DAGMan Scheduler 

The DAGMan scheduler within Condor allows the specification of dependencies between a 

set of programs. A directed acyclic graph (DAG) can be used to represent a set of programs 

where the input, output, or execution of one or more programs is dependent on one or more 

other programs. The programs are nodes (vertices) in the graph, and the edges (arcs) identify 

the dependencies. Each program within the DAG becomes a job submitted to Condor. The 

DAGMan scheduler enforces the dependencies of the DAG. 

An input file to DAGMan identifies the nodes of the graph, as well as how to submit each job 
(node) to Condor. It also specifies the graph's dependencies and describes any extra 

processing that is involved with the nodes of the graph and must take place just before or just 

after the job is run.  
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A simple diamond-shaped DAG with four nodes is given in Figure 14.4. 

 
Figure 14.4: A directed acyclic graph with four nodes. 

A simple input file to DAGMan for this diamond-shaped DAG may be 

# file name: diamond.dag 

Job  A  A.condor 

Job  B  B.condor 

Job  C  C.condor 

Job  D  D.condor 

PARENT A CHILD B C 

PARENT B C CHILD D 
The four nodes are named A, B, C, and D. Lines beginning with the keyword Job identify 

each node by giving it a name, and they also specify a file to be used as a submit description 

file for submission as a Condor job. Lines with the keyword PARENT identify the 

dependencies of the graph. Just like regular Condor submit description files, lines with a 

leading pound character (#) are comments. 

The DAGMan scheduler uses the graph to order the submission of jobs to Condor. The 

submission of a child node will not take place until the parent node has successfully 

completed. No ordering of siblings is imposed by the graph, and therefore DAGMan does not 

impose an ordering when submitting the jobs to Condor. For the diamond-shaped example, 
nodes B and C will be submitted to Condor in parallel. 

Each job in the example graph uses a different submit description file. An example submit 

description file for job A may be 

# file name: A.condor 

executable   = nodeA.exe 
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output       = A.out 

error        = A.err 

log          = diamond.log 

universe     = vanilla 

queue 

An important restriction for submit description files of a DAG is that each node of the graph 
use the same log file. DAGMan uses the log file in enforcing the graph's dependencies. 

The graph for execution under Condor is submitted by using the Condor tool 
condor_submit_dag. For the diamond-shaped example, submission would use the 

command 

condor_submit_dag diamond.dag 

 

14.3 Condor Architecture 
A Condor pool comprises a single machine that serves as the central manager and an 

arbitrary number of other machines that have joined the pool. Conceptually, the pool is a 
collection of resources (machines) and resource requests (jobs). The role of Condor is to 

match waiting requests with available resources. Every part of Condor sends periodic 

updates to the central manager, the centralized repository of information about the state of 

the pool. The central manager periodically assesses the current state of the pool and tries to 

match pending requests with the appropriate resources. 

14.3.1 The Condor Daemons 

In this subsection we describe all the daemons (background server processes) in Condor and 

the role each plays in the system. 
condor_master:  This daemon's role is to simplify system administration. It is responsible 

for keeping the rest of the Condor daemons running on each machine in a pool. The master 

spawns the other daemons and periodically checks the time-stamps on the binaries of the 

daemons it is managing. If it finds new binaries, the master will restart the affected daemons. 

This allows Condor to be upgraded easily. In addition, if any other Condor daemon on the 

machine exits abnormally, the condor_master will send e-mail to the system  administrator 

with information about the problem and then automatically restart the affected daemon. The 
condor_master also supports various administrative commands to start, stop, or 

reconfigure daemons remotely. The condor_master runs on every machine in your Condor 

pool. 
condor_startd:  This daemon represents a machine to the Condor pool. It advertises a 

machine ClassAd that contains attributes about the machine's capabilities and policies. 
Running the startd enables a machine to execute jobs. The condor_startd is 

responsible for enforcing the policy under which remote jobs will be started, suspended, 
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resumed, vacated, or killed. When the startd is ready to execute a Condor job, it spawns 

the condor_starter, described below. 

condor_starter: This program is the entity that spawns the remote Condor job on a given 

machine. It sets up the execution environment and monitors the job once it is running. The 

starter detects job completion, sends back status information to the submitting machine, and 

exits. 
condor_schedd: This daemon represents jobs to the Condor pool. Any machine that 

allows users to submit jobs needs to have a condor_schedd  running. Users submit jobs to 
the condor_schedd, where they are stored in the job queue . The various tools to view and 

manipulate the job queue (such as condor_submit, condor_q , or condor_rm) connect 

to the condor_schedd  to do their work. 

condor_shadow:  This program runs on the machine where a job was submitted whenever 

that job is executing. The shadow serves requests for files to transfer, logs the job's progress, 
and reports statistics when the job completes. Jobs that are linked for Condor's Standard 
Universe, which perform remote system calls, do so via the condor_shadow. Any system 

call performed on the remote execute machi ne is sent over the network to the 
condor_shadow. The shadow performs the system call (such as file I/O) on the submit 

machine and the result is sent back over the network to the remote job. 
condor_collector: This daemon is responsible for collecting all the information about the 

status of a Condor pool. All other daemons periodically send ClassAd updates to the collector. 

These ClassAds contain all the information about the state of the daemons, the resources 

they represent, or resource requests in the pool (such as jobs that have been submitted to a 
given condor_schedd). The condor_collector can be thought of as a dynamic 
database of ClassAds. The condor_status  command can be used to query the collector 

for specific information about various parts of Condor. The Condor daemons also query the 

collector for important information, such as what address to use for sending commands to a 
remote machine. The condor_collector runs on the machine designated as the central 

manager. 
condor_negotiator:  This daemon is responsible for all the matchmaking within the 

Condor system. The negotiator is also responsible for enforcing user priorities in the system. 

14.3.2 The Condor Daemons in Action 

Within a given Condor installation, one machine will serve as the pool's central manager. In 
addition to the condor_master daemon that runs on every machine in a Condor pool, the 

central manager runs the condor_collector and the condor_negotiator daemons. 

Any machine in the installation that should be capable of running jobs should run the 
condor_startd, and any machine that should maintain a job queue and therefore allow 
users on that machine to submit jobs should run a condor_schedd . 

Condor allows any machine simultaneously to execute jobs and serve as a submission point 
by running both a condor_startd and a condor_schedd. Figure 14.5 displays a Condor 
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pool in which every machine in the pool can both submit and run jobs, including the central 

manager. 

 
Figure 14.5: Daemon layout of an idle Condor pool. 

The interface for adding a job to the Condor system is condor_submit, which reads a job 

description file, creates a job ClassAd, and gives that ClassAd to the condor_schedd 

managing the local job queue. This triggers a negotiation cycle. During a negotiation cycle, 
the condor_negotiator queries the condor_collector  to discover all machines that 

are willing to perform work and all users with idle jobs. The condor_negotiator 

communicates in user priority order with eachcondor_schedd  that has idle jobs in its queue, 

and performs matchmaking to match jobs with machines such that both job and machine 
ClassAd requirements are satisfied and preferences (rank) are honored.  

Once the condor_negotiator  makes a match, the condor_schedd claims the 

corresponding machine and is allowed to make subsequent scheduling decisions about the 

order in which jobs run. This hierarchical, distributed scheduling architecture enhances 

Condor's scalability and flexibility. 
When the condor_schedd starts a job, it spawns a condor_shadow process on the submit 

machine, and the condor_startd spawns a condor_starter  process on the 

corresponding execute machine (see Figure 14.6). The shadow transfers the job ClassAd 

and any data files required to the starter, which spawns the user's application.  
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Figure 14.6: Daemon layout when a job submitted from Machine 2 is running. 

If the job is a Standard Universe job, the shadow will begin to service remote system calls 
originating from the user job, allowing the job to transparently access data files on the 

submitting host. 

When the job completes or is aborted, the condor_starter removes every process 

spawned by the user job, and frees any temporary scratch disk space used by the job. This 

ensures that the execute machine is left in a clean state and that resources (such as 
processes or disk space) are not being leaked. 

 

14.4 Installing Condor under Linux 
The first step toward the installation of Condor is to download the software from the Condor 
Web site at www.cs.wisc.edu/condor/downloads. There is no cost to download or use 

Condor. 

On the Web site you will find complete documentation and release notes for the different 
versions and platforms supported. You should take care to download the appropriate version 

of Condor for your platform (the operating system and processor architecture). 

Before you begin the installation, there are several issues you need to consider and actions to 
perform. 

Creation of User Condor. For both security and performance reasons, the Condor daemons 

should execute with root privileges. However, to avoid running as root except when 

absolutely necessary, the Condor daemons will run with the privileges of user condor on your 

system. In addition, the user condor simplifies installation, since files owned by the user 

condor will be created, and the home directory of the user condor can be used to specify file 
locations. For Linux clusters, we highly recommend that you create the user condor on all 

machines before installation begins. 
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Location. Administration of your pool is eased when the release directory (which includes all 

the binaries, libraries, and configuration files used by Condor) is placed on a shared file 

server. Note that one set of binaries is needed for each platform in your pool. 

Administrator. Condor needs an e-mail address for an administrator. Should Condor need 

assistance, this is where e-mail will be sent. 

Central Manager. The central manager of a Condor pool does matchmaking and collects 

information for the pool. Choose a central manager that has a good network connection and 
is likely to be online all the time (or at least rebooted quickly in the event of a failure). 

Once you have decided the answers to these questions (and set up the condor user) you are 

ready to begin installation. The tool called condor_install is executed to begin the 

installation. The configuration tool will ask you a short series of questions, mostly related to 

the issues addressed above. Answer the questions appropriately for your site, and Condor 

will be installed. 

On a large Linux cluster, you can speed the installation process by running 
condor_install once on your fileserver node and configuring your entire pool at the same 

time. If you use this configuration option, you will need to run only the condor_init script 

(which requires no input) on each of your compute nodes. 
The default Condor installation will configure your pool to assume nondedicated resources. 

Section 14.5 discusses how to configure and customize your pool for a dedicated cluster.  

After Condor is installed, you will want to customize a few security configuration right away. 

Condor implements security at the host (or machine) level. A set of configuration defaults set 

by the installation deal with access to the Condor pool by host. Given the distributed nature of 
the daemons that implement Condor, access to these daemons is naturally host based. Each 

daemon can be given the ability to allow or deny service (by host) within its configuration. 

Within the access levels available, Read, Write, Administrator, and Config are important to 

set correctly for each pool of machines. 

Read: allows a machine to obtain information from Condor. Examples of information that may 
be read are the status of the pool and the contents of the job queue. 

Write: allows a machine to provide information to Condor, such as submit a job or join the 

pool. 

Administrator: allows a user on the machine to affect privileged operations such as 
changing a user's priority level or starting and stopping the Condor system from running. 

Config: allows a user on the machine to change Condor's configuration settings remotely 
using the condor_config_val tool's -set  and -rset options. This has very serious security 

implications, so we recommend that you not enable Config access to any hosts. 

The defaults during installation give all machines read and write access. The central manager 
is also given administrator access. You will probably wish to change these defaults for your 
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site. Read the Condor Administrator's Manual for details on network authorization in Condor 

and how to customize it for your wishes. 

 
14.5 Configuring Condor 

This section describes how to configure and customize Condor for your site. It discusses the 

configuration files used by Condor, describes how to configure the policy for starting and 

stopping jobs in your pool, and recommends settings for using Condor on a cluster.  

A number of configuration files facilitate different levels of control over how Condor is 
configured on each machine in a pool. The top-level or global configurat ion file is shared by 

all machines in the pool. For ease of administration, this file should be located on a shared file 

system. In addition, each machine may have multiple local configuration files allowing the 

local settings to override the global settings. Hence, each machine may have different 

daemons running, different policies for when to start and stop Condor jobs, and so on. 

All of Condor's configuration files should be owned and writable only by root. It is important to 
maintain strict control over these files because they contain security-sensitive settings. 

14.5.1 Location of Condor's Configuration Files 

Condor has a default set of locations it uses to try to find its top-level configuration file. The 
locations are checked in the following order: 

1. The file specified in the CONDOR_CONFIG environment variable. 

2. '/etc/condor/condor_config ', if it exists. 

3. If user condor exists on your system, the 'condor_config' file in this user's 

home directory. 

If a Condor daemon or tool cannot find its global configuration file when it starts, it will print an 

error message and immediately exit. Once the global configuration file has been read by 
Condor, however, any other local configuration files can be specified with the 

LOCAL_CONFIG_FILE macro. 

This macro can contain a single entry if you want only two levels of configuration (global and 

local). If you need a more complex division of configuration values (for example, if you have 

machines of different platforms in the same pool and desire separate files for 
platform-specific settings), LOCAL_CONFIG_FILE can contain a list of files. 

Condor provides other macros to help you easily define the location of the local configuration 
files for each machine in your pool. Most of these are special macros that evaluate to different 

values depending on which host is reading the global configuration file: 
§ HOSTNAME: The hostname of the local host. 

§ FULL_HOSTNAME:  The fully qualified hostname of the local host. 

§ TILDE: The home directory of the user condor on the local host. 
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§ OPSYS: The operating system of the local host, such as "LINUX," "WINNT4" 

(for Windows NT), or "WINNT5" (for Windows 2000). This is primarily useful 

in heterogeneous clusters with multiple platforms. 
§ RELEASE_DIR: The directory where Condor is installed on each host. This 

macro is defined in the global configuration file and is set by Condor's 

installation program. 

By default, the local configuration file is defined as 

LOCAL_CONFIG_FILE = $(TILDE)/condor_config.local 

14.5.2 Recommended Configuration File Layout for a Cluster 

Ease of administration is an important consideration in a cluster, particularly if you have a 
large number of nodes. To make Condor easy to configure, we highly recommend that you 

install all of your Condor configuration files, even the per-node local configuration files, on a 

shared file system. That way, you can easily make changes in one place.  

You should use a subdirectory in your release directory for holding all of the local 

configuration files. By default, Condor's release directory contains an 'etc ' directory for this 

purpose. 

You should create separate files for each node in your cluster, using the hostname as the first 

half of the filename, and ".local" as the end. For example, if your cluster nodes are named 
"n01", "n02" and so on, the files should be called 'n01.local', 'n02.local', and so on. 

These files should all be placed in your 'etc' directory. 

In your global configuration file, you should use the following setting to describe the location 

of your local configuration files: 

LOCAL_CONFIG_FILE = $(RELEASE_DIR)/etc/$(HOSTNAME).local 

The central manager of your pool needs special settings in its local configuration file. These 
attributes are set automatically by the Condor installation program. The rest of the local 

configuration files can be left empty at first. 

Having your configuration files laid out in this way will help you more easily customize 

Condor's behavior on your cluster. We discuss other possible configuration scenarios at the 

end of this chapter. 

Note We recommend that you store all of your Condor configuration files 

under a version control system, such as CVS. While this is not required, 

it will help you keep track of the changes you make to your 

configuration, who made them, when they occurred, and why. In 

general, it is a good idea to store configuration files under a version 

control system, since none of the above concerns are specific to 
Condor. 
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14.5.3 Customizing Condor's Policy Expressions 

Certain configuration expressions are used to control Condor's policy for executing, 

suspending, and evicting jobs. Their interaction can be somewhat complex. Defining an 

inappropriate policy impacts the throughput of your cluster and the happiness of its users. If 

you are interested in creating a specialized policy for your pool, we recommend that you read 

the Condor Administrator's Manual. Only a basic introduction follows. 

All policy expressions are ClassAd expressions and are defined in Condor's configuration 
files. Policies are usually poolwide and are therefore defined in the global configuration file. If 

individual nodes in your pool require their own policy, however, the appropriate expressions 

can be placed in local configuration files. 
The policy expressions are treated by the condor_startd as part of its machine ClassAd 

(along with all the attributes you can view with condor_status -long). 

They are always evaluated against a job ClassAd, either by the condor_negotiator when 

trying to find a match or by the condor_startd when it is deciding what to do with the job 

that is currently running. Therefore, all policy expressions can reference attributes of a job, 

such as the memory usage or owner, in addition to attributes of the machine, such as 

keyboard idle time or CPU load. 
Most policy expressions are ClassAd Boolean expressions , so they evaluate to TRUE, 

FALSE, or UNDEFINED. UNDEFINED occurs when an expression references a ClassAd 

attribute that is not found in either the machine's ClassAd or the ClassAd of the job under 

consideration. For some expressions, this is treated as a fatal error, so you should be sure to 

use the ClassAd meta-operators, described in Section 14.1.2 when referring to attributes 
which might not be present in all ClassAds. 

An explanation of policy expressions requires an understanding of the different stages that a 
job can go through from initially executing until the job completes or is evicted from the 

machine. Each policy expression is then described in terms of the step in the progression that 

it controls. 

The Lifespan of a Job Executing in Condor. When a job is submitted to Condor, the 

condor_negotiator performs matchmaking to find a suitable resource to use for the 

computation. This process involves satisfying both the job and the machine's requirements 

for each other. The machine can define the exact conditions under which it is willing to be 

considered available for running jobs. The job can define exactly what kind of machine it is 

willing to use. 

Once a job has been matched with a given machine, there are four states the job can be in: 
running, suspended, graceful shutdown, and quick shutdown. As soon as the match is made, 

the job sets up its execution environment and begins running.  
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While it is executing, a job can be suspended (for example, because of other activity on the 

machine where it is running). Once it has been suspended, the job can resume execution or 

can move on to preemption or eviction. 

All Condor jobs have two methods for preemption: graceful and quick. Standard Universe 

jobs are given a chance to produce a checkpoint with graceful preemption. For the other 

universes, graceful implies that the program is told to get off the system, but it is given time to 

clean up after itself. On all flavors of Unix, a SIGTERM is sent during graceful shutdown by 

default, although users can override this default when they submit their job. A quick shutdown 

involves rapidly killing all processes associated with a job, without giving them any time to 

execute their own cleanup procedures. The Condor system performs checks to ensure that 
processes are not left behind once a job is evicted from a given node. 

Condor Policy Expressions.  Various expressions are used to control the policy for starting, 

suspending, resuming, and preempting jobs. 
START: when the condor_startd is willing to start executing a job. 

RANK: how much the condor_startd  prefers each type of job running on it. The RANK 
expression is a floating-point instead of a Boolean value. The condor_startd will preempt 

the job it is currently running if there is another job in the system that yields a higher value for 

this expression. 
WANT_SUSPEND: controls whether the condor_startd should even consider suspending 

this job or not. In effect, it determines which expression, SUSPEND or PREEMPT, should be 
evaluated while the job is running. WANT_SUSPEND  does not control when the job is actually 

suspended; for that purpose, you should use the SUSPEND expression. 

SUSPEND: when the condor_startd should suspend the currently running job. If 

WANT_SUSPEND evaluates to TRUE, SUSPEND is periodically evaluated whenever a job is 

executing on a machine. If SUSPEND becomes TRUE, the job will be suspended. 

CONTINUE: if and when the condor_startd should resume a suspended job. The 

CONTINUE expression is evaluated only while a job is suspended. If it evaluates to TRUE, the 

job will be resumed, and the condor_startd  will go back to the Claimed/Busy state. 

PREEMPT: when the condor_startd  should preempt the currently running job. This 

expression is evaluated whenever a job has been suspended. If WANT_SUSPEND evaluates to 
FALSE, PREEMPT is checked while the job is executing. 

WANT_VACATE: whether the job should be evicted gracefully or quickly if Condor is 

preempting a job (because the PREEMPT expression evaluates to TRUE). If WANT_VACATE is 

FALSE, the condor_startd will immediately kill the job and all of its child processes 

whenever it must evict the application. If WANT_VACATE is TRUE, the condor_startd 

performs a graceful shutdown, instead. 

KILL: when the condor_startd should give up on a graceful preemption and move 

directly to the quick shutdown. 
PREEMPTION_REQUIREMENTS: used by the condor_negotiator when it is performing 

matchmaking, not by the condor_startd. While trying to schedule jobs on resources in 
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your pool, the condor_negotiator considers the priorities of the various users in the 

system (see Section 14.6.3 for more details). If a user with a better priority has jobs waiting in 

the queue and no resources are currently idle, the matchmaker will consider preempting 
another user's jobs and giving those resources to the user with the better priority. This 

process is known as priority preemption. The PREEMPTION_REQUIREMENTS expression 

must evaluate to TRUE for such a preemption to take place. 
PREEMPTION_RANK: a floating-point value evaluated by the condor_negotiator. If the 

matchmaker decides it must preempt a job due to user priorities, the macro 
PREEMPTION_RANK determines which resource to preempt. Among the set of all resources 

that make the PREEMPTION_REQUIREMENTS  expression evaluate to TRUE, the one with the 

highest value for PREEMPTION_RANK is evicted. 

14.5.4 Customizing Condor's Other Configuration Settings 

In addition to the policy expressions, you will need to modify other settings to customize 

Condor for your cluster.  
DAEMON_LIST: the comma-separated list of daemons that should be spawned by the 

condor_master. As described in Section 14.3.1 discussing the architecture of Condor, each 

host in your pool can play different roles depending on which daemons are started on it. You 
define these roles using the DAEMON_LIST in the appropriate configuration files to enable or 

disable the various Condor daemons on each host. 
DedicatedScheduler: the name of the dedicated scheduler for your cluster. This setting 

must have the form  

DedicatedScheduler = "DedicatedScheduler@full.host.name.here" 

 

14.6 Administration Tools 
Condor has a rich set of tools for the administrator. Table 14.2 gives an overview of the 

Condor commands typically used solely by the system administrator. Of course, many of the 

"user-level" Condor tools summarized in Table 14.2 can be helpful for cluster administration 

as well. For instance, the condor_status tool can easily display the status for all nodes in 

the cluster, including dynamic information such as current load average and free virtual 

memory. 

Table 14.2: Commands reserved for the administrator. 

Command Description 

condor_checkpoint Checkpoint 

jobs running 
on the 

specified 

hosts 
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Table 14.2: Commands reserved for the administrator. 

Command Description 

condor_config_val 
Query or set a 

given Condor 

configuration 

variable 

condor_master_off Shut down 

Condor and 

the 

condor_mas
ter 

condor_off 
Shut down 
Condor 

daemons  

condor_on 
Start up 

Condor 
daemons  

condor_reconfig Reconfigure 

Condor 

daemons  

condor_restart Restart the 

condor_mas
ter 

condor_stats  
Display 

historical 

information 

about the 

Condor pool 

condor_userprio Display and 

manage user 

priorities 

condor_vacate 
Vacate jobs 
that are 

running on the 
specified 

hosts 
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14.6.1 Remote Configuration and Control 

All machines in a Condor pool can be remotely managed from a centralized location. Condor 
can be enabled, disabled, or restarted remotely using the condor_on ,condor_off, and 
condor_restart  commands, respectively. Additionally, any aspect of Condor's 

configuration file on a node can be queried or changed remotely via the 
condor_config_val command. Of course, not everyone is allowed to change your Condor 

configuration remotely. Doing so requires proper authorization, which is set up at installation 

time (see Section 14.4). 
Many aspects of Condor's configuration, including its scheduling policy, can be changed on 

the fly without requiring the pool to be shut down and restarted. This is accomplished by using 

the condor_reconfig  command, which asks the Condor daemons on a specified host to 

reread the Condor configuration files and take appropriate action— on the fly if possible. 

14.6.2 Accounting and Logging 

Condor keeps many statistics about what is happening in the pool. Each daemon can be 
asked to keep a detailed log of its activities; Condor will automatically rotate these log files 

when they reach a maximum size as specified by the administrator. 
In addition to the condor_history command, which allows users to view job ClassAds for 

jobs that have previously completed, the condor_stats tool can be used to query for 

historical usage statistics from a poolwide accounting database. This database contains 

information about how many jobs were being serviced for each user at regular intervals, as 
well as how many machines were busy. For instance, condor_stats  could be asked to 

display the total number of jobs running at five -minute intervals for a specified user between 

January 15 and January 30. 
The condor_view tool takes the raw information obtainable with condor_stats and 

converts it into HTML, complete with interactive charts. Figure 14.7 shows a sample display 
of the output from condor_view in a Web browser. The site administrator, using 

condor_view, can quickly put detailed, real-time usage statistics about the Condor pool 

onto a Web site. 
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Figure 14.7: CondorView displaying machine usage.  

14.6.3 User Priorities in Condor 

The job queues in Condor are not strictly first-in, first-out. Instead, Condor implements priority 
queuing. Different users will get different -sized allocations of machines depending on their 

current user priority, regardless of how many jobs from a competing user are "ahead" of them 

in the queue. Condor can also be configured to perform priority preemption if desired. For 

instance, suppose user A is using all the nodes in a cluster, when suddenly a user with a 

superior priority submits jobs. With priority preemption enabled, Condor will preempt the jobs 
of the lower-priority user in order to immediately start the jobs submitted by the higher-priority 

user. 

Starvation of the lower-priority users is prevented by a fair-share algorithm, which attempts to 

give all users the same amount of machine allocation time over a specified interval. In 

addition, the priority calculations in Condor are based on ratios instead of absolutes. For 

example, if Bill has a priority that is twice as good as that of Fred, Condor will not starve Fred 

by allocating all machines to Bill. Instead, Bill will get, on average, twice as many machines as 

will Fred because Bill's priority is twice as good. 
The condor_userprio  command can be used by the administrator to view or edit a user's 

priority. It can also be used to override Condor's default fair-share policy and explicitly assign 

users a better or worse priority in relation to other users. 

 

14.7 Cluster Setup Scenarios 

This section explores different scenarios for how to configure your cluster. Five scenarios are 

presented, along with a basic idea of what configuration settings you will need to modify or 

what steps you will need to take for each scenario:  

1. A uniformly owned, dedicated compute cluster, with a single front -end node 

for submission, and support for MPI applications. 

2. A cluster of multiprocessor nodes. 
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3. A cluster of distributively owned nodes. Each node prefers to run jobs 

submitted by its owner.  

4. Desktop submission to the cluster.  
5. Expanding the cluster to nondedicated (desktop) computing resources. 

Most of these scenarios can be combined. Each scenario builds on the previous one to add 

further functionality to the basic cluster configuration. 

14.7.1 Basic Configuration: Uniformly Owned Cluster 

The most basic scenario involves a cluster where all resources are owned by a single entity 

and all compute nodes enforce the same policy for starting and stopping jobs. All compute 

nodes are dedicated, meaning that they will always start an idle job and they will never 
preempt or suspend until completion. There is a single front-end node for submitting jobs, and 

dedicated MPI jobs are enabled from this host. 

In order to enable this basic policy, your global configuration file must contain these settings: 

START = True 

SUSPEND = False 

CONTINUE = False 

PREEMPT = False 

KILL = False 

WANT_SUSPEND = True 

WANT_VACATE = True 

RANK = Scheduler =?= $(DedicatedScheduler) 

DAEMON_LIST = MASTER, STARTD 
The final entry listed here specifies that the default role for nodes in your pool is execute-only. 

The DAEMON_LIST on your front-end node must also enable the condor_schedd. This 

front-end node's local configuration file will be 

DAEMON_LIST = MASTER, STARTD, SCHEDD 

14.7.2 Using Multiprocessor Compute Nodes 

If any node in your Condor pool is a symmetric multiprocessor machine, Condor will represent 
that node as multiple virtual machines (VMs), one for each CPU. By default, each VM will 

have a single CPU and an even share of all shared system resources, such as RAM and 

swap space. If this behavior satisfies your needs, you do not need to make any configuration 

changes for SMP nodes to work properly with Condor. 
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Some sites might want different behavior of their SMP nodes. For example, assume your 

cluster was composed of dual-processor machines with 1 gigabyte of RAM, and one of your 

users was submitting jobs with a memory footprint of 700 megabytes. With the default setting, 
all VMs in your pool would only have 500 megabytes of RAM, and your user's jobs would 

never run. In this case, you would want to unevenly divide RAM between the two CPUs, to 

give half of your VMs 750 megabytes of RAM. The other half of the VMs would be left with 

250 megabytes of RAM. 

There is more than one way to divide shared resources on an SMP machine with Condor, all 
of which are discussed in detail in the Condor Administrator's Manual. The most basic 

method is as follows. To divide shared resources on an SMP unevenly, you must define 

different virtual machine types and tell the condor_startd how many virtual machines of 

each type to advertise. The simplest method to define a virtual machine type is to specify 

what fraction of all shared resources each type should receive. 

For example, if you wanted to divide a two-node machine where one CPU received 

one-quarter of the shared resources, and the other CPU received the other three-quarters, 
you would use the following settings: 

VIRTUAL_MACHINE_TYPE_1 = 1/4 

VIRTUAL_MACHINE_TYPE_2 = 3/4 

NUM_VIRTUAL_MACHINES_TYPE_1 = 1 

NUM_VIRTUAL_MACHINES_TYPE_2 = 1 

If you want to divide certain resources unevenly but split the rest evenly, you can specify 
separate fractions for each shared resource. This is described in detail in the Condor 

Administrator's Manual. 

14.7.3 Scheduling a Distributively Owned Cluster 

Many clusters are owned by more than one entity. Two or more smaller groups might pool 
their resources to buy a single, larger cluster. In these situations, the group that paid for a 

portion of the nodes should get priority to run on those nodes. 
Each resource in a Condor pool can define its own RANK expression, which specifies the 

kinds of jobs it would prefer to execute. If a cluster is owned by multiple entities, you can 

divide the cluster's nodes up into groups, based on ownership. Each node would set Rank 

such that jobs coming from the group that owned it would have the highest priority. 

Assume there is a 60-node compute cluster at a university, shared by three departments: 

astronomy, math, and physics. Each department contributed the funds for 20 nodes. Each 
group of 20 nodes would define its own Rank expression. The astronomy department's 

settings, for example, would be 

Rank = Department == "Astronomy" 



 338 

The users from each department would also add a Department attribute to all of their job 

ClassAds. The administrators could configure Condor to add this attribute automatically to all 

job ads from each site (see the Condor Administrator's Manual for details). 

If the entire cluster was idle and a physics user submitted 40 jobs, she would see all 40 of her 

jobs start running. If, however, a user in math submitted 60 jobs and a user in astronomy 

submitted 20 jobs, 20 of the physicist's jobs would be preempted, and each group would get 

20 machines out of the cluster. 

If all of the astronomy department's jobs completed, the astronomy nodes would go back to 
serving math and physics jobs. The astronomy nodes would continue to run math or physics 

jobs until either some astronomy jobs were submitted, or all the jobs in the system completed. 

14.7.4 Submitting to the Cluster from Desktop Workstations 

Most organizations that install a compute cluster have other workstations at their site. It is 

usually desirable to allow these machines to act as front-end nodes for the cluster, so users 

can submit their jobs from their own machines and have the applications execute on the 

cluster. Even if there is no shared file system between the cluster and the rest of the 
computers, Condor's remote system calls and file transfer functionality can enable jobs to 

migrate between the two and still access their data (see Section 14.2.5 for details on 

accessing data files). 

To enable a machine to submit into your cluster, run the Condor installation program and 

specify that you want to setup a submit-only node. This will set the DAEMON_LIST on the new 

node to be 

DAEMON_LIST = MASTER, SCHEDD 

The installation program will also create all the directories and files needed by Condor. 

Note that you can have only one node configured as the dedicated scheduler for your pool. 
Do not attempt to add a second submit node for MPI jobs. 

14.7.5 Expanding the Cluster to Nondedicated (Desktop) Computing Resources 
One of the most powerful features in Condor is the ability to combine dedicated and 

opportunistic scheduling within a single system. Opportunistic scheduling involves placing 

jobs on nondedicated resources under the assumption that the resources might not be 

available for the entire duration of the jobs. Opportunistic scheduling is used for all jobs in 

Condor with the exception of dedicated MPI applications. 

If your site has a combination of jobs and uses applications other than MPI, you should 
strongly consider adding all of your computing resources, even desktop workstations, to your 

Condor pool. With checkpointing and process migration, suspend and resume capabilities, 

opportunistic scheduling and matchmaking, Condor can harness the idle CPU cycles of any 

machine and put them to good use. 
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To add other computing resources to your pool, run the Condor installation program and 

specify that you want to configure a node that can both submit and execute jobs. The default 

installation sets up a node with a policy for starting, suspending, and preempting jobs based 
on the activity of the machine (for example, keyboard idle time and CPU load). These nodes 

will not run dedicated MPI jobs, but they will run jobs from any other universe, including PVM. 

 

14.8 Conclusion 

Condor is a powerful tool for scheduling jobs across platforms, both within and beyond the 

boundaries of your Beowulf clusters. Through its unique combination of both dedicated and 

opportunistic scheduling, Condor provides a unified framework for high-throughput 
computing. 
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Chapter 15: Maui Scheduler— A Multifunction 

Cluster Scheduler 
David B. Jackson 

In this chapter we describe the Maui scheduler, a job-scheduling component that can interact 
with a number of different resource managers. 

