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Abstract

This paper introduces a method for renew-
ing secrets which are shared by a set of hosts.
The method is centralized, secure, efficient and
scalable to a reasonable size. It can be used
to refresh cryptographic keys in a centralized
multicast overlay. The method is compatible
with any multicast topology used underneath.
Execution times are shown and the scheme is
compared to other existing alternatives.

1 Introduction

Application level multicast overlays have pro-
gressively filled the space left by IP multicast
protocols, such as IGMP, since they stand as
a cost-effective and easy-to-deploy alternative:
they run on the OSI application layer, while IP
multicast is hold on the network layer [15].

According to the source of the transmitted
data, multicast schemes can be divided into
one-to-many and many-to-many. In the first
case, the source is one entity only. A typical
scenario is an IPTV or P2PTV platform, in
which clients receive a TV signal from a Con-
tents Server via Internet. In the second case,
many clients (or all) act both as source and re-
ceiver. Multiconferences are examples of this.

Still, there is an important issue that needs
a definitive solution: privacy in multicast com-
munications. The typical approach in order to
maintain a continuous private communication
with a group of hosts is to establish a common
secret key to encrypt the information. The

key is then refreshed periodically to prevent
attacks from outsiders, or even insiders. This
solution is named secure multicast. Huge ef-
forts are still directed towards finding efficient,
scalable and secure enough methods.

Depending on how key distribution and
management are carried out, secure multicast
schemes can be divided into centralized and
distributed. Centralized schemes depend di-
rectly of a single entity, a key server, to dis-
tribute every cryptographic key. In a dis-
tributed approach the key distribution pro-
cess is more complex, usually involving entities
that act as subservers and manage subgroups
of users. Re-encryption of the information is
needed in some cases.

The heart of the matter in secure multi-
cast is the necessity, in many cases, for per-
fect backward and forward secrecy (a client
should not be able to decrypt any ciphered
information transmitted before his/her arrival
to the system and after his/her departure, re-
spectively). This requirement forces to refresh
all the keys used to encrypt the data when-
ever a client joins/leaves the system. If the
members set is large and the joinings/leavings
occur frequently then the refreshment oper-
ation may become an important bottleneck.
Many schemes have been proposed as a so-
lution. The following paragraphs summarize
some of them.

The Secure Lock solution is proposed in [3].
It is based on the Chinese Remainder Theo-
rem. The scheme does not impose any given
topology. The problem relies on the ineffi-



cient computations required at the Key Server
side on each key refreshment: the computation
time needed quickly becomes excessive when
the number of members grows [8].

RFC 2627 [14] presents some approaches to
the problem. Among all, the Hierarchical Tree
Approach (HTA) is the recommended option.
It uses a logical tree arrangement of the mem-
bers in order to facilitate key distribution. The
benefit of this idea is that the storage require-
ment for each client and the number of trans-
missions required for key renewal are both log-
arithmic in the number of members.

In [12], a divide-and-conquer extension to
Secure Lock is proposed. It combines the Hi-
erarchical Tree Approach and the Secure Lock:
members are arranged in a HTA fashion, but
Secure Lock is used to refresh keys on each tree
level. Therefore, the number of computations
required by Secure Lock is reduced.

IOLUS [10] is a well known framework
designed for the secure multicast problem.
Nodes are physically distributed in subgroups,
which are organized on a tree fashion. Some
special trusted nodes handle the subgroups
and serve as gateways among them. It sup-
ports huge sets of members, due to its dis-
tributed nature. Since IOLUS is a framework,
not a protocol, the key refreshment scheme
used within subgroups is not stated. Any
scheme can be used.

An IETF Working Group, MSEC [1], is cur-
rently working in a set of protocols to stan-
dardize secure multicast. They are focusing,
in an initial stage, in IP-layer centralized mul-
ticast, assuming the presence of groups and a
single trusted entity in each one.

This paper presents a centralized secure
multicast scheme with the following features:

• Suitable for all topologies. No need for
node hierarchies, though they can be sup-
ported.

• No need for re-encryption.
• Only one secret piece of info is held by

each client. We call this pieces member
tickets.

• Cost-effective and easy to deploy.

The rest of the paper is organized as follows.

Section 2 introduces the scheme and the the-
ory underneath. Section 3 discusses some se-
curity and efficiency considerations and show
the execution times we obtained. Section 4
compares the scheme with other well known
alternatives mentioned above. Finally, Section
5 presents the conclusions of the paper.

