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Preface

Global Optimization, the field including theory, methods and applications of optimization
techniques aimed at detecting a global optimum for difficult mathematical programming
problems in which many local optima might exist, is a rich area of research. The subject gener-
ates many papers published in qualified scientific journals and books; a journal and a series of
monographs explicitly dedicated to the field exist now for more than a decade. Research done
by PhD students, young researchers and seniors is scattered over the world and we see GO
applied in many scientific fields. The workshop aims at bringing together researchers from
various fields that are dealing with this topic.

The organising committee initiated the idea of the workshop at the MPS meeting in Kopen-
hagen. Inspired by the style of earlier workshops on GO in Sopron (1990), Szeged (1995) and
Firenze (1999) the idea was to attract young researchers to be able to interact with experienced
researchers in Global Optimization. The workshop is organised in single stream sessions, in
order to give all participants the opportunity to enjoy each of the presentations, implying a
limited number of participants. The number of accepted contributions was close to the maxi-
mum, such that finally the program of the workshop is filled completely.

The workshop might not have been possible without the supporting help of many people
and organisations. Among these, we would like to express our sincere thanks to the contribu-
tion of:

Ministerio de ciencia y tecnología
Consejería de innovación, ciencia y empresa. Junta de Andalucía
Universidad de Almería
Diputación de Almería
Ayuntamiento de Nijar

Organising committee:

Emilio Carrizosa, Sevilla
Tibor Csendes, Szeged
Inmaculada García, Almería
Eligius Hendrix, Wageningen
Panos Pardalos, Florida

Local organisers:

Miguel Cobo
Leocadio Casado
José Antonio Martínez
Pilar Ortigosa
Boglárka Tóth
Consolación Gil
Raúl Baños
Juana Redondo
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Infinity computer and calculus

Yaroslav D. Sergeyev
Full Professor, Dipartimento di Elettronica
Informatica e Sistemistica
Universitá della Calabria
Via P.Bucci, Cubo 41C
87036 Rende (CS), Italy
Full Professor, Lobatchevsky State University,
Nizhni Novgorod, Russia
yaro@si.deis.unical.it

All the existing computers are able to execute arithmetical operations only with finite num-
bers. Operations with infinite and infinitesimal quantities could not be realized. This tuto-
rial introduces a new positional system with infinite radix allowing us to write down finite,
infinite, and infinitesimal numbers as particular cases of a unique framework. The new nu-
meral system gives possibility to introduce a new type of computer able to operate not only
with finite numbers but also with infinite and infinitesimal ones. The new approach both
gives possibilities to execute calculations of a new type and simplifies fields of mathemat-
ics where usage of infinity and/or infinitesimals is necessary (for example, divergent series,
limits, derivatives, integrals, measure theory, probability theory, etc.).

Particularly, the new approach and the infinity computer are able to do the following:

to substitute symbols +infinity and -infinity by spaces of positive and negative infinite
numbers, to represent them in the computer memory and to execute arithmetical opera-
tions with them as with normal finite numbers;

to substitute qualitative description of the type "a number tends to zero" by precise in-
finitesimal numbers, to represent them in the computer memory and to execute mathe-
matical operations with them as with normal finite numbers;

to introduce a new definition of continuity that is closer to the real world than the tradi-
tional one;

to calculate limits as arithmetical expressions;

to calculate indeterminate forms in limits;

to calculate sums of divergent series;

to calculate improper integrals of various types;

to calculate number of elements of infinite sets (and not only to distinguish numerable
sets from continuum as it happens in the traditional approach);

to evaluate functions and their derivatives at infinitesimal, finite, and infinite points
(infinite and infinitesimal values of the functions and their derivatives can be also calcu-
lated);

to study divergent processes at infinity;
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to work with sets having measure zero as with normal sets;

to calculate lengths, areas, and volumes of fractals at infinity;

to define and calculate volumes of objects having parts of different dimensions in a
unique framework;

to elaborate new mathematical models working simultaneously at micro and macro lev-
els in a unique framework.
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Global optimization has been expanding in all directions at an astonishing rate during the last
few decades. New algorithmic and theoretical techniques have have been developed, the dif-
fusion into other disciplines has proceeded at a rapid pace, and our knowledge of all aspects
of the field has grown even more profound. At the same time one of the most striking trends
in global optimization is the constantly increasing interdisciplinary nature of the field. This
talk will cover the following topics: Nonconvexity and discreteness in optimization, DC (dif-
ference of convex functions) and monotonic optimization, Multiquadratic programming and
applications, Multi-variable partition approaches and Hierarchical (multi-level) optimization,
Optimization with massive datasets, Supply Chain, E-commerce, and E-manufacturing.
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A Trust-Region Algorithm
for Global Optimization

Bernardetta Addis1 and Sven Leyffer2

1Università di Firenze, Firenze, Italy b.addis@ing.unifi.it

2Argonne National Laboratory, Argonne, IL, USA leyffer@mcs.anl.gov

Abstract We consider the global minimization of a box-constrained function with a so-called funnel structure.
We develop a two-phase procedure that uses sampling, local optimization, and Gaussian smoothing
to construct a smooth model of the underlying funnel. The procedure is embedded in a trust-region
framework that avoids the pitfalls of a fixed sampling radius. We present a numerical comparison
to popular methods and show that the new algorithm is robust and uses fewer local minimizations
steps.

Keywords: Global optimization, smoothing, trust region.

1. Introduction
We consider the global optimization problem

{
minimize

x
f(x)

subject to x ∈ S ⊂ IRn,
(1)

where f is sufficiently smooth and S ⊂ IRn is a compact set with simple structure, such as a
bounded box.

Problems of type (1) arise in diverse fields, in particular, well-known conformational prob-
lems such as protein folding and atomic/cluster problems. In these applications we are inter-
ested in finding the lowest free energy conformation in three-dimensional space. A box can
be defined that eventually will contain all “interesting” molecular conformations.

If the problem allows the use of a sufficiently efficient local optimization algorithm, a two-
phase procedure is a good candidate for global optimization [7]. Such a procedure involves
sampling coupled with local searches started from the sampled points. We define the local
minimization operator as

L(x) :=

{
minimize

y
f(y) starting from x

subject to y ∈ S.
(2)

We note that this operator is implicitly defined and depends on the local minimizer used.
In general, L(x) is a piecewise constant function whose pieces correspond to the basins of
attraction of the local minima of f(x).