Like virtually every major development project, Maui grew out of a pressing need. In Maui's 

case, various computing centers including the Maui High-Performance Computing Center, 

Pacific Northwest National Laboratory, San Diego Supercomputer Center, and Argonne 
National Laboratory were investing huge sums of money in new, top-of-the-line hardware, 

only to be frustrated by the inability to use these new resources in an efficient or controlled 

manner. While existing resource management systems allowed the basic ability to submit and 

run jobs, they did not empower the site to maximize the use of the cluster. Sites could not 

translate local mission policies into scheduling behavior, and the scheduling decisions that 
were made were often quite suboptimal. Worse, the resulting system was often so complex 

that management, administrators, and users were unable to tell how well the system was 

running or what could be done to improve it. 

Maui was designed to address these issues and has been developed and tested over the 
years at many leading-edge computing centers. It was built to enable sites to control, 

understand, and use their clusters effectively. Maui picks up where many scheduling systems 

leave off, providing a suite of advanced features in the areas of reservations, backfill, 
fairshare, job prioritization, quality of service, metascheduling, and more.  

15.1 Overview 
Maui is an external  scheduler, meaning it does not include a resource manager but rather 

extends the capabilities of the existing resource manager. Maui uses the native scheduling 

APIs of OpenPBS, PBSPro and Loadleveler to obtain system information and direct cluster 
scheduling activities. While the underlying resource manager continues to maintain 

responsibility for managing nodes and tracking jobs, Maui controls the decisions of when, 

where, and how jobs will run.  
System administrators control Maui via a master config file, maui.cfg , and text or 

Web-based administrator commands. On the other hand, end users are not required to learn 

any new commands or job submission language, and need not even know that Maui has 

been installed. While Maui provides numerous commands to provide users with additional job 

information and control, these commands are optional and may be introduced to the users as 

needed. 

 
15.2 Installation and Initial Configuration 
The Maui scheduler is available in many of the most popular cluster-building toolkits, 

including Rocks and OSCAR. For the most recent version of Maui, you can download the 
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code from the Maui home page at supercluster.org/maui . This site also contains online 

documentation, FAQs, links to the Maui users mailing list, and other standard open source 

utilities. To build the code once it has been downloaded, you need simply to issue the 
standard configure, make , and make install . 

15.2.1 Basic Configuration 

The configure script will prompt you for some basic information regarding the install 

directory and desired resource manager type. It then creates the Maui home directory, builds 
executables in the bin subdirectory, and copies these to the install directory. Finally, the 

script creates an initial maui.cfg file using templates located in the samples subdirectory 

and user-supplied information. This file is a flat text config file used for virtually all scheduler 

configuration and contains a number of parameters that should be verified, particularly, 
SERVERHOST, SERVERMODE, and ADMIN1. Initially, these should be set to the name of the 

host where Maui will run, NORMAL, and the user name of the Maui administrator, respectively. 

At any time when Maui is running, the schedctl command can be used with the '-l' flag to 

list the value of any parameter whether explicitly set or not, while the '-m' flag can be used to 

dynamically modify parameter values. The online parameters documentation provides 

further details about these and all other Maui parameters. 

15.2.2 Simulation and Testing 

With the initial configuration complete, the next step is testing the scheduler to become 

familiar with its capabilities and to verify basic functionality. Maui can be run in a completely 
safe manner by setting SERVERMODE to TEST. In test mode, Maui contacts the resource 

manager to obtain up-to-date configuration, node, and job information; however, in this mode, 

interfaces to start or modify these jobs are disabled. To start Maui, you must make the 
parameter changes and issue the command maui. You may also use commands such as 

showq, diagnose, and checknode  to verify proper scheduler-resource manager 

communication and scheduler functionality. Full details on the suite of Maui commands are 

available online or in documentation included with your distribution.  

15.2.3 Production Scheduling 
Once you've taken the scheduler for a test drive and have verified its proper behavior, you 

can run Maui live by disabling the default scheduler and changing the SERVERMODE 

parameter to NORMAL. Information on disabling the default resource manager scheduler is 

provided in the resource manager's documentation and in the online Maui migration guides 

located at supercluster.org/documentation/maui. These changes will allow Maui to 

start, modify, and cancel jobs according to the specified scheduling policies. 

Out of the box, Maui essentially duplicates the behavior of a vanilla cluster scheduler, 
providing first-in, first-out scheduling with backfill enabled. The parameters documentation 

explains in detail each of the parameters needed to enable advanced scheduling features. In 
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most cases, each site will require only a small subset of the available parameters to meet 

local needs. 

 
15.3 Advanced Configuration 

With the initial configuration and testing completed, you can now configure Maui to end your 

administration pilgrimage and reach the long-sought cluster mecca— running the right jobs at 

the right time, in the right way, at the right place. To this end, Maui can be thought of as an 

integrated scheduling toolkit providing a number of capabilities that may be used individually 

or together to obtain the desired system behavior. These include 

§ job prioritization, 
§ node allocation policies, 

§ throttling policies, 

§ fairshare, 

§ reservations, 

§ allocation management, 
§ quality of service,  

§ backfill, 

§ node sets, and 

§ preemption policies. 

Each of these is described below. While this coverage will be adequate to introduce and 
initially configure these capabilities, you should cons ult the online Maui Administrators 

Manual for full details. We reiterate that while Maui possesses a wide range of features and 
associated parameters, most capabilities are disabled by default; thus, a site need configure 

only the features of interest. 

15.3.1 Assigning Value: Job Prioritization and Node Allocation 

In general, prioritization is the process of determining which of many options best fulfills 

overall goals. n the case of scheduling, a site will often have multiple, independent goals that 

may include maximizing system utilization, giving preference to users in specific projects, or 

making certain that no job sits in the queue for more than a given period of time. One 

approach to representing a multifaceted set of site goals is to assign weights to the various 

objectives so an overall value or priority can be associated with each potential scheduling 

decision. With the jobs prioritized, the scheduler can roughly fulfill site objectives by starting 

the jobs in priority order. 

Maui was designed to allow component and subcomponent weights to be associated with 

many aspects of a job. To realize this fine-grained control, Maui uses a simple 

priority-weighting hierarchy where the contribution of a priority factor is calculated as 
PRIORITY-FACTOR-VALUE * SUBFACTORWEIGHT * FACTORWEIGHT. Component and 

subcomponent weights are listed in Table 15.1. Values for all weights may be set in the 
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maui.cfg file by using the associated component -weight parameter specified as the name 

of the weight followed by the string WEIGHT (e.g., SERVICEWEIGHT  or PROCWEIGHT). 

Table 15.1: Maui priority components.  

Component Subcomponent 

SERVICE (Level of Service) QUEUETIME 

(Current queue time 

in minutes) 
XFACTOR (Current 

expansion factor) 

BYPASS (Number of 

times jobs were 

bypassed via 

backfill) 

TARGET (Proximity to Service Target - Exponential) TARGETQUEUETIME 

(Delta to queue -time 

target in minutes) 
TARGETXFACTOR 

(Delta to Xfactor 

target) 

RESOURCE  (Resources Requested) PROC (Processors) 
MEM (Requested 

memory in MBytes) 
SWAP (Requested 

virtual memory in 

MBytes) 
DISK (Requested 

local disk in 

MBytes) 
NODE (Requested 

number of nodes) 
WALLTIME  

(Requested wall 

time in seconds) 
PS (Requested 

processor-seconds) 
PE (Requested 

processor-equivalen

ts) 

FS (Fairshare) FSUSER (User 
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Table 15.1: Maui priority components.  

Component Subcomponent 

fairshare 

percentage) 
FSGROUP (Group 

fairshare 

percentage) 
FSACCOUNT 

(Account fairshare 

percentage) 
FSCLASS (Class 

fairshare 

percentage) 
FSQOS (QoS 

fairshare 
percentage) 

CRED (Credential) USER (User priority) 

GROUP (Group 

priority) 
ACCOUNT (Account 

priority) 
CLASS Class 

priority) 

QOS (QoS priority) 

By default, Maui runs jobs in order of actual submission, using the QUEUETIME. By using 

priority components, however, you can incorporate additional information, such as current 

level of service, service targets, resources requested, and historical usage. You can also limit 

the contribution of any component, by specifying a priority component cap, such as 
RESOURCECAP. A job's priority is equivalent to the sum of all enabled priority factors. 

Each component or subcomponent may be used for different purposes. WALLTIME can be 
used to favor (or disfavor) jobs based on their duration; ACCOUNT can be used to favor jobs 

associated with a particular project; QUEUETIME can be used to favor those jobs that have 

been waiting the longest. By mixing and matching priority weights, sites generally obtain the 
desired job-start behavior. At any time, you can issue the diagnose -p command to 

determine the impact of the current priority-weight settings on idle jobs. 

While most subcomponents are metric based (i.e., number of seconds queued or number of 

nodes requested), the credential subcomponents are based on priorities specified by the 
administrator. Maui allows you to use the *CFG parameters to rank jobs by individual job 

credentials. For example, to favor jobs submitted by users bob and john and members of the 

group staff, a site might specify the following: 
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USERCFG[bob]       PRIORITY=100 

USERCFG[john]      PRIORITY=500 

GROUPWEIGHT[staff] PRIORITY=1000 

USERWEIGHT         1 

GROUPWEIGHT        1 

CREDWEIGHT         1 

Note that both component and subcomponent weights are specified to enable these 
credential priorities to take effect. Further details about the use of these component factors, 

as well as anecdotal usage information, are available in the Maui Administrators Manual. 

Complementing the issue of job prioritization is that of node allocation. When the scheduler 
selects a job to run, it must also determine which resources to allocate to the job. Depending 

on the use of the cluster, you can specify different policies by using 
NODEALLOCATIONPOLICY. Legal parameter values include the following: 

§ MINRESOURCE: This algorithm selects the nodes with the minimum 

configured resources which still meet the requirements of the job. The 
algorithm leaves more richly endowed nodes available for other jobs that may 

specifically request these additional resources. 

§ LASTAVAILABLE: This algorithm is particularly useful when making 

reservations for backfill. It determines the earliest time a job can run and then 

selects the resources available at a time such that, whenever possible, 
currently idle resources are left unreserved and are thus available for 

backfilling. 

§ NODEPRIORITY: This policy allows a site to create its own node allocation 

prioritization scheme, taking into account issues such as installed software or 

other local node configurations. 
§ CPULOAD: This policy attempts to allocate the most lightly loaded nodes first. 

15.3.2 Fairness: Throttling Policies and Fairshare 

The next issue most often confronting sites is fairness. Fairness seems like a simple concept 
but can be terribly difficult to map onto a cluster. Should all users get to run the same number 

of jobs or use the same number of nodes? Do these usage constraints cover the present time 

only or a specified time frame? If historical information is used, what is the metric of 

consumption? What is the time frame? Does fair consumption necessarily mean equal 

consumption? How should resources be allocated if user X bought two-thirds of the nodes 

and user Y purchased the other third? Is fairness based on a static metric, or is it conditional 

on current resource demand? 

While Maui is not able to address all these issues, it does provide some flexible tools that help 

with 90 percent of the battle. Specifically, these tools are throttling policies  and fairshare used 

to control immediate and historical usage, respectively. 
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Throttling Policies.  The term "throttling policies" is collectively applied to a set of policies 

that constrain instantaneous resource consumption. Maui supports limits on the number of 

processors, nodes, proc -seconds, jobs, and processor equivalents allowed at any given time. 
Limits may be applied on a per user, group, account, QoS, or queue basis via the *CFG set of 

parameters. For example, specifying USERCFG[bob] MAXJOB=3 MAXPROC=32  will constrain 

user bob to running no more than 3 jobs and 32 total processors at any given time. Specifying 

GROUPCFG[DEFAULT] MAXNODE=64 will limit each group to using no more than 64 nodes 

simultaneously unless overriding limits for a particular group are specified. ACCOUNTCFG, 
QOSCFG, and CLASSCFG round out the *CFG family of parameters providing a means to 

throttle instantaneous use on accounts, QoS's, and classes, respectively. 

With each of the parameters, hard and soft limits can be used to apply a form of 

demand -sensitive limits. While hard limits cannot be violated under any conditions, soft limits 

may be violated if no other jobs can run. For example, specifying USERCFG[DEFAULT] 
MAXNODE=16,24 will allow each user to cumulatively allocate up to 16 nodes while jobs from 

other users can use available resources. If no other jobs can use these resources, a user may 

run on up to 24 nodes simultaneously. 

Throttling policies are effective in preventing cluster "hogging" by an individual user or group. 

They also provide a simple mechanism of fairness and cycle distribution. Such policies may 

lead to lower overall system utilization, however. For instance, resources might go unused if 

these policies prevent all queued jobs from running. When possible, throttling policies should 
be set to the highest feasible level, and the cycle distribution should be managed by tools 

such as fairshare, allocation management systems, and QoS-based prioritization. 

Fairshare. A typical fairshare algorithm attempts to deliver a fair resource distribution over a 

given time frame. As noted earlier, however, this general statement leaves much to 

interpretation. In particular, how is the distribution to be measured, and what time frame 

should be used? 
Maui provides the parameter FSPOLICY to allow each site to determine how resource 

distribution is to be measured, and the parameters FSINTERVAL, FSDEPTH, and FSDECAY 

to determine how historical usage information is to be weighted. 

To control resource distribution, Maui uses fairshare targets that can be applied to users, 
groups, accounts, queues, and QoS mechanisms with both default and specific targets 

available. Each target may be one of four different types: target, floor, ceiling, or cap. In most 

cases, Maui adjusts job priorities to meet fairshare targets. With the standard target, Maui 

attempts to adjust priorities at all times in an attempt to meet the target. In the case of floors, 

Maui will increase job priority only to maintain at least the targeted usage. With ceilings, the 
converse occurs. Finally, with fairshare caps, job eligibility rather than job priority is adjusted 

to prevent jobs from running if the cap is exceeded during the specified fairshare interval. 

The example below shows a possible fairshare configuration.  

# maui.cfg 
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FSPOLICY   DEDICATEDPS 

FSDEPTH    7 

FSINTERVAL 24:00:00 

FSDECAY    0.80 

 

USERCFG[DEFAULT]  FSTARGET=10.0 

USERCFG[john]     FSTARGET=25.0+ 

GROUPCFG[staff]   FSTARGET=20.0- 

In this case, fairshare usage will track delivered system processor seconds  over a seven-day 

period with a 0.8 decay factor. All users will have a fairshare target  of 10 percent of these 

processor seconds — with the exception of john, who will have a floor of 25 percent. Also, the 

group staff will have a fairshare ceiling of 20 percent. At any time, you can examine the 
fairshare status of the system by using the diagnose -f command. 

15.3.3 Managing Resource Access: Reservations, Allocation Managers, and Quality of 

Service  

In managing any cluster system, half of the administrative effort involves configuring it to 

handle the steady -state situation. The other half occurs when a very important us er has a 

special one-time request. Maui provides two features, advance reservations and QoS, to 

handle many types of such special requests. 

Advance Reservations.  Reservations allow a site to set aside a block of resources for 
various purposes such as cluster maintenance, special user projects, or benchmarking nodes. 

In order to create a reservation, a start and end time must be determined, as well as the 

resources to be reserved and a list of those who can access these resources. Reservations 
can be created dynamically by scheduler administrators using the setres command or 

managed directly by Maui via config file parameters. 
For example, to reserve nodeA and nodeB for a four-hour maintenance at 2:30 P.M., you 

could issue the following command: 

> setres -s 14:30 -d 4:00:00 'node[AB]' 
A reservation request can specify allocation of particular resources or a given quantity of 
resources. The following reservation will allocate 20 processors to users john and sam 

starting on April 14 at 5:00 P.M. 

> setres -u john:sam -s 17:00_04/14 TASKS==20 
With no duration or end time specified, this reservation will default to an infinite length and will 

remain in place until removed by a scheduler administrator using the releaseres 

command. 

Access to reservations is controlled by an access control list (ACL). Reservation access is 
based on job credentials, such as user or group, and job attributes, such as wall time 
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requested. Reservation ACLs can include multiple access types and individuals. For example, 

a reservation might reserve resources for users A and B, jobs in class C, and jobs that 

request less than 30 minutes of wall time. Reservations may also overlap each other if 
desired, in which case access is granted only if the job meets the access policies of all active 

reservations. 

At many sites, reservations are used on a permanent or periodic basis. In such cases, it is 

best to use standing reservations. Standing reservations allow a site to apply reservations as 

an ongoing part of cluster policies. The parameter SRPERIOD  can be set to DAY, WEEK , or 
INFINITE to indicate the periodicity of the reservation, with additional parameters available 

to determine what time of the day or week the reservation should be enabled. For example, 

the following configuration will create a reservation named development that, during 

primetime hours, will set aside 16 nodes for exclusive use by jobs requiring less than 30 

minutes. 

SRPERIOD[development]    DAY 

SRDAYS[development]      Mon Tue Wed Thu Fri 

SRSTARTTIME[development] 8:00:00 

SRENDTIME[development]   17:00:00 

SRMAXTIME[development]   00:30:00 

SRTASKCOUNT[development] 16 

At times, a site may want to allow access to a set of resources only if there are no other 
resources available. Maui enables this conditional usage through reservation affinity. When 

specifying any reservation access list, each access value can be associated with positive, 

negative, or neutral affinity by using the '+', '-', or '=' characters. If nothing is specified, positive 

affinity is assumed. For example, consider the following reservation line: 

SRUSERLIST[special]   bob john steve= bill- 
With this specification, bob and john's jobs receive the default positive affinity and are 

essentially attracted to the reservation. For these jobs, Maui will attempt to use resources in 
the special reservation first, before considering any other resources. Jobs belonging to 

steve, on the other hand, can use these resources but are not attracted to them. Finally, 

bill's jobs will use resources in the special reservation only if no other resources are 

available. You can get detailed information about reservations by using the showres and 

diagnose -r commands. 

Allocation Managers. Allocation management systems allow a site to control total resource 

access in real time. While interfaces to support other systems exist, the allocation 

management system most commonly used with the Maui scheduler is QBank 
(http://www.emsl.pnl.gov:80/mscf/docs/qbank-2.9), provided by Pacific 

Northwest National Laboratory. This system and others like it allow sites to provide distinct 
resource allocations much like the creation of a bank account. As jobs run, the resources 

used are translated into a charge and debited from the appropriate account. In the case of 
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QBank, expiration dates may be associated with allocations, private and shared accounts 

maintained, per machine allocations created, and so forth. 
Within Maui, the allocation manager interface is controlled through a set of BANK* 
parameters such as in the example below: 

BANKTYPE              QBANK  

BANKHOST              bank.univ.edu 

BANKCHARGEPOLICY      DEBITSUCCESSFULWC 

BANKDEFERJOBONFAILURE TRUE 

BANKFALLBACKACCOUNT   freecycle 
This configuration enables a connection to an allocation manager located on 

bank.univ.edu using the QBank interface. The unit of charge is configured to be dedicated 

processor-seconds  and users will be charged only if their job completes successfully. If the 

job does not have adequate allocations in the specified account, Maui will attempt to redirect 
the job to use allocations in the freecycle account. In many cases, a fallback  account is 

configured so as to be associated with lower priorities and/or additional limitations. If the job is 

not approved by the allocation manager, Maui will defer the job for a period of time and try it 

again later. 

Quality of Service. Maui's QoS feature allows sites to control access to special functions, 

resources, and service levels. Each QoS consists of an access control list controlling which 

users, groups, accounts, and job queues can access the QoS privileges. Associated with 

each QoS are special service-related priority weights and service targets. Additionally, each 

QoS can be configured to span resource partitions, preempt other jobs, and the like. 

Maui also enables a site to charge a premium rate for the use of some QoS services. For 
example, the following configuration will cause user john's jobs to use QoS hiprio by 

default and allow members of the group bio to access it by request: 

USERCFG[john] QLIST=hiprio:normal QDEF=hiprio 

GROUPCFG[bio] QLIST=hiprio:medprio:development QDEF=medprio 

QOSCFG[hiprio] PRIORITY=50 QTTARGET=30 FLAGS=PREEMPTOR:IGNMAXJOB \ 

MAXPROC=150 
Jobs using QoS hiprio receive the following privileges and constraints: 

§ A priority boost of 50 * QOSWEIGHT * DIRECTWEIGHT  

§ A queue-time target of 30 minutes 

§ The ability to preempt lower priority PREEMPTEE jobs 

§ The ability to ignore MAXJOB policy limits defined elsewhere 

§ A cumulative limit of 150 processors allocated to QoS hiprio jobs 

A site may have dozens of QoS objects described and may allow users access to any number 

of these. Depending on the type of service desired, users may then choose the QoS that best 

meets their needs. 
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15.3.4 Optimizing Usage: Backfill, Node Sets, and Preemption 

The Maui scheduler provides several features to optimize performance in terms of system 

utilization, job throughput, and average job turnaround time. 

Backfill. Backfill is a now common method used to improve both system utilization and 

average job turnaround time by running jobs out of order. Backfill, simply put, enables the 

scheduler to run any job so long as it does not delay the start of jobs of higher priority. 

Generally, the algorithm prevents delay of high-priority jobs through some form of reservation. 

Backfill can be thought of as a process of filling in the resource holes left by the high priority 

jobs. Since holes are being filled, it makes sense that the jobs most commonly backfilled are 

the ones requiring the least time and/or resources. With backfill enabled, sites typically report 
system utilization improvements of 10 to 25% and a slightly lower average job queue time. 

By default, backfill scheduling is enabled in Maui under control of the parameter 
BACKFILLPOLICY . While the default configuration generally is adequate, sites may want to 

adjust the job selection policy, the reservation policy, the depth of reservations, or other 

aspects of backfill scheduling. You should consult the online documentation for details about 
associated parameters. 

Allocation Based on Node Set.  While backfill improves the scheduler's performance, this is 

only half the battle. The efficiency of a cluster, in terms of actual work accomplished, is a 

function of both scheduling performance and individual job efficiency. In many clusters, job 

efficiency can vary from node to node as well as with the node mix allocated. Since most 
parallel jobs written in popular languages such as MPI or PVM do not internally load balance 

their workload, they run only as fast as the slowest node allocated. Consequently, these jobs 

run most effectively on homogeneous sets of nodes. While many clusters start out as 

homogeneous, however, they quickly evolve as new generations of compute nodes are 

integrated into the system. Research has shown that this integration, while improving 

scheduling performance due to increased scheduler selection, can actually decrease average 

job efficiency. 

A feature called node sets allows jobs to request sets of common resources without 

specifying exactly what resources are required. Node set policy can be specified globally or 

on a per job basis and can be based on node processor speed, memory, network interfaces, 
or locally defined node attributes. In addition to forcing jobs onto homogeneous nodes, these 

policies may also be used to guide jobs to one or more types of nodes on which a particular 

job performs best, similar to job preferences available in other systems. For example, an 

I/O-intensive job may run best on a certain range of processor speeds, running slower on 

slower nodes while wasting cycles on faster nodes. A job may specify 
ANYOF:PROCSPEED:450:500:650 to request nodes in the range of 450 to 650 MHz. 

Alternatively, if a simple procspeed -homogeneous node set is desired, ONEOF:PROCSPEED 

may be specified. On the other hand, a communication-sensitive job may request a 
network -based node set with the configuration ONEOF:NETWORK:via:myrinet:ethernet, 

in which case Maui will first attempt to locate adequate nodes where all nodes contain VIA 
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network interfaces. If such a set cannot be found, Maui will look for sets of nodes containing 

the other specified network interfaces. In highly heterogeneous clusters, the use of node sets 

has been found to improve job throughput by 10 to 15 percent. 
Preemption.  Many sites possess workloads of varying importance. While it may be critical 

that some jobs obtain resources immediately, other jobs are less sensitive to turnaround time 

but have an insatiable hunger for compute cycles, consuming every available cycle for years 

on end. These latter jobs often have turnaround times on the order of weeks or months. The 

concept of cycle stealing, popularized by systems such as Condor, handles such situations 
well and enables systems to run low-priority preemptible jobs whenever something more 

pressing is not running. These other systems are often employed on compute farms of 

desktops where the jobs must vacate whenever interactive system use is detected.  

Maui's QoS-based preemption system allows a dedicated, noninteractive cluster to be used 

in much the same way. Certain QoS objects may be marked with the flag PREEMPTOR and 
others with the flag PREEMPTEE. With this configuration, low-priority "preemptee" jobs can be 

started whenever idle resources are available. These jobs will be allowed to run until a 

"preemptor" job arrives, at which point the preemptee job will be checkpointed if possible and 

vacated. This strategy allows almost immediate resource access for the preemptor job. Using 

this approach, a cluster can maintain nearly 100 percent system utilization while still 

delivering excellent turnaround time to the jobs of greatest value. 

Use of the preemption system need not be limited to controlling low -priority jobs. Other uses 
include optimistic scheduling and development job support. 

15.3.5 Evaluating System Performance: Diagnostics, Profiling, Testing, and Simulation 

High-performance computing clusters are complicated. First, such clusters have an immense 
array of attributes that affect overall system performance, including processor speed, memory, 

networks, I/O systems, enterprise services, and application and system software. Second, 

each of these attributes is evolving over time, as is the usage pattern of the system's users. 

Third, sites are presented with an equally immense array of buttons, knobs, and levers which 

they can push, pull, kick, and otherwise manipulate. How does one evaluate the success of a 

current configuration? And how does one establish a causal effect between pushing one of 

the many provided buttons and improved system performance when the system is constantly 
changing in multiple simultaneous dimensions? 

To help alleviate this problem, Maui offers several useful features. 

Diagnostics.  Maui possesses many internal diagnostic functions that both locate problems 

and present system state information. For example, the priority diagnostic aggregates priority 

relevant information, presenting configuration settings and their impact on the current idle 

workload; administrators can see the contribution associated with each priority factor on a per 

job and systemwide average basis. The node diagnostic presents significant node -relevant 
information together with messages regarding any unexpected conditions. Other diagnostics 
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are available for jobs, reservations, QoS, fairshare, priorities, fairness policies, users, groups, 

and accounts. 

Profiling Current and Historical Usage. Maui maintains internal statistics and records 
detailed information about each job as it completes. The showstats command provides 

detailed usage information for users, groups, accounts, nodes, and the system as a whole. 
The showgrid command presents scheduler performance statistics in a job size/duration 

matrix to aid in analyzing the effectiveness of current policies. 

The completed job statistics are maintained in a flat file located in the stats directory. These 

statistics are useful for two primary purposes: driving simulations (described later) and 

profiling actual system usage. The profiler command allows the processing of these 

historical scheduler statistics and generation of usage reports for specific time frames or for 

selected users, groups, accounts, or types of jobs. 

Testing. To test new policies, you can run a TEST mode instance of Maui concurrently with 

the production scheduler. This allows a site to analyze the effects of the new policies on the 

scheduling behavior of the test instance, while safely running the production workload under 

tried and true policies. When running an instance of Maui in test mode, it is often best to 
create a second Maui directory with associated log and stats subdirectories. To run 

multiple, concurrent Maui instances, you should take the following into account: 
§ Configuration file: The test version of Maui should have its own maui.cfg 

file to allow specification of the SERVERMODE parameter and allow policy 

differences as needed by the test. 

§ User interface port: To avoid conflicts between different scheduler instances 
and client commands, the test version of the maui.cfg  file should specify a 
unique parameter value for SERVERPORT. 

§ Log and statistics files: Both production and test runs will create and 

update log and statistics files. To avoid file conflicts, each instance of the 
scheduler should point to different files using the LOGDIR and STATDIR 

parameters. 
§ Home directory: When Maui was initially installed, the configure script 

prompted for a home directory where the default maui.cfg file could be 

found. To run multiple instances of Maui, you should override this default by 
using the -c command line flag or by specifying the environment variable 

MAUIHOMEDIR. The latter approach is most often used, with the variable set 

to the new home directory before starting the test version of the scheduler or 

running test version client commands. 

Once the test version is started, all scheduler behavior will be identical to the production 
system with the exception that Maui's ability to start, cancel, or otherwise modify jobs is 

disabled. You can, however, observe Maui's behavior under the new set of policies and 

validate the scheduler either directly via client commands or indirectly by analyzing the Maui 

log files. 
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Simulation. Simulation allows a site to specify a workload and resource configuration trace 

file. These traces, specified via the SIMWORKLOADTRACEFILE  and 

SIMRESOURCETRACEFILE, can accurately and reproducibly replicate the workload and 
resources recorded at the site. To run a simulation, an adjusted maui.cfg file is created with 

the policies of interest in place and the parameter SERVERMODE set to SIMULATION. Once 

started, Maui can be stepped through simulated time using the schedctl command. All 

Maui commands continue to function as before, allowing interactive querying of status, 

adjustment to parameters, or even submission or cancellation of jobs. 
This feature enables sites to analyze the impact of different scheduling policies on their own 

workload and system configuration. The effects of new reservations or job prioritizations can 

be evaluated in a zero -exposure environment, allowing sites to determine ideal policies 

without experimenting on a production system. Sites can also evaluate the impact of 

additional or modified workloads or changes in available resources. What impact will 
removing a block of resources for maintenance have on average queue time? How much 

benefit will a new reservation dedicated exclusively to development jobs have on 

development job turnaround time? How much pain will it cause nondevelopment jobs? Using 

simulation makes it easier to obtaining answers to such questions. 

This same simulation feature can be used to test a new algorithm against workload and 
resource traces from various supercomputing centers. Moreover, with the simulator, you can 

create and plug in modules to emulate the behavior of various job types on different hardware 
platforms, across bottlenecking networks, or under various data migration conditions. 

The capabilities and use of simulation cannot be adequately covered in a chapter of this size. 
Further information is given in the Simulation section of the Maui Administrators Manual. 

 

15.4 Steering Workload and Improving Quality of Information 

A good scheduler can improve the use of a cluster significantly, but its effectiveness is limited 
by the scheduling environment in which it must work and the quality of information it receives. 

Often, a cluster is underutilized because users overestimate a job's resource requirements. 

Other times, inefficiencies crop up when users request job constraints in terms of job duration 
or processors required that are not easily packed onto the cluster. Maui provides tools to 

allow fine tuning of job resource requirement information and steering of cluster workload so 

as to allow maximum utilization of the system. 

One such tool is a feedback interface, which allows a site to report detailed job usage 

statistics to users. This interface provides information about the resources requested and 
those actually used. Using the FEEDBACKPROGRAM  parameter, local scripts can be executed 

that use this information to help users improve resource requirement estimates. For example, 

a site with nodes with various memory configurations may choose to create a script such as 

the following that automates the mailing of notices at job completion: 

Job 1371 completed successfully}.  Note that it requested nodes 
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with 512 MBytes of RAM yet used  only 112 MBytes.  Had the job provided a 

more accurate estimate, it would have, on average, started 02:27:16 

earlier.  

Such notices can be used to improve memory, disk, processor, and wall-time estimates. 
Another route that is often used is to set the allocation manager charge policy so that users 

are charged for requested resources rather than used resources. 

The showbf command is designed to help tailor jobs that can run immediately. This 

command allows you to specify details about your desired job (such as user, group, queue, 

and memory requirements) and returns information regarding the quantity of available nodes 

and the duration of their availability. 

A final area of user feedback is job scaling. Often, users will submit parallel jobs that scale 

only moderately scale, hoping that by requesting more processors, their job will run faster and 

provide results sooner. A job's completion time is simply the sum of its queue time plus its 

execution time. Users often fail to realize that a larger job may be more difficult to schedule, 
resulting in a longer queue time, and may run less efficiently, with a sublinear speedup. The 

increased queue-time delay, together with the limitations in execution time improvements, 

generally results in larger jobs having a greater average turnaround time than smaller jobs 
performing the same work. Maui commands such as showgrid can provide real-time job 

efficiency and average queue -time stats correlated to job size. The output of the profiler 

command can also be used to provide per user job efficiency and average queue time 

correlated by job size and can alert administrators and users to this problem. 

 

15.5 Troubleshooting 
When troubleshooting scheduling issues, you should start with Maui's diagnostic and 
informational commands. The diagnose command together with checknode and 

checkjob provides detailed state information about the scheduler, including its various 

facilities, nodes, and jobs. Additionally, each of these commands initiates an extensive 

internal sanity check in the realm of interest. Results of this check are reported in the form of 
WARNING messages appended to the normal command output. Use of these commands 

typically identifies or resolves 95 percent of all scheduling issues. 

If you need further information, Maui writes out detailed logging information in the directory 
pointed to by the LOGFILE parameter (usually in ${MAUIHOME}/log/maui.log). Using the 

LOGLEVEL and LOGFACILITY parameters, you can control the verbosity and focus of these 

logs. (Note, however, that these logs can become very verbose, so keeping the LOGLEVEL 
below 4 or so unless actually tracking problems is advised.) These logs contain a number of 

entries, including the following: 
INFO: provides status information about normal scheduler operations. 

WARNING: indicates that an unexpected condition was detected and handled.  

ALERT: indicates that an unexpected condition occurred that could not be fully handled. 
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ERROR: indicates that problem was detected that prevents Maui from fully operating. This 

may be a problem with the cluster that is outside of Maui's control or may indicate corrupt 

internal state information. 
Function header: indicates when a function is called and the parameters passed. 

A simple grep through the log file will usually indicate whether any serious issues have been 

detected and is of significant value when obtaining support or locally diagnosing problems. If 

neither commands nor logs point to the source of the problem, you may consult the Maui 

users list (<mauiusers@supercluster.org>) or directly contact Supercluster support at 
<support@supercluster.org>. 