2 Description of the scheme

The scenario assumed is a Key Server and a
set of members (other hosts) that either send
or receive multicast messages. Data communi-
cations can therefore be either one-to-many or
many-to-many, and are encrypted with a sym-
metric key. Communications related to key
refreshment are always one-to-many, from the
Key Server to the members. Members can en-
ter and leave the system at any time. The
key must be refreshed upon member arrival
or departure to achieve perfect backward and
forward secrecy, respectively. In addition, a
key refreshment must be performed periodi-
cally to prevent statistical or brute force at-
tacks. All setup tasks are carried out by a
Key Server. Any multicast topology can be
used underneath.

Let us assume r is the symmetric encryp-
tion key to be multicast, and that there are n
members at a given time. The following para-
graphs explain how the scheme works.

When a member i joins, the Key Server as-
signs it a member ticket, xi. Every ticket is
a large prime1 and is communicated to the
corresponding member under a secure chan-
nel: SSL/TLS, for example. This communica-
tion is made once per member only, so it does
not affect global efficiency. All tickets must
be different from each other, at least during a
relatively wide period of time. Note that xi is
known only by its owner (and the Key Server),
and r is shared by all members (and the Key
Server).

The distribution of r is done as follows.

1Strictly, it is sufficient that all xi are coprime
and greater than δ. In that case, however, it would
be necessary that every xi has a large prime factor in
order to make the factorization of L harder (L will be
introduced immediately).
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1. The Key Server selects:

• m and p, large prime numbers, such
that p divides m − 1.

• k and δ, such that δ = k + p and
δ < xi, for every i = 1, . . . , n.

• g that verifies gp = 1 mod m (such
a value is easy to calculate2).

The encryption key r consists of r =
gk mod m.

2. The Key Server calculates L =
Qn

i=1 xi.
L is kept private in the Key Server.

3. The Key Server finds u, v, by means of the
Extended Euclidean Algorithm [9], such
that

u · δ + v · L = 1 (1)

4. The Key Server multicasts (makes public)
g, m and u on plain text.

5. Each member i calculates u−1 mod xi = δ
and gδ mod m = gk mod m = r. The
length of r, by definition, can not exceed
that of m.

New values for m, g, p and/or k must be
chosen for each refreshment of r. Note that
δ, u and v depend on them and will change as
they do.

In an event-driven refreshments scenario,
the refreshment operation must be performed
at least in the following two cases:

Member j joins: xj is included in the
product L.

Member j leaves: The leaving member
should not be able to decrypt contents any-
more. This is achieved by dividing L by xj

and refreshing r afterwards.

Note that it is not necessary to recompute
L from scratch: only a single multiplication
or division is required for a join or a leave,
respectively. Finally, for security reasons, the
Key Server might decide to refresh r after a
given period of time with no members joining
or leaving.

2Once the Key Server has chosen m = p · q + 1,
a value a is chosen satisfying that m − 1 is the least
integer such that am−1 mod m = 1 (that is, a is a
primitive value from Zm). Then g = aq mod m.

2.1 Proof of correctness

Given that δ < xi, i = 1 . . . n and with every
xi prime (or coprime at least), it is clear that:

gcd(δ, xi) = 1, for every i = 1, . . . , n. (2)

and hence,
gcd(δ, L) = 1 (3)

Equation (3) ensures, by the Extended Eu-
clidean Algorithm, the existence of u, v ∈ Z
such that δ · u + v · L = 1, from where it
is deduced that δ · u = 1 mod xi and so
u−1 = δ mod xi, for every i = 1, . . . , n. The
Chinese Remainder Theorem guarantees that
the solution for u−1 mod xi = δ and δ < xi,
for every i = 1, . . . , n is unique.

The value r = gk mod m is obtained as
shown next:

gδ = gk+p mod m (4)

= gk · gp mod m

= gk · 1 mod m

= gk mod m

g is public, but the use of δ assures that an out-
sider will not be able to guess k and, therefore,
r.

3 Security and efficiency considera-
tions

Security in the distribution of r relies on the
unfeasibility of calculating the right δ in a rea-
sonable time if a valid xi is not known by
the attacker (recall that values for Eq.(1) are
unique). The privacy of k and p is guaranteed
if:

• a sufficiently large value is chosen for m,
• p and q have a similar bitlength (recall

that m − 1 = p · q).

In that case factorizing m − 1 will be more
difficult. Additionally, a strong prime can be
chosen for m.

Note that the product L is not public in or-
der to make attackers’ work more difficult. In
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case L was discovered and factorized by an at-
tacker, she would gain access to every member
ticket. But such a factorization is impracti-
cal by means of a brute force attack. A legal
member, say i, might be tempted to factorize
u·δ−1

xi
. If she was successful she would obtain,

again, every other ticket included in L. The
problem of factorizing such a value, however,
is equivalent to that of factorizing L (recall
that xi divides u · δ − 1, for every i = 1, . . . , n,
and so

Q
xi = L is a factor of u · δ − 1).

