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1. Introduction 
 
Cryo-electron tomography (cryoET) combines the power of 3D imaging and the 
optimal structural preservation to enable in situ visualization of the subcellular 
architecture and molecular organization of cells and tissues at the nanoscale. In 
cryoET a series of projection images (so-called tilt-series) is acquired from the 
frozen-hydrated sample by tilting it around an axis, usually in the range +/- 60º 
at intervals of 1-3º. The acquired images are then mutually aligned and, 
afterwards, combined through tomographic reconstruction methods to yield a 
3D volume or tomogram. 
 
Tomograms contain a wealth of information but their analysis is not an easy 
task. Apart from the inherent biological complexity, there are a number of 
factors that make tomogram interpretation tough. The tomograms in cryoET are 
characterized by an extremely low contrast and signal-to-noise ratio (SNR). This 
is mainly caused by the use of minimal electron dose during data acquisition 
(typically an accumulated dose around 100 e-/A^2) due to the sensitivity of the 
frozen-hydrated sample to radiation damage. Another cause is the thickness of 
the sample, typically thicker than 100 nm (and increasingly thicker with the tilt 
angle), which leads to events of inelastic and/or multiple elastic electron 
scattering that contribute only noise to the images. In addition, the low contrast 
of tomograms also derives from the contrast transfer function of the microscope, 
which substantially attenuates the low-resolution components. Along with the 
low SNR and contrast, another factor that makes interpretation of the 
tomograms difficult is the limited tilt range (i.e. not covering the full range +/- 
90º), which translates into blurring along the electron beam direction (so-called 
"missing wedge" artefacts). 
 
To increase the SNR and facilitate the analysis of tomograms, denoising 
techniques are thus required. In cases where repetitive motifs are found in the 
tomograms, aligning and averaging the motif instances increases the SNR of 
the specific motif. This is the subtomogram averaging approach to high-
resolution structure determination of macromolecules in situ (Wan and Briggs, 
2016). However, this approach is not applicable in a general cryoET study, 
where the focus may be on the whole cellular environment or pleomorphic 
structures (e.g. organelles) within the field of view. Denoising may also be an 
important pre-processing step for the downstream computational workflow (e.g. 
Segmentation, Feature detection). 
 
There are several stages of the computational workflow in cryoET where the 
noise can be handled to provide tomograms with reduced noise and higher 
contrast. First, before reconstructing the tomograms, the acquired projection 
images may be filtered according to the accumulated electron dose to account 
for the loss of structural information caused by the radiation damage (Grant and 
Grigorieff, 2015; Wan and Briggs, 2016), along with other possible filters. 
Second, the tomographic reconstruction methods and their parameters can 
significantly influence on the noise transferred to the tomogram. Finally, after 
reconstruction, tomogram denoising is a common post-processing stage in the 
cryoET workflow. Several techniques to denoise tomograms become well 
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established in the first decade of this century and are still commonly used. 
Lately, novel strategies based on deep-learning methods have emerged.  
 
This chapter describes standard and emerging approaches used in the 
reconstruction and in the post-processing stages to reduce noise and increase 
the contrast in tomograms. The reader will find a discussion of their advantages 
and limitations, recommendations and a list of available software tools.  
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2. Basic concepts of filtering in the real and Fourier space. 
	

Transformation of an image or tomogram into the Fourier domain allows 
straightforward separation of coarse and slowly varying features (low-resolution 
components) from finer details, edges and sharp transitions (represented by 
medium and high-resolution components). Since noise is mainly predominant 
over signal at the medium and high frequencies, attenuating or filtering out the 
amplitude at those frequencies reduces the contribution of noise. A filter of this 
kind that preserves the low frequency components is called a low-pass filter. By 
contrast, a high-pass filter preserves the high frequency components and 
attenuates or eliminates the others. So-called band-pass filters retain a 
specified range of medium frequencies. 
 
Filtering in the Fourier space consists in computing the Fourier transform (FT) of 
the image or tomogram, multiplying the Fourier filter with the original Fourier 
components, and computing the inverse FT to obtain the filtered image in the 
real space or spatial domain. The Fourier filters are usually implemented 
through smooth functions, thus avoiding abrupt cut-offs that would translate into 
ringing artefacts in real space. Through the convolution theorem of the FT, it is 
possible to find an equivalent linear, position invariant filter that operates in the 
real space (Gonzalez and Woods, 2018). 
 
Filtering in the real space is a procedure that operates directly on the 
pixels/voxels of the image or tomogram. The spatial filter, also known as mask 
or kernel, is an operator whose coefficients determine the nature of the filter 
and is defined over some neighbourhood. The approach is indeed a convolution 
and performs a sum-of-products operation between the kernel coefficients and 
the density of the pixels/voxels under the kernel at a specific location in the 
image/tomogram. In order words, the density of a pixel/voxel of the filtered 
tomogram is determined by a weighted average of itself and the pixel/voxels in 
its neighbourhood. This operation is applied for all pixels/voxels.  
 
Figure 1 illustrates these basic concepts. An image (A) and its FT (B) are shown. 
The low frequencies are around the origin of the FT whereas the medium and 
high frequencies spread farther throughout the FT. The maximum frequency 
(also known as Nyquist frequency), given by 0.5/P with P being the pixel size of 
the image or just 0.5 expressed as a normalized frequency, is marked in yellow. 
The cyan circumference indicates an example frequency for filtering. A low-pass 
filtered version of the image is shown in (C), which looks blurred and where the 
lack of details is apparent. As seen in its FT (C, inset) the amplitude of the 
medium and high frequencies are cancelled out. In (D) the high-pass filtered 
image is presented, where the fine details (e.g. edges) are preserved and there 
is loss of global contrast and coarse features. The FT (D, inset) shows that the 
low frequencies are removed. Panels (E) and (F) show the profile of the filters in 
the Fourier space as well as the corresponding spatial kernels to be convolved 
with the original image (sketched by the orange grid in (A)).  
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Figure 1. Basic concepts of filtering. 
 