 

15.6 Conclusions 
This chapter has introduced some of the key Maui features currently available. With hundreds 

of sites now using and contributing to this open source project, Maui is evolving and 
improving faster than ever. To learn about the latest developments and to obtain more 

detailed information about the capabilities described above, see the Maui home page at 

www.supercluster.org/maui. 
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Chapter 16: PBS— Portable Batch System 

Overview 
James Patton Jones 

The Portable Batch System (PBS) is a flexible workload management and job scheduling 

system originally developed to manage aerospace computing resources at NASA. PBS has 
since become the leader in supercomputer workload management and the de facto standard 

job scheduler for Linux. 

Today, growing enterprises often support hundreds of users running thousands of jobs across 
different types of machines in different geographical locations. In this distributed 

heterogeneous environment, it can be extremely difficult for administrators to collect detailed, 

accurate usage data or to set systemwide resource priorities. As a result, many computing 

resources are left underused, while others are overused. At the same time, users are 
confronted with an ever-expanding array of operating systems and platforms. Each year, 

scientists, engineers, designers, and analysts waste countless hours learning the nuances of 

different computing environments, rather than being able to focus on their core priorities. PBS 

addresses these problems for computing-intensive industries such as science, engineering, 

finance, and entertainment. 

PBS allows you to unlock the potential in the valuable assets you already have, while at the 

same time reducing demands on system administrators, freeing them to focus on other 
activities. PBS can also help you effectively manage growth by tracking use levels across 

your systems and enhancing effective utilization of future purchases. 

 

16.1 History of PBS 

In the past, computers were used in a completely interactive manner. Background jobs were 

just processes with their input disconnected from the terminal. As the number of processors in 

computers continued to increase, however, the need to be able to schedule tasks based on 
available resources rose in importance. The advent of networked compute servers, smaller 

general systems, and workstations led to the requirement of a networked batch scheduling 

capability. The first such Unix-based system was the Network Queueing System (NQS) from 

NASA Ames Research Center in 1986. NQS quickly became the de facto standard for batch 

queuing. 

Over time, distributed parallel systems began to emerge, and NQS was inadequate to handle 

the complex scheduling requirements presented by such systems. In addition, computer 
system managers wanted greater control over their compute resources, and users wanted a 

single interface to the systems. In the early 1990s NASA needed a solution to this problem, 

but after finding nothing on the market that adequately addressed their needs , led an 
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international effort to gather requirements for a next-generation resource management 

system. The requirements and functional specification were later adopted as an IEEE POSIX 

standard (1003.2d). Next, NASA funded the development of a new resource management 
system compliant with the standard. Thus the Portable Batch System was born. 

PBS was quickly adopted on distributed parallel systems and replaced NQS on traditional 

supercomputers and server systems. Eventually the entire industry evolved toward 

distributed parallel systems, taking the form of both special-purpose and commodity clusters. 

Managers of such systems found that the capabilities of PBS mapped well onto cluster 

systems. 

The latest chapter in the PBS story began when Veridian (the research and development 
contractor that developed PBS for NASA) released the Portable Batch System Professional 

Edition (PBS Pro), a complete workload management solution. The cluster administrator can 

now choose between two versions of PBS: OpenPBS, an older Open Source release of PBS; 

and PBS Pro, the new hardened and enhanced commercial version. 

This chapter gives a technical overview of PBS and information on installing, using, and 
managing both versions of PBS. However, it is not possible to cover all the details of a 

software system the size and complexity of PBS in a single chapter. Therefore, we limit this 

discussion to the recommended configuration for Linux clusters, providing references to the 

various PBS documentation where additional, detailed information is available.  

16.1.1 Acquiring PBS 

While both OpenPBS and PBS Pro are bundled in a variety of cluster kits, the best sources 

for the most current release of either product are the official Veridian PBS Web sites: 
www.OpenPBS.org and www.PBSpro.com. Both sites offers downloads of the software and 

documentation, as well as FAQs, discussion lists, and current PBS news. Hardcopy 

documentation, support services, training and PBS Pro software licenses are available from 

the PBS Online Store, accessed through the PBS Pro Web site. 

16.1.2 PBS Features 

PBS Pro provides many features and benefits to the cluster administrator. A few of the more 
important features are the following: 

Enterprisewide resource sharing provides transparent job scheduling on any PBS system by 

any authorized user. Jobs can be submitted from any client system, both local and remote, 

crossing domains where needed. 

Multiple user interfaces provi de a graphical user interface for submitting batch and interactive 
jobs; querying job, queue, and system status; and monitoring job progress. Also provided is a 

traditional command line interface.  

Security and access control lists permit the administrator to allow or deny access to PBS 

systems on the basis of username, group, host, and/or network domain. 
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Job accounting offers detailed logs of system activities for charge-back or usage analysis per 

user, per group, per project, and per compute host. 

Automatic file staging provides users with the ability to specify any files that need to be copied 
onto the execution host before the job runs and any that need to be copied off after the job 

completes. The job will be scheduled to run only after the required files have been 

successfully transferred. 

Parallel job support works with parallel programming libraries such as MPI, PVM, and HPF. 

Applications can be scheduled to run within a single multiprocessor computer or across 
multiple systems. 

System monitoring includes a graphical user interface for system monitoring. PBS displays 

node status, job placement, and resource utilization information for both standalone systems 

and clusters. 

Job interdependency enables the user to define a wide range of interdependencies between 
jobs. Such dependencies include execution order, synchronization, and execution 

conditioned on the success or failure of another specific job (or set of jobs). 

Computational Grid support provides an enabling technology for meta-computing and 

computational Grids, including support for the Globus Toolkit.  

Comprehensive API includes a complete application programming interface for sites that wish 

to integrate PBS with other applications or to support unique job-scheduling requirements. 

Automatic load-leveling provides numerous ways to distribute the workload across a cluster 

of machines, based on hardware configuration, resource availability, keyboard activity, and 

local scheduling policy. 

Distributed clustering allows customers to use physically distributed systems and clusters, 
even across wide area networks. 

Common user environment offers users a common view of the job submission, job querying, 

system status, and job tracking over all systems. 

Cross-system scheduling ensures that jobs do not have to be targeted to a specific computer 

system. Users may submit their job and have it run on the first available system that meets 
their resource requirements. 

Job priority allows users the ability to specify the priority of their jobs; defaults can be provided 

at both the queue and system level. 

User name mapping provides support for mapping user account names on one system to the 

appropriate name on remote server systems. This allows PBS to fully function in 
environments where users do not have a consistent username across all the resources they 

have access to. 

Full configurability makes PBS easily tailored to meet the needs of different sites. Much of this 

flexibility is due to the unique design of the scheduler module, which permits complete 

customization. 

Broad platform availability is achieved through support of Windows 2000 and every major 

version of Unix and Linux, from workstations and servers to super-computers. New platforms 

are being supported with each new release. 
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System integration allows PBS to take advantage of vendor-specific enhancements on 

different systems (such as supporting cpusets on SGI systems and interfacing with the 

global resource manager on the Cray T3E). 
For a comparison of the features available in the latest versions of OpenPBS and PBS Pro, 

visit the PBS Product Comparison Web page: 
www.OpenPBS.org/product_comparison.html. 

16.1.3 PBS Architecture 

PBS consists of two major component types: user-level commands and system daemons. A 
brief description of each is given here to help you make decisions during the installation 

process. 

PBS supplies both command-line programs that are POSIX 1003.2d conforming and a 

graphical interface. These are used to submit, monitor, modify, and delete jobs. These client 

commands  can be installed on any system type supported by PBS and do not require the 

local presence of any of the other components of PBS. There are three classifications of 

commands: user commands that any authorized user can use, operator commands, and 

manager (or administrator) commands. Operator and manager commands require specific 

access privileges. (See also the security sections of the PBS Administrator Guide.) 

The job server daemon is the central focus for PBS. Within this document, it is generally 
referred to as the Server or by the execution name pbs_server. All commands and the 

other daemons communicate with the Server via an Internet Protocol (IP) network. The 

Server's main function is to provide the basic batch services such as receiving or creating a 

batch job, modifying the job, protecting the job against system crashes, and running the job. 

Typically, one Server manages a given set of resources. 
The job executor is the daemon that actually places the job into execution. This daemon, 

pbs_mom, is informally called MOM because it is the mother of all executing jobs. (MOM is a 

reverse-engineered acronym that stands for Machine Oriented Mini-server.) MOM places a 

job into execution when it receives a copy of the job from a Server. MOM creates a new 

session as identical to a user login session as possible. For example, if the user's login shell 
is csh, then MOM creates a session in which .login is run as well as .cshrc. MOM also 

has the responsibility for returning the job's output to the user when directed to do so by the 

Server. One MOM daemon runs on each computer that will execute PBS jobs. 
The job scheduler daemon, pbs_sched , implements the site's policy controlling when each 

job is run and on which resources. The Scheduler communicates with the various MOMs to 

query the state of system resources and with the Server to learn about the availability of jobs 

to execute. The interface to the Server is through the same API (discussed below) as used by 

the client commands. Note that the Scheduler interfaces with the Server with the same 

privilege as the PBS manager. 

 

16.2 Using PBS 
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From the user's perspective, a workload mangement system enables you to make more 

efficient use of your time by allowing you to specify the tasks you need run on the cluster. The 

system takes care of running these tasks and returning the results to you. If the cluster is full, 
then it holds your tasks and runs them when the resources are available.  

With PBS you create a batch job that you then submit to PBS. A batch job is a shell script 

containing the set of commands you want run on the cluster. It also contains directives that 

specify the resource requirements (such as memory or CPU time) that your job needs. Once 

you create your PBS job, you can reuse it, if you wish, or you can modify it for subsequent 
runs. Example job scripts are shown below. 

PBS also provides a special kind of batch job called interactive batch. This job is treated just 

like a regular batch job (it is queued up and must wait for resources to become available 

before it can run). But once it is started, the user's terminal input and output are connected to 

the job in what appears to be an rlogin session. It appears that the user is logged into one 

of the nodes of the cluster, and the resources requested by the job are reserved for that job. 

Many users find this feature useful for debugging their applications or for computational 

steering. 

PBS provides two user interfaces: a command-line interface (CLI) and a graphical user 

interface (GUI). You can use either to interact with PBS: both interfaces have the same 

functionality. 

16.2.1 Creating a PBS Job 

Previously we mentioned that a PBS job is simply a shell script containing resource 
requirements of the job and the command(s) to be executed. Here is what a sample PBS job 

might look like the following: 

#!/bin/sh 

#PBS -l walltime=1:00:00 

#PBS -l mem=400mb 

#PBS -l ncpus=4 

#PBS -j oe 

 

cd ${HOME}/PBS/test 

mpirun -np 4 myprogram  
This script would then be submitted to PBS using the qsub command. 

Let us look at the script for a moment. The first line tells what shell to use to interpret the script. 

Lines 2–4 are resource directives, specifying arguments to the "resource list" ("-l") option of 
qsub. Note that all PBS directives begin with #PBS. These lines tell PBS what to do with your 
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job. Any qsub option can also be placed inside the script by using a #PBS directive. However, 

PBS stops parsing directives with the first blank line encountered. 

Returning to our example above, we see a request for 1 hour of wall-clock time, 400 MBytes 
of memory and 4 CPUs. The fifth line is a request for PBS to merge the stdout and stderr file 

streams of the job into a single file. The last two lines are the commands the user wants 

executed: change directory to a particular location, then execute an MPI program called 
'myprogram'. 

This job script could have been created in one of two ways: using a text editor, or using the 
xpbs graphical interface (see below). 

16.2.2 Submitting a PBS Job 

The command used to submit a job to PBS is qsub. For example, say you created a file 
containing your PBS job called 'myscriptfile'. The following example shows how to 

submit the job to PBS: 

% qsub myscriptfile 

12322.sol.pbspro.com 

The second line in the example is the job identifier returned by the PBS server. This unique 

identifier can be used to act on this job in the future (before it completes running). The next 

section of this chapter discusses using this "job id" in various ways. 

The qsub command has a number of options that can be specified either on the 

command-line or in the job script itself. Note that any command-line option will override the 
same option within the script file. 

Table 16.1 lists the most commonly used options to qsub. See the PBS User Guide for the 

complete list and full description of the options. 

 
 

Table 16.1: PBS commands.  

Option Purpose 

 

-l list List of 

resource

s needed 

by job 

-q queue Queue to 

submit 

job to 

-N name Name of 

job 
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Table 16.1: PBS commands.  

Option Purpose 

 

-S shell Shell to 
execute 

job script  

-p priority Priority 

value of 

job 

-a datetime Delay job 

under 

after 

datetime 

-j oe Join 

output 

and error 

files  

-h Place a 

hold on 

job 
 

The "-l resource_list" option is used to specify the resources needed by the job. Table 

16.2 lists all the resources available to jobs running on clusters. 

 
 

Table 16.2: PBS resources.  

Resource  Meaning 

 

arch System 

architectur

e needed 

by job 

cput  CPU time 

required 

by all 

processes 
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Table 16.2: PBS resources.  

Resource  Meaning 

 

in job 

file Maximum 
single file 

disk space 
requireme

nts 

mem Total 

amount of 

RAM 

memory 

required 

ncpus Number of 

CPUs 

(processor

s) required 

nice Requested 
"nice" 

(Unix 

priority) 

value 

nodes Number 

and/or 
type of 

nodes 

needed 

pcput Maximum 
per-proces

s CPU 

time 
required 

pmem Maximum 

per-proces

s memory  

required 
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Table 16.2: PBS resources.  

Resource  Meaning 

 

wall time Total 
wall-clock 

time 

needed 

workingset Total disk 

space 
requireme

nts 
 

16.2.3 Getting the Status of a PBS Job 
Once the job has been submitted to PBS, you can use either the qstat or xpbs commands 

to check the job status. If you know the job identifier for your job, you can request the status 

explicitly. Note that unless you have multiple clusters, you need only specify the sequence 

number portion of the job identifier: 

% qstat 12322 

Job id        Name         User   Time Use S Queue 

------------- ------------ ------ -------- - ----- 

12322.sol     myscriptfile jjones 00:06:39 R submit 
If you run the qstat command without specifing a job identifier, then you will receive status 

on all jobs currently queued and running. 

Often users wonder why their job is not running. You can query this information from PBS 
using the "-s" (status) option of qstat, for example, 

% qstat 12323 

Job id        Name         User   Time Use S Queue 

------------- ------------ ------ -------- - ----- 

12323.sol     myscriptfile jjones 00:00:00 Q submit 

Requested number of CPUs not currently available. 
A number of options to qstat change what information is displayed. The PBS User Guide 

gives the complete list. 

16.2.4 PBS Command Summary 
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So far we have seen several of the PBS user commands. Table 16.3 is provided as a quick 

reference for all the PBS user commands. Details on each can be found in the PBS manual 

pages and the PBS User Guide. 
 

 

Table 16.3: PBS commands.  

Command Purpose 

 

qalter Alter 

job(s) 

qdel Delete 
job(s) 

qhold Hold 

job(s) 

qmsg Send a 
message 

to job(s) 

qmove Move 

job(s) to 

another 
queue 

qrls Release 
held 

job(s) 

qrerun Rerun 

job(s) 

qselect Select a 
specific 

subset of 

jobs 

qsig Send a 
signal to 

job(s) 

qstat Show 

status of 
job(s) 
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Table 16.3: PBS commands.  

Command Purpose 

 

qsub Submit 
job(s) 

xpbs  Graphical 
Interface 

(GUI) to 

PBS 
comman

ds 
 

16.2.5 Using the PBS Graphical User Interface 
PBS provides two GUI interfaces: a TCL/TK -based GUI called xpbs and an optional 

Web-based GUI. 

The GUI xpbs provides a user-friendly point-and-click interface to the PBS commands. To run 
xpbs as a regular, nonprivileged user, type 

setenv DISPLAY your_workstation_name:0 

xpbs 
To run xpbs with the additional purpose of terminating PBS Servers, stopping and starting 

queues, or running or rerunning jobs, type 

xpbs -admin 

Note that you must be identified as a PBS operator or manager in order for the additional 

"-admin" functions to take effect. 
The optional Web-based user interface provides access to all the functionality of xpbs via 

almost any Web browser. To access it, you simply type the URL of your PBS Server host into 

your browser. The layout and usage are similar to those of xpbs. For details, see The PBS 

User Guide. 

16.2.6 PBS Application Programming Interface 
Part of the PBS package is the PBS Interface Library, or IFL. This library provides a means of 

building new PBS clients. Any PBS service request can be invoked through calls to the 

interface library. Users may wish to build a PBS job that will check its status itself or submit 
new jobs, or they may wish to customize the job status display rather than use the qstat 

command. Administrators may use the interface library to build new control commands. 

The IFL provides a user-callable function that corresponds to each PBS client command. 

There is (approximately) a one-to-one correlation between commands and PBS service 
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requests. Additional routines are provided for network connection management. The 

user-callable routi nes are declared in the header file 'PBS_ifl.h'. Users request service of a 

batch server by calling the appropriate library routine and passing it the required parameters. 
The parameters correspond to the options and operands on the commands. The user must 

ensure that the parameters are in the correct syntax. Each function will return zero upon 

success and a nonzero error code on failure. These error codes are available in the header 
file 'PBS_error.h'. The library routine will accept the parameters and build the 

corresponding batch request. This request is then passed to the server communication 
routine. (The PBS API is fully documented in the PBS External Reference Specification.) 

 

15.6 Conclusions 
This chapter has introduced some of the key Maui features currently available. With hundreds 

of sites now using and contributing to this open source project, Maui is evolving and 
improving faster than ever. To learn about the latest developments and to obtain more 

detailed information about the capabilities described above, see the Maui home page at 

www.supercluster.org/maui. 
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Chapter 16: PBS— Portable Batch System 

Overview 
James Patton Jones 

The Portable Batch System (PBS) is a flexible workload management and job scheduling 

system originally developed to manage aerospace computing resources at NASA. PBS has 
since become the leader in supercomputer workload management and the de facto standard 

job scheduler for Linux. 

Today, growing enterprises often support hundreds of users running thousands of jobs across 
different types of machines in different geographical locations. In this distributed 

heterogeneous environment, it can be extremely difficult for administrators to collect detailed, 

accurate usage data or to set systemwide resource priorities. As a result, many computing 

resources are left underused, while others are overused. At the same time, users are 
confronted with an ever-expanding array of operating systems and platforms. Each year, 

scientists, engineers, designers, and analysts waste countless hours learning the nuances of 

different computing environments, rather than being able to focus on their core priorities. PBS 

addresses these problems for computing-intensive industries such as science, engineering, 

finance, and entertainment. 

PBS allows you to unlock the potential in the valuable assets you already have, while at the 

same time reducing demands on system administrators, freeing them to focus on other 
activities. PBS can also help you effectively manage growth by tracking use levels across 

your systems and enhancing effective utilization of future purchases. 

 

16.1 History of PBS 

In the past, computers were used in a completely interactive manner. Background jobs were 

just processes with their input disconnected from the terminal. As the number of processors in 

computers continued to increase, however, the need to be able to schedule tasks based on 
available resources rose in importance. The advent of networked compute servers, smaller 

general systems, and workstations led to the requirement of a networked batch scheduling 

capability. The first such Unix-based system was the Network Queueing System (NQS) from 

NASA Ames Research Center in 1986. NQS quickly became the de facto standard for batch 

queuing. 

Over time, distributed parallel systems began to emerge, and NQS was inadequate to handle 

the complex scheduling requirements presented by such systems. In addition, computer 
system managers wanted greater control over their compute resources, and users wanted a 

single interface to the systems. In the early 1990s NASA needed a solution to this problem, 

but after finding nothing on the market that adequately addressed their needs, led an 
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international effort to gather requirements for a next-generation resource management 

system. The requirements and functional specification were later adopted as an IEEE POSIX 

standard (1003.2d). Next, NASA funded the development of a new resource management 
system compliant with the standard. Thus the Portable Batch System was born. 

PBS was quickly adopted on distributed parallel systems and replaced NQS on traditional 

supercomputers and server systems. Eventually the entire industry evolved toward 

distributed parallel systems, taking the form of both special-purpose and commodity clusters. 

Managers of such systems found that the capabilities of PBS mapped well onto cluster 

systems. 

The latest chapter in the PBS story began when Veridian (the research and development 
contractor that developed PBS for NASA) released the Portable Batch System Professional 

Edition (PBS Pro), a complete workload management solution. The cluster administrator can 

now choose between two versions of PBS: OpenPBS, an older Open Source release of PBS; 

and PBS Pro, the new hardened and enhanced com mercial version. 

This chapter gives a technical overview of PBS and information on installing, using, and 
managing both versions of PBS. However, it is not possible to cover all the details of a 

software system the size and complexity of PBS in a single chapter. Therefore, we limit this 

discussion to the recommended configuration for Linux clusters, providing references to the 

various PBS documentation where additional, detailed information is available.  

16.1.1 Acquiring PBS 

While both OpenPBS and PBS Pro are bundled in a variety of cluster kits, the best sources 

for the most current release of either product are the official Veridian PBS Web sites: 
www.OpenPBS.org and www.PBSpro.com. Both sites offers downloads of the software and 

documentation, as well as FAQs, discussion lists, and current PBS news. Hardcopy 

documentation, support services, training and PBS Pro software licenses are available from 

the PBS Online Store, accessed through the PBS Pro Web site. 

16.1.2 PBS Features 

PBS Pro provides many features and benefits to the cluster administrator. A few of the more 
important features are the following: 

Enterprisewide resource sharing provides transparent job scheduling on any PBS system by 

any authorized user. Jobs can be submitted from any client system, both local and remote, 

crossing domains where needed. 

Multiple user interfaces provide a graphical user interface for submitting batch and interactive 
jobs; querying job, queue, and system status; and monitoring job progress. Also provided is a 

traditional command line interface.  

Security and access control lists permit the administrator to allow or deny access to PBS 

systems on the basis of username, group, host, and/or network domain. 
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Job accounting offers detailed logs of system activities for charge-back or usage analysis per 

user, per group, per project, and per compute host. 

Automatic file staging provides users with the ability to specify any files that need to be copied 
onto the execution host before the job runs and any that need to be copied off after the job 

completes. The job will be scheduled to run only after the required files have been 

successfully transferred. 

Parallel job support works with parallel programming libraries such as MPI, PVM, and HPF. 

Applications can be scheduled to run within a single multiprocessor computer or across 
multiple systems. 

System monitoring includes a graphical user interface for system monitoring. PBS displays 

node status, job placement, and resource utilization information for both standalone systems 

and clusters. 

Job interdependency enables the user to define a wide range of interdependencies between 
jobs. Such dependencies include execution order, synchronization, and execution 

conditioned on the success or failure of another specific job (or set of jobs). 

Computational Grid support provides an enabling technology for meta-computing and 

computational Grids, including support for the Globus Toolkit. 

Comprehensive API includes a complete application programming interface for sites that wish 

to integrate PBS with other applications or to support unique job-scheduling requirements. 

Automatic load-leveling provides numerous ways to distribute the workload across a cluster 

of machines, based on hardware configuration, resource availability, keyboard activity, and 

local scheduling policy. 

Distributed clustering allows customers to use physically distributed systems and clusters, 
even across wide area networks. 

Common user environment  offers users a common view of the job submission, job querying, 

system status, and job tracking over all systems. 

Cross-system scheduling ensures that jobs do not have to be targeted to a specific computer 

system. Users may submit their job and have it run on the first available system that meets 
their resource requirements. 

Job priority allows users the ability to specify the priority of their jobs; defaults can be provided 

at both the queue and system level. 

User name mapping provides support for mapping user account names on one system to the 

appropriate name on remote server systems. This allows PBS to fully function in 
environments where users do not have a consistent username across all the resources they 

have access to. 

Full configurability makes PBS easily tailored to meet the needs of different sites. Much of this 

flexibility is due to the unique design of the scheduler module, which permits complete 

customization. 

Broad platform availability is achieved through support of Windows 2000 and every major 

version of Unix and Linux, from workstations and servers to super-computers. New platforms 

are being supported with each new release. 
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System integration allows PBS to take advantage of vendor-specific enhancements on 

different systems (such as supporting cpusets on SGI systems and interfacing with the 

global resource manager on the Cray T3E). 
For a comparison of the features available in the latest versions of OpenPBS and PBS Pro, 

visit the PBS Product Comparison Web page: 
www.OpenPBS.org/product_comparison.html. 

16.1.3 PBS Architecture 

PBS consists of two major component types: user-level commands and system daemons. A 
brief description of each is given here to help you make decisions during the installation 

process. 

PBS supplies both command-line programs that are POSIX 1003.2d conforming and a 

graphical interface. These are used to submit, monitor, modify, and delete jobs. These client 

commands  can be installed on any system type supported by PBS and do not require the 

local presence of any of the other components of PBS. There are three classifications of 

commands: user commands that any authorized user can use, operator commands, and 

manager (or administrator) commands. Operator and manager commands require specific 

access privileges. (See also the security sections of the PBS Administrator Guide.) 

The job server daemon is the central focus for PBS. Within this document, it is generally 
referred to as the Server or by the execution name pbs_server. All commands and the 

other daemons communicate with the Server via an Internet Protocol (IP) network. The 

Server's main function is to provide the basic batch services such as receiving or creating a 

batch job, modifying the job, protecting the job against system crashes, and running the job. 

Typically, one Server manages a given set of resources. 
The job executor is the daemon that actually places the job into execution. This daemon, 

pbs_mom, is informally called MOM because it is the mother of all executing jobs. (MOM is a 

reverse-engineered acronym that stands for Machine Oriented Mini-server.) MOM places a 

job into execution when it receives a copy of the job from a Server. MOM creates a new 

session as identical to a user login session as possible. For example, if the user's login shell 
is csh, then MOM creates a session in which .login is run as well as .cshrc. MOM also 

has the responsibility for returning the job's output to the user when directed to do so by the 

Server. One MOM daemon runs on each computer that will execute PBS jobs. 
The job scheduler daemon, pbs_sched , implements the site's policy controlling when each 

job is run and on which resources. The Scheduler communicates with the various MOMs to 

query the state of system resources and with the Server to learn about the availability of jobs 

to execute. The interface to the Server is through the same API (discussed below) as used by 

the client commands. Note that the Scheduler interfaces with the Server with the same 

privilege as the PBS manager. 

 

16.2 Using PBS 
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From the user's perspective, a workload mangement system enables you to make more 

efficient use of your time by allowing you to specify the tasks you need run on the cluster. The 

system takes care of running these tasks and returning the results to you. If the cluster is full, 
then it holds your tasks and runs them when the resources are available.  

With PBS you create a batch job that you then submit to PBS. A batch job is a shell script 

containing the set of commands you want run on the cluster. It also contains directives that 

specify the resource requirements (such as memory or CPU time) that your job needs. Once 

you create your PBS job, you can reuse it, if you wish, or you can modify it for subsequent 
runs. Example job scripts are shown below. 

PBS also provides a special kind of batch job called interactive batch. This job is treated just 

like a regular batch job (it is queued up and must wait for resources to become available 

before it can run). But once it is started, the user's terminal input and output are connected to 

the job in what appears to be an rlogin session. It appears that the user is logged into one 

of the nodes of the cluster, and the resources requested by the job are reserved for that job. 

Many users find this feature useful for debugging their applications or for computational 

steering. 

PBS provides two user interfaces: a command-line interface (CLI) and a graphical user 

interface (GUI). You can use either to interact with PBS: both interfaces have the same 

functionality. 

16.2.1 Creating a PBS Job 

Previously we mentioned that a PBS job is simply a shell script containing resource 
requirements of the job and the command(s) to be executed. Here is what a sample PBS job 

might look like the following: 

#!/bin/sh 

#PBS -l walltime=1:00:00 

#PBS -l mem=400mb 

#PBS -l ncpus=4 

#PBS -j oe 

 

cd ${HOME}/PBS/test 

mpirun -np 4 myprogram  
This script would then be submitted to PBS using the qsub command. 

Let us look at the script for a moment. The first line tells what shell to use to interpret the script. 

Lines 2–4 are resource directives, specifying arguments to the "resource list" ("-l") option of 
qsub. Note that all PBS directives begin with #PBS. These lines tell PBS what to do with your 
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job. Any qsub option can also be placed inside the script by using a #PBS directive. However, 

PBS stops parsing directives with the first blank line encountered. 

Returning to our example above, we see a request for 1 hour of wall-clock time, 400 MBytes 
of memory and 4 CPUs. The fifth line is a request for PBS to merge the stdout and stderr file 

streams of the job into a single file. The last two lines are the commands the user wants 

executed: change directory to a particular location, then execute an MPI program called 
'myprogram'. 

This job script could have been created in one of two ways: using a text editor, or using the 
xpbs graphical interface (see below). 

16.2.2 Submitting a PBS Job 

The command used to submit a job to PBS is qsub. For example, say you created a file 
containing your PBS job called 'myscriptfile'. The following example shows how to 

submit the job to PBS: 

% qsub myscriptfile 

12322.sol.pbspro.com 

The second line in the example is the job identifier returned by the PBS server. This unique 

identifier can be used to act on this job in the future (before it completes running). The next 

section of this chapter discusses using this "job id" in various ways. 

The qsub command has a number of options that can be specified either on the 

command-line or in the job script itself. Note that any command-line option will override the 
same option within the script file. 

Table 16.1 lists the most commonly used options to qsub. See the PBS User Guide for the 

complete list and full description of the options. 

 
 

Table 16.1: PBS commands.  

Option Purpose 

 

-l list List of 

resource

s needed 

by job 

-q queue Queue to 

submit 

job to 

-N name Name of 

job 
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Table 16.1: PBS commands.  

Option Purpose 

 

-S shell Shell to 
execute 

job script  

-p priority Priority 

value of 

job 

-a datetime Delay job 

under 

after 

datetime 

-j oe Join 

output 

and error 

files  

-h Place a 

hold on 

job 
 

The "-l resource_list" option is used to specify the resources needed by the job. Table 

16.2 lists all the resources available to jobs running on clusters. 

 
 

Table 16.2: PBS resources.  

Resource  Meaning 

 

arch System 

architectur

e needed 

by job 

cput  CPU time 

required 

by all 

processes 
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Table 16.2: PBS resources.  

Resource  Meaning 

 

in job 

file Maximum 
single file 

disk space 
requireme

nts 

mem Total 

amount of 

RAM 

memory 

required 

ncpus Number of 

CPUs 

(processor

s) required 

nice Requested 
"nice" 

(Unix 

priority) 

value 

nodes Number 

and/or 
type of 

nodes 

needed 

pcput Maximum 
per-proces

s CPU 

time 
required 

pmem Maximum 

per-proces

s memory 

required 
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Table 16.2: PBS resources.  

Resource  Meaning 

 

wall time Total 
wall-clock 

time 

needed 

workingset Total disk 

space 
requireme

nts 
 

16.2.3 Getting the Status of a PBS Job 
Once the job has been submitted to PBS, you can use either the qstat or xpbs commands 

to check the job status. If you know the job identifier for your job, you can request the status 

explicitly. Note that unless you have multiple clusters, you need only specify the sequence 

number portion of the job identifier: 

% qstat 12322 

Job id        Name         User   Time Use S Queue 

------------- ------------ ------ -------- - ----- 

12322.sol     myscriptfile jjones 00:06:39 R submit 
If you run the qstat command without specifing a job identifier, then you will receive status 

on all jobs currently queued and running. 

Often users wonder why their job is not running. You can query this information from PBS 
using the "-s" (status) option of qstat, for example, 

% qstat 12323 

Job id        Name         User   Time Use S Queue 

------------- ------------ ------ -------- - ----- 

12323.sol     myscriptfile jjones 00:00:00 Q submit 

Requested number of CPUs not currently available. 
A number of options to qstat change what information is displayed. The PBS User Guide 

gives the complete list. 

16.2.4 PBS Command Summary 
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So far we have seen several of the PBS user commands. Table 16.3 is provided as a quick 

reference for all the PBS user commands. Details on each can be found in the PBS manual 

pages and the PBS User Guide. 
 

 

Table 16.3: PBS commands.  

Command Purpose 

 

qalter Alter 

job(s) 

qdel Delete 
job(s) 

qhold Hold 

job(s) 

qmsg Send a 
message 

to job(s) 

qmove Move 

job(s) to 

another 
queue 

qrls Release 
held 

job(s) 

qrerun Rerun 

job(s) 

qselect Select a 
specific 

subset of 

jobs 

qsig Send a 
signal to 

job(s) 

qstat Show 

status of 
job(s) 
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Table 16.3: PBS commands.  

Command Purpose 

 

qsub Submit 
job(s) 

xpbs  Graphical 
Interface 

(GUI) to 

PBS 
comman

ds 
 

16.2.5 Using the PBS Graphical User Interface 
PBS provides two GUI interfaces: a TCL/TK -based GUI called xpbs and an optional 

Web-based GUI. 

