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Abstract

The Extended Euclidean algorithm provides a fast solution to the problem of
finding the greatest common divisor of two numbers. In this paper, we present
three applications of the algorithm to the security and privacy field. The first one
is a method for controlling the disclosure of discrete logarithm-based public keys.
It can be used to privately deliver a public key to a set of recipients with only one
multicast communication. The second one is an authentication mechanism to be
used in scenarios in which a public-key infrastructure is not available. Finally, the
third application of the Extended Euclidean algorithm is a zero-knowledge proof
that reduces the number of messages between the two parts involved, with the aid
of a central server.
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1 Introduction

Multicast communications allow a host to simultaneously send information to a set of
other hosts, avoiding the establishment of point-to-point connections with all of them.
IP multicast technologies (which use routing techniques at a low level over a network,
such as the IGMP protocol) have not achieved the expected success due to several
reasons (need for compatible routers, implantation costs, lack of support from Internet
providers, etc.). As a recent alternative, application level multicast has taken over,
since it offers the same functionality at a lower cost and easier deployment. Instead
of requiring physical deployment a logical network is built, and hosts resend messages
themselves.

Multicast communications can be either one-to-many if the source of the transmit-
ted data is one entity only over time (such as IPTV or P2PTV services) or many-to-

many, if several clients, or all, act as a source of data. Multiconferences are an example
of this (strictly, each data source establishes a one-to-many multicast communication).
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There are services that take advantage of multicast but need to keep communica-
tions private. Those technologies that make it possible are known as secure multicast.
Applications of secure multicast are, among others, pay-per-view IPTV or P2PTV,
private multiconferences (oriented to business, politics or even military affairs), or any
private service that involves several participants or clients.

The typical approach to establish secure multicast communications is to agree on
one or several symmetric encryption keys to encrypt messages (depending on the topol-
ogy and size of the network). However, the key, or keys, must be renewed periodically
to prevent attacks from outsiders, or even insiders.

Depending on how key distribution and management are carried out, secure multi-
cast schemes are divided into centralized and distributed. Centralized schemes depend
directly on a single entity to distribute every cryptographic key. In a distributed ap-
proach, key distribution is more complex, usually involving entities that act as local
sub-servers and manage subgroups of users. Full or partial message re-encryption is
needed in some cases. The following paragraphs introduce some well known solutions.

The Secure Lock centralized solution is proposed in [1]. It is based on the Chinese
Remainder Theorem. A drawback are the inefficient computations required at the Key
Server side on each key refreshment: the computation time needed quickly becomes
excessive when the number of members grows [2].

RFC 2627 [3] presents some approaches to the problem. Among all, the Hierarchical

Tree Approach (HTA) is the recommended option. It uses a logical tree arrangement
of the members in order to facilitate key distribution. The benefit of this idea is that
the storage requirement for each client and the number of transmissions required for
key renewal are both logarithmic in the number of members.

In [4], a divide-and-conquer extension to Secure Lock is proposed. It combines the
Hierarchical Tree Approach and the Secure Lock: members are arranged in a HTA
fashion, but Secure Lock is used to refresh keys on each tree level. Therefore, the
number of computations required by Secure Lock is reduced.

IOLUS [5] is a well known framework designed for the secure multicast problem.
Nodes are physically distributed in subgroups, which are organized on a tree fashion.
Some special trusted nodes handle the subgroups and serve as gateways among them.
It supports huge sets of members, due to its distributed nature. Since IOLUS is a
framework, not a protocol, the key refreshment scheme used within subgroups is not
stated. Any scheme can be used.

An IETF Working Group, MSEC [6], is currently working in a set of protocols
to standardize secure multicast. They are focusing, in an initial stage, in IP-layer
centralized multicast, assuming the presence of groups and a single trusted entity in
each one.

These technologies make a good job assuring privacy and (in most cases) efficient
key refreshment. However, they do not cover other aspects such as authentication
or trust among peers. This paper presents a secure multicast solution for centralized
scenarios that provides:

1. private communications and efficient key refreshment,
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2. key server messages authentication, and
3. validation among peers.

Three different and complementary schemes are proposed in order to achieve the
proposed goals. Depending on the scenario and its necessities the schemes can be
implemented along with the others or on their own.