Original image (A), its Fourier transform (B) with the Nyquist frequency 
highlighted in yellow and a specific example frequency for filtering represented 
in cyan. Low-pass (C) and high-pass (D) filtered versions of the image, with the 
FTs shown in the insets. Low-pass (E) and high-pass (F) filters in the Fourier 
space, as well as equivalent spatial kernels to convolve with the original image 
(convolution sketched by the orange grid in (A)), to obtain the filtered images 
shown in (C) and (D). 
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3. Handling noise during tomographic reconstruction 
 
The tomographic reconstruction problem in cryoET is to compute the tomogram 
containing the 3D structure of the specimen from the set of aligned projection 
images. There are a number of reconstruction methods with their own 
parameters, and the selection of the method and its tuning have an important 
influence on the noise present in the tomogram. 
 
The mathematical principles of tomographic reconstruction are based upon the 
central section theorem, which states that the FT of a 2D projection of a 3D 
object is a central section of the 3D FT of the object (Gonzalez and Woods, 
2018). Therefore, the 3D FT of the specimen can be computed by assembling 
the 2D FTs of the projection images, which yields the 3D structure of the 
specimen by an inverse FT. The drawbacks of this approach are related to the 
non-trivial interpolation in Fourier space and to the computational burden. As a 
consequence, it is not often used to compute tomograms. 
  
There exist real-space iterative reconstruction algorithms that progressively 
refine the tomogram by minimizing the error between the experimental 
projection images and the equivalent projections calculated from the 
reconstructed tomogram. These methods are robust to face the particularities 
found in cryoET, namely the limited tilt range, high noise and low contrast. 
However, the main disadvantage is their high computational expensiveness. 
SIRT (Simultaneous Iterative Reconstruction Technique) ((Gilbert, 1972)) is one 
such method, very commonly used in cryoET to obtain tomograms with high 
contrast (Fernandez, 2012).  
 
The standard method for tomographic reconstruction in cryoET is Weighted 
Backprojection (WBP), which essentially is equivalent to the Fourier approach 
above described but working in the real space ((Frank, 2006)). The relevance of 
WBP in ET mainly stems from its computational simplicity, though it is 
particularly sensitive to noise. 
 
Backprojection distributes the specimen mass present in the projection images 
evenly over computed back-projection rays according to the experimental tilt 
angles (Figure 2A). Backprojection rays from the different images intersect and 
reinforce each other at the points where mass is found in the original structure, 
resulting in the reconstructed tomogram. The backprojection process involves 
an implicit low-pass filtering that makes reconstructions strongly blurred. A high-
pass filtering (i.e., weighting), hence the term "Weighted Backprojection (WBP)", 
is necessary to compensate for this blurring and properly represent the high 
frequency information in the reconstruction (Figure 2A). The weighting is to be 
applied in the directions perpendicular to the tilt axis (planes XZ of the 
tomogram, with the tilt axis running along the Y axis, as is standard in cryoET). 
However, for computational reasons, it is more efficient to apply the weighting 
directly to the aligned projection images (along the X axis) prior to the 
reconstruction. 
 
The weighting filter in WBP plays a paramount role in the noise and contrast of 
the reconstructed tomogram. There is a trade-off between the level of detail and 
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noise present in the tomogram that has to be considered when selecting and 
tuning the filter. A description of the most common filters used in cryoET follows. 
 
The high-pass weighting filter used in WBP to compensate the blurring involved 
by the backprojection process is a linear ramp filter (Frank, 2006; Gonzalez and 
Woods, 2018): 

𝑊ramp(𝑓) = 	𝑓 
 
where 𝑓 denotes the normalized frequency (i.e. in [0,0.5], with 0.5 denoting the 
Nyquist frequency). This filter works well under ideal, noise-free conditions 
(Figure 2A, 2B), but its susceptibility to transfer and amplify the noise from the 
projection images to the tomogram is a severe disadvantage, particularly under 
the highly noisy conditions in cryoET.  
 
In practice, the actual weighting filter combines the ramp filter with a low-pass 
filter so as to attenuate or filter out the high frequency noise (Figure 2B). One 
common weighting filter is based on the Hamming window: 
 
𝑊Hamming(𝑓)

= '
𝑊ramp(𝑓), 0 ≤ 𝑓 ≤ 𝑓)

𝑊ramp(𝑓) ∗ (0.54 − 0.46 ∗ cos(𝜋 (0.5 − 𝑓)/(0.5 − 𝑓)))), 𝑓) < 𝑓 ≤ 0.5 

 
where 𝑓) denotes the normalized frequency from which the Hamming window is 
applied and 0.5 represents the Nyquist frequency. A value of 𝑓) = 0.5 means 
that the ramp filter is used throughout the range, without low-pass filtering at all. 
The most common value for 𝑓)  is 0, which provides the highest level of 
smoothing by having an effect on the whole frequency range. This is the default 
behaviour in Tomo3D (Agulleiro and Fernandez, 2015, 2011), one standard 
software tool for tomographic reconstruction in cryoET. IMOD (Kremer et al., 
1996), the standard package in the cryoET field, also includes this weighting 
filter as an option. 
 
Another common weighting filter is based on the Gaussian function. It behaves 
similarly to the above Hamming-based filter: the ramp filter is used for all 
frequencies up to 𝑓), from which a Gaussian fall-off is applied. This is the default 
option in IMOD, where the default value for 𝑓) is 0.35. 
 
A new weighting filter that provides visual effects similar to the tomographic 
reconstructions with SIRT has emerged in the last few years. The great 
advantage with respect to the real SIRT method is that the processing time is 
the same as WBP. And the advantage with regard to the other filters is that it 
provides significantly cleaner tomograms with higher contrast (Figure 2C). The 
filter was originally developed in the context of medical computerized 
tomography (Zeng, 2012), and it is rapidly becoming standard in cryoET, 
especially for visual inspection of tomograms containing pleomorphic structures 
or for selection of particles of interest for later subtomogram averaging. The 
weighting filter is commonly referred to as "Fake SIRT" or "SIRT-like filter" and 
is defined as: 
 



	

	 8	

𝑊SIRT(𝑓) = 𝑊ramp(𝑓) ∗ (1 − (1 − 𝛼/𝑓).) 
 
where 𝑘 denotes the number of SIRT iterations to simulate and 𝛼 is a constant. 
These parameters were slightly tweaked in IMOD to fairly match the SIRT 
reconstructions obtained with this package. This filter is now available in IMOD 
and in Tomo3D.  
 