Clearly, the global optimization problem (1) has the same optimal objective value as the
following problem: {

minimize
x

L(x)

subject to x ∈ S. (3)
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Figure 1. Example of a funnel function

We note that the piecewise constant nature of L(x) implies that the minima of (1) and (3) need
not agree. In fact, any global minimum of (1) is also a global minimum of (3), but not vice
versa. Because L(x) is implicitly defined, however, we can simply record

xmin := LS(x) :=

{
argmin

y
f(y) starting from x

subject to y ∈ S.
(4)

It follows that xmin is also a local minimum of f(x), and we can recover a global minimum of
f(x) by solving (3) in this way.

Multistart is an elementary example of a two-phase method aimed at minimizing L(x); in
practice, it reduces to a purely random (uniform) sampling applied to L(x). It is in principle
possible to apply any known global optimization method to solve the transformed problem
(3), but many difficulties arise. First, function evaluation becomes much more expensive: we
have to perform a local search on the original problem in order to observe the function L(x) at
a single point. Second, the analytical form of L(x) is not available, and it is a discontinuous,
piecewise constant function.

In many applications, such as molecular conformation problems [3], it is widely believed
that the local optimum points are not randomly displaced but that the objective function f(x)
displays a so-called funnel structure. A univariate example of such a function is given in Fig-
ure 1, where the function to be minimized is represented by the solid line and the underlying
funnel structure is given by the dotted line. In general, we say f(x) has funnel structure if it
is a perturbation of an underlying function with a low number of local minima. Motivated
by examples of this kind, some authors [5,6,8] have proposed filtering approaches: if one can
filter the high frequencies that perturb the funnel structure, then one can recover the under-
lying funnel structure and use a standard global optimization method on the filtered function
(which is much easier to globally optimize) in order to reach the global optimum.

In contrast, we believe that it is better to filter the piecewise linear function L(x) because
it is less oscillatory than f(x); Figure 2 shows L(x) for the simple funnel function previously
presented. This follows the approach of [2], and much of the analysis in [2] also applies here.

In this paper we make two important contributions to global optimization. First, we remove
the need for the arbitrary parameters in [2] by interpreting these parameters as aradius. We
embed the algorithm from [2], called ALSO, in aframework and show that our new algorithm
is more robust than other methods. Second, we introduce the concept of global quality. This
concept is motivated by the fact that theframework is essentially a local optimization scheme
and therefore requires modifications to be effective as a global method.
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Figure 2. Example of the effect of local minimization

2. Summary
2.1 Gaussian Smoothing
We introduce a smoothing scheme to solve (3). The material of this section largely follows
[2], although we give a different emphasis. We apply smoothing to L(x) for two reasons.
First, L(x) is a piecewise constant function for which descent directions are difficult to define
(first-order derivatives, when defined, are always zero). Second, we expect the smoothing to
provide a more global view of the function. Given a real-valued function L : IRn → IR and
a smoothing kernel g : IR → IR, which is a continuous, bounded, nonnegative, symmetric
function whose integral is one, we define the g–transform of L(x) as

〈L〉g(x) =

∫

IRn
L(y)g(‖y − x‖) dy. (5)

The value 〈L〉g(x) is an average of the values of L(x) in all the domain; in particular, the closer
the points are to x, the higher is the contribution to the resulting value. Another important
property is that 〈L〉g(x) is a differentiable function. Hence we can use standard smooth opti-
mization methods to minimize it.

The most widely used kernel in the literature is the Gaussian kernel

g(z) ∝ exp
(
−z2/(2σ2)

)
,

where we use the symbol∝ to avoid writing a multiplicative constant that plays no role in the
methods we present here. Clearly, one cannot explicitly apply the smoothing operator as in
(5) because this approach requires the approximation of an n-dimensional integral. Instead,
we restrict our attention to a ball of radius ∆ around the current point x (B(x,∆)) and we
construct a discretized version of the smoothing of L(x),

L̂B
g (x) =

K∑

i=1

L(yi)
g(‖yi − x‖)∑K
i=1 g(‖yi − x‖)

, (6)

where yi, i = 1...K , are samples in B(x,∆). This function has interesting properties: it is a
continuous function and a convex sum of the values of the samples. In particular, the weight
associated with each sample is larger if we are closer to the sample point. In other words,
the more confident we are in the sample value, the greater is the weight associated with it.
In [2], the model (6) is used to choose the new candidate point x+, starting from a point (say,
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xk). The model in the subset of given radius ∆, B(xk,∆), is solved by using a constrained
optimization procedure. The use of a fixed value for ∆ is restrictive for the length of the steps
we are allowed to take. In addition, it is not clear a priori what value ∆ should take. We
do know that a small radius results in small steps and, hence, in slow convergence, but large
values of ∆ can result in poor agreement between the model and the function and, hence,
in useless candidate points. Therefore, we propose to embed ALSO within a trust-region
framework that adjusts the radius ∆ automatically.

2.2 Trust-Region Framework
To extend the trust-region framework to global optimization of L(x), we need to modify the
smooth local trust-region algorithm. Specifically,we have to account for the fact that L(x) is
nonsmooth and that L̂B

g (x) does not agree with L(x) to first order. More important, we wish
to avoid getting trapped in local minima. Clearly, it is not sufficient to simply reduce the trust-
region radius if we reject the step. At each iteration we construct the model L̂B

g (x) around our
current iterate xk. Specifically, we choose K samples (uniform) inside the currentB(xk,∆k)
and perform a local minimization of f(x) from each sample. If we find a new best point
during this phase, we simply move to the new point and construct a new model. Otherwise,
we apply a local minimization to the model inside the trust region and obtain

x+ = argmin
x∈B(xk ,∆k)

L̂Bk(x)
g .