The paper is organized as follows. Section 2 describes the scenario conditions
that are assumed for our solution. Section 3 presents the key refreshment scheme.
Section 4 introduces the scheme for authentication of the key server. The authentication
among hosts scheme is proposed in Section 5. Finally, the conclusions of the paper are
presented in Section 6.

2 Scenario

The target scenario is the following: private communications must be established within
a restricted group. There is a central server that manages the key management issues.
From now on, we will refer to the server as Key Server, and to the clients as members.
Depending on the nature of the service, communications can be either one-to-many or
many-to-many.

In any case, forward secrecy must be maintained. This requirement implies that a
member which leaves the network (i.e. her membership expires) should not be able to
decrypt any ciphered information transmitted after her exit, and forces to refresh the
encryption keys whenever a member leaves the network. Some services may require
backward secrecy: an arriving member should not be able to decrypt any ciphered
information transmitted before her arrival. This imposes, again, a refreshment of the
keys when a member enters the system. These two restrictions may become an efficiency
problem if the churn rate (joins and leaves) is too high. The scheme proposed here is
efficient enough to cope with high churn rates, as will be shown next.

Obviously, the security and privacy features of an application level secure multicast
solution should not only be restricted to private communications. Authentication is a
key issue, too. Members should have a way to check that the source of a message is a
trusted entity, either if the source is the Key Server or other member.

3 Controlled disclosure of public keys within closed groups

The first scheme we present allows to establish private group communications. The
proposed approach: the Key Server owns an asymmetric key pair (of an encryption
algorithm based on the discrete logarithm problem) and discloses the public key only
to the members of the restricted group. Communications from the Key Server are
encrypted with its private key. It is clear that only the members of the group will be
able to decrypt the messages. We have named this solution controlled disclosure of a

public key.
The usual method to publish public keys is the use of public key certificates. This

is extremely useful when the disclosure process involves two participants: the owner of
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the public key and the recipient. For more participants the process can be repeated,
obviously. What the present scheme tries to solve is how to simultaneously disclose a
public key to a selected audience only, while preserving security and efficiency. What’s
more, the process should be lightweight enough to be repeated as many times in time
as required for key refreshment purposes. This problem appears in services such as
pay-per-view IPTV or P2PTV and multiconferences.

The most relevant features of the scheme are:

• Only one message is generated per key refreshment.
• Suitable for all topologies. No need for node hierarchies, though they can be

supported.
• No need for message re-encryption.
• Only one secret piece of info is held by each client. We call this pieces member

tickets.
• Cost-effective and easy to deploy.

The scheme is described next. Let us assume there are n members at a given time in
the group, and that the Key Server generates an asymmetric key pair of the form:

Kpub : g,m, gk mod m

Kpriv : k

which is an Elgamal key [7]. Kpub is the key to be disclosed.

When a member i joins, the Key Server assigns it a member ticket, xi. Every ticket
is a large prime1 and is communicated to the corresponding member under a secure
channel: SSL/TLS, for example. This communication is made once per member only,
so it does not affect global efficiency. All tickets must be different from each other, at
least during a relatively wide period of time. Note that xi is known only by its owner
and the Key Server, and Kpub is shared by all members and the Key Server.

Generation of (Kpub,Kpriv) and distribution of Kpub are done as follows.

1. The Key Server selects:

• m and p, large prime numbers, such that m − 1 = p · q.

• k and δ, such that δ = k + p and δ < xi, for every i = 1 . . . n.

• g that verifies gp = 1 mod m (such a value is easy to calculate2).

2. The Key Server calculates L =
∏n

i=1
xi. L is kept private in the Key Server.

3. The Key Server finds u, v, by means of the Extended Euclidean Algorithm [8],
such that

u · δ + v · L = 1 (1)

1Strictly, it is sufficient that all xi are coprime and greater than δ. In that case, however, it would
be necessary that every xi has a large prime factor in order to make the factorization of L harder (L
will be introduced shortly).

2Once the Key Server has chosen m = p · q + 1, a value a is chosen satisfying that m− 1 is the least
integer such that am−1 mod m = 1 (that is, a is a primitive value from Zm). Then g = aq mod m.
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4. The Key Server multicasts (makes public) g, m and u on plain text.
5. Each member i calculates u−1 mod xi = δ and gδ mod m = gk mod m = Kpub.

The length of Kpub, by definition, can not exceed that of m.

New values for m, g, p and/or k must be chosen for each refreshment of (Kpub,Kpriv).
Note that δ, u and v depend on them and will change as they do.