Figure 2 illustrates the process of tomographic reconstruction with WBP, 
presents the weighting filters described here, and shows the effects on an 
experimental tomogram of ribosomes (Bharat and Scheres, 2016) (EMPIAR-
10045). While the ramp filtering is required to compensate the global blurring 
and properly weight the structural information of the tomogram, the importance 
of strong low-pass filtering to substantially attenuate the medium and high 
frequency noise is clearly evident. A Hamming-based filter throughout the entire 
range (i.e. 𝑓) = 0) and, remarkably, SIRT-like filters provide the highest level of 
cleanliness and contrast. 
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Figure 2. Handling noise during tomographic reconstruction with WBP. 
 
(A) Tomographic reconstruction with WBP in 2D. The projection data are 
backprojected towards the reconstruction space, and their sum provides the 
reconstruction. To compensate for the blurring caused by the backprojection 
process, a weighting is required, hence Weighted Backprojection (WBP). The 
blur and elongation caused by the missing wedge (off +/-50º) is observable in 
the reconstruction when compared to the reference data (right). 
(B) Weighting filters actually used in WBP to enhance the high frequency 
information and control the noise, formed by a multiplication of the ramp and a 
low-pass filter (left). On the right, only the low-pass filters are shown. 
(C) Effect of the weighting filters in WBP with a ribosome tomogram from 
EMPIAR-10045. Planes XY and XZ are shown.  
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4. Denoising tomograms 
 
Tomograms in cryoET may be degraded by substantial noise, despite the 
strategies to improve the SNR and contrast during tomographic reconstruction. 
Denoising intends to filter out noise but trying to preserve the structural details 
as much as possible with the ultimate aim of facilitating visualization and 
interpretation of tomograms. Several techniques originated in the image 
processing and computer vision fields were explored in cryoET early this 
century, some of which become standard tools and are extensively used. This 
section reviews these techniques.  
 
In general, denoising techniques can be grouped into three wide categories: 
linear, non-linear and anisotropic. Figure 3 illustrates them in 2D. Linear 
techniques are based on low-pass filters or, equivalently, on local averages 
using uniform or Gaussian-like kernels. Here, all voxels are substituted by a 
weighted average of the voxels in the local neighbourhood, with the weights 
given by the kernel. The term "linear" indicates that all voxels in the tomogram 
are subjected to the same kernel regardless of the underlying structural detail. 
These techniques thus succeed in reducing the noise at the expense of blurring 
edges and features. Non-linear techniques then overcome this limitation by 
tuning the strength of the filtering (i.e. the parameters/weights of the kernel) to 
the specific detail the voxel belongs to (Figure 3C). This way, the filtering is 
strong in homogeneous areas whereas it is greatly attenuated or cancelled in 
voxels with a high gradient, hence indicating that there is an edge or a 
potentially important detail. The unwanted effect of this strategy is that edges 
might remain somewhat noisy. Anisotropic non-linear (or just anisotropic for 
short) methods tune not only the strength, but also the direction of the filtering. 
There exist different ways to do it (Figure 3D). The outcome is that the edges 
are subjected to a filtering process that runs parallel to them, or at least not 
across them, thereby cleaning and enhancing them.  
 
Linear methods have their equivalent in Fourier space, as described in Section 
2, so they could be implemented in either domain. However, non-linear and 
anisotropic methods only can be implemented in real space. Linear methods, 
particularly those based on spherically symmetric kernels, can be applied to the 
tomogram in 3D or, equivalently, in 2D to the tilt-series of acquired images from 
which the tomogram is calculated, which is a faster process. Non-linear or 
anisotropic methods could also be applied to the tilt-series (e.g. Maiorca et al., 
2012), though it must be done with caution since the linear relationship between 
the projection images and tomogram might break, with artefacts potentially 
arising in 3D. 
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Figure 3. Categories of denoising techniques.  
 
(A) Example of a noisy image. (B) In linear methods, the same kernel (denoted 
by colored circles whose radii intend to resemble the standard deviation of a 
Gaussian function) is applied to all voxels, regardless of the existence of edges 
or not. As a result, the noise present in the image is reduced, but the edges 
look blurred. (C) In non-linear methods, the strength of the filtering is tuned 
according to an edge indicator. The filtering is attenuated or cancelled at edges 
(orange kernel with small width) whereas relatively homogeneous areas are 
strongly smoothed (blue kernel). Though preserved, the edges may thus remain 
partially noisy. (D) Anisotropic methods tune the strength and direction of the 
filtering. There exist different strategies. First, at edges the filtering is applied 
only parallel to them, but not across, as denoted by the elongated orange kernel. 
Second, the kernel is adjusted so that only voxels with similar density to the 
voxel at the center of the kernel are involved in the filtering. This is sketched by 
the green kernels centered on a couple of points at the two sides of an edge. 
Another option is based on averaging pixels, not necessarily close, whose 
surrounding area looks similar. The colored boxes represent this strategy. To 
filter the voxel at the center of the blue box, itself and those at the yellow boxes 
are considered, but not the red box because it is clearly different. As a result of 
these anisotropic strategies, the edges look clean and enhanced.  
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4.1 Linear methods 
 
Gaussian filter 
 
The most common linear filter is the Gaussian filter, which essentially replaces 
any voxel by a weighted average of its neighbour voxels with decreasing 
weights for those at larger distances (Gonzalez and Woods, 2018). Several 
features make it particularly attractive. First, it is spherically symmetric, meaning 
that its response is independent of orientation. Other linear filters, for instance 
box or uniform kernels, are not and thus might favour smoothing in specific 
directions. Second, the FT of a Gaussian is also a Gaussian function, so the 
Gaussian filter yields a low-pass filter with smooth behaviour in both real and 
Fourier spaces. Third, there is only one parameter, the standard deviation, that 
is very well known and intuitive to be tuned according to the filtering needs. 
Finally, the Gaussian filter is separable, meaning that it can be implemented as 
a succession of convolutions along the three axes of the tomogram. In other 
words, instead of a 3D convolution with a 3D Gaussian kernel, it can be 
implemented as three 1D convolutions, which is significantly faster from the 
computational point of view. The Gaussian kernel and its separable form can be 
expressed as: 
 

𝐺(𝒗) = 𝐺(𝑥, 𝑦, 𝑧) = 𝑒/
!"#$"#%"

"&" = 𝑒/
!"