The GUI xpbs provides a user-friendly point-and-click interface to the PBS commands. To run 
xpbs as a regular, nonprivileged user, type 

setenv DISPLAY your_workstation_name:0 

xpbs 
To run xpbs with the additional purpose of terminating PBS Servers, stopping and starting 

queues, or running or rerunning jobs, type 

xpbs -admin 

Note that you must be identified as a PBS operator or manager in order for the additional 

"-admin" functions to take effect. 
The optional Web-based user interface provides access to all the functionality of xpbs via 

almost any Web browser. To access it, you simply type the URL of your PBS Server host into 

your browser. The layout and usage are similar to those of xpbs. For details, see The PBS 

User Guide. 

16.2.6 PBS Application Programming Interface 
Part of the PBS package is the PBS Interface Library, or IFL. This library provides a means of 

building new PBS clients. Any PBS service request can be invoked through calls to the 

interface library. Users may wish to build a PBS job that will check its status itself or submit 
new jobs, or they may wish to customize the job status display rather than use the qstat 

command. Administrators may use the interface library to build new control commands. 

The IFL provides a user-callable function that corresponds to each PBS client command. 

There is (approximately) a one-to-one correlation between commands and PBS service 
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requests. Additional routines are provided for network connection management. The 

user-callable routines are declared in the header file 'PBS_ifl.h'. Users request service of a 

batch server by calling the appropriate library routine and passing it the required parameters. 
The parameters correspond to the options and operands on the commands. The user must 

ensure that the parameters are in the correct syntax. Each function will return zero upon 

success and a nonzero error code on failure. These error codes are available in the header 
file 'PBS_error.h'. The library routine will accept the parameters and build the 

corresponding batch request. This request is then passed to the server communication 
routine. (The PBS API is fully documented in the PBS External Reference Specification.) 

 

16.3 Installing PBS 

PBS is able to support a wide range of configurations. It may be installed and used to control 
jobs on a single system or to load balance jobs on a number of systems. It may be used to 

allocate nodes of a cluster or parallel system to both serial and parallel jobs. It can also deal 

with a mix of these situations. However, given the topic of this book, we focus on the 
recommended configuration for clusters. The PBS Administrator Guide explains other 

configurations. 

When PBS is installed on a cluster, a MOM daemon must be on each execution host, and the 

Server and Scheduler should be installed on one of the systems or on a front-end system. 

For Linux clusters, PBS is packaged in the popular RPM format (Red Hat's Package 

Manager). (See the PBS Administrator Guide for installation instructions on other systems.) 

PBS RPM packages are provided as a single tar file containing 
§ the PBS Administrator Guide in both Postscript and PDF form, 

§ the PBS User Guide in both Postscript and PDF form (PBS Pro only), 

§ multiple RPM packages for different components of PBS (see below), 

§ a full set of Unix-style manual pages, and 

§ supporting text files: software license, README, release notes, and the like. 
When the PBS tar file is extracted, a subtree of directories is created in which all these files 

are created. The name of the top-level directory of this subtree will reflect the release number 

and patch level of the version of PBS being installed. For example, the directory for PBS Pro 
5.1 will be named 'PBSPro_5_1_0 '. 

To install PBS Pro, change to the newly created directory, and run the installation program: 

cd PBSPro_5_1_0 

./INSTALL 
The installation program will prompt you for the names of directories for the different parts of 

PBS and the type of installation (full, server-only, execution host only). Next, you will be 

prompted for your software license key(s). (See Section 16.1.1 if you do not already have 

your software license key.) 
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For OpenPBS, there are multiple RPMs corresponding to the different installation possibilities: 

full installation, execution host only, or client commands only. Select the correct RPM for your 

installation; then install it manually: 

cd pbspro_v5.1 

rpm -i RPMNAME... 
Note that in OpenPBS, the RPMs will install into predetermined locations under '/usr/pbs ' 

and '/usr/spool/PBS '. 

 

16.4 Configuring PBS 

Now that PBS has been installed, the Server and MOMs can be configured and the 
scheduling policy selected. Note that further configuration of may not be required since PBS 

Pro comes preconfigured, and the default configuration may completely meet your needs. 

However, you are advised to read this section to determine whether the defaults are indeed 

complete for you or whether any of the optional settings may apply. 

16.4.1 Network Addresses and PBS 

PBS makes use of fully qualified host names for identifying the jobs and their location. A PBS 

installation is known by the host name on which the Server is running. The name used by the 

daemons or used to authenticate messages is the canonical host name. This name is taken 
from the primary name field, h_name, in the structure returned by the library call 

gethostbyaddr(). According to the IETF RFCs, this name must be fully qualified and 

consistent for any IP address assigned to that host. 

16.4.2 The Qmgr Command 
The PBS manager command, qmgr, provides a command-line administrator interface. The 

command reads directives from standard input. The syntax of each directive is checked and 

the appropriate request sent to the Server(s). A qmgr directive takes one of the following 

forms: 

command server [names] [attr OP value[,...]] 

command queue  [names] [attr OP value[,...]] 

command node   [names] [attr OP value[,...]] 
where command  is the command to perform on an object. The qmgr  commands are listed in 

Table 16.4. 

 
 

Table 16.4: qmgr commands.  

Command Explanation 
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Table 16.4: qmgr commands.  

Command Explanation 

 

active Set the 
active 

objects. 

create Create a 

new object, 

applies to 
queues and 

nodes. 

delete Destroy an 
existing 

object 

(queues or 

nodes).  

set Define or 

alter attribute 
values of the 

object. 

unset Clear the 

value of the 

attributes of 

the object. 

list List the 
current 

attributes 

and values 

of the object. 

print  Print all the 
queue and 

server 

attributes. 
 

The list or print subcommands of qmgr can be executed by the general user. Creating or 

deleting a queue requires PBS Manager privilege. Setting or unsetting server or queue 

attributes requires PBS Operator or Manager privilege. 
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Here are several examples that illustrate using the qmgr command. These and other qmgr 

commands are fully explained below, along with the specific tasks they accomplish.  

% qmgr 

Qmgr: create node mars np=2,ntype=cluster 

Qmgr: create node venus properties="inner,moonless" 

Qmgr: set node mars properties = inner 

Qmgr: set node mars properties += haslife 

Qmgr: delete node mars 

Qmgr: d n venus 
Commands can be abbreviated to their minimum unambiguous form (as shown in the last line 

in the example above). A command is terminated by a new line character or a semicolon. 

Multiple commands may be entered on a single line. A command may extend across lines by 
marking the new line charac ter with a backslash. Comments begin with a pound sign and 

continue to the end of the line. Comments and blank lines are ignored by qmgr. See the qmgr 

manual page for detailed usage and syntax description. 

16.4.3 Nodes 
Where jobs will be run is determined by an interaction between the Scheduler and the Server. 
This interaction is affected by the contents of the PBS 'nodes' file and the system 

configuration onto which you are deploying PBS. Without this list of nodes, the Server will not 

establish a communication stream with the MOM(s), and MOM will be unable to report 
information about running jobs or to notify the Server when jobs complete. In a cluster 

configuration, distributing jobs across the various hosts is a matter of the Scheduler 

determining on which host to place a selected job. 

Regardless of the type of execution nodes, each node must be defined to the Server in the 

PBS nodes file, (the default location of which is 
'/usr/spool/PBS/server_-priv/nodes'). This is a simple text file with the specification 

of a single node per line in the file. The format of each line in the file is 

node_name[:ts] [attributes] 

The node name is the network name of the node (host name), it does not have to be fully 

qualified (in fact, it is best kept as short as possible). The optional ":ts" appended to the name 

indicates that the node is a timeshared node.  

Nodes can have attributes associated with them. Attributes come in three types: properties, 
name=value pairs, and name.resource=value pairs. 

Zero or more properties may  be specified. The property is nothing more than a string of 
alphanumeric characters (first character must be alphabetic) without meaning to PBS. 

Properties are used to group classes of nodes for allocation to a series of jobs. 
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Any legal node name=value pair may be specified in the node file in the same format as on a 

qsub directive: attribute.resource=value. Consider the following example: 

NodeA resource_available.ncpus=3 max_running=1 
The expression np=N may be used as shorthand for resources_available.ncpus=N, 

which can be added to declare the number of virtual processors (VPs) on the node. This 
syntax specifies a numeric string, for example, np=4. This expression will allow the node to 

be allocated up to N times to one job or more than one job. If np=N is not specified for a 

cluster node, it is assumed to have one VP. 

You may edit the nodes list in one of two ways. If the server is not running, you may directly 
edit the nodes file with a text editor. If the server is running, you should use qmgr to edit the 

list of nodes. 

Each item on the line must be separated by white space. The items may be listed in any order 
except that the host name must always be first. Comment lines may be included if the first 

nonwhite space character is the pound sign. 

The following is an example of a possible nodes file for a cluster called "planets": 

# The first set of nodes are cluster nodes. 

# Note that the properties are provided to 

# logically group certain nodes together. 

# The last node is a timeshared node. 

# 

mercury    inner moonless 

venus      inner moonless np=1 

earth      inner np=1 

mars       inner np=2 

jupiter    outer np=18 

saturn     outer np=16 

uranus     outer np=14 

neptune    outer np=12 

pluto:ts 

16.4.4 Creating or Adding Nodes 
After pbs_server is started, the node list may be entered or altered via the qmgr command: 

create node node_name [attribute=value] 

where the attributes and their associated possible values are shown in Table 16.5. 
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Table 16.5: PBS node syntax. 

Attribute Value  

 

state 
free, 
down, 

offline 

properties  any 
alphanume

ric string 

ntype 
cluster, 
time-sha
red 

resources_available.ncpus (np) 
number of 
virtual 

processors 

> 0 

resources_available 
list of 
resources 

available 

on node 

resources_assigned 
list of 

resources 

in use on 

node 

max_running 
maximum 
number of 

running 

jobs 

max_user_run  
maximum 

number of 

running 
jobs per 

user 

max_group_run 
maximum 
number of 

running 
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Table 16.5: PBS node syntax. 

Attribute Value  

 

jobs per 

group 

queue queue 

name (if 
any) 

associated 

with node 

reservations list of 
reservation

s pending 

on the 
node 

comment  general 

comment 
 

Below are several examples of setting node attributes via qmgr: 

% qmgr 

Qmgr: create node mars np=2,ntype=cluster 

Qmgr: create node venus properties="inner,moonless" 
Once a node has been created, its attributes and/or properties can be modified by using the 
following qmgr syntax: 

set node node_name [attribute[+|-]=value] 
where attributes are the same as for create, for example, 

% qmgr 

Qmgr: set node mars properties=inner 

Qmgr: set node mars properties+=haslife 

Nodes can be deleted via qmgr as well, using the delete node syntax, as the following 

example shows: 

% qmgr 

Qmgr: delete node mars 

Qmgr: delete node pluto 
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Note that the busy state is set by the execution daemon, pbs_mom, when a load_average 

threshold is reached on the node. See max_load in MOM's config file. The job-exclusive 

and job-sharing states are set when jobs are running on the node. 

16.4.5 Default Configuration 

Server management consist of configuring the Server and establishing queues and their 
attributes. The default configuration, shown below, sets the minimum server settings and 

some recommended settings for a typical PBS cluster. 

% qmgr 

Qmgr: print server 

# Create queues and set their attributes 

# 

# Create and define queue workq 

# 

create queue workq 

set queue workq queue_type = Execution 

set queue workq enabled = True 

set queue workq started = True 

# 

# Set Server attributes 

# 

set server scheduling = True 

set server default_queue = workq 

set server log_events = 511 

set server mail_from = adm 

set server query_other_jobs = True 

set server scheduler_iteration = 600 

16.4.6 Configuring MOM 

The execution server daemons, MOMs, require much less configuration than does the Server. 
The installation process creates a basic MOM configuration file that contains the minimum 

entries necessary in order to run PBS jobs. This section describes the MOM configuration file 

and explains all the options available to customize the PBS installation to your site.  
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The behavior of MOM is controlled via a configuration file that is read upon daemon 

initialization (startup) and upon reinitialization (when pbs_mom receives a SIGHUP signal). 

The configuration file provides several types of runtime information to MOM: access control, 
static resource names and values, external resources provided by a program to be run on 

request via a shell escape, and values to pass to internal functions at initialization (and 

reinitialization). Each configuration entry is on a single line, with the component parts 

separated by white space. If the line starts with a pound sign, the line is considered to be a 

comment and is ignored. 

A minimal MOM configuration file should contain the following:  

$logevent 0x1ff 

$clienthost server-hostname 
The first entry, $logevent, specifies the level of message logging this daemon should 

perform. The second entry, $clienthost, identifies a host that is permitted to connect to 

this MOM. You should set the server-hostname variable to the name of the host on which you 
will be running the PBS Server (pbs_server). Advanced MOM configuration options are 

described in the PBS Administrator Guide. 

16.4.7 Scheduler Configuration 

Now that the Server and MOMs have been configured, we turn our attention to the PBS 

Scheduler. As mentioned previously, the Scheduler is responsible for implementing the local 
site policy regarding which jobs are run and on what resources. This section discusses the 

recommended configuration for a typical cluster. The full list of tunable Scheduler parameters 

and detailed explanation of each is provided in the PBS Administrat or Guide. 

The PBS Pro Scheduler provides a wide range of scheduling policies. It provides the ability to 

sort the jobs in several different ways, in addition to FIFO order. It also can sort on user and 

group priority. The queues are sorted by queue priority to determine the order in which they 

are to be considered. As distributed, the Scheduler is configured with the defaults shown in 

Table 16.6. 

 
 

Table 16.6: Default scheduling policy parameters.  

Option Default Value  

 

round_robin False 

by_queue  True 

strict_fifo False 

load_balancing False 

load_balancing_rr False 
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Table 16.6: Default scheduling policy parameters.  

Option Default Value  

 

fair_share False 

help_starving_jobs True 

backfill  True 

backfill_prime False 

sort_queues True 

sort_by shortest_job_first  

smp_cluster_dist  pack 

preemptive_sched  True 
 

Once the Server and Scheduler are configured and running, job scheduling can be initiated 
by setting the Server attribute scheduling to a value of true: 

# qmgr -c "set server scheduling=true" 

The value of scheduling is retained across Server terminations or starts. After the Server is 

configured, it may be placed into service. 

 

16.5 Managing PBS 

This section is intended for the PBS administrator: it discusses several important aspects of 

managing PBS on a day -to-day basis. 
During the installation of PBS Pro, the file '/etc/pbs.conf' was created. This configuration 

file controls which daemons are to be running on the local system. Each node in a cluster 
should have its own '/etc/pbs.conf ' file. 

16.5.1 Starting PBS Daemons 

The daemon processes (pbs_server, pbs_sched, and pbs_mom) must run with the real 
and effective uid of root. Typically, the daemons are started automatically by the system 

upon reboot. The boot-time start/stop script for PBS is '/etc/init.d/pbs'. This script reads 

the '/etc/pbs.conf' file to determine which daemons should be started. 

The startup script can also be run by hand to get status on the PBS daemons, and to 
start/stop all the PBS daemons on a given host. The command line syntax for the startup 

script is 

/etc/init.d/pbs [ status | stop | start ] 
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Alternatively, you can start the individual PBS daemons manually, as discussed in the 

following sections. Furthermore, you may wish to change the options specified to various 

daemons, as discussed below. 

16.5.2 Monitoring PBS 
The node monitoring GUI for PBS is xpbsmon. It is used for displaying graphically information 

about execution hosts in a PBS environment. Its view of a PBS environment consists of a list 

of sites where each site runs one or more Servers and each Server runs jobs on one or more 

execution hosts (nodes). 

The system administrator needs to define the site's information in a global X resources file, 
'PBS_LIB/xpbsmon/xpbsmonrc', which is read by the GUI if a personal '.xpbsmonrc' file 

is missing. A default 'xpbsmonrc' file is created during installation defining (under 

*sitesInfo  resource) a default site name, the list of Servers that run on the site, the set of 

nodes (or execution hosts) where jobs on a particular Server run, and the list of queries that 
are communicated to each node's pbs_mom. If node queries have been specified, the host 

where 'xpbsmon' is running must have been given explicit permission by the pbs_mom 

daemon to post queries to it; this is done by including a $restricted  entry in the MOM's 

config file. 

16.5.3 Tracking PBS Jobs 

Periodically you (or the user) will want track the status of a job. Or perhaps you want to view 

all the log file entries for a given job. Several tools allow you to track a job's progress, as 
Table 16.7 shows. 

 
 

Table 16.7: Job-tracking commands. 

Command Explanation 

 

qstat Shows 

status of 

jobs, 
queues, and 

servers 

xpbs  Can alert 
user when 

job starts 

producing 

output 

tracejob Collates and 
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Table 16.7: Job-tracking commands. 

Command Explanation 

 

sorts PBS 

log entries 
for specified 

job 
 

16.5.4 PBS Accounting Logs 
The PBS Server daemon maintains an accounting log. The log name defaults to 

'/usr/spool/PBS/server_priv/accounting/yyyymmdd ' where yyyymmdd is the date. 

The accounting log files may be placed elsewhere by specifying the -A option on the 

pbs_server command line. The option argument is the full (absolute) path name of the file 

to be used. If a null string is given, for example 

# pbs_server -A "" 

then the accounting log will not be opened, and no accounting records will be recorded. 

The accounting file is changed according to the same rules as the log files. If the default file is 
used, named for the date, the file will be closed and a new one opened every day on the first 

event (write to the file) after midnight. With either the default file or a file named with the -A 

option, the Server will close the accounting log and reopen it upon the receipt of a SIGHUP 

signal. This strategy allows you to rename the old log and start recording anew on an empty 

file. For example, if the current date is December 1, the Server will be writing in the file 
'20011201'. The following actions will cause the current accounting file to be renamed 'dec1 ' 

and the Server to close the file and starting writing a new '20011201 '. 

# mv 20011201 dec1 

# kill -HUP (pbs_server's PID) 
 

16.6 Troubleshooting 

The following is a list of common problems and recommended solutions. Additional 

information is always available on the PBS Web sites. 

16.6.1 Clients Unable to Contact Server 

If a client command (such as qstat or qmgr) is unable to connect to a Server there are 

several possible errors to check. If the error return is 15034, No server to connect to, check (1) 

that there is indeed a Server running and (2) that the default Server information is set 

correctly. The client commands will attempt to connect to the Server specified on the 
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command line if given or, if not given, the Server specified in the default server file, 

'/usr/spool/PBS/default_server'. 

If the error return is 15007, No permission, check for (2) as above. Also check that the 
executable pbs_iff is located in the search path for the client and that it is setuid root. 

Additionally, try running pbs_iff by typing 

pbs_iff server_host 15001 
where server_host is the name of the host on which the Server is running and 15001 is the 

port to which the Server is listening (if started with a different port number, use that number 
instead of 15001). The executable pbs_iff should print out a string of garbage characters 

and exit with a status of 0. The garbage is the encrypted credential that would be used by the 
command to authenticate the client to the Server. If pbs_iff fails to print the garbage and/or 

exits with a nonzero status, either the Server is not running or it was installed with a different 
encryption system from that used for pbs_iff. 

16.6.2 Nodes Down 
The PBS Server determines the state of nodes (up or down), by communicating with MOM on 

the node. The state of nodes may be listed by two commands: qmgr and pbsnodes . 

% qmgr 

Qmgr: list node @active 

 

% pbsnodes -a 

Node jupiter 

state = down, state-unknown 

properties = sparc, mine 

ntype = cluster 
A node in PBS may be marked down in one of two substates. For example, the state above of 

node "jupiter" shows that the Server has not had contact with MOM on that since the Server 

came up. Check to see whether a MOM is running on the node. If there is a MOM and if the 

MOM was just started, the Server may have attempted to poll her before she was up. The 

Server should see her during the next polling cycle in ten minutes. If the node is still marked 
down, state-unknown after ten minutes, either the node name specified in the Server's 

node file does not map to the real network hostname or there is a network problem between 

the Server's host and the node. 

If the node is listed as 

% pbsnodes -a 

Node jupiter 

state = down 
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properties = sparc, mine 

ntype = cluster 

then the Server has been able to communicate with MOM on the node in the past, but she 
has not responded recently. The Server will send a ping PBS message to every free node 

each ping cycle (10 minutes). If a node does not acknowledge the ping before the next cycle, 
the Server will mark the node down. 

16.6.3 Nondelivery of Output 

If the output of a job cannot be delivered to the user, it is saved in a special directory 
'/usr/spool/PBS/undelivered ' and mail is sent to the user. The typical causes of 

nondelivery are the following:  

§ The destination host is not trusted and the user does not have a .rhost file. 

§ An improper path was specified. 

§ A directory in the specified destination path is not writable. 
§ The user's .cshrc on the destination host generates output when executed. 

The '/usr/spool/PBS/spool' directory on the execution host does not have the correct 

permissions. This directory must have mode 1777 (drwxrwxrwxt). 

16.6.4 Job Cannot Be Executed 

If a user receives a mail message containing a job identifier and the line "Job cannot be 

executed," the job was aborted by MOM when she tried to place it into execution. The 
complete reason can be found in one of two places: MOM's log file or the standard error file of 

the user's job. 

If the second line of the message is "See Administrator for help," then MOM aborted the job 

before the job's files were set up. The reason will be noted in MOM's log. Typical reasons are 

a bad user/group account or a system error. 

If the second line of the message is "See job standard error file," then MOM had already 
created the job's file, and additional messages were written to standard error. 
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Chapter 17: PVFS— Parallel Virtual File System 
Walt Ligon and Rob Ross 

An increasing number of cluster-based systems are being used for applications that involve 

not only a significant computational component but also a large amount of I/O. These 

applications consume or produce very large data sets, generate large checkpoint dumps, or 

use very large databases. In these situations, a Beowulf computer may be especially 

attractive because each node of the cluster includes a fully functional I/O subsystem. By 

using all of the available I/O hardware as a parallel I/O system, you can realize serious 

performance gains at low cost. As is typically the case in Beowulf systems, the key ingredient 
is software that allows these hardware resources to be orchestrated for use in 

high-performance applications. In this chapter we discuss parallel file systems— software that 

allows all of the disks in a cluster to be used as a single high-performance storage resource. 

In particular, we present details of the Parallel Virtual File Systems (PVFS), an open source 

implementation of a parallel file system designed for use on Beowulf computers. 
17.1 Introduction 

In this section we discuss in general terms what a parallel file system is, what one can do, and 
when it might be appropriate to use one. We also cover ways to use a parallel file system in 

parallel applications and issues that might affect performance. Subsequent sections present 

the details of installing and using PVFS. 

17.1.1 Parallel File Systems 
A parallel file system (PFS) is system software for a parallel computer that provides data 

distribution and parallel access. Data distribution allows file data to be distributed among 

disks attached to different nodes of the computer. Parallel access facilitates coordinated 

access to that file data by the multiple tasks of a parallel application. The primary goal of a 

parallel file system is to provide very high performance I/O access to large data sets for 

parallel applications. This point is as important in what it does not say as in what it does say. 

In particular, parallel file systems may not provide especially good performance for 

single-task applications. Parallel file systems may not provide especially low latency for small 

random accesses. Parallel file systems may not  provide redundancy or other means of 
security or reliability. That said, the designer of any file system strives to incorporate these 

features to the extent possible, but in the case of a parallel file system these considerations 

are typically secondary to the goal of high-performance access to large data sets. 

For purposes of this discussion, a parallel computer is a collection of processor nodes 

connected with an interconnection network. Some of these nodes have I/O devices attached. 
A parallel application consists of a number of tasks that are distributed among some of the 

nodes for processing. We call nodes that have attached I/O devices I/O nodes and nodes that 

run an application task compute nodes. These sets of nodes may be distinct or may overlap, 

even to the extent that all nodes are both I/O nodes and compute nodes. 
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A parallel file system generally consists of two software components: client code, which runs 

on the compute nodes; and server code, which runs on the I/O nodes. Application tasks, or 

clients, present I/O requests to the client code on the compute node where the task is running. 
The client code decomposes  the request and sends it to each of the I/O nodes where the 

affected data resides. The server code on the I/O nodes transfers data between the network 

and the storage devices. In a typical I/O request, communication between the compute nodes 

and I/O nodes is an "all-to-all" pattern. For a read operation, data from each I/O node must be 

scattered to the various compute nodes, and on the compute nodes, data from the various I/O 
nodes must be gathered into the read buffer. A write request is similar, but the data flow is 

reversed. 

The other critical component of a parallel file system is the file metadata. All file systems must 

maintain file metadata, which indicates important properties of the file such as its name, 

owner, access permissions, and type. In a parallel file system, additional information relating 
the physical distribution of the data must also be maintained. This includes which I/O nodes 

hold the file data and how the data is split among the I/O nodes. Special files such as 

directories and symbolic links more closely resemble metadata than true files and may be 

stored as such. At least one node on a parallel computer must act as a manager node where 

file metadata is stored. Metadata can be stored in a single location or distributed much as file 

data is distributed. Generally, all metadata for a single file is stored in a single location and is 

not distributed as file data is. 

How is PFS different from NFS or Samba? In many ways a parallel file system is like a 

network file system such as NFS [30] or Samba [2]. These systems allow applications running 

on one system, the client system, to access file data stored on another system, the server. 
While it is possible to use more than one server with NFS or Samba, only one server 

manages a given file system (or subdirectory) for the client at a time. Individual files are 

stored entirely on the one server, along with their metadata. See Chapter 6 for more 

information on file systems such as these. 

In a parallel file system, on the other hand, the data representing a single file is distributed 

among several servers. In addition, the file metadata may be stored on yet another server. 

This feature allows a parallel file system to take advantage of multiple I/O subsystems to 
achieve a performance gain. A parallel file system may provide various interfaces that allow 

the programmer to access file data in different ways. Moreover, a parallel file system may 

provide a choice of access semantics that affect how multiple tasks coordinate access to file 

data. This aspect is significant in that it determines when and where data read or written by 

multiple tasks is stored in the file and how concurrent update of a file is coordinated or 
synchronized. In contrast, the semantics and interfaces implemented for network file systems 

such as NFS and Samba generally do not allow for efficient and deterministic access in the 

presence of concurrent accesses. 

Another important difference between general -purpose network file systems and a parallel file 
system is in the performance characteristics relative to different workloads. Typical network 
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file systems are designed for interactive workloads. Policies for such features as the minimum 

transfer unit and local caching are relatively conservative and favor frequent small accesses 

with high locality. A parallel file system, on the other hand, is more typically designed to 
provide high throughput for relatively large accesses and optimizes transfers based on the 

access patterns of parallel applications. Thus, while a parallel file system may functionally 

serve as a general -purpose network file system, the performance of a PFS in this role may be 

poor. 

What is PVFS? The Parallel Virtual File System is an open source implementation of a 
parallel file system developed specifically for Beowulf clusters and the Linux operating system 

[3]. PVFS runs as a set of user-level daemons and libraries and includes an optional Linux 

kernel module that allows standard utilities to access PVFS files. PVFS provides a simple 

striping distribution that allows the user to specify the stripe size and the number of I/O nodes 

on which data is striped on a per file basis. PVFS also provides a POSIX-like interface that 
allows transparent access to PVFS files and a number of other interfaces that offer more 

powerful and flexible access to the PVFS request mechanism. These interfaces are accessed 

via user -level libraries to provide the best access performance. Additionally, there is at least 

one implementation of the MPI-IO interface for PVFS. 
The PVFS software consists of three daemons. The first is the mgr daemon, which maintains 

metadata for a file system. One copy of this daemon runs for a given file system. Second is 
the iod daemon, which services requests to read and write file data. One of these daemons 

runs on each node that will act as an I/O node. The third daemon, pvfsd, works with the 

optional kernel module to perform PVFS requests for the kernel. One of these daemons is 

needed on each client node if and only if that node will make use of the optional kernel 
module interface. 

The PVFS client interface is a library in both shared (libpvfs.so) and static (libpvfs.a) 

versions. This library also includes the other user interfaces such as the multidimensional 

block interface (MDBI) and the partitioned file interface (discussed in Section 17.2.1). These 

are needed on the node(s) used to compile PVFS applications and, in the case of the shared 
library, on each client node. The optional PVFS kernel module allows a PVFS file system to 

be mounted to provide transparent use by client applications. All file system requests are 

relayed via the pvfsd on the client node. This module must be loaded into the kernel on each 

client node that will have non -PVFS applications access PVFS file systems. A good example 

of such applications are utilities such as ls, cat, cp, and mv. 

PVFS uses the Berkeley sockets interface to communicate between the clients and servers 

via TCP/IP (see Chapter 6 for more information on sockets and TCP/IP). In general, a PVFS 

application will establish a TCP connection with each iod for each open file. The iods store 

file data on the I/O nodes under one subdirectory, using whatever file system that 

subdirectory is implemented with to store the actual data. File metadata is stored on the node 
running the mgr daemon in standard Unix files, one per file in the PVFS file system. Each file 

in this metadata directory has a unique inode number on that node. That inode number is 

used to identify each segment of the file data on each of the I/O nodes. 
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Clients acces s the PVFS manager in order to obtain metadata for PVFS files. Using this 

metadata, they can then directly access data stored on I/O servers. The interface used by the 

application defines the semantics of this access and constrains how data might be described; 
we will cover interface options later in this and the following sections. 

17.1.2 Setting Up a Parallel File System 

The first step in configuring a PFS is deciding what role each node in the system will play, that 

is, which nodes will act as I/O nodes, which node will serve the metadata, and which nodes 

will be compute nodes. While assigning these roles may seem to be fairly straightforward, in 

fact several different approaches are possible. As is often the case, different approaches may 

be more suitable to different applications. This section outlines the concepts related to setting 

up a parallel file system. Specific details of administering PVFS are covered in Section 17.3. 

How do I decide on a configuration? Typically, the first consideration in configuring a 

parallel file system is deciding how many I/O nodes will be used. This can reasonably vary 

from selecting a single I/O node to using all of the nodes in the system as I/O nodes. The 

primary consideration for a node to be an I/O node is that each I/O node must have at least 

one disk drive. Technically an I/O node can serve data from a remote mounted disk, but this 
approach will create unneeded network traffic. For many clusters, each node has a disk 

installed, and in this case it is reasonable to make every node an I/O node. Note that files 

need not be distributed to every I/O node in the network, but making each node an I/O node 

allows every node to be used for I/O. Alternatively, some cluster designs may include larger 

disks or additional disks on a subset of the nodes or may include disks on only a few of the 
nodes. In these cases it is more reasonable to limit the set of I/O nodes to those nodes that 

naturally lend themselves to that role because of their available resources. 

A related issue is whether the applications intend to use some or all of the nodes as both I/O 

nodes and compute nodes at the same time. Here, one extreme is to use every node in the 

system in both roles, and the other extreme is to have two distinct sets of nodes: one for 

computation and one for I/O. This choice may reflect having the budget available to build 

specialized nodes and having a strong sense of the needs of the application(s). Ideally, these 
considerations can be addressed at the time the cluster is built so that node hardware will 

suitably match the role that is planned for each node. 

What are the key components of an I/O node? If node hardware is to be tuned to the role 

of the node, hardware that may impact a node's role includes the disks, device bus, network 

interface, processors, and memory. The guidelines given here should be considered in light 

of the material in Chapter 3, where a detailed discussion of hardware issues for Beowulf 

machines is given. An I/O node needs to provide a certain amount of disk I/O throughput, 

which depends on both the ratio of I/O nodes to compute nodes and the required I/O 

throughput needed by the applications. In selecting an I/O node, the choice of SCSI versus 

IDE disks, number of disks, number of disk controllers, and configuration of the peripheral bus 

(such as PCI) are all important. An I/O node also needs enough network throughput to deliver 

the available disk throughput to all of the compute nodes. In fact, it is often desirable that an 
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I/O node be able to deliver more throughput via the network than is available at the disk 

subsystem, because caching often allows for bursts of traffic that exceed the throughput limits 

of the disk subsystem. This implies not only that the network interface can provide the 
required throughput but that the peripheral bus can support both the network and disk I/O 

load. This also has implications for the choice of network itself. 

For dedicated I/O nodes, less powerful CPUs than used in compute nodes might be more 
cost effective. On the other hand, nodes that serve as both compute and I/O nodes tend to 

need even more CPU performance, since a certain amount of CPU load is required by the I/O 

servers in addition to the computational load. Experimental results have shown that having 

dual CPUs can be advantageous in both dedicated I/O nodes and nodes performing both 
roles. 

17.1.3 Programming with a Parallel File System 

Once a parallel file system is operational, data can be stored and accessed by using normal 
programs and utilities. To really take advantage of a parallel file system, however, you must 

understand some concepts key to efficient parallel file access and must use these concepts 
when implementing applications. 

The POSIX I/O interface [18] is the standard for file and directory access on Linux systems. 

With this interface you may seek specific byte positions within a file and access contiguous 

regions of data at these positions. The semantics of the POSIX I/O interface defines what 

happens when applications write to overlapping regions as well, placing guarantees on the 

resulting file. This interface was created to serve as a standard for uniprocessing applications 

running on Unix machines accessing local file systems. 

With parallel file systems, the costs associated with access are often different from those with 

local access. In particular, performing a single write or read operation often involves a 

noticeable amount of overhead required to initiate the operation. Thus, when large numbers 

of small accesses are performed in a parallel I/O environment, performance often suffers. 