To decide whether to accept a step, we compute the ratio of the actual to the predicted reduc-
tion, namely,

ρ =
L(xk)− L(x+)

L̂Bk
g (xk)− L̂Bk

g (x+)
,

noting that the predicted reduction L̂Bk
g (xk)− L̂Bk

g (x+) is always nonnegative. We accept the
new point x+ if we observe sufficient decrease, that is ρ ≥ η1 > 0. If the step is very successful,
ρ ≥ η2 > η1, and theis active, ‖xk − x+‖ ≥ ∆, then we increase the trust region radius for the
next iteration. As long as ρ ≥ η1, we refer to the iteration as successful, otherwise (ρ < η1)
the iteration is referred to as unsuccessful. Unsuccessfuliterations require special attention in
the global optimization setting. In smooth local optimization, reducing ∆ is guaranteed to
improve the agreement between the model and the objective function. The same is not true in
the global optimization context. Hence, we introduce a measure for the global quality of our
model L̂Bk(x)

g ,

q(L̂Bk(x)
g ) =

max
i∈M

| {yj : L(yj) = L(yi)} |
M

, (7)

where M is the set of collected samples, that is, the largest number of samples with the same
objective value, divided by the total number of samples. Clearly, 0 ≤ q(L̂

Bk(x)
g ) ≤ 1, and a

value close to 1 means that a large number of samples have the same function value and stem
from the same “flat region” of L(x). A smaller value of q(L̂Bk(x)

g ) implies that the samples
represent the global nature of the function L(x) better.

In our algorithm, we compute q(L̂Bk(x)
g ) at every unsuccessful iteration. If it is larger than a

fixed value q̄, we remove all but one sample from the largest set, increase theradius, and obtain
new uniform samples in B(xk,∆k+1)\B(xk,∆k). The motivation for this step is twofold: it
improves the global nature of the model L̂Bk(x)

g , and it increases σ, thus smoothing the model.
The increase of σ arises because we have adopted the following formula for calculating the

smoothing parameter, depending on theradius ∆ and the number of samples K :

σ =
∆

K1/n
, (8)
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where n is the dimension of the problem.

2.3 Conclusions
We presented a two-phase procedure for the global optimization of funnel functions. The
approach builds on ALSO [2] and combines sampling with local searches. ALSO constructs
a local smooth model from the samples by applying Gaussian smoothing. We demonstrated
how to embed ALSO within a trust-region framework that adaptively updates the sample
radius.

To extend the trust-region framework to global optimization, we introduced the concept
of global quality, which triggers a model improvement step. Global quality measures the
largest number of samples that have the same objective value and stem from the same basin
of attraction. If global quality is large, then a model improvement step removes all but one
sample from the largest set and generates a new set of uniform samples.

We compared our algorithm to ALSO and variants of monotone basin hopping (MBH). The
new algorithm is more robust than ALSO and MBH on a range of test problems, and faster in
terms of the number of local searches it requires per successful run.
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In this paper we will present a unifying framework for solving many difficult, large scale,
global optimization problems with a huge number of local optima. Of course it is hopeless
to pretend to develop a single general purpose algorithm for all kind of large scale global
optimization problems. However, as we will show, if the objective function possesses some
special structure, than it is possible to build optimization algorithms which are extremely
efficient even in the presence of a number of local optima which increases exponentially with
the problem dimension.

In computational chemistry and biology one such common structure is known as “fun-
nel structure” and is commonly related to the fact that many energy functions which model
complex many-body interactions, although being highly multimodal, can be optimized quite
efficiently using methods of the Basin-hopping (BH) (or Montecarlo with Minimization) type.
In this paper we review some of our recent results in applying BH-like methods to several
important problems like:

global optimization of atomic clusters interacting via the Lennard-Jones potential

global optimization of short-range Morse clusters

Protein-protein rigid docking

Two-dimensional circle packing
While the first three problems, although quite different from each other, all originate from

the field of computational chemistry and biology, the last one is a totally different one and
is concerned with the optimal placing of N identical and non-overlapping circles of maxi-
mum radius in the unit square. Not only the origin of this well known problem are different
from that of cluster optimization and protein docking, but also the structure of the problem
is radically different. In fact, while in the first 3 problems, we are dealing with unconstrained
global optimization problems, in the last case the problem is constrained, with a non convex
feasible region. It is somewhat surprising that simple algorithmic ideas used in the context of
molecular optimization can be quite easily ported to the constrained case.

In the paper we will review some of the main ingredients of BH-like methods for the prob-
lems discussed and, in particular, we will consider the following characteristics:

the use of Monotonic Basin-Hopping as a general purpose algorithm for descending
towards a funnel’s bottom (provided a suitable definition of a neighborhood structure is
available)
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the use of two-phase local searches to enlarge the basin of attraction of good local optima

the effect of coordination obtained through the embedding of BH-like methods in a
population-based framework in which different local optima are maintained in such
a way as to guarantee a sufficiently high degree of dissimilarity between them.

Careful definition of the above three elements is clearly problem-dependent, although some
general guidelines can be given for specific classes of problems. We will present some of the
results recently obtained and the details on the implementation of the above steps, for all of
the problems introduced. In particular, by means of a suitable definition of the neighborhood
structure of BH and a two-phase approach in which penalties inspired by the geometrical
structure of good solutions are introduced in the first phase, we could implement a single
unbiased global optimization method which is capable of confirming all of the putative global
optima for Lennard-Jones and Morse clusters deposited at the Cambridge Cluster Database [3,
5]. With a population-based approach we could further improve the efficiency of the method
and were able to discover several new putative optima for Morse cluster at very short range
[4].

Again, through a clever use of two-phase local optimization and a quite standard BH ap-
proach we obtained encouraging results for large protein-protein docking problems [2]: here,
however, given the extremely high computational cost associated to each energy evaluation,
only limited computational experience has been collected.