"&" ∙ 𝑒/
$"

"&" ∙ 𝑒/
%"

"&" 
 
with 𝒗 = (𝑥, 𝑦, 𝑧) denoting the coordinates of a voxel. The standard deviation 
controls the extent of the spatial filtering, with larger values causing stronger 
smoothing. The filtering in real space can be expressed as 
 

𝐼denoised(𝒗) = 𝐶 ∙ C 𝐼(𝒖) ∙ 𝐺
𝒖∈6

(𝒗 − 𝒖) 

 
where I	 denotes the original tomogram, G the Gaussian kernel, 𝒗 a voxel and 
𝒖 ∈ 𝐾 its neighbourhood within the window K defined by the kernel. C denotes a 
normalization factor (i.e. inverse of the sum of all the weights involved in the 
kernel) that prevents a bias during filtering (i.e. the average density in the 
original and filtered version will be the same). As a linear filter, the Gaussian 
filter has the drawback of blurring edges and features of interest. However, it is 
still useful for scientists to inspect the tomograms and for manual segmentation 
(Danita et al., 2022). Moreover, an initial Gaussian filtering is essential as a pre-
processing step for other more sophisticated denoising filters (Fernandez, 2009; 
Fernández and Li, 2003) or for segmentation algorithms (Martinez-Sanchez et 
al., 2014) because it ensures more reliable computation of gradients, which is 
important in those algorithms.  
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4.2 Non-linear methods 
 
Median filter 
 
The median filter is the best-known non-linear denoising method (Gonzalez and 
Woods, 2018).  An iterative version of the median filter in 3D was introduced 
and successfully used in cryoET (van der Heide et al., 2007). It consists in 
substituting a voxel by the median of its neighbours: the density values of the 
voxels encompassed by the 3D spatial kernel are sorted and the value placed 
in the middle is picked up as the new density value of the center voxel. Using 
the same notation as above, the filtering can be expressed as follows: 
 

𝐼denoised(𝒗) = median
𝒖∈6

{𝐼(𝒖)} 
 
The method thus eliminates extreme density values and forces voxels to be 
more like their neighbours. The process is repeated for a number of cycles, and 
three iterations were observed to be optimal in terms of performance vs. 
processing time (van der Heide et al., 2007). The great advantage of the 
method is the lack of parameters difficult to tune, which makes it user-friendly. 
 
Beltrami flow 
 
The Beltrami flow is a non-linear method that tunes the strength of the filtering 
according to an edge indicator based on geometry operators, hence preserving 
structures of interest (Fernandez, 2009). It relies upon a geometric diffusion 
approach (Kimmel et al., 1997) and considers the tomogram 𝐼	as a 3-manifold 
embedded into a 4D space, with the fourth dimension being the density 𝑺 =
(𝑥, 𝑦, 𝑧, 𝐼(𝑥, 𝑦, 𝑧)). The Beltrami flow aims to minimize the area of the manifold 
while maintaining edges. It is formulated as a partial differential equation: 
 

𝐼) =
1
S𝑔

div V
𝛁𝑰
S𝑔

Y 

 
where 𝐼) denotes the derivative of 𝐼	with respect to the time, 𝛁𝑰 is the gradient 
vector whose components are the partial derivatives of 	𝐼	with respect to x, y 
and z. 𝑔	denotes the determinant of the first fundamental form of the surface S, 
which is 𝑔 = 1 + |𝛁𝑰|7. Finally, div is the divergence operator (i.e. the sum of 
the partial derivatives of the argument with respect to x, y and z). The term 8

√:
 in 

the previous equation acts as an edge indicator since it is proven to be the 
projection of the normal-to-the-surface to the vector representing the 4th 
dimension (Kimmel et al., 1997) (Figure 4A). Therefore, the Beltrami flow is a 
selective denoising method that minimizes the filtering (i.e. diffusion) at and 
across edges whereas it applies extensive filtering elsewhere. The method has 
no complicated parameters to tune, as the estimation of the edges and their 
strength is performed directly from the gradient. Nonetheless, the method is 
solved in an iterative way and hence a number of iterations have to be specified. 
A value around 100 cycles has been shown to provide good solutions in cryoET 
in terms of noise filtering and structure preservation (Fernandez, 2009). 
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Other non-linear methods 
 
There have also been several other approaches within this category of non-
linear methods, but they have not been extensively used in the field. Among 
them are those based on multiscale Wavelet transformation (Frangakis et al., 
2001; Huang et al., 2018; Stoschek and Hegerl, 1997). 
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Figure 4. Fundamentals of diffusion-based denoising methods.  

(A) Beltrami Flow. A 2D image 𝐼(𝑥, 𝑦)	 made up of a white square over black 
background (left) is viewed as a surface 𝑺 = (𝑥, 𝑦, 𝐼(𝑥, 𝑦)) in a 3D space (right). 
The edges are seen as cliffs in the Z	 direction. At each point of the surface, the 
projection of the normal n (arrows in blue) to the Z	 direction (arrows in black) 
acts as an edge indicator, yielding little value at sharp edges. In uniform areas, 
however, the normal to the surface n runs parallel to Z	 and the projection thus 
yields maximum value. The Beltrami flow uses this information to minimize 
diffusion at edges whereas it applies extensive diffusion elsewhere. 