Parallel applications often divide data among processes. This division often leads to 

situations where different processes want to read from a file a number of records that are not 

located in a contiguous block [24]. Since each access involves substantial overhead, it would 

be more efficient to access these regions with a single operation [33] and also more 
convenient for the programmer. To address this situation, parallel file systems typically offer 

an interface that allows a large number of noncontiguous regions to be accessed with a single 

I/O request. 

Many parallel applications alternate between I/O and computation. In these types of 

application a large number of I/O-related operations occur simultaneously, often to the same 
file. If the operations are all performed independently, it is difficult for the underlying file 

system to identify and optimize for the access pattern. Grouping these accesses into a 

"collective access" can allow for further optimization. Collective I/O is a mechanism provided 

by many parallel file systems where a single global request to the file system allows each task 
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to access different data in the same file. Collective I/O has been provided in a number of 

special-purpose interfaces such as PASSION [33] and Panda [28] and is provided in MPI-IO 

[11]. Collective I/O to PVFS file systems is currently supported through the use of the ROMIO 
MPI-IO interface [34] (also discussed later in this chapter). 

The POSIX semantics also imposes strict requirements on the order in which operations may 

be completed on I/O servers in a parallel environment. The semantics cripples the ability to 

perform I/O in parallel in many situations. Interfaces with more relaxed semantics provide 

more opportunities for parallelism by eliminating the overhead associated with atomicity of 

access; the application programmer ensures consistency instead. 

All of these concepts, aggregating requests, collective I/O, and access semantics boil down 
to making the best use of available interfaces. We cover these next. 

What other interfaces do I have to work with?  Many interfaces and optimizations have 

been proposed and implemented to address the three issues of noncontiguous access, 

collective I/O, and the semantics of parallel access. Thes e interfaces can be categorized into 

POSIX-like interfaces, general-purpose parallel I/O interfaces, and specialized (or 

application-specific) interfaces. 

POSIX-like interfaces use the POSIX interface as their basis and provide various extensions 
in order to better describe parallel access. One such extension is file partitioning. File 

partitioning allows the interface to create a "view" of a file that contains of some subset of the 

data in the file. Partitions are usually based on some systematic subsetting of the file, for 

example, "Starting with the second byte of the file, view every fourth byte of the file." A more 

useful view might consider the file as a sequence of n byte records and take every pth record 
starting with record k . If there are p parallel tasks, and each creates a partition with the same 

value of n but with a different value of k  ranging from 0 to p - 1, then the set of partitions will 

cover the entire file, and none of the partitions will overlap. This is one way to evenly 

distribute file data among p tasks. 

With an interface that supports partitioning, once the partition is defined, the program 
accesses the data in the partition as if it is the only thing in the file. In other words, any data 

not in the partition no longer appears in the file, and the data in the partition appears to be 

contiguous in the partitioned file. This is a convenient abstraction in that all of the information 

regarding the distribution of data among the tasks in located only in the part of the program 

that creates the partition. This can be especially nice in converting sequential programs to 

parallel programs because sometimes all that is needed is to set up the partition and then let 

the program run as originally written. Partitioning is also one way that the programmer can 

specify a large set of noncontiguous accesses with a single request, which may allow the file 

system opportunities for optimization. This optimization would be impossible if instead seek() 

were used to access each contiguous region one at a time. 
File partitioning has been included in the Vesta interface [5] and MPI-IO [11] (as file views ), 

among others, and is supported by PVFS. Some partitioning interfaces require all tasks 

accessing a file to specify a common partitioning scheme that provides no overlap and 



 399 

complete file coverage. Other interfaces, such as the one implemented for PVFS, may allow 

individual tasks to specify different partitions, including those that overlap or that do not cover 

all of the data in the file. Details of the PVFS partitioning interface are given in Section 17.2. 

Some applications require that output data from different tasks be interleaved, and yet cannot 

predict how much data each task will produce for each output. In this case a shared file 

pointer can be an effective mechanism for coordinating file I/O. With a shared file pointer, 

sequential access proceeds not from the last location accessed by the task performing I/O but 

from the last location accessed by any task. In one variation, a shared file pointer can be used 

with a collective operation, and each task's data is stored in the file in task order. 

Shared file pointer interfaces are useful for low-volume I/O such as log messages and 
infrequent tracing data. A collective shared file pointer interface can also be useful for 

applications that synchronize well but generate data of varying size. Care must be taken in 

using a shared file pointer interface, however, since some implementations entail substantial 

overhead or result in serialized access. Shared file pointers have been provided by the Intel 

PFS, Vesta [5], and MPI-IO [11]. PVFS does not currently support shared file pointers. 

Extensions or modifications to the POSIX interface such as partitioning and shared file 

pointers can help in providing more usable and higher-performance interfaces for some 
applications. However, more flexible interfaces can allow for even more convenient access 

and higher performance for a broader range of applications. One such interface is MPI-IO. 

MPI-IO is a parallel I/O interface defined as part of the MPI-2 specification [11]. It is supported 

by a number of parallel file systems and provides all of the features described above: 

partitioning, collective operations, a mechanism to create non-contiguous I/O requests, and 
relaxed access semantics. MPI-IO is a very powerful application-independent interface and is 

probably the interface of choice for MPI programs. PVFS supports MPI-IO through the use of 

ROMIO, an MPI-IO implementation built on top of MPI [34]. Details of MPI-IO are given in 

Chapter 10 and in [14, Chapter 3]. 

A number of I/O interfaces also have been designed for special purposes. Examples include 
Panda [28], HDF5, and PVFS's multidimensional block interface (MDBI) [4]. MDBI provides 

special methods to allow you to define a regularly spaced n-dimensional data set that will be 

stored in the file. This description is similar to that of an n-dimensional array of some base 

type. Once this definition is in place, you can access any element of the data set with its 

corresponding co-ordinates. Additional methods allow you to control buffering of elements 

from the data set. Details of MDBI are given below in Section 17.2.1. 

How do I tune my application for high performance? Parallel applications that use a 

parallel file system typically work by distributing the data in the file among the application's 

tasks. Exactly how this is done will vary from application to application, but in many cases 

there are natural divisions in the data. For example, a file may contain an array of records 
each of which includes several scalar data values. The records may represent a linear 

sequence or may represent a matrix of two or more dimensions. In the former case, the 

record boundaries are natural divisions. Thus most tasks will read a multiple of the record 
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size (in bytes) from the file. In the latter case, the rows and columns are perhaps more natural 

divisions. Thus a task may read one or more whole rows at a time. 

With such an application it is important to consider how the data will be distributed. Often this 
means considering these natural boundaries when selecting a stripe size for file distribution 

(assuming a striped physical data distribution). If the stripe size is matched to the natural 

boundaries in the data set, accesses by applications tend to be more uniformly distributed 

across the I/O servers. One pitfall is that many files include a header that is not the same size 

as a record. In this case the presence of the header can force the data not to align properly on 

the I/O nodes, and poor performance can result. The most common solution is to pad the 

header with blank space to the next physical boundary (depending on the distribution) so that 
the records will align. Another solution is to store the header information in a separate file or 

at the end of the file instead of the beginning.  

PVFS performs better when multiple clients are accessing the same file, rather than each 

client accessing its own file. This is because the underlying storage systems respond better to 

single-file traffic. Thus, for PVFS it is best to aggregate output data into a single file; luckily 
this is often the most convenient option.  

The next consideration is how the data accessed by each task is spread across the I/O nodes. 
When using PVFS, it is often best to store and access data distributed across multiple I/O 

servers with single requests. This approach makes the best use of the underlying network by 

moving data through multiple TCP streams. This same approach applies in the case of 

multiple simultaneous accesses as well; just as PVFS clients perform more efficiently when 

exchanging data with multiple servers, PVFS servers perform at their best when servicing 
multiple clients simultaneously. What this means is that some experimentation is often 

necessary to determine the optimal matching of natural boundaries to the stripe; sometimes it 

is more efficient to place multiple rows, for example, in a single stripe. All that said, there are 

also advantages to accessing data residing locally when an overlapped com pute/server 

environment is in place, especially when the interconnect in the cluster is relatively slow. 
We discussed the coordination of access and the advantages of collective I/O earlier in this 

section. It is important to note, however, that there are cases when collective I/O doesn't  pay 

off. In particular, if an application spends a great majority of its time computing, it might be 

more optimal to stagger the tasks' accesses to the I/O system. This approach lightens the 

load on the I/O servers and simultaneously allows more time for the I/O as a whole to take 

place. In all cases it is important to attempt to keep all I/O servers busy. 

We emphasize that not all parallel file systems share these characteristics. Many such 

systems do not perform well with large numbers of clients simultaneously accessing single 

servers or simultaneously accessing the same file [19]. You should consider these issues 

when moving an application from one platform to another. 
What is out-of-core computation? Another issue to consider is how the file system will be 

used in a computation. Some applications tend to read an input data file and produce an 

output data file. Other applications might not do much I/O at all, except that they require an 
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extremely large amount of storage for their data structures and cannot keep everything in 

memory. In this case, the parallel file system can be used as a large shared-memory region 

using a technique known as out-of-core (OOC) computation. OOC techniques are similar to 
virtual memory use in that data is moved between disk and memory as needed for 

computation. Unlike virtual memory, however, OOC requires the programmer to explicitly 

read and write data rather than doing it transparently via a demand paged memory 

management system. While using virtual memory is much easier than OOC, a well -designed 

OOC program will outperform a virtual memory program by better utilizing memory and by 
moving data in and out of memory in large blocks, rather than moving a page at a time as 

demand paging would. 

Facilities that support OOC allow the programmer to describe the data structures stored in the 

parallel file and then access them in a manner consistent with that logical vi ew of the data. 

For example, the MDBI provided by PVFS (discussed in Section 17.2.1) allows the program 
to describe a file as a multidimensional array and then read and write blocks of that array by 

using array subscripts. 

Could you give me a tuning example? Many parallel applications involve regularly 

structured data that is evenly distributed to the tasks. Records can be assigned to tasks in 

groups. These groups may consist of contiguous records or noncontiguous but regularly 

spaced records. For example, consider an image-processing application. Each scan line of 

the image can be considered a record. Suppose the image has 512 scan lines, and you are 

using 16 processors. One distribution would be to assign the first 32 scan lines to the first 

processor, the second 32 to the second processor, and so on. Another distribution would be 

to assign one of each of the first 16 scan lines to each processor, in order, and then start over 
again and assign a second scan line from the second set of 16. A third option might be to 

assign 8 scan lines to each processor until the first 128 scan lines are assign, and then start 

over and assign the next 128, 8 at a time. In each case each proc essor gets 32 scan lines. 

The advantages and disadvantages of each depend on the algorithm being implemented and 

are beyond the scope of this book. Suffice it say each is a potentially useful distribution. 

This example illustrates the concept known as "strided access." In strided access, a task 

accesses a contiguous region of data (in this case one or more scan lines), skips a region, 
and then accesses another region of the same size as the first, skips a region the same size 

as the first, and so on. Strided access can be used to access rows in a matrix, groups of rows 

in a matrix, columns in a matrix, groups of columns in a matrix, and other patterns. Because 

this is such a common distribution, many interfaces, including the PVFS library and MPI-IO, 

provide mechanisms to issue requests for strided accesses. 

As alluded to above, the choice of distribution can affect algorithm performance, but it can 

also have an impact on I/O performance in that it can affect how I/O requests are distributed 
among the I/O nodes. Continuing the above example, assume each scan line of the image 

has 512 pixels and each pixel is 4 bytes. Thus an image is a total of 1 MByte. Suppose the file 
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system uses a striped distribution, and you choose a 32 KByte strip size, which results in 

stripes of 512 KBytes. 

The the image will be evenly distributed to all 16 disks, two 32 KByte blocks per node. Now 
consider the three distributions discussed above for the computational tasks. In the first, each 

task will access 32 scan lines of 2 KBytes each, which will be evenly distributed across 2 

disks; 2 tasks will share 2 disks (consider disks 0 and 1, which hold scan lines 0 to 15, 16 to 

31, 128 to 143, and 144 to 159, which will map to tasks 0, 0, 8, and 8, respectively). In the 

second distribution, each task will access 2 scan lines from each of all 16 disks. Thus all 16 

disks will service requests from all 16 tasks. In the third distribution, each task's data will map 

to 4 disks, and each disk will service 4 tasks. Thus the choice of distribution and stripe size 
affects how requests are spread across disks. 

 

17.2 Using PVFS 

In this section we discuss the options for accessing PVFS file systems from applications. We 
assume that a PVFS file system is already configured and available for use. 

For the purposes of discussion we will pretend that PVFS is running on a small cluster of nine 

machines. In our example system, shown in Figure 17.1, there is one "head" node, called 
head, and eight other nodes, n1–n8. Each of these systems has a local disk, they are 

connected via some switch or hub, IP is up and running, and they can talk to each other via 

these short names. We will come back to this example throughout this chapter in order to 

clarify installation, configuration, and usage issues. This section, and the following one, are 

rife with example shell interactions in order to show exactly how things are configured. 

 

Figure 17.1: Example system. 

17.2.1 Writing PVFS Programs 
Programs written to use normal Unix I/O will work fine with PVFS without any changes. Files 

created this way will be striped according to the file system defaults set at compile time, 

usually set to a 256 KByte stripe size across all of the I/O nodes, starting with the first node 
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listed in the .iodtab file. We note that use of Unix system calls read() and write() 

results in exactly the data specified being exchanged with the I/O nodes each time the call is 

made. Large numbers of small accesses performed with these calls will not perform well at all. 
In contrast, the buffered routines of the standard I/O library fread() and fwrite() locally 

buffer small accesses and perform exchanges with the I/O nodes in chunks of at least some 
minimum size. Utilities such as tar have options (e.g., --block-size) for setting the I/O 

access size as well. Generally PVFS will perform better with larger buffer sizes. 

For applications using stdio routines to access PVFS files, you may want to increase the 
buffer size used by fread() and fwrite() . The setvbuf() call may be used to specify 

the buffering characteristics of a stream (FILE *) after opening. This call must be made 

before any ot her operations are performed, for example,  

FILE *fp; 

fp = fopen("foo", "r+"); 

setvbuf(fp, NULL, _IOFBF, 256*1024); 

/* now we have a 256K buffer and are fully buffering I/O */ 

See the man page on setvbuf() for more information.  

This transparent access involves significant overhead both due to data movement through 

the kernel and due to our user-space client-side daemon (pvfsd). To get around this, the 

PVFS libraries can be used either directly (via the native PVFS calls) or indirectly (through the 

ROMIO MPI-IO interface, the MDBI interface, or some higher-level interface such as HDF5). 

In this section we begin by covering how to write and compile programs with the PVFS 
libraries. Next we cover how to specify the physical distribution of a file and how to set logical 

partitions. Following this we cover the MDBI interface. Finally we touch upon the use of 
ROMIO with PVFS. In addition to these interfaces, it is important to know how to control the 

physical distribution of files. In the next three sections, we will discuss how to specify the 

physical partitioning, or striping, of a file, how to set logical partitions on file data, and how the 

PVFS multidimensional block interface can be used. 

Preliminaries.  When compiling programs to use PVFS, you should include in the source the 
PVFS include file, typically installed in /usr/local/include/, by 

#include <pvfs.h> 
To link to the PVFS library, typically installed in /usr/local/lib/ , you should add -lpvfs 

to the link line and possibly -L/usr/local/lib to ensure that the directory is included in 

the library search.  

The PVFS interface calls will also operate correctly on standard, non-PVFS, files, including 
the MDBI interface. When you are debugging code, this feature can help isolate application 

problems from bugs in the PVFS system. 

Specifying Striping Parameters.  The current physical distribution mechanism used by 
PVFS is a simple striping scheme. The distribution of data is described with three parameters: 
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base —  index of the starting I/O node, with 0 being the first in the file system 

pcount —  number of servers on which data will be stored (partitions, a misnomer) 

ssize —  strip size, the size of the contiguous chunks stored on I/O servers 
In Figure 17.2 we show an example where the base node is 0 and the pcount is 4 for a file 

stored on our example PVFS file system. As you can see, only four of the I/O servers will hold 

data for this file, because of the striping parameters. 

 
Figure 17.2: Striping example with base of 0 and pcount of 4 

Physical distribution is determined when the file is first created. Using pvfs_open(), you 

can specify the following parameters: 

pvfs_open(char *pathname, int flag, mode_t mode); 

pvfs_open(char *pathname, int flag, mode_t mode,  

struct pvfs_filestat *dist); 
If the first set of parameters is used, a default distribution will be imposed. If, instead, a 

structure defining the distribution is passed in and the O_META flag is OR'd into the flag 

parameter, you can define the physical distribution via the pvfs_filestat structure passed 

in by reference as the last parameter. This structure is defi ned in the PVFS header files as 
follows: 

struct pvfs_filestat { 

int base;   /* The first iod node to be used */ 

int pcount; /* The number of iod nodes for the file */ 

int ssize;  /* stripe size */ 

int soff;   /* NOT USED */ 

int bsize;  /* NOT USED */ 

} 
The soff and bsize fields are artifacts of previous research and are not in use at this time. 

Setting the pcount value to -1 will use all available I/O daemons for the file. Setting -1 in the 

ssize and base fields will result in the default values being used (see Section 17.3.4 for more 

information on default values). 

To obtain information on the physical distribution of a file, you should use pvfs_ioctl()  on 

an open file descriptor: 
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pvfs_ioctl(int fd, GETMETA, struct pvfs_filestat *dist); 
It will fill in the pvfs_filestat structure with the physical distribution information for the file. 

On the command line the pvstat utility can be used to obtain this information (see Section 

17.2.2). 

Setting a Logical Partition.  The PVFS logical partitioning system allows you to describe the 

regions of interest in a file and subsequently access those regions efficiently. Access is more 

efficient because the PVFS system allows disjoint regions that can be described with a logical 

partition to be accessed as single units. The alternative would be to perform multiple 
seek-access operations, which is inferior because of both the number of separate operations 

and the reduced data movement per operation. PVFS logical partitioning is an 

implementation of file partitioning; it is named "logical" because it is independent of any 

physical characteristics of the file (such as the stripe size). 

If applicable, logical partitioning can also ease parallel programming by simplifying data 
access to a shared data set by the tasks of an application. Each task can set up its own 

logical partition, and once this is done all I/O operations will "see" only the data for that task. 
With the current PVFS partitioning mechanism, partitions are defined with three parameters: 

offset, group size (gsize), and stride. The offset is the distance in bytes from the beginning of 

the file to the first byte in the partition. Group size is the number of contiguous bytes included 

in the partition. Stride is the distance from the beginning of one group of bytes to the next. 

Figure 17.3 shows these parameters. 

 

Figure 17.3: Partitioning parameters. 
To set the file partition, the program uses a pvfs_ioctl()  call. The parameters are as 

follows: 

pvfs_ioctl(fd, SETPART, &part); 
where part is a structure defined as follows: 

struct fpart { 

int offset; 

int gsize; 

int stride; 

int gstride; /* NOT USED */ 

int ngroups; /* NOT USED */ 

}; 
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The last two fields, gstride and ngroups, are remnants of previous research, are no longer 

used, and should be set to zero. The pvfs_ioctl() call can also be used to get the current 

partitioning parameters by specifying the GETPART flag. Note that whenever the partition is 

set, the file pointer is reset to the beginning of the new partition. Also note that setting the 

partition is a purely local call; it does not involve contacting any of the PVFS daemons. Thus it 

is reasonable to reset the partition as often as needed during the execution of a program. 

When a PVFS file is first opened, a "default partition" is imposed on it that allows the process 

to see the entire file. 
As an example, suppose a file contains 40,000 records of 1,000 bytes each, there are four 

parallel tasks, and each task needs to access a partition of 10,000 records each for 

processing. In this case you would set the group size to 10,000 records times 1,000 bytes, or 

10,000,000 bytes. Then each task would set its offset so that it would access a disjoint portion 

of the data. This is shown in Figure 17.4. 

 

Figure 17.4: Partitioning Example 1, block distribution. 
Alternatively, suppose you want to allocate the records in a cyclic, or "round- robin," manner. 

In this case the group size would be set to 1,000 bytes, the stride would be set to 4,000 bytes, 

and the offsets would again be set to access disjoint regions, as shown in Figure 17.5. 

 

Figure 17.5: Partitioning Example 2, cyclic distribution. 

Setting the partition for one task has no effect whatsoever on any other tasks. There is also 

no reason for the partitions set by each task to be distinct; the partitions of different tasks can 

be overlapped, if desired. Finally, no direct relationship exists between partitioning and 



 407 

striping for a given file; while it is often desirable to match the partition to the striping of the file, 

you have the option of selecting any partitioning scheme independent of the striping of a file. 

Simple partitioning is useful for one-dimensional data and simple distributions of 
two-dimensional data. More complex distributions and multidimensional data are often more 

easily partitioned by using the multidimensional block interface. 

Using Multidimensional Blocking. The PVFS multidimensional block interface provides a 

slightly higher level view of file data than does the native PVFS interface. With the MDBI, file 

data is considered as an n-dimensional array of records. This array is divided into "blocks" of 

records by specifying the dimensions of the array and the size of the blocks in each 

dimension. The parameters used to describe the array are as follows: 
D —  number of dimensions 

rs —  record size 

nbn —  number of blocks (in each dimension) 

nen —  number of elements in a block (in each dimension) 

bfn —  blocking factor (in each dimension), described later 
Once you have defined the view of the data set, blocks of data can be read with single 

function calls, greatly simplifying the act of accessing these types of data sets. This is done by 

specifying a set of index values, one per dimension. 

Five basic calls are used for accessing files with MDBI: 

int open_blk(char *path, int flags, int mode); 

 

int set_blk(int fd, int D, int rs, int ne1, int nb1, ..., int nen, 

int nbn); 

 

int read_blk(int fd, char *buf, int index1, ..., int indexn); 

 

int write_blk(int fd, char *buf, int index1, ..., int indexn); 

 

int close_blk(int fd);  

The open_blk() and close_blk() calls operate similarly to the standard Unix open() 

and close(). The call set_blk() is used to set the blocking parameters for the array 

before reading or writing; this process will be described in a moment. It can be used as often 
as necessary and does not entail communication. The two calls read_blk() and 

write_blk() are used to read blocks of records once the blocking has been set. 

Figure 17.6 gives an example of blocking. Here a file has been described as a 

two-dimensional array of blocks, with blocks consisting of a two by three array of records. 
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Records are shown with dotted lines, with groups of records organized into blocks denoted 

with solid lines. 

 

Figure 17.6: MDBI Example 1.  

In this example, the array would be described with a call to set_blk() as follows: 

set_blk(fd, 2, 500, 2, 6, 3, 3);  

If you wanted to read block (2, 0) from the array, you could then 

read_blk(fd, &buf, 2, 0);  

Similarly, to read block (5, 2), you could use 

write_blk(fd, &blk, 5, 2);  
A final feature of the MDBI is block buffering. Sometimes multidimensional blocking is used to 

set the size of the data that the program wants to read and write from disk. Other times the 
block size has some physical meaning in the program and is set for other reasons. In this 

case, individual blocks may be rather small, resulting in poor I/O performance and 

underutilization of memory. MDBI provides a buffering mechanism that causes multiple 

blocks to be read and written from disk and stored in a buffer in the program's memory 

address space. Subsequent transfers using read_blk() and write_blk() result in 

memory-to-memory transfers unless a block outside of the current buffer is accessed. 

Since it is difficult to predict what blocks should be accessed when, PVFS relies on user cues 

to determine what to buffer. This is done by defining "blocking factors" that group blocks 

together. The blocking factor  indicates how many blocks in the given dimension should be 
buffered. A single function is used to define the blocking factor: int buf_blk(int fd, int 

bf1, . . . , int bfn). 

Looking at Figure 17.6 again, we can see how blocking factors can be defined. In the 

example, the call 

buf_blk(fd, 2, 1); 

is used to specify the blocking factor. We denote the larger resulting buffered blocks as 

superblocks (a poor choice of terms in retrospect), one of which is shaded in the example. 

Whenever a block is accessed, if its superblock is not in the buffer, the current superblock is 
written back to disk (if dirty), and the new superblock is read in its place; then the desired 

block is copied into the given buffer. The default blocking factor for all dimensions is 1, and 
any time the blocking factor is changed the buffer is written back to disk if dirty. 
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We emphasize that no cache coherency is performed here; if application tasks are sharing 

superblocks, unexpected results will occur if writes are performed. The user must ensure that 

this does not happen. A good strategy for buffering is to develop a program with buffering 
turned off, and the n enable it later in order to improve performance.  

Using the ROMIO MPI-IO Implementation. The MPI specification provides a de facto 

standard for message passing in parallel programs. The MPI-2 specification, which builds on 

the successful MPI-1 specification, includes a section on I/O that is commonly referred to as 

MPI-IO [14, 11]. Just as MPI has become the interface of choice for message passing in 
parallel applications, the MPI-IO interface has become a prominent low-level interface for I/O 

access in parallel applications. 

ROMIO is one implementation of the MPI-IO interface [34]. ROMIO is unique in that it 

implements an abstract I/O device (ADIO) layer that aids in porting ROMIO to new underlying 

I/O systems. The success of this design is evident in the number of systems for which ROMIO 
provides MPI-IO support, including HP, IBM, NEC, SGI, and Linux. 

In addition to merely mapping MPI-IO operations into the correct underlying operations, 

ROMIO implements two important optimizations that can be of great benefit in a number of 

scenarios. The first of these is data sieving [33], which allows ROMIO to take advantage of 

MPI-IO noncontiguous requests by accessing larger, contiguous regions containing desired 

data with single calls. Combining many small accesses into a single large one is a very 

effective optimization in many I/O systems. The second of these optimizations is a collective 

optimization termed two-phase I/O [32]. The goal of two-phase I/O is to more optimally 

access the disk. In collective operations, multiple processes often will read small adjoining 

regions from a single server. Two-phase I/O combines these adjoining accesses into a single 
access by a single process. Data for the access is then scattered (in the read case) or first 

gathered (in the write case) in order to attain the desired distribution. 

In Linux clusters ROMIO can be configured to operate on top of PVFS, providing applications 

using the MPI-IO interface direct access to PVFS file systems. This strategy allows 

applications to use this high-performance I/O option without constraining application 
programmers to using the PVFS interface. Chapter 10 includes details on using MPI-IO in 

applications. 

The MPI hints mechanism may be used to pass striping information to PVFS through the 

MPI-IO interface. Hints are passed by the "info" object that is an argument to 

MPI_File_open(). The following three keywords are valid for PVFS: 

striping_unit —  ssize value 

striping_factor —  pcount value 

start_iodevice —  base value 

When using ROMIO with PVFS, you must be aware of three important cases. First, if ROMIO 
was not compiled with PVFS support, it will access files only through the kernel-supported 

interface (i.e., a mounted PVFS file system). If PVFS support was compiled into ROMIO and 

you attempt to access a PVFS-mounted volume, the PVFS library will detect that these are 
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PVFS files (if the pvfstab file is correct) and use the library calls to avoid the kernel 

overhead. If PVFS support is compiled into ROMIO and you attempt to access a PVFS file for 
which there is no mounted volume, the file name must be prefixed with pvfs: to indicate that 

the file is a PVFS file; otherwise ROMIO will not be able to find the file. 

17.2.2 PVFS Utilities 

A few utilities are provided for dealing with PVFS files and file systems. 
Copying Files to PVFS. While the cp utility can copy files onto a PVFS file system, the user 

then loses control over the physical distribution of the file (the default is used). Instead, the 
u2p command supplied with PVFS can be used to copy an existing Unix file to a PVFS file 

system while specifying physical distribution parameters. The syntax for u2p is 

u2p -s <stripe size> -b <base> -n <# of nodes> <srcfile> <destfile> 
This function is most useful in converting pre-existing data files to PVFS so that they can be 
used in parallel programs. The u2p command relies on the existence of the /etc/pvfstab 

file to operate correctly. 
Examining PVFS File Distributions. The pvstat utility will print out the physical distribution 

parameters for a PVFS file. After earlier creating a file on our example PVFS file system, we 

see 

[root@head /root]# /usr/local/bin/pvstat /pvfs/foo 

/pvfs/foo: base = 0, pcount = 8, ssize = 65536 
The pvstat utility relies on the existence of the /etc/pvfstab file to operate correctly. 

Checking on Server Status.  The iod-ping utility can be used to determine whether a 

given I/O server is running: 

[root@head /root]# /usr/local/bin/iod-ping -h n1 -p 7000 

n1:7000 is responding. 

[root@head /root]# /usr/local/bin/iod-ping -h head -p 7000 

head:7000 is down. 

In this case, we have started the I/O server on n1, so it is up and running. We are not running 
an I/O server on the head, so it is reported as down. Likewise the mgr-ping utility can be 

used to check the status of metadata servers: 

[root@head /root]# /usr/local/bin/mgr-ping -h head -p 3000 

head:3000 is responding. 

[root@head /root]# /usr/local/bin/mgr-ping -h n1 -p 3000 

n1:3000 is down. 
The mgr is up and running on head, but we're not running one on n1. 

These two utilities also set their exit values appropriately for use with scripts; in other words, 
they set their exit value to 0 on success (responding) and 1 on failure (down). If no additional 
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parameters are specified, the program will automatically check for a server on localhost at 

the default port for the server type (7000 for I/O server, 3000 for metadata server). If the "-p" 

option is not specified, the default port is used. 
No fsck currently exists for PVFS, although arguably there should be one. 

 

17.3 Administering PVFS 
In this section we cover the specifics of administering PVFS, first building the PVFS 

components, then installing and configuring the servers, next installing and configuring client 
software, and finally starting things up and verifying that the system is operating. We continue 

to rely on the system described in Section 17.2 and shown in Figure 17.1 as an example.  

17.3.1 Building the PVFS Components 

The PVFS package has come a long way in the past few versions in terms of ease of 

compilation. The process is now fairly simple.  

Two tar files are needed for compiling PVFS: 

§ pvfs (e.g., pvfs-1.5.0.tgz) 
§ pvfs-kernel (e.g., pvfs-kernel-0.9.0.tgz) 

The first of these contains code for the PVFS servers and for the PVFS library. The second 
contains code specific to the Linux VFS support, which allows PVFS file systems to be 

mounted on Linux PCs. This code is not essential for using PVFS, but it makes accessing 

PVFS files much more convenient. 

Obtaining the Source.  PVFS is open source and is freely available on the Web. Currently 

there are two consistent sources for obtaining PVFS via the FTP protocol: 
§ ftp://ftp.parl.clemson.edu:/pub/pvfs/ 

§ ftp://mirror.chpc.utah.edu:/pub/pvfs/ (mirror site) 

Within one of these directories are the files pvfs-v1.tgz and pvfs-kernel-v2.tgz, 

where v1 and v2 are version numbers. These files are tar archives of the PVFS source that 

have subsequently been compressed with the gzip tool. You should download the latest 

versions of each; the version numbers of the two packages will not match each other. (At the 

time of writing, the newest version of the pvfs archive was 1.5.1, and the newest version of 

the pvfs-kernel archive was 0.9.1.) 

Untarring the Packages.  It is a bit easier to perform the compilations if both the archives are 
untarred in the same directory, since the pvfs -kernel source relies on include files from the 

pvfs source tree. In our example, we will untar into /usr/src/ on the head node:  

[root@head /root]# cp pvfs-1.5.0.tgz pvfs-kernel-0.9.0.tgz /usr/src 

[root@head /usr/src]# cd /usr/src 

[root@head /usr/src]# tar xzf pvfs-1.5.0.tgz 

[root@head /usr/src]# tar xzf pvfs-kernel -0.9.0.tgz 
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[root@head /usr/src]# ln -s pvfs-1.5.0 pvfs 

[root@head /usr/src]# ls -lF 

total 476 

lrwxrwxrwx   1 root   root       15 Dec 14 17:42 pvfs -> pvfs -1.5.0/ 

drwxr-xr-x  12 root   root      512 Dec 14 10:11 pvfs-1.5.0/ 

-rw-r--r--   1 root   root   371535 Dec 14 17:41 pvfs -1.5.0.tgz 

drwxr-xr-x   6 root   root     1024 Dec 14 10:10 pvfs-kernel-0.9.0/ 

-rw-r--r--   1 root   root   105511 Dec 14 17:41 pvfs -kernel -0.9.0.tgz 
The symbolic link allows the pvfs-kernel package easily to find the include files it needs. 

Once this is finished, the source is ready to be compiled.  

Compiling the Packages.  Next we will compile the two packages. We also will discuss how 

to install the packages on the local system; however, most users will wish to wait and 
distribute the files to the correct machines after compiling is complete. In the Section 17.3.2 

we discuss what components need to be where. 