Fortunately it is not necessary, for successive refreshments, to recompute L from
scratch if there were joins or leaves: L should be multiplied by the incoming members’
tickets, and divided by those of the leaving members. That speeds the process up.
Finally, for security reasons, the Key Server might decide to refresh (Kpub,Kpriv) after
a long period of time with no members joining or leaving.

Since the use of asymmetric key encryption along with large pieces of data may
be inefficient the key hierarchy solution can be adopted. A symmetric key is encrypted
by the Key Server with its private key, and delivered to the set of members. Data
messages are encrypted using the symmetric key. Members can decrypt data messages
after receiving the Key Server’s public key and the symmetric key. For security and
efficiency reasons, the symmetric key may be refreshed at a higher frequency than the
asymmetric key pair. Examples of this technique are shown in [9]. An additional benefit
of using a key hierarchy is the possibility to establish both one-to-many and many-to-
many communications: both the Key Server and every member know the symmetric
key and may use it to encrypt its own messages.

3.1 Proof of correctness for the disclosure scheme

Given that δ < xi, i = 1 . . . n and with every xi prime (or coprime at least), it is clear
that:

gcd(δ, xi) = 1, for every i = 1, . . . , n (2)

and hence,

gcd(δ, L) = 1 (3)

Equation (3) ensures, by the Extended Euclidean Algorithm, the existence of u, v ∈ Z

such that δ · u + v · L = 1, from where it is deduced that δ · u ≡xi
1 and so u−1 ≡xi

δ,
for every i = 1, . . . , n. The Chinese Remainder Theorem guarantees that the solution
for u−1 mod xi = δ and δ < xi, for every i = 1, . . . , n is unique.

The value Kpub = gk mod m is obtained as shown next:

gδ ≡m gk+p (4)

≡m gk · 1

≡m gk

g is public, but the use of δ assures that an outsider will not be able to guess k and,
therefore, Kpub.
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3.2 Security and scalability considerations

Security in the distribution of Kpub relies on the unfeasibility of calculating the right δ

in a reasonable time if a valid xi is not known by the attacker (recall that values for
Eq.(1) are unique). The privacy of k and p is guaranteed if:

• a sufficiently large value is chosen for m,
• p and q have a similar bitlength (recall that m − 1 = p · q).

In that case factorizing m − 1 will be more difficult. Additionally, a strong prime can
be chosen for m.

Note that the product L is not public in order to make attackers’ work more
difficult. In case L was discovered and factorized by an attacker, she would gain access
to every member ticket. But such a factorization is impractical by means of a brute
force attack. A legal member, say i, might be tempted to factorize u·δ−1

xi
. If she was

successful, she would obtain, again, every other ticket included in L. The problem of
factorizing such a value, however, is equivalent to that of factorizing L.

Nevertheless, there is a security measure that must be taken when a new member
joins: she should not be assigned a previously used ticket (at least recently). This is
done to prevent the old owner to keep intercepting refreshment messages and using her
old ticket to discover the secret.

Regarding scalability, we can observe that L will be large, given that L =
∏n

i=1
xi.

So will be u (recall Eq. (1)). For n members and b-bits tickets the maximum length of
L is then n · b bits. That is also the maximum length of u. As an example, for b = 64
and n = 1000, u will be 64000 bits long at most, i.e. ≈ 8 KBs. Though that is an
affordable message length for many devices (requirement 4), a shorter message would
be desirable.

The solution that allows to overcome these problems consists of dividing the set
of members into subgroups and delivering the same Kpub to all of them. Assume
there are s disjoint subgroups, each one with a similar number of members. Still,
the join and leave operations require the whole set of members to obtain a new key,
therefore s refreshment messages (g, m and the corresponding u) must be computed and
multicasted now; each one for a different subgroup. The final bandwidth requirement
does not change, but adopting this approach brings many benefits which are discussed
next.

First, for a fixed number of members the length of u values decreases linearly as the
number of subgroups increases. In the previous example, arranging the same audience
in 20 groups of 50 members would yield 20 messages of 3200 bits = 400 Bs maximum,
each one shorter than a typical X.509 certificate. Shorter messages will be handled
more easily and quickly by the recipients. This means less hardware requirements.