Nevertheless, there is a security measure
that must be taken when a new member joins:
she should not be assigned a previously used
ticket (at least recently). This is done to pre-
vent the old owner to keep intercepting re-
freshment messages and using the old ticket
to discover the secret.

Regarding efficiency, Kruus [7] suggests five
issues that a multicast key management pro-
tocol must address. They are:

1. efficiency in initial keying,
2. efficiency in rekeying,
3. computational requirements,
4. storage requirements,
5. scalability.

There is no difference in our scheme between
first time keying (requirement 1) and further
rekeying operations. Rekeying operations are
simple (requirement 2): the Key Server gen-
erates a single message which is injected into
the multicast network on plain text, since only
authorized members will be able to process it
correctly.

Requirements 3, 4 and 5 are discussed in the
next subsection.

3.1 Achieving scalability

We can observe that L will be large, given that
L =

Qn
i=1 xi. So will be u (recall Eq. (1)).

To estimate it, assume that every xi value is
stored in an unsigned binary data type of b
bits. The greatest value that can be repre-
sented is 2b−1. Assume also there are n mem-
bers. The maximum length of L is then n · b
bits. That is also the maximum length of u.

As an example, for b = 64 and n = 1000 the
maximum length of u is 64000 bits ≈ 8 KBs.

Though that is an affordable message length
for many devices (requirement 4), a shorter
message would be desirable.

From previous consideration we assume that
Kruus’ requirements 3 and 5 are the weakest
points of our scheme. The solution that allows
to overcome these problems consists of divid-
ing the audience into subgroups and delivering
the same encryption key to all of them. For
the rest of the paper we assume there are s
subgroups, each one with a similar number of
members. Still, the join and leave operations
require the whole set of members to obtain a
new key, therefore s refreshment messages (g,
m and the corresponding u) must be computed
and multicasted now; each one for a different
subgroup (note that the final bandwidth re-
quirement does not change). Figure 1 shows
an example.

Figure 1: The subgroup extension to the scheme.
Capital letters denote members. r is the multicas-
ted encryption key.

Adopting this approach brings many bene-
fits. First, it is obvious that, for a fixed num-
ber of members, the length of u values de-
creases linearly as the number of subgroups
increases. In the previous example, arranging
the same audience in 20 groups of 50 members
would yield 20 messages of 3200 bits = 400
Bs maximum, each one shorter than a typi-
cal X.509 certificate. Shorter messages will be
handled more easily and quickly by the recipi-
ents. This means less hardware requirements.

Second, the message generation process that
takes place at the Key Server can be sped up.
Every different u can now be computed by a
separate process, which may run concurrently
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Figure 2: Key Server execution times for different ticket lengths and group sizes.

Figure 3: Member execution times for different ticket lengths and group sizes.

with the others. This is specially appropriate
for current multi-core processors. The whole
process can be sped up by almost s times if
the software is properly tuned.

This subgroup approach provides a better
scalability, allowing to increase the maximum
number of clients that can be handled. As a
remark, users should be assigned to subgroups
in a balanced way, in order to keep refresh-
ment messages as short as possible. This raises
other issues, such as the problem of rebalanc-
ing subgroups after a leave avalanche, that are

not considered here.

3.2 Simulation

We have developed a Java implementation of
the scheme in order to perform simulations
and obtain execution times. The BigInteger
Java class was used for handling large num-
bers, and the Miller-Rabin test was employed
for primality tests. Figures 2 and 3 show ex-
ecution times of the algorithm in Section 2,
both in the Key Server and in a member, for
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different group sizes and ticket lengths. They
were obtained in a Intel Core 2 Duo processor
at 2,26 GHz with 3 MB of L2 cache and 2 GB
of RAM. Despite using a bi-core processor, the
application was not parallelzed. Better times
are therefore expected for a parallel version of
the application.

Two main conclusions can be extracted from
the Key Server times. First, key pair refresh-
ment messages are computed very fast, except-
ing in the case of 2048 bits. This means that
the scheme can be applied to a wide variety of
scenarios. Second, execution times are mainly
affected by ticket length and not by the num-
ber of members considered. That is good news
when large audiences are addressed. However,
remember that the length of the refreshment
message might force the audience to be split
into several subgroups (see Section 3.1).

Member times show that retrieving the se-
cret is a very fast process. The main problem
at the member side is the need to store and
handle long refreshment messages when large
groups are used. This can be an issue if small
devices are used as members: the hardware
used must have a sufficiently large memory as
well as arbitrary-precision arithmetic capabil-
ities.