Finally we will report on the recent extension of BH-like methods to Circle Packing. Here
we have been very quicly able to code a quite simple, although not elementary, version of
BH (i.e., without two-phase local searches and with no population) which turned out to be
extremely competitive with much more sophisticated methods. In very short time we have
been able to improve more than 20 putative optima. In particular we obtained improved
configurations for a number of circles N equal to 53, 59, 66, 68, 73, 77, 78, 85, 86, 88 and many
others for larger N values [1]. Work is in progress towards including a two-phase and/or a
population based approach also in this context. However it can be quite safely assumed that
the use of BH even in the simplest configuration enables to quickly discover excellent quality
local solutions to difficult global optimization algorithms.
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Abstract Many routing problems in the literature examine stochastic problems in which costs and/or travel
times are the uncertain elements. However, an implicit assumption is often made that all arcs and
nodes operate with perfect reliability. Suppose instead that there exist independent arc failure proba-
bilities. We may wish to ensure that a path exists from some origin to some destination that survives
with a certain threshold probability. One manner of doing this is to construct k origin-destination
paths at a minimum cost, while ensuring that at least one path remains operational with a sufficiently
large probability. However, the reliability constraint induces a nonconvex feasible region (even when
the integer variable restrictions are relaxed). We begin by examining the Robust Two-Path Problem,
which seeks to establish two paths between a source and destination node wherein at least one path
must remain fully operable with some threshold probability. We consider the case where both paths
must be arc-disjoint and the case where arcs can be shared between the paths. This paper begins by
exploring various strategies for solving the resulting nonlinear integer program, including pruning,
coefficient tightening, lifting, and branch-and-bound partitioning schemes. We then examine the
Robust k-Disjoint-Path problem, and note that the previous scheme for two-path problems does not
generalize well to the k-path situation. Instead, we propose an alternative model for the problem in
which the variables correspond to paths and the nonconvex reliability constraints are replaced by an
exponential set of linear constraints. Accordingly, we propose a branch-and-cut-and-price algorithm
for handling the new problem.

Keywords: Integer programming, nonlinear programming, branch-and-bound, branch-and-price-and-cut.

1. Introduction
Traditional routing problems, such as shortest path and travelling salesman problems, as-
sume perfect operability of all arcs and nodes. However, real-world applications often call
for a more diverse routing strategy. For example, consider a cell phone company that has
determined that its customers will tolerate having up to 5% of their calls dropped. The cell
phone company can respond by either sending each call over one highly reliable path, or by
sending two signals per call along less-reliable paths and requiring that at least one signal
reaches the destination with a probability of 95%. It might be cheaper for the company to buy
two relatively unreliable paths than to buy one highly-reliable path. Such redundant routing
takes place in Synchronous Optical Networks, for instance, by routing along rings such that a
single line break will not affect client service. Another application arises in achieving military
missions, such as destroying a particular target that can be accessed via any number of paths,
each path with its own risks. A commander may choose to deploy two groups along different
paths such that at least one of the groups will arrive at and destroy the target within some
acceptable level of reliability.

Hence, when these independent arc failure probabilities exist, a secondary constraint would
retain some measure of expected functionality, introducing nonlinear, nonconvex constraints.
In this abstract, we introduce mathematical programming techniques to impose these require-
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ments on path selection problems on a directed graph G(N,A), where N is the set of nodes
{1, · · · , n} and A is the set of arcs.

Single shortest path reliability problems have received much attention in the literature, both
in their methodological development and in their applications. Bard and Miller [2] address a
research and development project selection problem, in which spending additional money on
projects could increase their probability of success. Zabarankin, Uryasev, and Pardalos [12]
consider a related problem in optimizing path risk in the context of aircraft flight trajectory
through a threat environment. Elimam and Kohler [4] describe some unique applications of
the resource-constrained shortest-path problem, such as the determination of optimal wastew-
ater treatment processes and thermal resistance of building structures.

Too many papers exist to cite on multiple-path routing; we briefly mention two of the most
relevant ones here. Suurballe [9] presents a polynomial-time labeling algorithm to find k
node-disjoint paths between two given nodes. Fortune, Hopcroft, and Wyllie [5] provide an
important characterization of NP-complete vertex-independent routing problems on directed
graphs via the graph homeomorphism problem.

This problem can also be viewed in the context of a network survivability problem. In
networks for which survivability is of concern, an assumption is made that the probability
of two arcs failing is sufficiently small. Hence, they create active and backup paths that do
not share any arcs. (If vertices are subject to failure is well, the paths must be node-disjoint
as well, except at the origins and destinations.) Therefore, the objective is to minimize the
total bandwidth reserved to meet a given demand, allowing the sharing of the backup links
among disjoint connections. Li et al. [6] approach the problem in terms of networking for
multi-protocol label switched networks, developing extensions to the signaling protocol to
distribute additional link usage information. The authors also explain how to extend the
algorithm to account for single node failures (multiple link failures) and fiber span failures.
Several other groups explore this problem, including Liu and Tipper [7], Xu, Qiao, and Xiong
[10], and Yee and Lin [11].

2. Models and Algorithms
The authors present their research on two-path routing problems in [1]. We can begin this
analysis by examining a shortest path problem with the side constraint that the probability of
successfully traversing the path is at least as large as some threshold probability. The natural
formulation of this problem is a mixed-integer nonlinear program, though with some care the
problem can be transformed to a mixed-integer linear program. In any case, these side con-
straints prevent a polynomial-time application of Dijkstra’s algorithm, and make this problem
ordinarily NP-hard.

An even more interesting and applicable version of this problem seeks to establish two arc-
independent paths between two nodes subject to some minimum reliability measure. Many
practical scenarios simply require that at least one path survives between a pair of nodes,
a problem which we call the Robust Two-Path Problem with Disjoint arcs (RTP-D). In this
case, we stipulate that the probability that at least one path survives is sufficiently large. This
probability is given by one minus the probability that both paths fail, which is an inherently
nonlinear constraint. Even worse, such a constraint induces a nonconvex feasible region. The
problems are aggravated further if we allow high-reliability, low-cost arcs to be shared be-
tween the paths (RTP-S). Note that in this case, the failure of a shared arc causes both paths to
fail. We show in [1] that both RTP-D and RTP-S are strongly NP-hard.