(B) Anisotropic non-linear diffusion (AND). The local structure around each 
voxel is determined based on an eigen-analysis of the structure tensor that 
provides three orthogonal eigenvectors {𝒗𝟏, 𝒗𝟐, 𝒗𝟑}  and their corresponding 
eigenvalues 𝜇8 ≥ 𝜇7 ≥ 𝜇>. This analysis allows identification of these basic local 
structures and the strength and direction of the smoothing are adaptively tuned 
so that the edges of these structures are preserved and enhanced. Therefore, 
in linear structures the filtering should be applied along the major direction 𝒗𝟑 
while in planar ones should be across the plane defined by 𝒗𝟐 and 𝒗𝟑. 
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4.3 Anisotropic methods 

 
Bilateral filtering 
 
Bilateral filtering is an anisotropic non-linear technique that was introduced in 
the computer vision field with great success (Tomasi and Manduchi, 1998) and 
has been often used in cryoET (Jiang et al., 2003). It reduces noise by weighted 
averages of neighbour voxels with weights reflecting both the spatial distance 
and the similarity in density (Figure 3D, green kernels). The filter is composed of 
two Gaussian kernels, one on the spatial domain and other on the density 
domain. The former is the standard Gaussian low-pass filter. The second 
Gaussian kernel is the key of the method and it accounts for the difference in 
density with respect to the voxel at the center of the kernel: the larger difference, 
the smaller the contribution in the weighted average. This second kernel has 
potential not only to avoid edge blurring but also to enhance edges by 
smoothing along them. The filtering is expressed as  
 

𝐼denoised(𝒗) = 𝐶 ∙ C 𝐼(𝒖) ∙ 𝑒
/‖𝒗)𝒖‖

"

"&+"

𝒖∈6

∙ 𝑒
/|-(𝒗))-(𝒖)|

"

"&0
"  

 
where the bilateral kernel is given by the product of the two Gaussian functions 
whose width is defined by the two parameters of the method, the standard 
deviations 𝜎?  and 𝜎@ . C represents a normalization factor (i.e. inverse of the 
sum of the weights) with the same aim as above. 𝜎? specifies the strength of the 
standard spatial Gaussian filtering. 𝜎@ controls the discrimination between true 
structural details and noise and it needs to be finely tuned. It must be high 
enough to smooth noise but, at the same time, lower than the density variations 
across the edges to preserve (i.e. between different structural features). If 𝜎@ is 
too high, the bilateral filter will behave as a standard Gaussian low-pass filter. If 
it is too low, there will be no filtering and the noise will remain.  
 
 
Non-local means 
 
The principle of non-local means (NLM) relies on the redundancy present in any 
image or tomogram. The original method (Buades et al., 2005) revolutionized 
the image processing and computer vision fields because its abilities to 
attenuate noise without destroying textures and fine details. The impact in 
cryoET, where several improvements were presented (Darbon et al., 2008; Wei 
and Yin, 2010), has been relatively modest, though. While most denoising 
methods work by averaging voxels in local neighbourhoods, NLM exploits the 
existence of regions, or patches, spread throughout the tomogram that show 
similar patterns, and then reduces noise by a weighted average of the pixels in 
those similar regions, regardless of the spatial distance (Figure 3D, colored 
boxes). Thus, compared to the bilateral filtering, the similarity in the density 
domain, but not the spatial neighbourhood, is the central basis of the NLM. The 
filtering process can be expressed as: 
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𝐼denoised(𝒗) = 𝐶 ∙ C 𝐼(𝒖) ∙
𝒖∈A(𝒗)

𝑒/
‖𝑽(2𝒗))𝑽(2𝒖)‖"

3"  

 
where 𝑽(𝑁𝒗) and 𝑽(𝑁𝒖)  denote vectors with the density of the voxels in the 
square neighbourhood windows (patches) 𝑁𝒗 and 𝑁𝒖 centered at the voxels 𝒗 
and	𝒖, respectively. W(𝒗) is the search area, which may be the whole tomogram 
or a area around the voxel 𝒗, where patches 𝑁𝒖 similar to 𝑁𝒗 are to be found. 
The similarity between the patches 𝑁𝒗 and 𝑁𝒖 is determined by the Euclidean 
distance between the vectors 𝑽(𝑁𝒗) and 𝑽(𝑁𝒖), and the final weight is given by 
the Gaussian function whose standard deviation ℎ acts as a filtering parameter 
and C is a normalization factor. Apart from the patch size and search area, the 
important parameter to control the degree of filtering is ℎ. Values too high of ℎ 
will not discriminate patches, resulting in strong smoothing and blurring. By 
contrast, too low values will provide a stringent setting of weights, with little 
denoising effects. 
 
 
 
Anisotropic non-linear diffusion 
 
Anisotropic non-linear diffusion (AND) was successfully introduced in the 
computer vision field (Perona and Malik, 1990; Weickert, 1998) and by far has 
been the predominant denoising method in cryoET (Fernandez and Li, 2005; 
Fernández and Li, 2003; Frangakis and Hegerl, 2001), where it was proved to 
be superior to other methods described in this section (Narasimha et al., 2008). 
AND is inspired on diffusion, the physical process whereby concentration 
differences are equilibrated as a function of time without creating or destroying 
mass. In AND the density values play the role of concentration, and the aim is 
to diffuse (smooth) the density but preventing it from crossing edges (Figure 3D, 
orange kernel). AND achieves feature preservation and enhancement as the 
strength and direction of the filtering are adaptively tuned to the local structure 
around each voxel. This local structure is estimated by eigen-analysis of the 
structure tensor: 
 

𝑱(𝐼) = 𝛁𝑰 ∙ 𝛁𝐈E = e
𝐼F7 𝐼F𝐼G 𝐼F𝐼H
𝐼F𝐼G 𝐼G7 𝐼G𝐼H
𝐼F𝐼H 𝐼G𝐼H 𝐼H7

f = 𝑽𝑸𝑽E 

 
with 𝛁𝑰 = (𝐼F , 𝐼G , 𝐼H) being the gradient vector of the tomogram I. 𝑽𝑸𝑽E denotes 
the eigen-decomposition of 𝑱(𝐼) , which yields three orthogonal eigenvectors 
{𝒗𝟏, 𝒗𝟐, 𝒗𝟑}  and their corresponding eigenvalues 𝜇8 ≥ 𝜇7 ≥ 𝜇> . The first 
eigenvector points to the direction of the maximum density variation whereas 
the third one to the direction of the minimum one. Based on the relative values 
of the eigenvalues, basic local structures can be recognized (Figure 4B), which 
are then used to adapt the smoothing, as described next. 
 