First we will compile the pvfs package (leaving out the output): 

[root@head /usr/src]# cd pvfs 

[root@head /usr/src/pvfs-1.5.0]# ./configure 

[root@head /usr/src/pvfs-1.5.0]# make 

Then the components can be installed: 

[root@head /usr/src/pvfs-1.5.0]# make install  

The following are installed by default: 
§ mgr, iod in /usr/local/sbin/  

§ libpvfs.a in /usr/local/lib/  

§ include files in /usr/local/include/ 

§ test programs and utilities in /usr/local/bin/ 

§ man pages in /usr/local/man/ 

These installation directories can be changed via options to configure. See configure 

--help in the package source directory. 

The PVFS-kernel package will perform tests for features based on header files and the 
running kernel, so it is important that the desired the kernel be running and the matching 

header files available on the machine on which the compilation will take place. With the 

matching headers, compiling is easy. Again we omit the output of the compile process: 

[root@head /usr/src/pvfs-1.5.0]# cd ../pvfs-kernel-0.9.0 

[root@head /usr/src/pvfs-kernel-0.9.0]# ./configure \ 

--with-libpvfs-dir=../pvfs/lib 
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[root@head /usr/src/pvfs-kernel-0.9.0]# make 

The configure option here lets the package know where it can find the PVFS I/O library 
libpvfs.a, which is used by this package. The README and INSTALL files in the source 

directory contain hints for working around common compilation problems. 

Once these steps are complete, the kernel components can be installed:  

[root@head /usr/src/pvfs-kernel-0.9.0]# make install 

The following are installed by default: 
§ /usr/local/sbin/pvfsd 

§ /sbin/mount.pvfs 
The program mount.pvfs is put in that location because that is the only location the system 

utility mount will look in for a file system-specific executable; this is covered in more detail in 

Section 17.3.5. 
You must install pvfs.o in the right place. This is usually 

/lib/modules/<kernel-version>/misc/. 

17.3.2 Installation 

PVFS is a somewhat complicated package to get up and running. The reason is, in part, 

because it is a multicomponent system, but also because the configuration is a bit unintuitive. 

The purpose of this section is to shed light on the process of installing, configuring, starting, 

and using the PVFS system. 

It is important to have in mind the roles that machines (a.k.a. nodes) will play in the PVFS 

system. Remember that there are three potential roles that a machine might play: metadata 
server, I/O server, and client. A machine can fill one, two, or all of these roles simultaneously. 

Each role requires a specific set of binaries and configuration information. There will be one 

metadata server for the PVFS file system. There can be many I/O servers and clients. In this 

section we discuss the components and configuration files needed to fulfill each role. 

Again, we configure our example system so that the "head" node provides metadat a service, 
the eight other nodes provide I/O service, and all nodes can act as clients. 

For additional information on file system default values and other configuration options, see 
Section 17.3.4. 

Directories Used by PVFS. In addition to the roles that a machine may play, three types of 

directories are used in PVFS. A great deal of confusion seems to surround these, so before 

we begin our example installation we will attempt to dispel this confusion. The three types of 

directories are metadata directory, data directory, and mount point. 

There is a single metadata directory for a PVFS file system. It exists on the machine that is 

filling the role of the metadata server. In this directory information is stored describing the files 

stored on the PVFS file system, including the owner of files, the permissions, and the way the 

files are distributed across I/O servers. Additionally, two special files are stored in this 
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directory, .iodtab and .pvfsdir, which are used by the metadata server to find I/O 

servers and PVFS files. 

There is a data directory on each I/O server. This directory is used to store the data that 
makes up PVFS files. The data is stored in individual files in a subdirectory hierarchy. 

Finally there is a mount point on each client. This is an empty directory on which the PVFS file 
system is mounted and at which pvfstab files point (see Section 17.3.4). This empty 

directory is identical to any other mount point. 

Installing and Configuring the PVFS Servers.  Three files are necessary for a metadata 

server to operate:  
§ mgr executable 
§ .iodtab file 

§ .pvfsdir file 

The mgr executable is the daemon that provides metadata services in the PVFS system. It 

normally runs as root. It must be started before clients attempt to access the system. 

The .iodtab file contains an ordered list of IP addresses and ports for contacting I/O 
daemons (iods). Since this list is ordered, once it is created it must not be modified, because 

this can destroy the integrity of data stored on PVFS. 

The .pvfsdir file describes the permissions of the directory in which the metadata is stored. 

Both the .iodtab and .pvfsdir  files may be created with the mkmgrconf  script. In our 

example we will use the directory /pvfs-meta as our metadata directory. 

[root@head /usr/src/pvfs-kernel-0.9.0]# cd / 

[root@head /]# mkdir /pvfs-meta 

[root@head /]# cd /pvfs-meta 

 

[root@head /pvfs-meta]# /usr/local/bin/mkmgrconf 

This script will make the .iodtab and .pvfsdir files 

in the metadata directory of a PVFS file system. 

Enter the root directory: 

/pvfs-meta 

Enter the user id of directory: 

root 

Enter the group id of directory: 

root 

Enter the mode of the root directory: 

777 

Enter the hostname that will run the manager: 
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localhost 

Searching for host...success 

Enter the port number on the host for manager: 

(Port number 3000 is the default) 

3000 

Enter the I/O nodes:  (can use form node1, node2, ...  or 

nodename#-#,#,#) 

n1–8 

Searching for hosts...success 

I/O nodes:  n1 n2 n3 n4 n5 n6 n7 n8 

Enter the port number for the iods: 

(Port number 7000 is the default) 

7000 

Done! 

 

[root@head /pvfs-meta]# ls -al 

total 9 

drwxr-xr-x    2 root    root           82 Dec 17 15:01 ./ 

drwxr-xr-x   21 root    root          403 Dec 17 15:01 ../ 

-rwxr-xr-x    1 root    root           84 Dec 17 15:01 .iodtab* 

-rwxr-xr-x    1 root    root           43 Dec 17 15:01 .pvfsdir* 
The mkmgrconf script is installed with the rest of the utilities. 

I/O servers have their own executable and configuration file, distinct from client and metadata 
server files: 

§ iod executable 

§ iod.conf file 

The iod executable is the daemon that provides I/O ser vices in the PVFS system. It normally 

is started as root, after which time it changes its group and user to some nonsuperuser ids. 

These iods must be running in order for file I/O to take place.  

The iod.conf file describes the iod's environment. In particular it describes the location of 
the PVFS data directory on the machine and the user and group under which iod should run. 

There should be a comparable configuration file for the mgr, but there is not at this time. 

In our example we're going to run our I/O server as user nobody and group nobody, and 

we're going to have it store data in a directory called /pvfs-data (this could be a mount 
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point or a subdirectory and doesn't have to be this name). Lines that begin with a pound sign 

are comments. Here's our iod.conf file: 

# iod.conf file for example cluster 

datadir /pvfs-data 

user nobody 

group nobody  

We then create the data directory and change the owner, group, and permissions to protect 
the data from inappropriate access while allowing the iod to store and retrieve data. We'll do 

this on our first I/O server (n1) first: 

[root@n1 /]# cd / 

[root@n1 /]# mkdir /pvfs -data 

[root@n1 /]# chmod 700 /pvfs -data 

[root@n1 /]# chown nobody.nobody /pvfs-data 

[root@n1 /]# ls -ald /pvfs-data 

drwx------    2 nobody   nobody         35 Dec  1 09:41 /pvfs-data/  
This must be repeated on each I/O server. In our example case, the /etc/iod.conf file is 

exactly the same on each server, and we create the /pvfs-data directory in the same way 

as well. 

Installing and Configuring Clients.  Five files and one directory are necessary for a client to 

access PVFS file systems: 
§ pvfsd executable 

§ pvfs.o kernel module (compiled to match kernel) 

§ /dev/pvfsd device file 
§ mount.pvfs executable 

§ pvfstab file 

§ mount point 

As mentioned in Section 17.2.1 there are two approaches to client access: direct library 

access and kernel support. The first four items in the above list are specifically for kernel 
access and may be ignored if this method of access is not desired. 

The pvfsd executable is a daemon that performs network transfers on behalf of client 

programs. It is normally started as root. It must be running before a PVFS file system is 

mounted on the client. 

The pvfs.o kern el module registers the PVFS file system type with the Linux kernel, 

allowing PVFS files to be accessed with system calls. This is what allows existing programs 

to access PVFS files once a PVFS file system is mounted. 

The /dev/pvfsd device file is used as a point of communication between the pvfs.o 

kernel module and the pvfsd daemon. It must exist before the pvfsd is started. It need be 

created only once on each client machine. 
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The mount.pvfs executable is used by mount to perform the PVFS-specific mount process. 

Alternatively it can be used in a standalone manner to mount a PVFS file system directly. This 

will be covered in Section 17.3.3. 
The pvfstab file provides an fstab-like entry that describes to applications using the PVFS 

libraries how to access PVFS file systems. This is not needed by the kernel client code. It is 
used only if code is directly or indirectly linked to libpvfs. This includes using the ROMIO 

MPI-IO interface. 

The mount point, as mentioned earlier, is just an empty directory. In our example we are 
placing our mount point in the root directory so that we can mount our PVFS file system to 

/pvfs. We then create the PVFS device file. The mknod program is used to create device 

files, which are special files used as interfaces to system resources. The mknod program 

takes four parameters: a name for the device, a type ("c" for character special file in our case), 

and a major and minor number. We have somewhat arbitrarily chosen 60 for our major 
number for now. 

We'll do this first on the head machine: 

[root@head /]# mkdir /pvfs 

[root@head /]# ls -ald /pvfs 

drwxr-xr-x    2 root    root           35 Dec  1 09:37 /pvfs/ 

[root@head /]# mknod /dev/pvfsd c 60 0 

[root@head /]# ls -l /dev/pvfsd 

crw-r--r--    1 root    root      60,   0 Dec  1 09:45 /dev/pvfsd 
If one is using the devfs system, it is not necessary to create the /dev/pvfsd file, but it will 

not hurt to do so. 

In our example system we are going to use the PVFS libraries on our nodes, so we will also 
create the pvfstab file using vi or emacs. It's important that users be able to read this file. 

Here's what it looks like: 

[root@head /]# chmod 644 /etc/pvfstab 

[root@head /]# ls -al /et c/pvfstab 

-rw-r--r--    1 root    root           46 Dec 17 15:19 /etc/pvfstab 

[root@head /]# cat /etc/pvfstab 

head:/pvfs-meta  /pvfs  pvfs  port=3000  0  0 

This process must be repeated on each node that will be a PVFS client. In our example we 
would need to copy out these files to each node and create the mount point. 

Installing PVFS Development Components.  A few components should also be installed if 
applications are going to be compiled for PVFS: 

§ libpvfs.a library 
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§ include files 

§ man pages 

§ pvfstab file 
The libpvfs.a library and include files are used when compiling programs to access the 

PVFS system directly (what we term "native access"). The man pages are useful for 
reference. The pvfstab file was described in the preceding section; it is necessary for 

applications to access PVFS file systems without going through the kernel. 

In our example we expect to compile some programs that use native PVFS access on our 
"head" node. By performing a make install  in the PVFS source on the head, everything is 

automatically installed. 

Configuring ROMIO to Use PVFS. In order for ROMIO to access PVFS files most optimally, 

it must be configured with PVFS support. Since ROMIO is typically installed as part of the 

MPICH package, a full coverage of the configuration, compilation, and installation process is 
outside the scope of this section. One should instead reference Section 9.6.1 for this 

information. 

In short, when compiling ROMIO either as a standalone package or as part of MPICH, two 
important additional flags must be provided: 

§ -file system=pvfs+ufs+nfs 

§ -lib=/usr/local/lib/libpvfs.a 

The first of these specifies that ROMIO support regular Unix files, PVFS files, and NFS files. 
The second indicates the location of the PVFS library for linking to the ROMIO package. 

17.3.3 Startup and Shutdown 

At this point all the binaries and configuration files should be in place. Now we will start up the 
PVFS file system and verify that it is working. First we will start the server daemons. Then we 

will initialize the client software and mount the PVFS file system. Next we will create some 

files to show that things are working. Following this we will discuss unmounting file systems. 

Finally we will discuss shutting down the components. 

Starting PVFS Servers.  First we need to get the servers running. It doesn't matter what order 

we start them in as long as they are all running before we start accessing the system. 

Going back to our example, we'll start the metadata server daemon first. It stores its log file in 
/tmp/ by default: 

[root@head /root]# /usr/local/sbin/mgr 

[root@head /root]# ls -l /tmp 

total 5 

-rwxr-xr-x    1 root   root            0 Dec 18 18:22 mgrlog.MupejR 
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The characters at the end of the log fi lename are there to ensure a unique name. A new file 

will be created each time the server is started. 

Next we start the I/O server daemon on each of our I/O server nodes: 

[root@n1 /root]# /usr/local/sbin/iod 

[root@n1 /root]# ls -l /tmp 

total 5 

-rwxr-xr-x    1 root   root           82 Dec 18 18:28 iolog.n2MjK4 

This process must be repeated on each node. 
Getting a Client Connected. With the servers started, we can now start up the client-side 

components. First we load the module, then we start the client daemon pvfsd, and then we 

mount the file system: 

[root@head /root]# insmod pvfs.o 

[root@head /root]# lsmod 

Module                  Size  Used by 

pvfs                   32816   0  (unused) 

eepro100               17104   1  (autoclean) 

[root@head /root]# /usr/local/sbin/pvfsd 

[root@head /root]# ls -l /tmp 

total 7 

-rwxr-xr-x    1 root   root           0 Dec 18 18:22 mgrlog.MupejR 

-rwxr-xr-x    1 root   root         102 Dec 18 18:22 pvfsdlog.Wt0w7g 

[root@head /root]# /sbin/mount.pvfs head:/pvfs-meta /pvfs 

[root@head /root]# ls -al /pvfs 

total 1 

drwxrwxrwx    1 root   root          82 Dec 18 18:33 ./ 

drwxr-xr-x   20 root   root         378 Dec 17 15:01 ../ 

[root@head /root]# df -h /pvfs  

Filesystem            Size  Used Avail Use% Mounted on 

head:/pvfs-meta       808M   44M  764M   5% /pvfs 
Now we should be able to access the file system. As an aside, we note that the -h option to 

df simply prints things in more human-readable form. 

Checking Things Out.  Let's create a couple of files: 

[root@head /root]# cp /etc/pvfstab /pvfs/ 
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[root@head /root]# dd if=/dev/zero of=/pvfs/zeros bs=1M count=10 

[root@head /root]# ls -l /pvfs 

total 10240 

-rw-r--r--    1 root    root           46 Dec 18 18:41 pvfstab 

-rw-r--r--    1 root    root     10485760 Dec 18 18:41 zeros 

[root@head /root]# cat /pvfs/pvfstab 

head:/pvfs-meta  /pvfs  pvfs  port=3000  0  0 

Everything looks good. Now we must repeat this on the other nodes so that they can access 
the file system as well. 

Unmounting File Systems and Shutting Down Components.  As with any other fi le system 

type, if a client is not accessing files on a PVFS file system, you can simply unmount it: 

[root@head /root]# umount /pvfs 

[root@head /root]# ls -al /pvfs 

total 1 

drwxrwxrwx    1 root    root          82 Dec 18 18:33 ./ 

drwxr-xr-x   20 root    root         378 Dec 17 15:01 ../ 

You could then remount to the same mount point or some other mount point. It is not 
necessary to restart the pvfsd daemon or reload the pvfs.o module in order to change 

mounts. 

For clean shutdown, all clients should unmount PVFS file systems before the servers are shut 
down. The preferred order of shutdown is as follows: 

§ unmount PVFS file systems on clients 
§ stop pvfsd daemons using kill or killall 

§ unload pvfs.o module using rmmod 

§ stop mgr daemon using kill or killall 

§ stop iod daemons using kill or killall 

17.3.4 Configuration Details 

As the preceding discussion suggests, the current PVFS configuration system is a bit 

complex. Here we try to shed more light on configuration file formats, file system defaults, and 
other options. This information is all supplementary, but it might be useful in the event of an 

error. 
The .pvfsdir and .iodtab Files.  In Section 17.3.2, we discussed the creation of both 

the .pvfsdir and the .iodtab files. In this section we cover the details of the file formats. 

The .pvfsdir file holds information for the metadata server for the file system. 
The .iodtab file holds a list of the I/O daemon locations and port numbers that make up the 



 421 

file system. Both of these files can be created by using the mkmgrconf script, whose use is 

also described in Section 17.3.2. 
The .pvfsdir file is in text format and includes the following information in this order, with 

an entry on each line: 

§ inode number of the directory in which the .pvfsdir resides  

§ userid for the directory 

§ groupid for the directory  

§ permissions for the directory 
§ port number for metadata server 

§ hostname for the metadata server 

§ metadata directory name 
§ name of this subdirectory (for the .pvfsdir file in the metadata directory this 

will be "/") 
Here's a sample .pvfsdir file that might have been produced for our example file system: 

116314 

0 

0 

0040775 

3000 

head 

/pvfs-meta 

/ 
This file would reside in the metadata directory, which in our example case is /pvfs-meta. 

There will be a .pvfsdir file in each subdirectory under this as well. The metadata server 

will automatically create these new files when subdirectories are created.  

The .iodtab file is also created by the system administrator. It consists simply of an ordered 

list of hosts (or IP addresses) and optional port numbers. Lines beginning with # are 

comments and are ignored by the system. It is stored in the metadata directory of the PVFS 

file system. 
An example of a .iodtab file is as follows: 

# example .iodtab file using IP addresses and explicit ports 

192.168.0.1:7000 

192.168.0.2:7000 

192.168.0.3:7000 

192.168.0.4:7000 

192.168.0.5:7000 

192.168.0.6:7000 



 422 

192.168.0.7:7000 

192.168.0.8:7000 

Another example, assuming the default port (7000) and using hostnames (as in our example 

system), is the following: 

# example .iodtab file using hostnames and default port (7000) 

n1 

n2 

n3 

n4 

n5 

n6 

n7 

n8 
Manually creating .iodtab files, especially for large systems, is encouraged. However, once 

files are stored on a PVFS file system, it is no longer safe to modify this file. 
iod.conf Files. The iod will look  for an optional configuration file named iod.conf in the 

/etc directory when it is started. This file can specify a number of configuration parameters 

for the I/O daemon, including changing the data directory, the user and group under which the 

I/O daemon runs, and the port on which the I/O daemons operate. 

Every line consists of two fields: a key field and a value field. These two fields are separated 
by one or more spaces or tabs. The key field specifies a configuration parameter whose value 

should be changed. The key is followed by this new value. Lines starting with a pound sign 
and empty lines are ignored. Keys are case insensitive. If the same key is used again, it will 

override the first instance. The valid keys are as follows: 

port —  specifies the port on which the iod should accept requests. Default is 7000. 

user —  specifies the user under which the iod should run. Default is nobody. 

group —  specifies the group under which the iod should run. Default is nobody. 
rootdir —  gives the directory the iod should use as its rootdir. The iod uses 

chroot(2) to change to this directory before accessing files. Default is /. 

logdir —  gives the directory in which the iod should write log files. Default is /tmp. 

datadir —  gives the directory the iod should use as its data directory. The iod uses 

chdir(2) to change to this directory after changing the root directory. Default is 

/pvfs_data. 

debug —  sets the debugging level; currently zero means don't log debug info and nonzero 

means do log debug info. This is useful mainly for helping find bugs in PVFS. 

The rootdir keyword allows you to create a chroot jail for the iod. Here is a list of the steps 

the iod takes on startup: 
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1. read iod.conf 

2. open log file in logdir 

3. chroot() to rootdir 
4. chdir() to datadir 

5. setuid() and setgid() 

The log file is always opened with the entire file system visible, while the datadir is changed 
into after the chroot()  call. In almost all cases this option should be left as the default value. 

Here is an example iod.conf file that could have been used for our example system: 

# IOD Configuration file, iod.conf 

 

port 7000 

user nobody 

group nobody  

rootdir / 

datadir /pvfs-data 

logdir /tmp 

debug 0 
An alternative location for the iod.conf  file may be specified by passing the filename as the 

first parameter on the command line to iod. Thus, running "iod" is equivalent to running 

"iod /etc/iod.conf". 

pvfstab Files.  When the client library is used, it will search for a /etc/pvfstab file in 

order to discover the local directories for PVFS files and the locations of the metadata server 

responsible for each of these file systems. The format of this file is the same as that of the 

fstab file: 

head:/pvfs-meta  /pvfs  pvfs  port=3000  0  0 
Here we have specified that the metadata server is called head, that the directory the server 
is storing metadata in is /pvfs-meta, that this PVFS file system should be considered as 

"mounted" on the mount point /pvfs on the client (local) system, and that the TCP port on 

which the server is listening is 3000. The third field (the file system type) should be set to 

"pvfs" and the last two fields to 0. The fourth field is for options; the only valid option at this 

time is port. 

It is occasionally convenient to be able to specify an alternative location for the information in 

this file. For example, if you want to use PVFS calls but cannot create a file in /etc, you 

might instead want to store the file in your home directory. 
The PVFSTAB_FILE environment variable may be set before running a program to specify 

another location for the pvfstab file. In a parallel processing environment it may be 

necessary to define the variable in a .cshrc, .bashrc, or .login file to ensure that all 

tasks get the correct value. 
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Compile-Time Options.  The majority of file system configuration values are defined in 

pvfs_config.h in the PVFS distribution. You can modify these values and recompile in 

order to obtain new default parameters such as ports, directories, and data distributions. Here 
are some of the more important ones: 

__ALWAYS_CONN__ —  if defined, all connections to all I/O servers will be established 

immediately when a file is opened. This is poor use of resources but makes performance 

more consistent. 

PVFSTAB_PATH —  default path to pvfstab file. 
PVFS_SUPER_MAGIC —  magic number for PVFS file systems returned by statfs(). 

CLIENT_SOCKET_BUFFER_SIZE —  send and receive size used by clients. 

MGR_REQ_PORT —  manager request port. This should be an option to the manager, but it 

isn't at the moment. 

DEFAULT_SSIZE —  default strip size. 
__RANDOM_BASE__ —  if defined, the manager will pick a random base number (starting I/O 

server) for each new file. This can help with disk utilization. There is also a manager 

command line parameter to enable this. 
Additionally a --with-log-dir option to configure has recently been added to the PVFS 

package. This option specifies a new subdirectory in which to place log files. It has the side 

effect of turning off the use of unique strings on the end of log file names, making it easier to 

manage the log files. 

17.3.5 Miscellanea 
This section contains some notes on options to the mgr and on using mount with PVFS. 

Currently the only important option to mgr is "-r", which enables random selection of base 

nodes for new PVFS files. The mgr by default logs a message any time a file is opened. Here 

is an example: 

i 2580, b 0, p 4, s 65536, n 1, /pvfs -meta/foo 

The fields printed are as follows: 
i —  inode number/handle 

b —  base node number 
p —  pcount 

s —  strip size 

n —  number of processes which have this file open 

Finally the name of the metadata file is listed. This information is particularly helpful when 

debugging applications using parallel I/O. 
We mentioned earlier that the mount.pvfs program is used to mount PVFS file systems. 

This is a little bit different from most file systems, in that usually the mount program can be 
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used to mount any kind of file system. Some versions of the Linux mount, which is distributed 

as part of the util-linux package, will automatically look in /sbin for an external file 

system-specific mount program to use for a given file system type. At the time of writing all 
versions later than 2.10f seem to have this feature enabled. If this is enabled, then mount will 

automatically call /sbin/mount.pvfs when a PVFS file system mount is attempted. Using 

our example, we have 

[root@head /root]# /sbin/mount -t pvfs head:/pvfs-meta /pvfs 
If this works, then the administrator can also add entries into /etc/fstab for PVFS file 

systems. However, it is important to remember that the module must be loaded, the pvfsd 

daemon must be running, and the server daemons must be running on remote systems 

before a PVFS file system can be mounted. 

 

17.4 Final Words 

PVFS is an ever-developing system. As the system evolves, it's fairly likely that 

documentation updates will trail software development. 

The PVFS development team is open to suggestions and contributions to the project. We are 

especially interested in scripts and tools that people develop to make managing PVFS easier. 

Users who have developed utilities to help manage their system are encouraged to contact us. 

We'll try to include such programs into the next PVFS release.  
Lots of development is taking place in PVFS, particularly to help handle issues such as 

redundancy, more interesting data distributions, and the use of zero-copy network protocols 

(described in Chapter 6). For the newest information on PVFS, check the Web site: 
www.parl.clemson.edu/pvfs. 
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Chapter 18: Chiba City— The Argonne Scalable 

Cluster 

Overview 
Remy Evard 

With 256 dual-CPU computing nodes, Chiba City is the largest cluster in the Argonne 

scalable clusters project. 

Chiba City was designed with a unique purpose in mind: to support scalable computer 
science and the development of scalable systems software. We believe that advances in the 

state of system software for high-performance computing are critical in order to improve the 

performance and reliability of high -end machines. Yet the developers and researchers who 

will bring about those advances often find it very difficult to gain access to the largest systems 
because those computers are dedicated to running large code. With the advent of commodity 

clusters, the solution to this problem became clear: using relatively inexpensive parts, it was 

now possible to build a system that could be used to support activities that required 

development and testing at large scale without the usual large price tag. This was the basis of 

the idea for Chiba City. 

In addition, Chiba City was built to support a wide range of parallel computational science 

applications. In the Mathematics and Computer Science (MCS) Division of Argonne National 
Laboratory, we collaborate with hundreds of researchers around the world who use our 

computing facilities in partnership with the scientists in our division. Chiba City was meant to 

be used by these scientists in order to tackle real scientific problems while they 

simultaneously worked with computer scientists to expand the scope of problem that they 

could address. 

In essence, Chiba City is intended to support two distinct goals that are occasionally in 

conflict: scalable computer science research, which needs a dynamic and interactive testbed, 
and computational science, which has historically used stable, batch-oriented systems. We 

believe that Chiba City has achieved a comfortable balance between these two worlds and 

has helped promote good science in both. 

The difference in requirements between experimentation and classic production computing 
has kept us— Chiba City's designers and administrators— living in two worlds at once, trying 

to keep the cluster both stable and interesting. We hope that this case study will achieve both 

goals as well. 
 

18.1 Chiba City Configuration 
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In this section, we describe the configuration of the cluster from multiple perspectives. We 

cover not only what has gone into the cluster but why it is there and how it is used. 

18.1.1 Node Configuration 

Chiba City includes the following computing components (see Figure 18.1): 

§ 256 computing nodes 

§ 32 visualization nodes 

§ 8 storage nodes 

§ 18 management nodes 

 
Figure 18.1: Chiba City schematic. 

Computing Nodes.  The 256 computing nodes are the workhorse portion of the cluster. 

These are the primary nodes that run the user's programs. 

CPU. Each computing node has two 550 MHz Pentium III CPUs. This lets us play the game 

of sometimes referring to the system as a "512-CPU computer" rather than a "256-node 

computer." (Of course, some people actually include every CPU on the system when they 

count, not just the ones available to the users. In Chiba's case, this would be 574 CPUs, not 

including the CPUs in the networking equipment.) 

One of the more hotly debated issue throughout the design phase of Chiba was the question 

of how many CPUs each node should have. From a pure performance viewpoint, it makes the 

most sense to have only one CPU per system, for several reasons. First, the memory 

bandwidth on Pentium IIIs is quite limited; thus one CPU alone can easily saturate the 

memory bus, making any more than the first one potentially useless. Second, in order to most 

efficiently use all of the CPUs in the system with an MPI job, the communication between 

processes must use both network and shared-memory communication, which is difficult. 

Third, at the time of the installation, Linux didn't run on more than one CPU particularly well. 
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On the other hand, from a price/performance perspective, it makes much more sense to have 

multiple CPUs on each node— and in fact, four would have been better than two from this 

viewpoint. It's typically cheaper to buy a dual-CPU system than to buy two of the same 
system, each with only one CPU. Furthermore, it's far cheaper to install a network for 256 

nodes than for 512 nodes. (On the other hand, if the network is the bottleneck, then some 

people who use multi-CPU systems end up installing two or more network interfaces per 

computer.) 

On Chiba City, we decided to go with dual-CPUs for flexibility. We wanted to be able to 

support experiments and development on both types of MPI programming. Those wishing to 

go for maximal node performance could ignore the second CPU. Alternatively, those wishing 
to use or experiment with mixed-mode MPI programming would have that option as well. 

In retrospect, this is exactly what has happened. Some users find that their code is more 

efficient if they use only one processor. Others find that two processors work well for them. 

And developers have needed access to both types of configurations. 

Computing Node Memory. Each computing node has 512 megabytes of RAM. We felt that 

this was a minimum for dual CPUs at the time. We do occasionally see applications run out of 

free memory and start swapping, particularly when using both CPUs, but in general this has 
proven to be sufficient. 

Computing Node Footprint. The nodes themselves are 2U units. (Equipment that can be 

housed in computer racks is measured in the unit U, where 1U is 1.75 inches. A standard 

rack is 42U.) We went with these because they were the smallest system we could find at the 

time. In fact, the size of the units was a major driver: one of the initial proposals we received 
from vendors had 3U and 5U units, which would essentially doubled the floor space required 

for the cluster. We simply didn't have that much space in our machine room. 

Ironically, 1U Pentium systems hit the market a few months after we installed Chiba City. We 

knew they were likely be available around then, but renegotiating the cluster purchase to 

have 1Us was simply not an option. 

Computing Node Disks. Some cluster builders include disks in all nodes. Others go 

completely diskless. Diskless nodes have a number of advantages in a cluster. First, it's a 
little easier to configure the operating systems on the nodes when they're diskless, because 

those configurations are stored on management nodes. (This advantage can be negated if 

adequate configuration tools are used to manage diskful nodes.) Also, disks tend to break. If 

the nodes don't have disks, that's one less thing on each node that may require service. On 

large clusters, it's a good idea to eliminate any situation that involves touching the nodes. 

On Chiba City, we have 9 gigabyte hard drives on each node. We decided to install disks in 

each node for maximum flexibility. Some applications that the scientists run make extensive 
use of local disk. We also anticipated that system-software experiments or alternative 

operating systems might need to use the local disk. It has turned out that, for us, this was the 
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right choice. Many, many uses of the system rely on or take advantage of the local disk. And 

while we do occasionally have drives that fail, this has been much less of an issue than many 

other hardware components, particularly the fans. 
Other Computing Node Hardware. In addition to the CPUs, the RAM, and the hard drive, 

each computing node has 

§ one 32-bit PCI slot that is used for a Myrinet card, 

§ a 10/100 Ethernet port on the motherboard, 

§ a floppy drive (because that was included), and 
§ serial, parallel, keyboard, and the other usual PC ports. 

Computing Node Connections. Looking at the back of a node can be instructive. Each 

connection plugs into another component of the cluster, all of which are described in detail in 

following sections of this chapter. 

§ The Myrinet card is a part of the Myrinet network. Each node has one fairly 
large Myrinet cable that runs under the floor to a Myrinet Clos64 switch. 

§ The Ethernet port is used for to connect to the Ethernet network. Each node 

connects to an Ethernet switch in its rack or in a neighboring rack. 

§ The serial port that Linux uses as the console plugs into a serial concentrator 

in the rack, which enables remote access to all of the consoles. 

§ The "management" serial port on each node plugs into a separate serial 

concentrator, to be used for low-level hardware and management. This is a 

motherboard-specific management interface, and we've never needed to use 

it. 

§ The power cable runs to a Baytech power control unit that allows us to 
remotely monitor and control the power to each node. 

§ The keyboard and video ports are left vacant. In rare situations, such as 

hardware diagnosis or BIOS upgrades, we may plug a keyboard and monitor 

into them. In an ideal world, we would never use these at all. Other clusters 

built since Chiba use daisy-chain mechanisms to allow somewhat remote 
access to the keyboard and video.  

Visualization Nodes. The 32 visualization nodes are used by computer scientists for 

research into cluster-based image synthesis and computer graphics. They are sometimes 

used as their own independent 32-node cluster and sometimes used in conjunction with the 

computing nodes as part of one large program. 

The primary feature of the visualization nodes is that they include high-end video cards that 

can be used for graphics and image synthesis. Ideally, these cards can be used in two ways: 
§ Simply as video cards. In our environment, we have a remote console 

infrastructure for graphics systems that allows us to connect the display port 

of graphics systems located in one spot to display systems located in a 

laboratory. This means that the visualization nodes can be housed in the 



 430 

machine room and still be used to drive the CAVE or our 15-projector 

Powerwall, both of which are in other rooms. 

§ As pipelines for generating images. 

The world of commodity PC graphics cards is still far more focused on the first application 

than the second, so we end up using the nodes more as drivers for high-end display devices 

than as graphics computing engines. 

These video cards typically require an AGP slot. The requirement for the AGP slot drives 
every other detail of the visualization nodes. For example, computers with AGP slots are 

usually desktop systems or workstations rather than servers. Our visualization nodes are 

workstation-style systems that don't fit into racks well and are actually kept on shelves. The 

systems that were available at the time we purchased Chiba City were 550 MHz Pentium III 

systems configured with 13 GBytes of disk and 384 MBytes of RAM. We manage them the 

same way that we do the compute nodes, including remote serial and power control. 

The video cards were originally Matrox Millenium 32 MBytes G400Max cards. Since installing 
Chiba City, we've upgraded the video cards to NVidea GEFORCE3 cards. 