Let the network be denoted by G(N,A), and let the cost and reliability of each arc (i, j) ∈ A
be given by cij and pij , respectively. Define FS(i) and RS(i) to be the forward and reverse
stars of node i ∈ N , respectively (i.e., the set of arcs exiting and entering node i). Finally, let τ
be the minimum permissible reliability that at least one path survives.
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We can define xq
ij for all (i, j) ∈ A and q = 1, 2 to be a binary variable equal to one if path

number q utilizes arc (i, j), and zero otherwise. Also, let variables sq
i represent the probability

that path q successfully reaches node i from node 1, given that path q = 1, 2 visits node
i. The RTP-D can be thus modelled as a union of minimum cost flow problem constraints,
linear path-probability calculation constraints, and a single nonlinear, nonconvex constraint
as follows.

minimize
∑

(i,j)∈A

cij
(
x1

ij + x2
ij

)
(1)

subject to
∑

j∈FS(1)

xq
1j = 1 ∀q = 1, 2 (2)

∑

j∈FS(i)

xq
ij =

∑

h∈RS(i)

xq
hi ∀i ∈ {2, · · · , n− 1}, ∀q = 1, 2 (3)

x1
ij + x2

ij ≤ 1 ∀(i, j) ∈ A (4)
sq
j ≤ pijs

q
i + (1− xq

ij) ∀q = 1, 2, ∀(i, j) ∈ A (5)
s11 = s21 = 1 (6)
s1n + s2n − s1ns2n ≥ τ (7)
s1n ≥ s2n (8)
xq

ij ∈ {0, 1} ∀q = 1, 2, ∀(i, j) ∈ A. (9)

The first part of this formulation is straightforward and standard in the literature. Our
strategy in (5) and (6) uses a set of constraints to compute the s-variables. Note that the
path-probability calculation constraints are linear, but employ binary variables that give the
problem its combinatorial nature. The nonlinear constraint (7) enforces the condition that at
least one path remains survivable with sufficiently large probability. Constraint (8) removes
some problem symmetry in the model to improve its solvability.

Our approach to handling the single nonlinear constraint constructs a convex hull relax-
ation of the feasible region by relaxing the integrality constraints, and by replacing (7) with

(1−
√

1− τ)s1n + (
√

1− τ − 1 + τ)s2n ≥ τ(1−
√

1− τ). (10)

We can then utilize a divide-and-conquer recursive approach to force the final solution to re-
side within the original nonconvex feasible region. Our approach is to reinstate the integrality
constraints and solve the problem by relaxing only the constraint (7) and replacing it with
(10). If the resulting solution is feasible to the original problem, an optimal solution has been
identified. Else, we can tighten the relaxation by creating a disjunction in which at least one of
two cutting planes is valid. With this in mind, we solve the relaxed problem in a branch-and-
bound fashion in which each subproblem is an integer program over some particular interval.
We provide an illustration of this technique in Figure 1.

We can enhance the model further by using a simple variation of Dijkstra’s algorithm to
establish an upper bound on the probability of successfully reaching a given node, as well
as a lowest-permissible probability of reaching an intermediate node and still reaching node
n with the required probability. Information about these probabilities can then be used to
reduce graph G(N,A) appropriately for each path. Directed acyclic graphs provide yet an-
other opportunity for pruning, employing a variation on Dijkstra’s algorithm where the least
reliable path to (or from) each node is stored. We can also use this information to tighten
our constraints over all feasible solutions by using coefficient tightening. Our computational
experience supports the strategy of using pruning and coefficient tightening, but shows that
using lifting on the constraints is not effective.

If the solution in a given interval is infeasible to the original problem, we must recursively
solve the problem over the interval by splitting it up into smaller intervals. There are numer-
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Figure 1. Illustration of First Iteration of Vertical Branch-and-Bound Algorithm

ous ways that the interval could be split to prevent the nonlinear-infeasible solution from re-
curring (e.g., Figure 1 shows a “vertical branching" rule). We examine the advantages and dis-
advantages of these methods and present computational results to support the use of one par-
ticular method; specifically, choosing a partitioning for which the distance from the nonlinear-
infeasible solution to either partitioning plane is equal, thereby maximizing the minimum dis-
tance to either partitioned region. This comparatively effective method of branching does not
rely on the axes to generate the cuts, and generalizes the Reformulation-Linearization Tech-
nique [8] (for continuous-variables optimization problems) on this particular problem.

Relaxing the edge-disjoint constraints will necessitate adjustments to be made to RTP-D.
The formulation and algorithm adjustments to solve the shared-arcs variation of our problem
(RTP-S) must then be modified. Our approach now requires the introduction of an additional
decision variable and moves our linear chord relaxation into a three-dimensional space. (De-
tails are omitted in this paper due to space limitations.) Model tightening via pruning and lift-
ing, as well as preprocessing is also less straightforward for RTP-S, though it is still possible. A
specialized partitioning procedure proves difficult, however, for this particular problem due
to the fact that joint reliability constraint is now neither convex nor concave. We work around
this problem by implementing the Reformulation-Linearization Technique [8] to assist in par-
titioning our space for the branch-and-bound procedure. We provide computational results
to recommend the best pruning, lifting, and partitioning strategies for solving RTP-S.

A natural extension to the two-disjoint-path problem is the k-disjoint-path problem for
k > 2. The previous approach would suffer due to the increasing difficulties of relaxing
multiple nonlinear terms as k increases. An alternative approach is to consider a path-based
formulation, in which variables xp equal to one if path p ∈ P is selected, and zero otherwise,
where P is the entire set of origin-destination paths in the network. However, there are too
many such paths to generate, and a column generation approach would have to deal with
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the nonlinear constraint governing reliability. Instead, we can replace the reliability constraint
with a set of covers Cj , |Cj| ≥ k, such that the reliabilities of paths in C j are too small to be
used in a feasible solution. Hence, we can restrict

∑

i∈Cj

xi ≤ k − 1 ∀ covers Cj. (11)

However, at this point, we have generated an exponential number of variables and con-
straints. Accordingly, we employ a branch-and-price-and-cut algorithm to solve the problem.
Note that after generating somem covers and set of paths P , and after relaxing integrality, we
have the formulation

Minimize
∑

p∈P

Cpxp (12)

subject to
∑

p∈P

xp = K (13)

∑

p∈P (i,j)

xp ≤ 1 ∀(i, j) ∈ A (14)

∑

p∈P

arpxp ≤ k − 1 ∀r = 1, ...,m (15)

0 ≤ xp ≤ 1 ∀p ∈ P , (16)

where Cp is the total cost of a path (sum of its edge costs), P (i, j) is the set of paths generated
thus far that use arc (i, j), and arp is a constant equal to 1 if p belongs to cover r, and zero
otherwise. The column generation phase of the algorithm attempts to find variables that enter
the basis of problem (12)-(16), but is complicated by the presence of constraints (15). Those
constraints require us to determine whether or not a new path (column) is a member of an
existing cover constraint. We can solve this problem in pseudopolynomial time, however,
by using algorithms designed for resource-constrained shortest path problems. After this
problem is solved, the row generation portion is straightforward. This process continues until
no columns or rows can be generated.