AND follows the diffusion equation 𝐼) = div(𝑫 ∙ 𝛁𝑰), with 𝐼) being the derivative 
of 𝐼	with respect to the time and div the divergence operator, as already 
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mentioned above. The 3x3 matrix D is the diffusion tensor and tunes the filtering 
according to the local structure. D is built from the eigenvectors {𝒗𝟏, 𝒗𝟐, 𝒗𝟑} of 
the structure tensor and its eigenvalues 𝜆I (ranking in [0,1]) define the strength 
of the smoothing along the corresponding direction 𝒗𝒊 : 
 

𝑫 = 	𝑽𝑳𝑽E = [𝒗𝟏 𝒗𝟐 𝒗𝟑] o
𝜆8 0 0
0 𝜆7 0
0 0 𝜆>

p [𝒗𝟏 𝒗𝟐 𝒗𝟑]E 

 
The standard mode to set the diffusion tensor D is called Edge-Enhancing 
Diffusion (EED), though other modes exist (Fernández and Li, 2003; Frangakis 
and Hegerl, 2001). For edge preservation and enhancement in locally planar 
features, the smoothing must run mainly along the major directions of the plane 
(𝒗𝟐 and 𝒗𝟑), hence 𝜆7 = 𝜆> = 1.0, whereas the strength along the normal to the 
plane (𝒗𝟏) is set as a monotonically decreasing function of the gradient (the 
higher the gradient, the lower the strength): 𝜆8 = 1.0	 − exp r/>.>8LMM

(|𝛁𝑰| 6⁄ )4
s. Here, the 

parameter K acts as a gradient threshold that defines edges. This strategy is 
also valid for isotropic structures. In linear features, however, the filtering is 
applied along their major direction (𝜆> = 1.0) while along the other directions it 
depends inversely on the gradient, as above. 
 
The method has two important parameters. First, a number of iterations have to 
be specified since it is solved in an iterative way, and a number around 10-20 
usually works well. Second, the most important parameter is the gradient 
threshold K. Voxels with higher gradient are considered edges to be preserved, 
thus decreasing the filtering strength along the corresponding eigen-direction(s). 
This parameter has to be set precisely because too high values provide 
solutions similar to the Gaussian low-pass filtering whereas too low values may 
leave the tomogram noisy. It is dataset-dependent, its tuning is not trivial and it 
is usually set by trial-and-error. A strategy was devised to set the parameter K 
automatically based on the average gradient of the whole 3D volume or a noise 
sub-region, and in time-varying fashion to minimize the effects of excessive 
iterations. This strategy facilitates user operation by providing acceptable 
denoised solutions from which manual refinement could follow (Fernández et al., 
2007).  
 
Figure 5 shows the performance of the most common denoising methods used 
in cryoET with a tomogram of HIV virions (Briggs et al., 2006) (EMD-1155) that 
has traditionally served as a kind of benchmark. 
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Figure 5. Standard denoising methods applied to a tomogram of HIV 
virions.  

Top row: from left to right, original tomogram, denoised with a Gaussian filter, 
with three iterations of median filter and with Beltrami Flow. Bottom row, 
anisotropic methods: from left to right, denoised with bilateral filtering, non-local 
means and anisotropic non-linear diffusion.	 Note how the features look sharper 
in anisotropic methods. 
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5. Deep-learning approaches to denoising tomograms 
 
The recent revolutionary advances in deep learning (LeCun et al., 2015) have 
brought about novel and remarkable approaches to denoising in the image 
processing and computer vision fields, which have also been adapted to the 
cryoET field. A neural network (NN) can be interpreted as a highly 
parameterized function 𝑓𝜽 that maps an input 𝒙 to an output 𝒚, with 𝜽 denoting 
the parameters of the NN. The parameters 𝜽  are determined by a training 
process that, using a large set of pairs input-target (𝒙I , 𝒚I), aims at minimizing a 
loss function 𝐿  (e.g., the square error) between the targets 𝒚I  and the 
predictions from the NN 𝑓𝜽(𝒙I), that is: 

argmin
𝜽

C𝐿(𝑓𝜽(𝒙I), 𝒚I)
I

 

Convolutional NNs (CNNs or ConvNets, for short) are a particular type of NN 
especially designed to process 2D images and 3D volumes that achieve 
spectacular results in many image processing and computer vision tasks 
(LeCun et al., 2015). U-nets are a specific kind of CNN very well suited for 
segmentation and regression. 

For the denoising task, the traditional deep-learning approach so far consisted 
in mapping noise-corrupted inputs (𝒙I) to clean, noise-free targets (𝒚I). However, 
the requirement of clean targets for training prevents application of this 
approach in many domains, including cryoET, where acquisition of noise-free 
signals is unfeasible. To overcome this limitation, the Noise2Noise approach 
was introduced (Lehtinen et al., 2018), where the authors demonstrated that a 
signal can be recovered from noisy observations without knowledge of the 
clean signal and without explicit characterization of the noise. Here, the NN 
(actually, a CNN with U-net architecture) is trained using pairs of independent 
noisy instances of the same signal acting as inputs (𝒙I) and targets (𝒚I), and the 
NN model learns the expectation value, actually the underlying noise-free signal. 

Application of the Noise2Noise approach is nearly straightforward in cryoET 
thanks to the data acquisition based on dose-fractionation (Bepler et al., 2020; 
Buchholz et al., 2019a, 2019b; Tegunov and Cramer, 2019). Every image of the 
tilt-series is acquired by fractionating the electron dose into multiple movie 
frames, which are then aligned and summed to yield the actual acquired image. 
By splitting the collected frames into two sets, even and odd frames, it is 
possible to render two independent noisy observations of the image with similar 
accumulated electron dose. This is repeated for all images of the tilt-series and, 
as a result, two independent half tilt-series (from the even and the odd frames) 
are obtained, which are then subjected to 3D reconstruction to yield two 
independent half tomograms. An alternative option to produce the pair of 
independent tomograms is by reconstructing them from all odd and from all 
even tilt images (with each image involving all its movie frames), as in Warp 
(Tegunov and Cramer, 2019). 