4 Comparison with other multicast
schemes

Table 1 compares our scheme with other well
known alternatives, which were briefly pre-
sented in Section 1. More concretely, we con-
sider the Hierarchical Tree Approach (HTA)
in its “multiple keys per message” version [14],
the Secure Lock extended with HTA [12] and
IOLUS [10]. Our scheme is analyzed in its
subgroups version (see Section 3.1). Three as-
sumptions have been made:

• both backward and forward secrecy are
provided,

• trees (where applicable) are balanced and
full,

• members (where applicable) are fairly dis-
tributed into subgroups.

Some of the information shown in the Table
was taken from [2]. “# keys in Key Server”
and “# keys in a member” denote the number
of secret keys (on tickets in our case) the Key
Server and each member must store, respec-
tively. “# messages on Join” and “# messages
on Leave” denote the number of messages that
must be sent on a Join and Leave event, re-
spectively. Data re-encryption means the ne-
cessity of decrypting and encrypting again in-
formation messages at some point in the net-
work, like IOLUS does.

Results depend on several variables: n and
s for IOLUS and our scheme, d and h for HTA
and Secure Lock + HTA (obviously, h depends
on n and d).

Regarding storage, IOLUS has the lowest
requirements. On the other hand, HTA and
Secure Lock + HTA need the Key Server to
maintain a set of keys for the intermediate
logical nodes of the tree. Some of these keys
must be held by the corresponding users, too.
The amount of info to be stored by the Key
Server in our scheme is directly proportional
to the number of users. However, members
themselves only need to know their ticket.

The join operation is very efficient in IO-
LUS, since only one multicast message within
the joined subgroup is needed. Our scheme re-
quires a key refreshment for every subgroup in
the system, while Secure Lock + HTA needs a
refreshment message per tree level. The HTA
solution multicasts more than one message per
tree level. Initial communications via a secure
channel between the joining member and the
server (or trusted entity in IOLUS) are not
considered here, since they do not affect global
efficiency.

In our scheme, as well as in HTA and Se-
cure Lock + HTA, leave operations are similar
to joins. In IOLUS, instead, the trusted en-
tity that manages the affected subgroup must
inform all the members that remain in it,
and other subgroups’ managing entities (all of
them in the worst case).

Finally, there is no necessity to re-encrypt
multicasted data (this means actual encrypted
information), except for IOLUS. However, an
indirection mechanism was proposed to over-
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HTA Secure Lock+ HTA IOLUS Ours

# keys in dh − 1 dh − 1 n
s + s n

Key Server
# keys in h + 1 h + 1 1 1
a member

# messages d−1
h h 1 s

on Join

# messages d−1
h h n

s + s s
on Leave

Data No No Yes No
re-encryption

Table 1: Secure multicast schemes comparison (n is the number of members, s is the number of
subgroups, d is the tree degree and h is the tree depth in HTA and Secure Lock + HTA).

come this problem [10]. Still, the trusted en-
tity in every subgroup must handle every mul-
ticasted message.

Choosing a scheme or another will depend
on the scenario considered. HTA, Secure Lock
+ HTA and ours will probably be able to han-
dle medium sized audiences at a low implanta-
tion cost, such as Internet radio, multiconfer-
ences and stock quote services. On the other
hand, IOLUS can be used with huge audiences
at a higher deployment cost. Typical scenarios
for IOLUS would be pay-per-view platforms
and the broadcasting of great interest events.

An interesting point is that IOLUS is sim-
ply a framework: it does not specify which se-
cure multicast protocol should be used within
every subgroup. We believe that joining IO-
LUS and our scheme would result in a effi-
cient and secure solution: while IOLUS would
provide great scalability, local instances of our
scheme would efficiently and securely handle
every subgroup.

5 Conclusions

This paper introduces a novel secure multicast
rekeying scheme. It is centralized, secure and
reasonably efficient. Any overlay topology is
supported, and there is no need for interme-
diate trusted nodes. A proof of correctness
is provided, and some security and efficiency
considerations are discussed.

In order to assure security, members must
compute a modular inverse, being the mod-
ulus the corresponding member ticket, which
is different for every member. It is compu-
tationally unfeasible to find the correct result
without knowing a valid ticket. Regarding effi-
ciency, execution times from a simulation were
presented, showing that the scheme can be ap-
plied to a real scenario. Finally, a compar-
ison with other well known alternatives was
discussed.

Our plans for the future include addressing
authentication, both of the Key Server and the
members. Other possible applications, such as
mobile networking, ubiquitous computing and
related technologies will be considered too.
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