Following the row/column generation phase, the branching phase must occur in a man-
ner that forces the algorithm to converge. Simply branching on an xp-variable is problematic,
because a variable that is forced to equal to zero will reappear under a different index in the
column generation subroutine that follows the branching phase. Hence, we prove that if the
previous solution to the linear programming relaxation is fractional, there either exists an op-
timal solution in which at least one arc has a fractional flow, or an optimal integer solution can
be found based on this fractional solution. In the former case, we can ascertain that fractional
arc flow, and then branch by insisting that this arc either contains a total flow of either zero or
one.

However, the latter case induces dual variables that could force the column generation sub-
problem to solve a shortest path problem with negative arc costs. While unlikely, this makes
the column generation problem strongly NP-hard. Instead, we prescribe a slightly different
multicommodity flow model based on the work of Barnhart, Hane, and Vance [3] for our
problem. This new model avoids the NP-hard column generation routine, but at the expense
of a much larger model with symmetry complications. We will examine the computational
effectiveness of these methods in our future research.

3. Summary
We have examined the two-path routing problem with reliability considerations, which turns
out to be NP-hard in the strong sense, as opposed to the ordinary NP-completeness of the
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single-path problem. Our algorithms for these two-path problems are based on relaxing a
complicating nonconvex constraint and providing a (hopefully tight) series of disjunctive
convex approximations to the problem. For the multiple path problem, we instead turn to
a path-based formulation instead of the arc-based formulation for the two-path problem, and
replace the reliability constraint with a set of linear cover constraints. We propose the use
of a branch-and-price-and-cut framework to solve these problems. Our future research will
involve providing the details of the branch-and-cut-and-price algorithm, and stating compu-
tational results comparing the efficacy of using our algorithm on model formulations.
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Abstract The convex octagon with unit diameter and maximum perimeter is determined. This answers an
open question dating from 1922. The proof uses geometric reasoning and an interval arithmetic
based global optimization algorithm to solve a series of non-linear and non-convex programs in-
volving trigonometric functions.

This article summarizes the complete proof published in [2].

1. Introduction and related problems
We answer in this work, a geometric problem opened since 1922 by Reinhardt, [14]. We call
a small n−gon a polygon with n vertices (or n edges) and with a unit diameter (the longest
distance between two extreme point is 1). In [14], Reinhardt studies the properties of maximal
area and maximal perimeter of small polygons. He proves that the regular n−gons with equal
sides and equal angles have the properties to be of both maximal area and maximal perimeter
if n is odd. When n is even, Reinhardt proves that the square owns the property of maximal
area and that there exists a regular polygon with only equal sides (based on a Reuleaux poly-
gon) which has the property of maximal perimeter if n = 2s for s ∈ IN \ {0, 1}. Therefore, the
open cases were the 4−gon for the maximal perimeter and the hexagon for the problem of
maximal area. In 1975, Graham proves that there exists an irregular small hexagon which has
a maximal area about 4% superior to the regular one, [7]. For proving this, Graham bisected
the global optimization problems into 10 small ones. Woodall proves in 1971, that the optimal
solutions are in this 10 configurations which are called linear thrackleations, [17]. 9 of these
cases were eliminated by using geometric arguments and the last case amounted to solve an
univariate global optimization problem which gives the optimal solution for the problem of
which unit diameter hexagon has the maximal area. The next open case: The largest small
octagon was solved by Audet et al. [4], using the same way nevertheless this led to consider
31 thrackleation graphs corresponding to 31 sub-problems. Therefore, one proves in [4] that
there exists an irregular small octagon with maximal area about 2.82% greater than the regu-
lar one. This problem was extremely difficult to solve because the most difficult case (case 31
which leads to the global solution about the 31 thrackleations) has 10 variables and needed 100
hours of computations for a specific global optimization algorithm dedicated to non-convex
quadratic programs [1].

Now, considering the problem of the maximal perimeter. In 1997, Datta [6] proves that
the small 4-gon based on a triangle of sides one with a supplementary vertex at the bisector
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of one angle and at distance one of the opposite vertex, has the property to be of maximal
perimeter: 2 + 4 sin π

12 ∼ 3.03527618.... In order to compare, the square has a perimeter about
2
√

2 ∼ 2.82842712...
Then, the next open case studied here is the octagon, see [2].
Today, it seems to be unfeasible to solve directly this problem using only geometric argu-

ments (open problem since 1922) and using only an exact global optimization tool (because
the problem is too complicated). Our proof combines new geometric arguments and a spe-
cific interval global optimization algorithm due to Messine et al. [9–11] which can deal with
trigonometric functions.

The following summarizes the way to find the small octagon with maximal perimeter; for
the complete proof see [2].

2. Bisection into 31 sub-problems
As for the largest small octagon, [4] one uses here the decomposition in sub-problems using
linear thrackleation graphs. A linear thrackleation graph is a graph such that there exists
always a path joining two extreme points; an edge of this graph is obtained if the distance
between two vertices is equal to 1 (this corresponds to a binding constraints). In [2], one
proves that the solution is based on one of the 31 linear thrackleations given in [4]. One does
not represent all these configurations but one uses the same numbering as in [4]. In Figure 1,
the most important thrackleations (case 29 and case 31) are represented.

•
• •

•

•

•

•

•

Case 29

•

• •

•

•

•

•

•

Case 31

Figure 1. Thrackleations 29 and 31.

3. Bounds derived from Datta’s results
In [6], Datta proves that all the optimal n−gons when n ≥ 5 cannot have a side of length one.
This lemma allows to eliminate 7 cases: thrackleations numbered 1, 2, 3, 4, 21, 22, 23 in [4].

Datta also proves in [6], that an upper bound for the perimeter of a small n−gon is

2n sin
π

2n
.

This bounds are attained when n 6= 2s with s ∈ IN \ {0, 1}.
Figure 2 represents a common and possible configuration inside a thrackleation. vi, vj , vj+1

and vj+2 are four vertices of the octagon and of the corresponding thrackleation, cj and cj+1



The Small Octagon with Longest Perimeter 25

are the length of two sides of the octagon, and [vi, vj ], [vi, vj+1] and [vi, vj+2] are edges of the
thrackleation graph; i.e. ‖vi − vj‖ = ‖vi − vj+1‖ = ‖vi − vj+2‖ = 1.
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Figure 2. Equal angles.