The Noise2Noise NN is then trained with the two independent tomograms, 
which are used as the input and target indistinctly (Figure 6A). For the training, 
the tomograms are actually split into 3D patches (with size typically in the range 
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64x64x64 to 128x128x128) that are randomly selected to serve as the pairs 
input-target (𝒙I , 𝒚I). Once the training is finished, the NN can infer the denoised 
version of the all patches and, upon their assembly, the denoised tomogram.  

There are two strategies to obtain the definite denoised tomogram. First, the 
trained denoiser NN can be applied to the two independent half tomograms, 
and the two results are then voxel-wise averaged, as in Cryo-Care (Buchholz et 
al., 2019a). Alternatively, the original whole tomogram (i.e. reconstructed with 
all acquired frames and tilts) can be fed directly to the denoiser NN, as in 
Topaz-Denoise (Bepler et al., 2020) and Warp (Tegunov and Cramer, 2019). 

The performance of deep-learning denoising approaches applied to tomograms 
in cryoET can be outstanding. Some denoised results show remarkable noise 
reduction with excellent preservation of structural features. A unique feature is 
their exceptionally good abilities to flatten the background, as observed in some 
cases. Figure 6 shows an illustrative example with a tomogram from  
Thermoanaerobacter kivui (EMPIAR-11058) (Dietrich et al., 2022) processed 
with Cryo-Care (Buchholz et al., 2019a). 

One disadvantage of these approaches is the computational requirements to 
train the NNs. Fortunately, there is availability of NNs that have already been 
pre-trained with numerous representative tomograms, thus providing a general 
denoising model in cryoET, as specifically in Topaz-Denoise (Bepler et al., 
2020).  This makes application of this deep-learning denoising approach 
straightforward, without the need for dataset-specific training. 
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Figure 6. Deep-learning approaches to denoising. 

(A) Training of a Noise2Noise neural network (NN, actually a U-net). Two 
independent tomograms, computed from the acquired even/odd frames 
throughout the tilt-series (or alternatively, even/odd tilt images), are used as 
input and target indistinctly. The tomograms are split into 3D patches to be fed 
to the NN. An input patch passes through the NN and a prediction of the 
denoised version of the patch is obtained, which is then compared to the target 
to obtain a loss measure. Based on the loss, the NN is then updated to make 
the prediction more accurate. This process is repeated for all patches and for a 
number of times (also known as epochs). Once the NN is fully trained, the NN 
will infer the denoised version of all patches, which will be assembled to yield 
the denoised tomogram. 
(B) Original tomogram from Thermoanaerobacter kivui (EMPIAR-11058). 
(C) Denoised result with the Noise2Noise approach. 
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6. Contrast improvement through CTF deconvolution 
	

Tomograms in cryoET have very poor low-resolution contrast that hinders visual 
inspection of their contents. Apart from the low electron density of the unstained 
frozen biological samples, one major cause of this low contrast is the Contrast 
Transfer Function (CTF) of the electron microscope (Fernandez, 2012; Wan 
and Briggs, 2016).	 The CTF arises from the	 aberrations of the lenses and from 
the defocus used in imaging, and has an oscillatory nature that produces 
amplitude modulation and phase reversals in the Fourier components of the 
images. At the lowest frequencies, the CTF exhibits very low values, thereby 
significantly attenuating the amplitude of those Fourier components and thus 
reducing the low-resolution contrast. CTF correction is an essential, well-
established step in subtomogram averaging studies aiming at high resolution 
(Wan and Briggs, 2016). However, compensation for the CTF effects is not 
usually applied at the level of raw tomograms thus far.  

Recently, the application of CTF deconvolution to tomograms has been shown 
to be advantageous, providing a striking increase of the contrast and enabling 
visual inspection of the tomograms and identification of individual biological 
components (Tegunov and Cramer, 2019). The technique relies on a Wiener-
like filter: 

ℑ{𝐼deconv}(𝑓) = ℑ{𝐼}(𝑓) ∙ 	
CTF(𝑓)

CTF7(𝑓) + SNR/8(𝑓) 

where I and Ideconv are the tomogram and its CTF-deconvolved version, 
respectively, ℑ denotes Fourier transformation and f is the spatial frequency. 
The CTF term in the equation only depends on a variable parameter, the 
defocus used during the tilt-series acquisition (normally either the defocus of the 
untilted image or the average defocus of the images of the tilt-series), with other 
parameters being given by the specific microscope (voltage, spherical 
aberration). SNR represents the spectral signal-to-noise ratio, estimated as a 
combination of an exponential decay curve and an optional raised-cosine high-
pass filter H: 

SNR(𝑓) = 𝑒/U∙100Y ∙ 103[ ∙ 𝐻(𝑓) 

with S and F being custom parameters controlling the strength and decay of the 
filter, whose default unit values provide good results in general.  

The Wiener-like filter mainly boosts the Fourier components up to the first CTF 
peak while preventing over-amplification of those components dominated by 
noise (at the mid- and high-frequencies and, also, at the lowest end, i.e. close 
to the Fourier origin). As a consequence, the filter restores the low-resolution 
contrast and, at the same time, also acts as a low-pass denoising filter, with 
dramatic benefits for the visual interpretation of tomograms. Figure 7 illustrates 
the deconvolution filter and its performance on several experimental tomograms 
of ribosomes (Bharat and Scheres, 2016) (EMPIAR-10045), HIV-1 virus like 
particles (Schur et al., 2016) (EMPIAR-10164) and Thermoanaerobacter kivui 
(Dietrich et al., 2022) (EMPIAR-11058). 
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Figure 7. Contrast improvement with CTF deconvolution. 