Second, the message generation process that takes place at the Key Server can be
sped up. Every different u can now be computed by a separate process, which may
run concurrently with the others. This is specially appropriate for nowadays multi-core
computers. The whole process can be sped up by nearly s times if the software is
properly tuned.
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This subgroup approach provides a better scalability, allowing to increase the max-
imum number of clients that can be handled. As a remark, users should be assigned
to subgroups in a balanced way, in order to keep refreshment messages as short as
possible. This raises other issues, such as the problem of rebalancing subgroups after
a leave avalanche, for example.

3.3 Communication with different groups

There are scenarios that require separate communications with different groups of mem-
bers. Examples are different pay-per-view channels in the same TV platform and differ-
ent private multiconferences managed by the same Key Server. Handling this situation
is easy: the Key Server only needs to maintain a different key pair for each group. Ev-
ery join or leave event will imply the refreshment of the affected group’s key pair only.
Figure 1 depicts this situation. It can happen that a member is enlisted in two or more

Figure 1: Managing different groups. Capital letters denote members.

groups at the same time (that is usually the case of pay-per-view channel packages, for
example). It is clear that a join or leave of that member would require a refreshment
in every group she belongs to.

3.4 Simulation

We have developed a Java implementation of the scheme in order to perform simulations
and obtain execution times. The BigInteger Java class was used for handling large
numbers, and the Miller-Rabin test was employed for primality tests. Figures 2 and
3 show execution times for the algorithm in Section 3, both in the Key Server and in
a member, for different group sizes and ticket lengths. They were obtained in a Intel
Core 2 Duo processor at 2,26 GHz with 3 MB of L2 cache and 2 GB of RAM.

Two main conclusions can be extracted from the Key Server times. First, key pair
refreshment messages are computed very fast, excepting in the case of 2048 bits. This
means that the scheme can be applied to a wide variety of scenarios. Second, execution
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Figure 2: Key Server execution times for different ticket lengths and network sizes.

Figure 3: Member execution times for different ticket lengths and network sizes.

times are mainly affected by ticket length and not by the number of members considered.
That is good news when large audiences are addressed. However, remember that the
length of the refreshment message might force the audience to be split into several
subgroups (see Section 3.2).

Member times show that retrieving the secret is a very fast process. The main
problem at the server side is, again, handling a long message.

4 Key refreshment message authentication

At this point we have achieved privacy in multicast communications. This section
presents a mechanism that authenticates the refreshment messages from the Key Server:
that is required in order to protect the system against forged refreshment messages.
The usual technology for message authentication is digital signature: a hash of the
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message is encrypted with the sender’s private key. The receiver can then decrypt the
hash and compare it with its own result of a hash operation on the received information.

That solution is not applicable in our case, because refreshment messages disclose
a public key: members would need to use the public key they are receiving to verify
the message that contains it. A digital signature of that nature would not assure
authentication at all, since the message might be forged and the signature still be
valid. An alternative is to use the key pair used before the refreshment, but just-
arrived members would not be able to verify the signature, since they would not know
the previous key pair. Obviously, the simplest solution involves having a different,
invariable key pair for authentication purposes.

We propose, instead, an approach which is not based in the use of public key
cryptography. Our solution proves that the sender knows the recipient’s ticket. The
two only entities in the system that know any given ticket are its owner member and
the Key Sever. Assuming the ticket has not been stolen, any message received by a
member that passes the verification scheme can only come from the Key Server.

The scheme is described next. We assume the Key Server is performing a refresh-
ment of its key pair, and therefore the authentication process is complementary to that
described in Section 3. We assume, too, that members receive the refreshment message.

1. The Key server:

(a) computes s = (gk)−1 mod L by means of the Extended Euclidean Algorithm,
(b) chooses a random number a, such that a < xi, for every xi, and
(c) multicasts {a · s, h(a)}. h(a) is the output of a hash operation on a. The

hash algorithm is not specified here.

2. Every member i receives the authentication message and computes h(a·s·Kpub mod xi),
which should be equal to the value h(a) received if xi is a factor of L.

It is convenient that the authentication message is attached to the refreshment
message so authenticity can be verified upon reception.

4.1 Security and efficiency considerations

Regarding security, the key point is that a · s · r mod α is only equal to a if α = L

or α = xi ∀ xi. An attacker willing to forge an authenticated key refreshment message
must know either L or at least one xi. In the first case the forged message will pass the
verification test in every client, while in the second case only the owner of xi will be
fooled. However, both L and every xi are kept secret, and stealing them is equivalent
to stealing a private key. We can therefore state that in terms of security, and for
the scenario described in Section 2, the authentication scheme proposed here is a valid
substitute for digital signature.