Storage Nodes.  The eight storage nodes are not accessed directly by most of the users of 

Chiba City. Instead, they provide file system service to the computing nodes, as described in 

Section 18.3.1. 

Each storage node has a 500 MHz Xeon, 512 MBytes of RAM, and, most important, 300 
Gbytes of SCSI-attached disk. So, in aggregate, the storage nodes provide 2.4 TBytes of raw 

disk space to the computing nodes. 

The storage nodes are a part of the Myrinet network. In some cases, cluster builders will 

choose to put their storage nodes exclusively on the Ethernet network. This choice is 
primarily an issue of performance versus cost. With an even order of two number of 

computing nodes (i.e., 64, 128, 256, etc.), one can often build an interconnect network with a 

lot less hardware than would be required for those same compute nodes plus a few storage 

nodes. The difference may be negligible or may be substantial. In our case, getting the 

storage nodes onto the Myrinet meant that we needed to purchase several additional Myrinet 
switches. Because I/O performance and experiments are important to our user community, 

we felt the cost was worth it. 

The storage nodes interface with the rest of the cluster in the same way that the rest of nodes 
on the cluster do. In addition to being available over Myrinet, they're also on the Ethernet. 

They also have remote power and console control. 

Under normal conditions users don't have direct access to the storage nodes. However, 
scientists working on a project specifically related to I/O research may have access to the I/O 
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servers. In this case, it's possible that their programs will run simultaneously on both the 

compute nodes and the storage nodes. 

Management Nodes and Servers.  The nodes used for cluster management come in several 
different flavors: 

§ 12 systems used as the cluster "mayors," or monitor systems 

§ 4 front ends 

§ 2 file servers  

The mayors provide a scalable management mechanism, which is described in greater detail 
in Section 18.1.2. 

Mayor systems: Every set of 32 computers in the cluster is associated with a computer, 

called their "mayor," that monitors and manages them. The mayors are never used as part of 

any computation or experiment running on the cluster but are instead used to configure the 

cluster for that experiment and recover from any problems it might cause. Each mayor is 
system with a single 550 MHz Pentium III, 512 MBytes of RAM, 10/100 Ethernet, Gigabit 

Ethernet, and 200 GBytes of SCSI disk. Two of the mayor units have special functions. One 

serves as the "city mayor" and is used to control the other mayors. The other runs the 

scheduler for the cluster. 

Front ends:  Chiba City was originally configured with four front ends: systems that users 

could login to in order to build their programs and launch them onto the compute nodes. 

Since these systems are identical to the compute nodes, the users' build environment would 

be the same as program's execution environment. In practice we found that two front ends 

was sufficient, and we have used the other two nodes as test systems. 

File servers: The two file servers provide file systems via NFS to the login nodes and to the 
mayors. They house all of the user's home file systems and all of the configuration files 

(kernels, RPMs, config files, and so on) for the nodes. They do not export file systems directly 

to the nodes — that's the job of the storage nodes. The file servers have exactly the same 

hardware configuration as the storage nodes. Each has 500 GBytes of disk. 

Nodes We Missed. After a few years of running the cluster, we've concluded that the 
configuration that we put together is almost correct, but we missed a few pieces. 

First, we could use more test systems. Linux kernels, file systems, system software, and 
applications all change rapidly. Having between four and eight test machines for testing 

individual pieces of code and cluster functions would be extremely helpful. At present, we 

usually allocate some of the compute nodes in order to test new software. This procedure 

works okay, but since it reduces the pool of compute nodes the users can access, it tends to 

be a short-term solution.  

Second, we could use a few spare nodes. We always seem to have a small handful of nodes 

with hardware problems, which makes it difficult to reliably be able to run jobs on all 256 
nodes. We would like to have a pool of spare nodes that we would swap in for a node with 

broken hardware. Then, once that node was repaired, it would go into the pool of spare nodes. 

Four spare nodes would probably cover most situations. 
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We actually considered both of these in the original plan, but for financial reasons they were 

removed. It's difficult to justify between eight and twelve computers that aren't really being 

used most of the time. 

18.1.2 Logical Configuration 

Chiba City is conceptually divided into cluster building units which we call "towns." In our 
definition, a town consists of a set of computers and a single "mayor" node that manages 

them. For example, each of the eight towns of computing nodes in Chiba City includes one 

mayor and thirty-two computing nodes. 

In Chiba City, there are eleven towns: 

§ 8 computing towns, each with 32 computing nodes 
§ 1 visualization town of 32 visualization nodes 

§ 1 storage town with the 8 storage nodes  

§ 1 server/mayor town with the 10 mayors, login nodes, and file servers 

The towns are a mechanism to allow scalable management (see Figure 18.2). From a 

systems administration perspective, we would like to be able to completely manage every 
node in a town by interacting with its mayor. So, in order to manage the 256 computing nodes 

in Chiba, one merely needs to manage the 8 mayors of those computing nodes. To 

accomplish this, the mayor provides boot service, operating system configuration, console 

management, and file services to each of the other nodes in its town. It monitors those nodes 

to make sure that they're running correctly. The mayor performs management functions only 

and never participates in the computing activity of the nodes, so the users of the cluster never 

work with the mayors directly. 
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Figure 18.2: A Chiba City town. 

In most cases on Chiba City, each mayor monitors 32 nodes. In a few cases, such as the 
storage town, there are fewer nodes in the town. We chose 32 clients for a number of 

reasons: 

§ Our tests indicated that NFS performed reasonably with 32 clients. Thus, 

NFS would be an option within a town if we so chose. 

§ In a 1024-node cluster, there would be 32 towns of 32 nodes. 

§ The hardware for a 32-node town fit nearly perfectly into two racks. 

The town relationship is hierarchical. A collection of mayors can be managed by a 
higher-level mayor in the same way that a collection of nodes is managed by a mayor. In 

Chiba City, we have one node, which we refer to as the City Mayor, that is responsible for 

managing each of the mayors. This gives us a single point of control from which the entire 

cluster can be managed. 

The concept of building the larger system out of smaller replicated systems, each with their 
own server, wasn't a new one. Beyond being a classic computer science technique, it was 

used to some degree in the IBM SP, has been a standard approach for years in the systems 

administration community, and was demonstrated on clusters by the Sandia National 

Laboratories CPlant project. 
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We've made a number of observations about the mayor/town concept while operating the 

cluster:  

§ The mayor concept has proven its worth over and over. We could not manage 
the cluster without some sort of hierarchical approach. 

§ Some network services already have scalability mechanisms built in, or scale 

to the size of the cluster. The Dynamic Host Configuration Protocol (DHCP) is 

one of these. Breaking these down so that it runs on each mayor and 

supports only the local town isn't worth the time. In other words, some 
services for the cluster can and should be global. 

§ The ratio of clients to mayor is highly dependent on what those clients are 

doing. With 32 nodes, we're comfortable supporting network booting and 

remote operating system installation. If we were also supporting high-capacity 

file systems or other services, we might need to scale down. On the other 
hand, if every node was largely independent except for monitoring and time 

service, for example, then we could probably shift to 64 nodes per mayor. 

We have often been asked why we call the building blocks "towns." In the early design 
phases of Chiba City, we talked to a lot of people in a lot of companies who had never heard 

of clusters before. We had trouble explaining that we wanted to build the cluster out of these 

subclusters that had a monitoring agent, so we started to call them "towns" as a part of the 

city metaphor. This explanation helped quite a bit even though, of course, real cities aren't 
made up of towns that look identical— they're made up of neighborhoods that are usually very 

different. But the metaphor helped explain the concept, and the name stuck. 

18.1.3 Network Configuration 

Chiba City has two types of networks— Myrinet and Ethernet. In this section, we describe their 

configuration and their use. 

Myrinet. The Myrinet network is used to support high-speed communication between nodes 

as part of a user's program, usually related to computation or I/O. 

On Chiba City, a high-performance network is essential. Many of the jobs that run on the 
cluster are bound by the performance of the network: the faster the network, the better the 

performance of their code. Also, a lot of the computer science research on Chiba is related to 

communication. 

We chose to use Myrinet, a product of Myricom, because it was the most cost-effective 
high-performance networking solution on the market at the time we purchased the cluster. 

Myrinet has a number of nice characteristics. It can deliver a full bisection bandwith network 

between all of the nodes of a cluster. The network cards that we installed can support a 

theoretical 1.28 Gbps transfer rate, with latencies from process to process in the 10–15 

microsecond range. 
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The specific Myrinet hardware on Chiba City includes 4 Myrinet spine switches, 5 CLOS-64 

switches, and 320 Lanai 7.2 NICs. The hosts that usually participate on the Myrinet network 

include the computing nodes, the visualization nodes, the storage nodes, and the login nodes. 
In other words, everything except the management nodes and the file servers is typically on 

Myrinet. At different times over the life of the cluster, we have connected the file servers and 

mayors to support experiments. 

It is possible to run IP over Myrinet, and we do. From an IP standpoint, the Myrinet network is 
a flat IP subnet and is not accessible from outside of the cluster. 

Ethernet. The Ethernet network is used for everything that the Myrinet network isn't. For the 

most part, this means management functions, remote access, and a fallback communications 
network for applications if the Myrinet network isn't available. 

Figure 18.3 is a diagram of the Ethernet network, which is arranged in a simple tree structure. 

Each computing, visualization, and storage node is connected via Fast Ethernet to an 

Ethernet switch near that node. There are 10 Cisco Catalyst 4000s distributed around the 

cluster, each connecting approximately 32 nodes. 

 

Figure 18.3: The Chiba City Ethernet. 

A central Gigabit Ethernet switch, a Cisco Catalyst 6509, is connected to each of the Catalyst 

4000s with two channel bonded Gigabit Ethernet links. The remaining computers— the front 
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end nodes, the file servers, and the mayors— all connect directly to the Catalyst 6509. Also, 

Chiba City's link to the outside world comes in through the Catalyst 6509.  

In essence, Chiba City has a completely switched Ethernet. The IP network layered on top of 
this Ethernet is one flat subnet with no routing. Every node in the cluster is at most three 

Ethernet switch hops away from every other node.  

18.1.4 Physical Configuration 

The physical layout of a cluster is particularly important space is limited, as is the case for us. 

Chiba City occupies twenty-seven standard 19-inch racks arranged into two rows (see Figure 
18.4). The racks include: 

§ 16 racks of computing nodes. Each computing town fits precisely into two 

racks. This include the 32 compute nodes, the mayor and its disk, the serial 

and power management systems, and the Ethernet switch for the town. 

§ 4 racks of storage nodes. The storage nodes and their associated disk each 

take up half of a rack. 

§ 2 double-layer shelving units for the visualization nodes. Because of cable 

length limits for the video systems, these are located in another part of our 

machine room from the rest of Chiba City. 

§ 3 racks for the Myrinet switches. These racks have the heaviest cable density 

in Chiba, because every node has a cable that runs to some port in these 

racks. 

§ 1 rack for the file servers and their disk. 

§ 1 rack for the Gigabit Ethernet switch and remaining servers. 

 

Figure 18.4: One of two rows of Chiba City. 

 

18.2 Chiba City Timeline 
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In this section of the case study, we examine the phases of activity that Chiba City has gone 

through, starting with the early seeds of the idea up through full-time operation. These are 

similar to the phases that most other clusters go through. 

18.2.1 Phase 1: Motivation 

As noted at the beginning of this chapter, the primary driver for Chiba City was to create a 
testbed that could be used to support scalability testing and research into scalability issues. 

We believe that this area is the most important aspect of computing to address in order to 

advance the state of high-performance computing.  

Furthermore, we felt that it was important to build a system that could be used for general 

computer science and development, rather than on applications and simulations, which is 
typically what large computers are used for. 

We had been building and running small clusters for several years, including clusters based 

on Windows NT, Linux, and FreeBSD. We had used those to support research into 

communication, visualization, and several other areas of experimentation. But, by fall of 1998, 

we still had not yet been convinced that the large system in MCS would be a cluster. 

However, once we considered the issues of scalability, the need for a computer science 

testbed, and the price/performance of commodity clusters, it became clear that a large-scale 

cluster could probably address all of these needs as well as become the next major MCS 

platform for simulation and computational science.  

We originally considered installing a 1024-node system. However, we decided to start with a 

256-node system in order to test many of the concepts. Thus, Chiba City was started as the 

first step toward a thousand-node (or larger) cluster, with a primary goal of supporting 

scalable computer science and a secondary goal of supporting scientific applications. 

18.2.2 Phase 2: Design and Purchase 

Having convinced ourselves that a large cluster was the right direction for MCS, we started, in 
December 1998, to design the system and arrange to purchase it. 

We spent the next several months repeating this cycle over and over: 
1. Think about what we needed and how we would use it. 

2. Talk to vendors, integrators, and the cluster community in order to find out 
what would be available on our time frame.  

3. Consider various funding options and match those with design and 

availability. 

We discovered, among other things, that the traditional set of high -performance computing 
vendors were all trying to decide what to do about clusters (and what to do about Linux). At 
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the time, it was possible to buy an actual cluster from Compaq and from a number of small 

integrators, but none of the larger vendors had yet created cluster product lines. No one was 

selling anything like what we wanted for Chiba City. 

Eventually we put together a presentation to use to explain to vendors what we wanted to buy. 

The presentation explained what clusters were, what the cluster would be used for, how we 

wanted to operate it, and what we thought the necessary parts might be. As we updated our 

internal designs for the system software, we updated the purchasing presentation. We talked 

to a lot of different vendors and then went through the formal purchasing process. Eventually 

we agreed to buy the system through IBM. IBM arranged to provide subsets of the system 

from other vendors, including the Ethernet hardware from Cisco, the Myrinet from Myricom, 
and the 2U compute nodes from VA Linux. 

These days, the purchasing phase is a lot easier. Almost every vendor can sell you a small or 

medium cluster without much thought, and even large clusters are relatively simple. However, 

the very large clusters with focused requirements still require a great deal of interaction with 

the vendor. 

Throughout this period, we continued the design of the management infrastructure and 

system software for Chiba City, developing and testing it on a small cluster. (We called the 

nodes in the small cluster "the freakies." No one seems to knows why. That small cluster is 

long gone, but the name continues to live on in code references and machine configurations. 

Be warned.) 

18.2.3 Phase 3: Installation 

In October 1999, we installed the cluster. 

During the preceding month, truck after truck had backed up to our loading dock and dropped 

off boxes. We had piles of computers, racks, cables, network boxes, disks, and 

miscellaneous hardware stacked everywhere. Fortunately we had been through large 

computer installations before, so we were careful to keep rigorous track of which boxes 

arrived from which vendor on which truck on which day. Despite this, there were still a few 

missing boxes that took weeks to locate. 

During the purchase phase of the system, we realized that the installation of the cluster would 
be interesting. While the vendors were willing to provide installation technicians as part of the 

package, we were the ones who knew how the cluster should be connected. We needed to 

be actively involved in the installation. 

Once we realized this, we decided this was an opportunity rather than a problem. Many of the 
scientists at Argonne are interested in the details of the computers, and we felt that they 

would probably enjoy being able to help install the system. We decided to assemble the 
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cluster in the style of an old-fashioned barnraising, inviting everyone to join in. Everyone was 

enthusiastic about the idea. Over forty people signed up to help. 

Before the installation, the MCS Systems Group built one of the computing towns. We took 
detailed notes on what we did and then put together a twelve-page installation manual. Based 

on the amount of time it took us and the space to work in the machine room, we estimated 

that we could build the entire cluster in two days. We spent the day before the barnraising 

working with technicians from VA to assemble the racks and to put the Ethernet and serial 

cables under the floor. 

The barnraising itself was great fun. We divided the volunteers into teams of four people. 

Each team was led by a member of the Systems Group or a VA technician. We ran four 

teams at a time. Each team took half a day to assemble one rack, and each rack was half a 

town. So, by the end of the first day, four computing towns— half of Chiba City— was 

assembled. 

While the teams worked, lots of other things were going on. IBM engineers assembled the 
storage nodes. The Chiba development team fine-tuned the software for some initial testing. 

And, most important, Janet Sayre of the Systems Group created just the right kind of 

atmosphere by sitting in the middle of all the activity and playing the banjo. 

At the end of the second day, we connected all of the towns and booted every node. There 

were a few minor hardware problems with a few systems, so we weren't able to bring them all 

up, but we were able to run an MPI job on 248 of the nodes. 

A time-lapse video of the barnraising is available on the Chiba City Web page 
www.mcs.anl.gov/chiba/barnraising/video.html. 

18.2.4 Phase 4: Final Development 

For the next four months, the cluster was primarily in development mode. While we had 
demonstrated that the nodes were running an operating system and connected to each other 

at the end of the barnraising, a lot of work had to be completed before the system was ready 

for users. 

Among other things, we needed to finish the cluster environment: to get a cluster schedule 

installed, arrange for data management, and tune the communications networks. We also 

had to get the management system working, including the ability to create user accounts, 

push out node configuration changes, and so on. 

During this time, we asked a few users to try various tests on the system, but it was not 

available to more than three or four users. 

18.2.5 Phase 5: Early Users 
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Starting in March 2000, we opened up the cluster to the first set of early application users. 

There were around four early users at first, all of whom were trying to use the cluster but were 

also providing detailed feedback to us so that we could fix problems they found. 

Once things were relatively stable for them, we opened up the cluster to a few more users, 

and then a few more, and so on. By the end of the early user phase, we had around sixty user 

accounts on the cluster. 

The majority of the problems that we had to address during this time were related to the 
scheduler and to the Myrinet communication libraries. 

18.2.6 Phase 6: Full Operation 

In June 2000, we felt that we had eliminated most of problems that would impact users of the 
system, and we opened up the cluster for general use. 

From this point on, account requests for Chiba City were handled in the same way that 
requests are handled for other MCS computing facilities— the account request is approved 

based on whether the use matches the mission (and therefore the funding) of the system. 

These decisions are made by a group of MCS scientists who are responsible for the activities 

on the MCS systems. 

Chiba City has been in full operation mode since that point. In the future, Chiba will no doubt 
go through the next phase: upgrade or become obsolete. We will see how that turns out. 

 

18.3 Chiba City Software Environment 

In this section we examine two aspects of the Chiba City software environment: computing 
and management. 

18.3.1 The Computing Environment 

The computing environment on Chiba City is, like the rest of the cluster, optimized to support 
computer science yet intended to support other uses. In this section, we describe the 

standard computing environment on the cluster as well as the special modifications we've 

made to support computer science and scalability research. 

The Default Node Environment. The "node computing environment" is the set of programs 

and services available on the user-accessible nodes of the system, that is, the computing 
nodes, the visualization nodes, and the login nodes. 

All machines in the cluster run Linux by default. The original distribution that we started with 
when building the node operating system was Red Hat 6.2. Over time, we've added and 

removed RPMs, changed much of the default behavior, and added software from all over. 
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The nodes are still vaguely recognizable as Red Hat, but they could just as easily have been 

another distribution. 

The specific kernel installed on these nodes varies over time— and varies a bit more than we 
would like. In an ideal world, we would have a stable kernel installed that meets all of the 

requirements of our users, but we have yet to find one. 

The compilers available on the front end include C, C++, and Fortran 90. Some users also 

program in Java, Perl, Python, and PHP. 
The Default Cluster Environment. The software glue that we use to turn the pile of nodes 

into a functional cluster includes a number of different packages. 

Communications libraries:  The vast majority of jobs on Chiba City use MPI for 

communication. Our preferred version of MPI is MPICH. We have multiple versions of MPICH 

installed in order to allow users to choose their favorite compiler and flavor of network. To use 

generic messages over Myrinet, you must link with MPICH-GM from Myricom. 

The set of MPICH installations on Chiba got so large, in fact, that we built a small tool that 

lists all of the MPICH installations and allows you to pick the one you will be working with by 

default. The number of MPICH installations inspired the MPICH group to provide an 

alternative for handling multiple compilers; see Section 9.6.6. 
Scheduling: We use the Portable Batch Scheduler (PBS) for queue managem ent (see 

Chapter 16 for a detailed discussion of PBS). Since we Chiba was built, PBS has been picked 

up by Veridian Systems, and the open source version of PBS has become known as 

OpenPBS. In other words, we are running OpenPBS on Chiba City. 

OpenPBS wasn't designed for environments as large or distributed as Chiba City and 

therefore has some scalability issues. Most of the problems that users of the cluster have are 

related to OpenPBS. We believe that many of these are being tackled by the community (we 
have worked on some of them ourselves) and that a set of patches will be available in the 

future that address many of these problems. 

OpenPBS can be interfaced with an external scheduler that makes the decisions about which 

jobs in the queue will run at what time. We use the Maui scheduler for this purpose (see 

Chapter 15 for a detailed discussion of the Maui scheduler). We've been quite happy with 
Maui. 

Global file systems:  A global file system is one that is available on every node of the cluster 

and presents the same view of the data in the file system. It is not necessarily capable of 

supporting high-performance use, but at least provides a common name space. This normally 

is used for home directories, common applications, and so on.  

One of the early design decisions on Chiba City was that we would not use NFS as a global 

file system on the cluster. NFS performs badly and scales worse. We felt that if it were really 
necessary, NFS could be made to work on the 256+ nodes of Chiba City, perhaps by using 

an optimized NFS server such as a Network Appliance box. However, Chiba City is meant in 
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part to be a prototype of a much larger cluster of 1024 nodes or more, and at that level we 

expect NFS to be useless. Therefore, we decided to try to run the cluster without a global 

NFS file system to see how it worked out. 

This has been an experiment with mixed results. 

One approach to avoiding NFS is to use some other networked file system as a global file 
system. We have toyed with several but have found nothing that instills any confidence in us. 

Several network file systems have just recently become open source or will be released in the 
near future, so we have some hope that this situation will improve. 

Another approach to avoiding NFS is to simply not have a global file system. This is what we 

have done. It's fairly simple to survive without a global file system for administration 
purposes— one simply uses rdist or other file synchronization mechanisms. On the user 

side, though, we've had two primary problems: 

§ Job staging. The user's program, support files, and data must be copied out 

to that user's nodes at the beginning of their job. After the job has completed, 

any output files that were created must be staged off the nodes before the 

nodes can be used by the next user. We've tackled this problem from a 

number of angles and have a solution in place that works but is not as fast as 
we would like. We believe that multicast file copying is the right solution to this 

problem and will be investigating it in the near future. 

§ Confusion. Users tend to expect that the cluster will have a global file system. 

When they log in to their nodes and look around, they don't see the files they 

expect in their home file system on that node. Even when the entire 
environment is explained, it is difficult to use the data transfer tools to copy in 

the right files and copy out the right files. 

It's fairly clear that a nicely scalable global file system would be the best solution. 

Parallel file systems: In contrast to a global file system, a parallel file system is specifically 

meant to provide high-performance access to application data for large parallel jobs. For 

example, one might store a very large input dataset on a parallel file system and 

subsequently start an application consisting of a few hundred tasks, all of which 
simultaneously access portions of this dataset. The parallel file system provides both a single 

logical space for application processes to look for data files and also the performance 

necessary for these parallel applications to have timely access to their data. 

The only parallel file system available on Linux clusters is the Parallel Virtual File System 

(PVFS), which is described in detail in Chapter 17. PVFS and Chiba have a comfortable 
relationship, and over the years Chiba has become the primary development platform for 

PVFS. In this environment PVFS has been proven to scale to hundreds of I/O servers and 

compute processes, and peak aggregate throughput of over 3 GBytes per second has been 

shown. Running at these scales also served to highlight some reliability issues in PVFS that 

were not evident when running in smaller configurations. As these problems have been 
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addressed and PVFS has begun to stabilize, we have begun to make a PVFS file system 

available as a fulltime resource for the users of Chiba City. This has two benefits for users: it 

provides a high-performance data storage space for use by applications, and it gives users a 
single place to store datasets that can be accessed from any node.  

Job invocation: Job startup of hundreds of processes using MPICH with its default ch_p4 

device is slow. Especially for interactive jobs, something more scalable is needed. Chiba 
provided some of the motivation for the ch_p4mpd  device described in Section 9.6.2. Chiba 

City has provided a valuable testbed for the development of the MPD system and the version 
of MPICH that relies on it for job startup. The MPD daemons can run as root, and we have 

been experimenting with using them to run a mix of user jobs. Our long-term plan is to 

eventually transition to using MPD as our primary process manager. 

Parallel Unix commands:  Chiba City is also serving as testbed for the Scalable Unix 

Commands [10], which provide parallel versions of the common Unix commands such as ps 
and cp. A new version of these [25] is now available at www.mcs.anl.gov/sut. The new 

version implements these interactive commands as MPI applications, so the fast startup of 

MPI jobs made possible by MPD is critical. We plan to make these familiar commands 

available to all users as part of the Chiba environment. 

Support for Computer Science. Computer scientists have a few general requirements that 

conflict with running applications on a system: interactivity, a license to crash the system, and 

the need to modify the system software.  

Interactivity: Computer scientists, as well as developers of all types, often want to use the 

computer in "interactive" mode. They want to edit code, compile it, and then test it 

immediately. The test, and even the production run, may last only for a few seconds, but it 
often needs to use the entire system. 

If the computer scientist has to submit a test job in a queue and wait until it can be scheduled, 

it can take hours or even days to complete a one-minute run. If the scheduler is optimized to 

allow access to the entire machine quickly, the resulting schedule will have huge numbers of 

unused node time. Production sites and computers that have real dollars tied to machine 

utilization simply can't afford to have that type of scheduling policy. 

This need for interactivity is not unique to computer scientists, of course. Application 
developers need interactive test cycles while building code that will eventually run for hours. 

But many of these developers can get away with testing on a small set of nodes, which is 

easier to acquire, and computer scientists may never need the entire cluster for more than a 

few minutes at a time. 

On Chiba City, we do run a batch scheduler because we have not yet found a better way to 
equitably share the system between many users. But we clear the cluster of all jobs every day 

for a two-hour period, during which time no job longer than five minutes can run. This gives 

computer scientists a two-hour window every day for quick turnaround. Long-running jobs 
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have to wait until the weekend, when we allow jobs to go from Friday evening until Monday 

morning. 

Also, it's possible to schedule a number of nodes and then simply use them in interactive 
mode during that timeslot. 

License to crash: Some computer scientists and developers work on low-level pieces of 

code that can have bugs that impact the entire operating system on a node. In some cases, 

such as in file systems and job managers, they may even crash the entire cluster. It 's 

important to have some kind of facility where code like this can be tested in a real-world 

environment. 

Crashing a node on Chiba, even to the point of requiring a rebuild, is fairly minor. We have 
remote power control, remote monitoring, and the ability to rebuild a node from scratch. (All of 

these systems are described in Section 18.3.2.) If a node needs to be rebuilt, we simply set a 

flag in the City database for that node, and that node's mayor will initiate a rebuild the next 

time that node reboots. If necessary, the mayor can force the reboot. 

Crashing the entire cluster is a bigger problem. Still, we set the expectation that we actively 

support development of the cluster's system software and that we expect things will 

occasionally crash. We try to minimize the frequency of these large-scale problems and try to 
minimize their impact. But in a worst-case situation, we can rebuild all the nodes and reboot in 

20–30 minutes. 

Modifiable node environment: A small number of developers actually need a completely 

different node environment. They might be testing a set of device drivers that are unusual, or 

comparing FreeBSD to Windows 2000 to Linux. In any of these cases, the scientists may 
need to have root access on their nodes or may want to replace the node operating system 

entirely for the duration of their job.  

We support the ability to arbitrarily modify the node computing environment. The mayors build 

their nodes from a node "image," where an image is a set of files or binary file system data. 

The mayor will write that to the node's disk, then boot it. 

You can build an image of any operating system desired, as long as it boots. During the time 

that the nodes are reserved for you by the scheduler, you can do whatever is necessary on 
those nodes. Once your scheduled time is up, the mayor power cycles the node, catches the 

booting system, and reinstalls the Chiba City default Linux image on the node. This process is 

illustrated in Figure 18.5. 
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Figure 18.5: Node image management. 

18.3.2 Management Environment 

Starting with the very first design for the cluster, we put a great deal of emphasis on scalable 
management of Chiba City. For example, one of our goals was never to have to physically 

touch a node unless it was having hardware problems. 

We emphasized scalable administration because we must. All management functions of a 

very large system, of which Chiba City is a prototype, must scale for obvious reasons. 

Furthermore, we need scalable management for Chiba itself. The management team for 

Chiba City consists of three people who are responsible for all aspects of the administration 

of the cluster, all user support, the development of management tools and system software, 

involvement in experiments, and other aspects of the MCS computing environment. 

The management approach for Chiba City incorporates a number of philosophies: 
§ Support all the needs of the diverse user community, ranging from stable 

batch-oriented computing to letting individual users have root acces s on their 

nodes. 

§ Don't change the model too much, because our scientists need to work in the 

common model to make their tools applicable to others. For example, we 

couldn't switch over to a shared-memory model of the cluster.  

§ Manage from a central point. The mayor/town architecture— in which the city 

mayor presides over the mayors, each of whom manages a set of nodes — is 

designed to strongly support central management. 
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§ Use open source and existing tools as much as possible. As much as we like 

to invent cooler wheels, we don't have time. 

The remainder of this section describes the individual components of the management 
environment. 

City Database. The city mayor keeps a database of relatively static cluster information. We 

call this database the City Database or "citydb." The database describes the node/mayor 

relationship, keeps track of which nodes have what types of hardware, and knows which 

nodes should have which operating system image at which time. 

The City Database is different from the database kept by the scheduler, which is much more 

dynamic. The dynamic database includes job information, which users own which nodes, and 

which nodes are currently up. Optimally, both databases would be more closely related, but in 

practice it has been easier for us to keep the functionality split. 

The City Database is authoritative. If the database and reality don't match, then reality must 

be wrong. Using this philosophy, we can describe the desired cluster configuration in the 
database and then tell the mayors to make sure the cluster conforms to the configuration. The 

configuration management tools described below take care of this. 

Citydb is built on MySQL using standard SQL. 
Configuration Management.  At the highest level, the configuration model works this way: 

§ The configuration for every node is described on the city mayor. Since many 

nodes are identical, this is not as bad as it might seem. 

§ The city mayor is the source for all configuration files, images, and RPMs. All 
mayors keep a mirror image of those files. 

§ When a configuration change is necessary, the administrator makes a 

change on the city mayor and then invokes a process to push that change 

out. 

§ The nodes themselves are checked at boot up and after user jobs run to 

make sure that they have the correct configuration.  

The primary configuration management tool that we use on Chiba City is a program called 
sanity. The idea behind sanity is that it can install RPMs, modify configuration files, and 

execute scripts. It decides what to do based on a configuration file that can be general or very 

specific to a node. Once it has established that the node matches the configuration in that file, 

the node is pronounced sane. 
The mayors have the ability to invoke sanity on each of their nodes. The nodes also run 

sanity when they first boot and after a user job completes. The configuration for sanity is 

an aspect of the image on that node, and the image for each node is recorded in the citydb on 

the city mayor. 

In order to make a change to all of the nodes on the system, one would modify the sanity 

configuration file for the default image, then invoke a global sanity push on the city mayor. It 
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tells each mayor to kick off a sanity run, and each mayor in turn tells each node to run 

sanity. 

This process is illustrated in Figure 18.6. 

 

Figure 18.6: OS image management. 

Serial Infrastructure. Another tool in the management arsenal is remote console 

management. The console of every system in Chiba City is available over the network. The 

system works in the following way: 

§ The console port on each node is connected to a serial concentrator for that 

town. 

§ The serial concentrator is connected to the mayor. 

§ The mayor runs a daemon called conserver  that enables remote access to 

the console from anywhere on the network that has permission. This daemon 
is an open source tool that is widely used in the system administration 

community. 
§ From any point on the MCS network, an administrator can type console 

<node> and get access to the console of that node. 

This process is illustrated in Figure 18.7. 
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Figure 18.7: Serial infrastructure. 

In practice, we use this feature only when debugging. Ideally we don't want to actually have to 
go to all the consoles of all the nodes. Sometimes, though, a node will quit responding for no 

reason. It's frequently possible to recover the node via the console— or at least get a hint from 

the console messages what might have gone wrong. 

The conserver daemon has  another feature of console management that is also critical to 

Chiba City. It can log all of the output of any console to a file or to a process. We wrote a 
program called chex that monitors the output of each console, looking for particular strings. 

Among other things, this lets us know whether a node is rebooting, whether it has panicked, 

or whether some other error condition has taken place. 

We take advantage of this console monitoring to capture node-specific information such as 
the node's MAC address. See the section below entitled "The First Boot Process" for an 

example of why this is useful. 
Low-Level Diagnostics.  Some motherboards have the ability to provide useful information 

about the hardware, such as the temperature of the node and the fan speed. Some can also 

control the power of the system. 

The nodes that we are using have this ability. Initially, however, this functionality was 

accessible only if you used a Windows NT system to monitor the node remotely. Since then, 

people have created open source software that runs on Linux to manage these ports. 

Unfortunately, we have never taken advantage of this system. It would be nice, but we 
haven't had time to get to it. 