(A) CTF deconvolution filter. The CTF (in absolute value), the Wiener-like filter 
and the resulting restoration are shown in dashed red, solid blue and solid black 
lines, respectively. The CTF corresponds to a tomogram acquired at an average 
defocus of 3.7 microns on a 300 kV microscope and the Nyquist frequency here 
is 8.68 Angstroms. The filter restores the amplitude of the low-resolution 
components up to the first CTF peak, followed by a rapid decay acting as a low-
pass filter. 
(B) Result of the CTF deconvolution applied to a ribosome tomogram (EMPIAR-
10045) using the filter shown in (A). Original (left) and deconvolved (right) 
tomogram.  
(C) Result of the CTF deconvolution on a tomogram of HIV-1 virus like particles 
(EMPIAR-10164) acquired on a 300 kV microscope with an average defocus of 
3.9 microns. Original (top) and deconvolved (bottom) tomogram. 
(D)  Result of the CTF deconvolution on a tomogram of Thermoanaerobacter 
kivui (EMPIAR-11058) acquired on a 300 kV microscope with an average 
defocus of 4.4 microns. Original (left) and deconvolved (right) tomogram. 
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7. Software 
Table 1 presents a list of software packages or programs available in cryoET to 
reduce noise in tomograms at the different steps of the computational workflow 
using the methods described along this chapter. A companion website has also 
been prepared with links to access the software and associated publications. 
The website is: 

https://sites.google.com/view/Denoising-cryoET 

Regarding the control of noise during tomographic reconstruction, two major 
software tools in the cryoET field, namely IMOD (Kremer et al., 1996) and 
Tomo3D (Agulleiro and Fernandez, 2015, 2011), provide essentially the same 
mechanisms. Both include the iterative reconstruction method SIRT as well as 
WBP equipped with the weighting filters described in Section 3: the Gaussian 
and/or Hamming filter and the 'SIRT-like' filter. The latter is a particularly 
interesting option to obtain reconstructions with good contrast, similar to SIRT, 
at a speed of WBP. 

The urgent needs to cope with the extremely low SNR in cryoET stimulated the 
development of advanced denoising methods in the 2000's (labeled as classical 
methods in Table 1). As a result, there are numerous tools available in standard 
software packages. Two important ones are IMOD (Kremer et al., 1996) and 
Bsoft (Heymann, 2021), both of them including Gaussian filtering, median 
filtering and anisotropic non-linear diffusion (AND). Bsoft also includes an 
implementation of Bilateral filtering.  

The computational burden in terms of processing time and memory 
consumption of these methods or their difficult parameter tuning led us to 
develop specialized, easy-to-use, efficient and parallel implementations. As a 
consequence, there are fast, memory-efficient and user-friendly 
implementations of the Gaussian filtering (Martinez-Sanchez et al., 2014, 2011), 
Beltrami flow (Fernandez, 2009; Fernández and Martínez, 2010) and AND 
(Moreno et al., 2018).	 These optimized programs have been integrated into a 
single package named TomoDenoise (https://tiny.cc/tomodenoise). 

The emergence of deep learning and the excellent performance of the 
Noise2Noise denoising approach have driven adaptations to cryoET, with 
several software tools now available. Cryo-CARE (Buchholz et al., 2019a), 
Topaz-Denoise (Bepler et al., 2020) and Warp (Tegunov and Cramer, 2019) 
take advantage of these denoising neural networks to work directly on 
tomograms in 3D. 

CTF deconvolution is rapidly getting interest in the field owing to its striking 
performance to improve the contrast and enable visual analysis of the 
tomograms. Initially provided by the main author as a MATLAB script and later 
in Warp, implementations of the method are also being included within several 
software tools, such as IsoNet (Liu et al., 2022), pyCoan (Gaietta et al., 2021), 
TomoDenoise, IMOD and Tomo3D. 



	

	 26	

Apart from those tools, there is a number of free general bioimaging software 
suites with denoising methods that can be used for cryoET as well, for instance 
ImageJ/Fiji (Schindelin et al., 2012). 

 

 

Table 1. Software to reduce noise in cryoET 

Method Software 

Classical denoising methods 

Gaussian filtering IMOD, Bsoft, TomoDenoise 
Median filtering IMOD, Bsoft 
Beltrami flow TomoDenoise 
Bilateral filtering Bsoft 
Anisotropic diffusion (AND) IMOD, Bsoft, TomoDenoise 

Deep-learning based denoising methods 

Noise2Nose Warp, Cryo-CARE, Topaz-Denoise 

CTF Deconvolution 

Wiener-like filter Warp, Isonet, pyCoan,  
 TomoDenoise, IMOD, Tomo3D 
 https://github.com/dtegunov/tom_deconv 

Handling noise during tomographic reconstruction 

Iterative reconstruction (SIRT) IMOD, Tomo3D 
SIRT-like filter in WBP IMOD, Tomo3D 
Hamming/Gaussian filter in WBP IMOD, Tomo3D 
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8. Concluding remarks 
Denoising plays an important role within the computational workflow in cryoET, 
where the SNR and contrast are very low. Denoising intends to facilitate the 
interpretation of tomograms by reducing noise and increasing the contrast, 
making them better suited for the downstream processing (e.g. segmentation 
and delineation of structures, feature detection, 3D visualization). This is 
essential not only for cryoET studies focused on cellular landscapes or 
pleomorphic structures, but also for those aimed at in situ high-resolution 
structure determination where the features to average first have to be identified.  

Several stages of the computational workflow may have an influence on the 
SNR and contrast of the tomograms. During tomographic reconstruction, the 
use of weighting filters in WBP is an important decision to control the amount of 
noise transferred to the tomogram. In the last few years, the use of WBP with 
the SIRT-like filter has got increasing interest thanks to the quality of the 
resulting tomograms obtained in short time. 

There exist several denoising options as a post-processing stage. Out of all the 
methods developed during the 2000's, Anisotropic Non-linear Diffusion (AND) is 
by far the predominant one and its availability in several well-known software 
packages makes it easily applicable. Lately, deep-learning methods have arisen 
as powerful alternatives thanks to their ability to reduce noise with significant 
flattening of the background. The Noise2Noise approach was easily adapted to 
cryoET, with several packages now available. Thus, application of these 
methods to tomograms in experimental cryoET studies is progressively 
increasing. 

CTF deconvolution has recently emerged as a new approach to improve the 
quality of tomograms. Equipped with an integrated low-pass filter, it manages to 
significantly increase the contrast and reduce the noise, resulting in an 
impressive enhancement of the tomograms that are ready for analysis.  

Depending on the needs for contrast improvement and noise reduction, these 
methods can be combined. Tomographic reconstruction with the SIRT-like filter 
along with CTF deconvolution should already make tomograms amenable to 
visual interpretation. Should further polishing happen to be required, 
subsequent application of denoising techniques (e.g. AND or a deep-learning-
based one) is possible. 
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