Regarding efficiency, the arbitrary-precision arithmetic additional operations re-
quired in the Key Server side are a modular inverse and a multiplication. Every client
must compute a modular multiplication. Those operations have very little impact on
the final runtime since they can be run very efficiently by any hardware with arbitrary-
precision arithmetic capabilities.
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The scheme poses a disadvantage, however: the authentication message can be as
long as the key refreshment message. This should be taken into account in low bit rate
scenarios.

5 Peer validation: a zero-knowledge proof

Once secure multicast and Key Server messages validation have been achieved, the last
proposal in this paper deals with authentication among peers. The aim is to verify that
a given peer j holds a valid ticket xj: this means that j is a legal peer, assuming no
information leakage. Verification is carried out with no disclosure of any private nor
sensible information. The scheme is presented next. Assume that peer i wants to verify
whether peer j is a legal peer, prior to establishing communications with it. Assume
too that the public key disclosure algorithm from Section 3 has been run previously.
Recall the form of (Kpub, Kpriv):

Kpub : g,m, gk mod m

Kpriv : k

Authentication is performed as follows:

1. Peer i chooses a random integer r such that 1 < r < m and sends it to the Key
Server.

2. The Key Server computes inv = r−1 mod L and sends it to i.
3. Peer i sends {inv, gxi mod m} to j.
4. Peer j calculates rj = inv−1 mod xj, βj = rj · (g

xi)xj and sends {βj , gxj} to i.
5. Peer i computes βi = r · (gxj )xi , which should be equal to βj .

If βi = βj then it is clear that j owns a valid ticket xj. Otherwise peer i should
warn the Key Server so preventive measures can be taken against j. Modular inverses
can be computed by means of the Extended Euclidean Algorithm.

In case this protocol is implemented in a standalone way and no public key disclo-
sure algorithm is being run then the Key Server must choose the values values g and
m as shown in Section 3 and communicate them to peers before any authentication is
done.

5.1 Security and efficiency considerations

Security is assured by two facts:

1. peer j needs to know a valid ticket xj in order to obtain a rj equal to r, by means
of a modular inverse calculation (step 4), and

2. the complexity of the discrete logarithm problem in a finite field [10].

We warn now against the possibility of performing Denial of Service (DoS) attacks
against the Key Server and peer j, if a malicious entity sends verification requests at



J.A.M. Naranjo, J.A. López-Ramos, L.G. Casado

an intentional very high rate. That same entity might arbitrarily warn the Key Server
against legal peers, too.

Regarding efficiency and scalability, the protocol involves one communication with
the Key Server and modular exponentiations. This makes the protocol applicable only
to small centralized networks or distributed networks in which subgroups are managed
by local entities, such as IOLUS [5]. However, the Key Server plays only a small role
(modular inverses can be found very efficiently) and the main part of the work is carried
out by peers. Having said this, member authentication by means of digital certificates is
a more realistic approach for large groups. However, our scheme may be an alternative
for small sets of members.

6 Conclusions

We have presented three different uses for the Extended Euclidean Algorithm, all of
them focusing on privacy and security in multicast scenarios. The first one, a controlled
disclosure mechanism, is suitable for scenarios in which a single entity (a Key Server)
communicates its public key to a set of client hosts, so private communications can be
held. The communication can be done in a single multicast message, and there is no
need for encryption. The mechanism is secure, and simulation results were shown to
prove its efficiency, both on the Key Server and on the client side.

The second application is an authentication mechanism which is not based on
public-key cryptography. It can be used in situations in which public-key cryptography
is not available (due to low capacity devices on the client side, for example). It can
also be used along with the first scheme, though.

Finally, a zero-knowledge protocol was presented which can be used for for peer
validation. By using this protocol peers can decide whether to trust a peer or not before
establishing communications with it. It works by challenging peers to demonstrate that
they own a valid ticket. No sensible information is disclosed.

The three mechanisms can be applied to the same scenario, say, a peer-to-peer
television platform. Future lines of research include the implementation and test of
a combination of them in a simulator (e.g. PeerSim [11]) or a real testbed, such as
PlanetLab [12].
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