Using the same demonstration, one proves in [2] the two following properties:
Proposition 1. Consider a small octagon based on a thrackleation with maximal perimeter. If cj is a
type I edge, as represented in Figure 2 (vi is an extreme point of two edges), and vi its associated vertex,
then ∠vjvivj+1 ∈ [0.317, 0.465]. Moreover, if cj+1 is also a type I edge, consecutive to cj and with the
same associated vertex vi then ∠vjvivj+2 ∈ [0.688, 0.881].

The next result concerns thrackleations containing a pending diameter.
Proposition 2. Consider a small octagon based on a thrackleation with maximal perimeter, with two
consecutive type I edges cj = [vj , vj+1] and cj+1 = [vj+1, vj+2] sharing the same associated vertex vi.
Then ∠vjvivj+1 = ∠vj+1vivj+2 =

∠vjvivj+2

2 ; i.e. α = β = αi

2 .

These two properties allow to reduce the remaining studied problems.

4. Exact algorithm
In that stage, one needs the use of an exact global optimization algorithm to discard some
cases and to determine the global solution.

The global optimization algorithm used here is a Fortran 90/95 implementation of a branch-
and-bound method where bounds are computed with interval analysis techniques. It is called
IBBA (for Interval Branch and Bound Algorithm). All computations were performed on a
cluster of thirty bi-processors PC’s ranging from 1GHz to 2.4GHz at the University of Pau.

Interval analysis was introduced by Moore [12] in order to control the propagation of nu-
merical errors due to floating point computations. Thus, Moore proposes to enclose all real
values by an interval where the bounds are the two closest floating point numbers. Then
expanding the classical operations - addition, subtraction, multiplication and division- into
intervals, defines interval arithmetic. A straightforward generalization allows computation of
reliable bounds (excluding the problem of numerical errors) of a function over a hypercube
(or box) defined by an interval vector. Moreover, classical tools of analysis such as Taylor ex-
pansions can be used together with interval arithmetic to compute more precise bounds [12].
Other bounding techniques due to Messine et al. [11] combines linear underestimations (or
hyperplanes) obtained at all vertices of the box [11].

The principle of IBBA is to bisect the initial domain where the solution is sought for into
smaller and smaller boxes, and then to eliminate the boxes where the global optimum cannot
occur:

by proving, using interval bounds, that no point in a box can produce a better solution
than the current best one;
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by proving (with interval arithmetic), that at least one constraint cannot be satisfied by
any point in such a box.

To accelerate convergence, constraint propagation techniques are used in some steps of
IBBA, see [9, 10] for details. The principle is to use, a priori, the implicit relations between the
variables (induced by the constraints) to reduce the size of a box.

5. Optimal solution
The optimal solution appeared by solving case corresponding to thrackleation 10, see Figure
3, which is a relaxation of case 29: Add edge [v0, v4] to case 10 then you obtain thrackleation 29
given in Figure 1. This just changes the constraint ‖v0 − v4‖ ≤ 1 into the inequality constraint
‖v0 − v4‖ = 1.

•

•

• •

•

•
•

•

v0

v1
v2

v3

v4

v′1

v′3

α1 α2

α3

...........
..........
...........

..........

.

............
............
............
............

......................................

Figure 3. Thrackleation 10

The non-convex program is:

max
α

4 sin
α1

4
+ 4 sin

α2

4
+ 4 sin

α3

4
+ ||v1 − v4||+ ||v0 − v3||

s.t. ||v0 − v4|| ≤ 1
0.688 ≤ αi ≤ 0.881 i = 1, 2, 3,

where v0 = (cosα1, sinα1), v1 = (0, 0), v2 = (1, 0), v3 = (1 − cosα2, sinα2) and v4 = (1 −
cosα2 + cos(α2 + α3), sinα2 − sin(α2 + α3)).

Solving this program by using Algorithm IBBA, one obtains in 3 hours the optimal solution
which has a perimeter about p∗ = 3.121147, with an error less than 10−6. In this solution, the
constraint ||v0− v4|| ≤ 1 is binding and thus the optimal configuration corresponds to case 29.
In [2], one found, using MAPLETM , an analytical solution for p∗.

Furthermore, by adding the following constraints derived from Proposition 2:

∂ (‖v2 − v′1‖+ ‖v′1 − v0‖+ ‖v0 − v3‖)
∂α1

= 0

and,
∂ (‖v2 − v′3‖+ ‖v′3 − v4‖+ ‖v4 − v1‖)

∂α3
= 0

where v′1 =
(
cos(α1

2 ), sin(α1
2 )
)

and v′3 =
(
x3 + cos(α2 + α3

2 ), y3 − sin(α2 + α3
2 )
)
, IBBA showed

in only 0.12 seconds that there are no feasible solution. Therefore, case 10 is eliminated.
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6. Eliminating cases using IBBA
Now one uses IBBA in order to discard a lot of remaining tightened (by geometric arguments,
see Section 3) cases corresponding to linear thrackleations.

In a first step, one considers configurations which has an isolated vertex. It is a particular
configuration such that only one vertex is above (or below by symmetry) an edge, see Figure
4.

•

••

v2

v1 v0

Figure 4. An octagon with an isolated vertex v1

IBBA permit to eliminate all these configurations by adding the constraint that an upper
bound of all the perimeters of all these configurations must be greater than p∗ = 3.121147.

Therefore, 16 cases are eliminated together, corresponding to thrackleations numbered 5, 6,
7, 8, 9, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 30.

Considering the remaining cases: 16, 17, 19, 20 and 31, IBBA shows in less than 5 hours for
each configurations, that all of them can have a perimeter superior to p∗.

It remains only case of thrackleation 18, which is a relaxation of 31 and also 29 (the optimal
thrackleation). In that case, the optimal conditions derived from Proposition 2 are satisfied for
29, and then this problem can only be solved with a precision ε = 0.5 × 10−4. IBBA shows in
case 18, that it does not exist a better solution than p∗ + ε for this configuration.

This completes the proof; see [2] for more details.