Power Control. We do, however, have remote power control for every component of Chiba 
City. The power control system works as follows: 
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§ Every computer and network box is plugged into a Baytech power unit. There 

are, on average, five Baytech units per town. 

§ The Baytech unit is somewhat like a power strip with an Ethernet port. It's 
possible to telnet to the Baytech and then power on, power off, or query the 

power status of anything plugged into it.  
§ We have a simple tool called city_power that allows a Chiba City 

administrator to control the power of any device or set of devices in Chiba 

City. 

The Baytechs are connected to their own network, which is built of very simple Ethernet hubs. 

We could connect them using the Chiba City Ethernet, but then, if something went wrong with 
the network, we couldn't access the Baytechs to reset the Ethernet devices. The power 

network is accessible only via the City Mayor. 

The power configuration is shown in detail in Figure 18.8. 

 
Figure 18.8: Power infrastructure. 

The First Boot Process.  To explain how the management tools work together, we give an 

example. One of the more complicated scenarios on a cluster is when a node is booted for 

the very first time. The cluster software needs to be made aware of that process, and the 

node needs to get the right operating system. Many people ignore this situation and take care 

of the details by hand. 

Here is what happens on Chiba City when a completely new node is installed in the cluster: 

1. We set a flag in the City Database indicating that this is a new node. 
2. The node is installed in the correct spot in the rack and cabled appropriately. 

3. We install the correct BIOS in the node. This, unfortunately, is still done 

manually, although we are looking into a boot floppy approach that will do 



 450 

the right thing. Among other things, the BIOS is set to boot using PXE, a 

type of network booting. This means that on all subsequent power cycles, 

the node will boot from the network. 
4. The node is turned on, and it boots from the network. Some server on the 

net, usually that node's mayor, responds with the boot image. 

5. The boot code is a Linux boot image that includes LILO and a kernel. LILO is 

configured to launch and then wait forever at its boot prompt, occasionally 

reissuing the prompt. 
6. The LILO boot prompt is issued over the serial line. 

7. The node's mayor sees the Boot prompt. It knows which node this is 

because it knows which serial lines it is watching. Thus, at this point, the 

mayor knows that it node15 (for example) is waiting to boot. 

8. The mayor checks the City Database to see what image should be on that 
node. It discovers that this is a new node. 

9. Based on this information, it issues a boot command over the serial line to 

the node, handing it a set of boot parameters. This command tells the node 

to boot from the mayor from the Build Image. 

10.  The node receives the command and boots the Build Image kernel that 

was transferred back in Step 4. 

11.  As a part of booting the Build Image, the setup scripts partition the node's 

disk and install the correct image files. 

12.  At the end of the Build Image, the node displays certain relevant pieces of 

information to its console, including its Ethernet MAC address. 
13.  The mayor, which is monitoring the console, now knows that this new node 

has successfully built. Furthermore, it has the MAC address of that node. 

14.  The mayor updates the DHCP tables on the city mayor with the new MAC 

address and queues a DHCP restart request. 

15.  The mayor updates Citydb with a flag saying that the node has the correct 
image installed.  

16.  The node waits for a minute and then reboots. Once again, it PXE boots 

and loads the boot image from the mayor. It issues the LILO boot prompt to 

the serial console and waits. 

17.  The mayor checks Citydb and notes that this node has already built the 
correct image onto its local disk. It issues a "boot from local disk" command 

to the LILO boot prompt over the serial line.  

18.  The node boots from the local disk. Among other things, it will send out a 

DHCP request to get its IP address and will be sent the correct IP address 

for the node in that spot of the cluster. 
19.  After rebooting, the node runs sanity. It installs any modifications 

necessary for that operating system image.  
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20.  Finally, the node is ready to run. The scheduler notes that the node is up 

and adds it to the pool of allocatable resources. 

This whole process is long to describe but fast to run. The only slow part is the operating 
system build in Step 11, when the bits are being instal led on the local disk. That can take 

10–15 minutes, with the exact time dependent on the size of the image and the activity on the 

network. Once the node has been installed and the BIOS updated, the process requires no 

intervention from an administrator.  

 

18.4 Chiba City Use 

The average user of Chiba City interacts with it just like any other cluster of distributed 
supercomputer. Consider the following scenario. 

A user logs into the front end node using SSH. She compiles her code on that system, or 

perhaps copy in precompiled code. If she wants to test the code on several nodes before 

submitting a large job, she can choose nodes on the 32 nodes of the cluster that we refer to 

as the interactive town. This set of nodes is configured in the same way as the standard 

computing nodes, but is never scheduled. It is always available specifically for testing 

purposes. It's quite possible that two users' codes will conflict with each other, so it's not 
useful for performance testing or longrunning code. Once she is confident that her code will 

run successfully, she prepares her code and her job data to be copied out to the nodes that 

she will eventually be allocated. She does this by putting everything together in a directory. 
Finally, she submits her job to the PBS queue using the qsub command. She can check on 

the status of her job with qstat. Eventually she will be assigned a set of nodes for the 

duration of her timeslot, and her job will be invoked on those nodes. During this time, she will 

be able to login to her nodes, which she will want to do if she's running an interactive job. If 

there are any errors with her job, she will be notified by e-mail. Once her job has completed or 

her time is up, whichever comes first, the datafiles she created are copied back to her home 

directory on the front end node. 

Nonstandard use of Chiba City can entail endless variations of this scenario. A user might 

arrange to have dedicated access to the cluster for a long period of time— this requires 
administrator and, in some cases, management approval. Or a user might have a custom 

image to be tested and then arranged for installation on that user's nodes. Some people use 

the storage nodes as part of I/O experiments. Others use the visualization nodes, sometimes 

in conjunction with the jobs on the computing nodes, and other times as a completely 

separate activity. 

Currently, we have about one hundred active users on Chiba City. We expect to add several 

hundred more in the next few months as a result of changes in the allocation policies on some 
of our other supercomputers. 
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Since its installation, Chiba has been used for many different types of activities. Notable 

among these are the following: 

§ Monte Carlo simulations in nuclear physics 
§ Computational optimization 

§ Parallel and numerical library development 

§ Distributed supercomputing development 

§ Communication library development 

§ File system development 
§ Astrophysical simulation 

§ Scalable system software development  

§ Visualization 

§ Genomics 

§ Automated reasoning 
§ Climate modeling of both Earth and Mars 

§ Molecular dynamics simulations 

§ Scalability testing of open source tools 

A detailed description of these projects is beyond the scope of this chapter; this list is merely 

meant to give a feel for the different types of use that the cluster enables. 

 

18.5 Final Thoughts 

In this case study, we have described in detail the kinds of issues that we encounter when 

designing, building, and running a multipurpose large cluster. We hope that the topics 
discussed here will be useful to others who may find themselves in a similar situation. 

18.5.1 Lessons Learned 

This entire case study is about lessons that we've learned while running Chiba City. We still 
have a few that are worth mentioning. 

§ It is surprisingly difficult to run a job on the entire cluster. Most users don't 

care about this, but management would always like to confirm that a job has 

used every possible resource on the system. It seems like there is always at 

least one node that is down for hardware maintenance, or one network 

interface this is flaky, or a node that just isn't in the mood to play. We have 

actually run jobs on all of the nodes using both types of network, but these 

jobs take focused effort and are relatively rare. 

§ In a cluster, the hardware gets stressed beyond what any vendor expects 

because it is always being used, sometimes in ways that the designer never 

anticipated. We've had bad AGP and PCI slots, large-scale memory problems, 

fan lossage, bad cables, and everything else. Furthermore, when buying 
commodity hardware, one gets commodity quality. This hardware doesn't 
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take abuse the way high-end supercomputing equipment does. It's a very 

good idea to invest in a three-year hardware maintenance option. 

§ When running a cluster like Chiba City, it is essential to have at least one 
person who lives in the Linux world. Two or three people is even better. 

Those people should follow the important Linux mailing lists, track bugs, and 

follow discussions on Web sites. The success of the cluster often rides on 

figuring out exactly which version of the kernel works best with which set of 

applications, or knowing that a particular feature will be available (or removed) 
in a few weeks. 

18.5.2 Future Directions 

Chiba City has largely been a success. We would like for some portions of the system, 
notably the scheduler and the I/O system, to be more reliable and functional, but despite 

these failings, good science has been accomplished on the computer, both in the realm of 

computer science and in scientific simulation. The model that we use to manage and operate 

the cluster has worked well and shows every sign of scaling to a much larger cluster. We 

have a number of plans for software modifications to improve the system and to support new 

capabilities. 

In the near future, the scalability work that has been started on Chiba City must continue to 
expand to larger and larger testbed systems. Many open scientific questions require systems 

that can deliver sustained petaflops of computation. It is not yet clear what the path to building 

a petaflop system is, but it is very likely that such a computer will be built from many tens or 

hundreds of thousands of individual computing components. As a community, in order to 

build such a system, we must have systems software that can operate a machine of that 

scale, and we must have algorithms and applications that can make reasonable use of it. 

Thus, while the computing industry forges ahead with building better and faster processors, 

we must have a strategy for connecting them together and making them run well. Scalability 

testbeds such as Chiba City are an important part of this plan, and we hope that research and 

activities in this space will continue to be expanded. 

For more information on Chiba City and the software used to drive it, see 
www.mcs.anl.gov/chiba. 
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Chapter 19: Conclusions 

Overview 
Thomas Sterling 
This book represents the practical state of the art in hardware and software for Beowulf 

cluster computing. But it also exemplifies the extreme rate at which commodity clusters are 

maturing and in so doing, gaining utility across ever -broader domains of application. Only two 

years ago our first work in this area, How to Build a Beowulf, was published by MIT Press. But 

in the short interval since then, the art and practice of cluster computing have evolved 
dramatically. Then, such systems were used in rather restrictive ways with limited software 

support beyond the basic node operating systems and message-passing libraries. System 

size rarely exceeded a hundred processors. Today, systems exceeding a thousand 

processors are employed for both technical and commercial computing. But more significant 

is the array of software tools available and under development to manage the implementation, 

maintenance, administration, and resource allocation of workloads on Beowulf clusters both 

large and small. Thus, in the brief period between this offering and our original modest work, 

Beowulf commodity cluster computing has come of age. Then, Beowulf systems were only a 

narrow element of the parallel computing domain. Today, they are often the system of choice 

and are rapidly coming to dominate even the highest end of computing. It is telling that at the 
most recent Supercomputing conference, the industrial exhibits included more commodity 

clusters on the floor than all other forms of parallel computing systems combined. 

In spite of these enormous gains, Beowulf cluster computing is very much a field in transition. 
There is no one universally accepted distributed environment or, for that matter, hardware 

foundation on which the cluster community relies. Of course, the flexibility this implies is part 

of its strength and invulnerability to vendor changes. Indeed, both hardware and software are 

in a state of flux, with continued changes foreseen for the next one to three years. It is worth 
considering where these likely changes will occur. 

 

19.1 Future Directions for Hardware Components 

Processor technology is witnessing three areas of change. The first is continued growth of 
processor capability, most notably in clock speed. Predictions to the contrary, clock rates 

continue to grow. At the time of this writing, the Pentium 4 with a clock rate of 1.7 GHz is 

available in consumer-grade packages. Memory enhancements and cache size also expand 
to attempt to match the processor peak performance. The second change is a new 

generation of 64-bit architecture with the commercial release of the Intel IA-64 64-bit family of 

processors. The third area of change is the likely integration of multiple processors per chip in 

SMP configurations. Should this trend become reality, then nodes of commodity clusters 

could all be SMP structures of two or more processors. All of these advances are driven by 
the continued reduction of integration feature size, with logic moving below 0.18 micron. 
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Network technology is expected to make significant strides as gigahertz per node channels 

become commonplace and costs continue to drop. Myrinet and Ethernet dominate Beowulf 

cluster configurations, but other network technologies are having significant impact. The 
Quadrics QSW networks are providing a high-bandwidth framework for the highest end of the 

Compaq Alpha processor-based systems, and larger configurations have been proposed that 

could yield clusters capable of over 100 teraflops peak performance. The VIA architecture 

continues to make inroads in the cluster market delivering gigabit per second throughputs 

and latencies well below 10 microseconds. Foremost among these is the Emulex cLAN 
network. But perhaps the most interesting advance is the emergence of the new industry 

Infiniband architecture (IBA) standard (well over 1,500 pages). Infiniband provides a new 

tightly integrated strategy and technology for all I/O needs including cluster interconnection 

networks. Instead of connecting to an intermediary I/O interface such as PCI, Infiniband will 

be tied more directly to the processor communications, increasing I/O bandwidth and 
reducing latencies down toward a microsecond. Already specified are several levels of 

bandwidth including the use of optical media that will work in the 10 Gbps regime. Infiniband 

is supported by a large industrial consortium and may become the new dominant I/O interface. 

Products based on IBA should be available within the next eighteen months. However, in 

spite of wide optimism, costs to customers have yet to be determined. It is interesting to note 

that the external network bandwidths are approaching the main memory bandwidths of the 

processing nodes. With another order of magnitude gain in bandwidth anticipated in the next 

few years, it may be that network bandwidth will cease to be the dominant bottleneck to 

realizable performance.  

Although less widely discussed, significant advances in mass storage are expected. These 
are being fueled by the rapidly growing PDA, digital camera, and cellular phone markets that 

require high-capacity storage in small, lightweight, and low-power components. "Matchbox" 

disk drives will provide multigigabyte capacities in the near future. For larger units, advanced 

EIDE drives will provide hundreds of gigabytes per unit at a cost of less than $10 per gigabyte. 

For many technical and commercial problems, mass storage is the bottleneck, both in 

capacity and in bandwidth. Commodity clusters provide a rich tradeoff space within which to 

configure and operate large disk farms. But reliability and software support for distributed file 
spaces continue to offer considerable challenges that have not been fully resolved. 

Packaging of systems will continue to evolve and have impact on Beowulf clusters in two 

important ways. Historically, Beowulfs have taken up a lot of room. Although the very first 

Beowulf was custom packaged with 16 motherboards in a half-height rack, the majority of 

systems leveraged the low-cost, high-reliability PC tower packages with power supply. But 

the density of this class of package is low. For all but the smallest systems, floor space has 

become a problem. Because the market for Beowulf-class clusters has become significant, 
however, vendors are providing new packaging options with high-density rack-mounted units 

available such that 40 or more processors can now be installed in a single floor standing rack. 

As higher-degree SMPs are built into such units, the number of processors per rack will 
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continue to expand allowing larger systems to be installed in modest machine rooms. But this 

also leads to the second way future machines will be impacted and that is the scale of the 

largest Beowulf-clusters. In the near future, the largest systems in the world will be 
commodity clusters comprising 10,000 processors or more. Within the lifetime of this edition 

of this book, clusters delivering as much as 100 teraflops may be implemented on this scale. 

 

19.2 Future Directions for Software Components 

While enormous strides have been made in the area of cluster middleware within the past few 

years, the general consensus is that continued advances are required to bring this class of 

system to a level of usability and robustness equivalent to other server technology. Key 
attributes sought are completeness, commonality, usability, generality, and reliability. 

Completeness relates to the need for a comprehensive software environment that spans all 

aspects of the distributed cluster system and supports the major activities associated with the 

operation of a commodity cluster, large or small. These activities include installation, 

configuration and initialization, status monitoring and maintenance, administration, and 
resource scheduling. 

Commonality is the property of such an environment to be broadly used across the majority of 

Beowulf clusters throughout the community. Linux, Windows, and MPI all exhibit this property, 

which has been an important enabler to the wide dissemination of Beowulf systems. To that 

extent, if you've us ed one Beowulf, you are likely to be able, with little trouble, to work with 
any other. But at the middle-ware level, there is not such uniformity of environments. This is 

partly intentional and partly due to history. As vendors have successfully advanced into the 

arena, middleware has been one area in which they could provide product differentiation, to 

enhance the apparent value of their respective offerings. Historically, low-level 

tools— especially for monitoring system status, operation, and health— have been developed 

in house with only limited sharing. As we have seen, however, other tools such as schedulers 

have seen much wider use. 

Usability combined with generality relates to the ease of system operation through the 

abstraction presented by the middl eware environment. A highly valued attribute, perceived to 

strongly contribute to usability, is "single-system image." Originally, Beowulf clusters were 
treated as an ensemble of separate loosely coupled processing systems, each being 

managed individually. In the earliest days, there would even be some kind of a switchbox 

connecting the operator's keyboard and monitor to any designated processor node. While this 

can work for small, dedicated systems, it is untenable for larger, multiuser clusters and 

undesirable in any case. A system includes a number of name spaces with which the user 
must contend. Some of these include the user application's global variables, the file space, 

the set of process IDs and jobs, and I/O. In the worst case, these all need to be dealt with on 

a per node basis. As systems grow to the scale of a thousand or more processors, this too 

can prove untenable. Even for much smaller systems, such explicit per node control is prone 

to operator error. Single-system image is the property by which the entire cluster presents 
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only a single name space for each class of named object for the entire system, independent 

of the number of processors employed. The user sees one process ID space, one distributed 

file space, and the same for others. Generality extends the property of usability to include a 
broad range of operating modes from dedicated single user to multi-user, multiprogram 

operation. 

System reliability is critical to long-term acceptance of Beowulf clusters by the information 
processing market. Opinions differ widely concerning the actual reliability of Beowulf systems. 

Infant mortality lasting weeks for moderate-sized systems can be high with fans, power 

supplies, disk drives, and even memories breaking in a short time interval. After this period, 

however, systems often experience long stable operation, potentially of many months 
between required maintenance. After two to three years, age begins to take its toll, and 

failures begin to escalate. But for very large systems on the order of thousands of processors, 

single point failures can be significantly more prevalent. For either class of system, rapid 

detection, diagnosis, repair, restart, and recovery are essential to high availability. Software 

tools to aid in all facets of reliability are essential as well, but little work has been done in this 
area, and no accepted general set of tools is in use, although some experimental systems 

have been explored. One important capability is checkpoint and restart, and some tools exist 

but involve direct application programmer intervention. Tools for logging and reporting soft 

errors can be used to identify likely future failures, directing preemptive controlled 

replacement of system components without disrupting application execution. Much more 
work is required in this area. 

A valuable effort is the collection and integration of a critical subset of existing tools to build a 
useful environment meeting at least some of the requirements above. OSCAR led out of Oak 

Ridge National Lab, Rocks being done at the San Diego Supercomputing Center, the 

integrated tool set at the Cornell Theory Center (CTC), and the integrated software system 

provided by Scyld are all examples of such efforts. OSCAR is a collaboration of a number of 

organizations including industry partners and is worth watching as it evolves. The tool set 
from CTC is one of the most comprehensive to be based on Windows. The Scyld software 

environment provides a good example of a user level single system image. While most 

Beowulf cluster software supports full operating systems on every node, each operating 

semi-independently, the Scyld model is different. By employing a logical structure of a master 

processor and multiple slave processors, all name spaces are managed through the master 

processor, presenting a single system image to the user. Processes are controlled by the 

master but delegated to the slave processors to be executed. The slave node kernels are 

very limited and lightweight and are downloaded by the master. This can be performed very 

efficiently, much more quickly than on conventional clusters, and solves the problem of 

version consistency control. Nevertheless, while the Scyld software environment exhibits 
many desirable properties, there is a question regarding scalability. A single master 

processor can create a bottleneck, and the coordination of multiple masters is nontrivial. 
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With increased prevalence of SMP nodes in cluster systems, means of exploiting this class of 

tightly coupled unit is called for. OpenMP has been developed as one way to apply these 

resources within a shared-memory paradigm. But between nodes is still the fragmented name 
space so typical of most clusters. Ironically, even on systems with distributed shared memory 

hardware support, the majority of parallel programmers today use MPI with its 

message-passing model. The underlying mechanisms supporting the MPI implementation 

take advantage of the shared -memory hardware support, thereby making at least some of its 

operators more efficient than between cluster nodes, and this is done in a way that is 
transparent to the user. But a clean way of using shared memory within a node and 

distributed memory between nodes has not found a satisfactory solution in common practice. 

A class of programming models sometimes referred to as "put-get" models may provide at 

least a partial solution. Inspired in part by the Cray T3E programming model, this approach 

gives the impression of a distributed shared memory but assumes no cache coherence. 
Within an SMP node, conventional load/store operations are used, but for remote accesses 

the corresponding get and put operators are used within the same programming model. 

Examples of this include UPC developed at IDA CCS and the experimental Earth-C 

developed at the University of Delaware. 

 

19.3 Final Thoughts 

It is hard to forecast where such a volatile technology as parallel computing will take us, as so 
many factors and trends influence the final outcome. A decade ago, clusters were in their 

infancy, and Beowulf was still in the future. A decade from now will see as many changes. 

Nonetheless, at least some of the possibilities can be considered. Extrapolating both the 

Top500 list and the Semiconductor Industry Association roadmap implies that the largest 

computers in the world, in all likelihood commodity clusters, will achieve a peak performance 

of 1 petaflops by the year 2010. Integrated circuits of a billion devices most likely comprising a 

number of processors will be capable of a performance on the order of 100 Gflops or more. 

DRAM densities will grow a factor of a hundred in that same timeframe. And if optical 

communications are employed to their fullest, per channel bandwidths of 1 Tbps or more are 

possible. In such a scenario, almost every small Beowulf will be a teraflops machine by 2010. 

As long as there is a need for servers of one type or another, there will be the opportunity for 

performance gains through commodity clusters. But a number of trends in the market are not 

aligned with a future with clusters. Portable computing devices including personal digital 

assistants, laptop computers, and soon to be released (probably) electronic books all have 

built-in human interfaces including screens and keyboards that make them unsuitable for 

clustering. It is true that their technology push helps  reduce cost, power, and size, which can 

have a positive influence on cluster nodes. But the mass-market products themselves are not 
likely to be used in clusters generally. Admittedly, there have already been cases of clustering 

laptops. But these are not cost effective. Desktop (or desk side) computers in their ungainly 

tower cases may already be becoming extinct. A growing number of users have simply 
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migrated their complete user environment onto their laptops. The laptop is everything, their 

entire world. With wireless interconnect in the office and home, even cellular Internet 

connections on the road, and disk capacities that will shortly exceed 100 Gbytes, the desktop 
is rapidly becoming a dinosaur. But it was from these devices that the first Beowulfs were 

devised. Beowulf-class systems exploited the existing mass-market devices, and now these 

may disappear. 

But this is no longer a problem because the value of clusters to the market has been proven. 
Vendors are now manufacturing processor nodes explicit ly for the purpose of building 

high-density clusters. Thus the components are no longer hand-me-downs from other 

markets but optimized for this purpose. In a sense, the day of Beowulf classic is passing— not 
yet, but eventually. Commodity clusters were offered as a cheap alternative to MPPs to help 

offload these more expensive machines of at least part of their workload. But with the 

next-generation high-bandwidth networks and their tight integration with the 

processor/memory core, much of the distinction between MPPs and clusters is beginning to 

disappear. And with efficient implementations of such operations as put and get, a shared 
memory space (without cache coherence) model may be available, further eroding the 

distinction between cluster and MPP. If this happens, we will have truly witnessed the 

convergence of parallel architecture. 

And yet, that will not be the end of the story. The programming models described so far are 
still primitive and require a close and explicit relationship between the physical system and 

the programmer. In the limit, the programmer should be responsible for describing the 

application's parallel algorithm, but not responsible for hand manipulating the management of 
the physical resources and their direct association to the application task and data objects. As 

processors become ubiquitous in the tens of thousands and the critical resource is 

recognized to be memory bandwidth, these parallel systems will motivate the development of 

a new family of programming models where once again, as in the earliest days of computing, 

the programmer will treat the computer as a single system and not a distributed collection of 
many machines. We have had only tantalizing glimpses of what such models might contain, 

but already researchers are considering just such new paradigms. Beowulf cluster computing 

is leading parallel processing into the future. Each step is an accomplishment in its own right 

and the foundation for progress to the next. 
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Appendix A: Glossary of Terms (Igore) 
 

Appendix B: Annotated Reading List 

This appendix contains an annotated reading list of books and papers of interest to builders 
and users of Beowulf clusters. 

Ian Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995. Also at: 
http://www.mcs.anl.gov/dbpp/ . A general introduction to the process of creating parallel 

applications. It includes short sections on MPI and HPF. 

William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William 

Saphir, and Marc Snir. MPI— The Complete Reference: Volume 2, The MPI-2 Extensions. MIT 
Press, Cambridge, MA, 1998. An annotated version of the MPI Standard; this contains additional 

examples and discussion about MPI-2. 

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with 
the Message Passing Interface, 2nd edition. MIT Press, 1999. A tutorial introduction to the MPI 

Standard, with examples in C and Fortran.  

William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced Features of the 

Message-Passing Interface. MIT Press, Cambridge, MA, 1999. A tutorial introduction to the MPI-2 

Standard, with examples in C and Fortran. This is the best place to find information on using MPI 

I/O in applications. 

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. PTR Prentice Hall, 

2nd edition, 1988. The original book describing the C programming language. 

John M. May. Parallel I/O for High Performance Computing. Morgan Kaufmann, 2001. A thorough 

introduction to parallel I/O including MPI I/O and higher-level libraries such as HDF. 

Evi Nemeth, Garth Snyder, Scott Seebass, and Trent R. Hein. Unix System Administration 

Handbook. Prentice Hall PTR, 3rd edition, 2001. A comprehensive and practical book on Unix 

system administration, it covers all major varieties of Unix, not just Linux. 

Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufman, 1997. A good introductory 

text on parallel programming using MPI. 

Gregory F. Pfister. In Search of Clusters: The Ongoing Battle in Lowly Parallel Computing, 2nd ed.  

Prentice Hall, Englewood Cliffs, NJ, 1995 edition, 1998. A delightful book advocating clusters for 
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many problems, including for commercial computing. It has nice sections on parallel programming 

and (as part of his argument for clusters) a good discussion of shared-memory systems and the 

issues of correctness and performance that are often brushed under the rug. See Pfister's 
annotated bibliography for more books and articles on clusters. 

Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra. 

MPI— The Complete Reference: Volume 1, The MPI Core, 2nd edition. MIT Press, Cambridge, MA, 

1998. An annotated version of the MPI-1 Standard, it contains more examples than the official  

copy and is a good reference on MPI. 

Thomas L. Sterling, John Salmon, Donald J. Becker, and Daniel F. Savarese. How to Build a 

Beowulf. MIT Press, 1999. The original and best-selling Beowulf book. 

W. Richard Stevens. Advanced Programming in the UNIX Environment. Addison-Wesley, Reading, 

MA, USA, 1992. A thorough and highly readable reference on programming under Unix. 

W. Richard Stevens. UNIX Network Programming: Interprocess Communications, volume 2. 

Prentice-Hall, Upper Saddle River, NJ 07458, USA, second edition, 1998. A companion to 

Stevens' excellent book on sockets and XTI, this book covers POSIX and System V interprocess 

communication mechanisms including shared memory, remote procedure calls, and semaphores. 

W. Richard Stevens. UNIX Network Program ming: Networking APIs: Sockets and XTI, volume 1. 

Prentice-Hall PTR, Upper Saddle River, NJ 07458, USA, second edition, 1998. An excellent 

reference for network programming under Unix; it provides a highly readable and detailed 

description of all aspects of Unix socket programming. 

David Wright, editor. Beowulf. Penguin Classics, 1957. A highly regarded translation (into prose) 

of the Beowulf Epic. 
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Appendix C: Annotated URLs 

Below is a sampling of URLs that are helpful for those building or using a Beowulf. This is not 
an exhaustive list, and we encourage the reader to browse the Web for other sites. A good 

place to start is the general Beowulf Web sites. 

C.1 General Beowulf Information 
www.beowulf.org: The original Beowulf Web site. 

beowulf-underground.org: The Beowulf Underground provides "unsanctioned and 

unfettered information on building and using Beowulf systems." It is a site that allows  the 

Beowulf community to post brief articles about software, documentation, and announcements 
related to Beowulf computing. Each article includes links to Web sites and downloads for the 

various items. A separate commercial and vendor area keeps free software well delineated. 

Moderators work to keep the material brief and on topic and to prevent abuses. This is the 

one stop for all things Beowulf. 

C.2 Node and Network Hardware 
www.cs.virginia.edu/stream: The STREAM Benchmark provides a simple measure 

of the performance of the memory system on a node. This site also includes results for a wide 

variety of platforms, from PC nodes suitable for a Beowulf, to workstations, to 

supercomputers. 

www.tomshardware.com: Aimed at hobbyists building their own computers, this is a good 

site for general background on node hardware and includes up-to-date instructions on 

building your own node.  

C.3 Performance Tools 
www.netlib.org/benchmark/hpl: Home of the High Performance Linpack Benchmark 

C.4 Parallel Programming and Software 
www.mpi-forum.org: The official MPI Forum Web site, contains Postscript and HTML 

versions of the MPI-1 and MPI-2 Standards. 
www.mcs.anl.gov/mpi: A starting point for information about MPI, including libraries and 

tools that use MPI and papers about the implementation or use of MPI. 
www.mcs.anl.gov/mpich: Home of the MPICH implementation of MPI. Download source, 

documentation, and Unix and Windows versions of MPI from here. Also check the bug list 

page for patches and announcements of releases. 
www.mcs.anl.gov/mpi/mpptest: Performance tests for MPI, including a guide for how 

not to measure communication performance.  

www.netlib.org: A valuable collection of mathematical software and related information. 
www.csm.ornl.gov/pvm: PVM home page. 

www.mcs.anl.gov/romio: Home of the ROMIO implementation of the I/O chapter from 

MPI-2. ROMIO is included in MPICH and LAM but can also be downloaded separately. 

Information on tuning ROMIO for performance can be found here. 
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hdf.ncsa.uiuc.edu: Home of HDF. Included here are I/O libraries; tools for analyzing, 

visualizing, and converting scientific data; and software downloads, documentation, and 

support information. 
www.parl.clemson.edu/pvfs: Home of PVFS, a parallel file system designed for 

Beowulf. This site includes online documentation, FAQ, source code downloads, mailing lists, 

developer's area, and research papers about PVFS. 
www.cs.dartmouth.edu/pario: Home of the Parallel I/O Archive. This includes a list of 

projects in parallel I/O, people working in parallel I/O, and conferences on parallel I/O. Its 
biggest claim to fame is an extensive annotated bibliography of parallel I/O resources. 

C.5 Scheduling and Management 
www.openpbs.org: The OpenPBS site is the official Web site for the open source version 

of PBS. Maintained by Veridian, it offers downloads of software, patches, and documentation, 

and it hosts FAQs, discussion lists, searchable archives, and general PBS community 
announcements. 
www.pbspro.com: Focused on the Professional Version of PBS, the PBS Pro Web site 

includes software downloads, documentation, evaluation versions, beta releases of new 

software, news, and information for the PBS administrator. 
www.supercluster.org: The Supercluster Web site contains documentation for the Maui 

scheduler and Silver metascheduler. It also includes cluster-relevant research in areas of 

simulation, metascheduling, data staging, allocation management, and resource optimization. 
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Figure 9.11: Computing p using collective operations. 

Figure 9.12: Computing p using the Monte Carlo method. 
Figure 9.13: Jumpshot displaying message traffic 
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Figure 10.3: Fault-tolerant manager.  
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Figure 10.5: Domain and 9 × 9 computational mesh for approximating the solution to the 

Poisson problem using a two-dimensional decomposition. 
Figure 10.6: Locations of mesh points in ulocal for a two-dimensional decomposition.  

Figure 10.7: Nonblocking exchange code for the Jacobi problem for a two-dimensional 

decomposition of the mesh.  
Figure 10.8: Two possible message-matching patterns when MPI_ANY_SOURCE is used in 

the MPI_Recv calls (from [13]). 
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Figure 10.9: Schematic representation of collective data movement in MPI. 

Figure 10.10: Using MPI_Allgather and MPI_Allgatherv. 

Figure 10.11: Parallel I/O of Jacobi solution. Note that this choice of file view works only for 
a single output step; if output of multiple steps of the Jacobi method are needed, the 

arguments to MPI_File_set_view must be modified. 

Figure 10.12: C program for writing a distributed array that is also noncontiguous in memory 
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Figure 11.2: PVM program 'hello_other.c '. 

Figure 11.3: Output of fork/join program. 
Figure 11.4: Snapshot of XPVM interface during use 
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Figure 14.1: Examples of ClassAds in Condor.  

Figure 14.2: Condor jobmonitor tool. 

Figure 14.3: Remote System calls in the Standard Universe.  
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Figure 14.5: Daemon layout of an idle Condor pool. 
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Figure 14.7: CondorView displaying machine usage. 
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Figure 17.1: Example system. 
Figure 17.2: Striping example with base of 0 and pcount of 4 

Figure 17.3: Partitioning parameters. 
Figure 17.4: Partitioning Example 1, block distribution. 

Figure 17.5: Partitioning Example 2, cyclic distribution.  

Figure 17.6: MDBI Example 1. 
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Figure 18.1: Chiba City schematic. 
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Figure 18.3: The Chiba City Ethernet. 
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Figure 18.5: Node image management. 

Figure 18.6: OS image management. 

Figure 18.7: Serial infrastructure.  

Figure 18.8: Power infrastructure. 
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