7. Conclusion
The small octagon with longest perimeter has been determined and the length of its perimeter
is equal to 3.1211 (all decimals are exact), with an error guaranteed to be less than ε = 0.5 ×
10−4. As in the study of the small octagon with largest area [4], the diameter graph of an
optimal octagon must be a connected linear thrakleation. This lead to 31 cases. The optimal
one is case 29 for the longest perimeter while it was case 31 for the largest area. The diameter
graph for the octagon with unit-length side and smallest diameter [3] was not connected. In
all cases the optimal figure possesses an axis of symmetry. For comparison, Figure 5 illustrates
three small octagons: The regular one, the one with maximal perimeter with equal sides [3],
and the one studied in this paper.

The above mentioned optimal octagons were obtained by combining geometric reasoning
with global optimization algorithms [1, 10]. It appears difficult to answer any of these ques-
tions with one of those tools alone.
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Abstract In the paper we deal with lower bounds constructed for the asymptotic performance ratio of semi-
on-line bin packing and batched bin packing algorithms. We determine the bounds as the solu-
tions of a related nonlinear optimization problem using theoretical analysis and a reliable numerical
global optimization method. The results improves the lower bounds given in [9] for some special
cases of the batched bin packing problem (fixed, finite number of different elements in two batches),
answering a question raised in [9] regarding the optimal bounds.

Keywords: semi-on-line bin packing problems, nonlinear optimization, branch–and–bound, interval arithmetic

1. Introduction
Bin packing is a well-known combinatorial optimization problem. In the classical one–dimen-
sional case we are given a set of items represented by a listL = {x1, x2, . . . , xn} of real numbers
in (0, 1], and an infinite list of unit capacity bins. Each item xi has to be assigned to a unique
bin such that the sum of the elements in each bin does not exceed 1. Our aim is to minimize
the number of used bins. It is well-known that finding an optimal packing is NP-hard [7].
Consequently, large number of papers have been published which look for polynomial time
algorithms with an acceptable approximative behavior. The on-line bin packing algorithms put
items into a bin as they appear without knowing anything about the subsequent elements
(neither the sizes nor the number of the elements). Off-line algorithms can use more informa-
tion: most of them examine the entire list before they apply their strategy to pack the items.
The so called semi-on-line algorithms [2] are between the on-line and off-line ones. For such al-
gorithms at least one of the following operations is allowed: repacking of some items [4–6,11],
lookahead of the next several elements [8], or some kind of preordering.

The efficiency of different algorithms is generally measured by two different methods: the
investigation of the worst-case behavior, or – assuming some probability distribution of the
elements – a probability analysis. In this paper we will concentrate on the asymptotic worst-
case ratio which can be defined as follows: denoteA(L) the number of bins used by the (either
repacking or non-repacking) algorithm A to pack the elements of a list L, and let L∗ the num-
ber of bins in an optimal packing. If

RA(k) := max

{
A(L)

k
|L∗ = k

}
(1)

denotes the maximum ratio ofA(L)/L∗ for any listLwithL∗ = k, then the asymptotic performance
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ratio (APR) RA of the algorithm A is defined as

RA := lim supk→∞RA(k). (2)

The best known lower bound for the APR of any on-line bin packing algorithm A is 1.54014
(given by Van Vliet [17]), while for the current best algorithm has an APR of 1.58889 (Seiden,
[16]).

The general semi-on-line bin packing problem with repacking was studied by Gambosi et
al. [6]. Here the expression ‘general’ means that the number of repackable elements per step
is not restricted (bounded) in a strict way by a constant. They gave an O(n) time algorithm
with an APR of 1.5 and an O(n log n) time algorithm with an APR of 4

3 . The latter algorithm
was improved to an algorithm with APR of 1.25 by Ivkovič and Lloyd [12]. Note, that none of
the above mentioned algorithms repack constant number of elements in a strict sense, because
they define the cost of repacking a bundle of small items as a constant.

The only lower bound for this problem is proved by Ivkovič and Lloyd. This bound is 4
3 . In

their lower bound construction the repacking of a constant number of items is allowed after
the arrival of each new item. The 4

3 lower bound is proved for fully dynamic bin packing with
restricted repacking. Dynamic bin packing means that in each step not only the insertion of the
arrived elements (Insert operation) is allowed, but in any step one element can be deleted
(Delete operation) instead of Insert. The fully dynamic bin packing is such a version of the dy-
namic bin packing when repacking is allowed. Although the 4

3 lower bound was constructed
for this particular fully dynamic bin packing problem, the model can be easily applied for the
similar classical (i.e. repacking, but not dynamic) semi-on-line bin-packing problem. For more
details, see the survey of Csirik and Woeginger [3]).

A similar problem class called batched bin packing is defined by Gutin et al. [9]: in this case
the items become available in batches, and each batch must be packed before the next batch
arrives. By defining and solving a related nonlinear optimization problem we will generalize
the solution method of [9] for deriving lower bounds.

In this paper we improve the lower bound 4/3 for that of the variant of the on-line bin
packing problem when in each step the repacking of constant number of elements is allowed.
The same construction can be used for deriving the same lower bound for the similar version
of the fully dynamic bin packing problem. Improved lower bounds will be obtained by solv-
ing a nonlinear optimization problem. The solution of the special cases of the same nonlinear
optimization problem is interesting as well, because their solutions answer some questions
raised in [9] for the batched bin packing problem, namely, for the two batched bin packing
problem, when the number of different item sizes is at most p. In [9] it is shown that the lower
bound r(p) is the best possible in the case of p = 2, but it was not clear whether the bounds
r(p) given for cases of p ≥ 3 might be the best possible bounds. Here we are answering the
question regarding the optimality of the given bound for these values. We note that the lower
bounds for these special cases are valid for the above mentioned two problems, too.

2. Constructing the lower bounds by a linear and a nonlinear
optimization problem

The following theorem is proved in [1]:

Theorem 1. [1] Let k ≥ 1 and c ≥ 1 be arbitrary integers and x1, x2, . . . , xk, (1
2 ≤ x1 < x2 <

· · · < xk < 1) be fixed real numbers. Let yi = 1− xi, (i = 1, . . . , k) and yk+1 = 0. Then the solution
of the following linear programming problem is a lower bound for the APR of an arbitrary semi-online
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bin packing algorithm with c-repacking:
min b, (3)

subject to b ≥ 1 + yi + 2yi




i−1∑

j=1

zj

(
1

yj
− 1

)
−

k∑

j=i

zj


 , (i = 1, . . . , k), (4)

b ≥ 1 +

k∑

j=1

2zj

(
1

yj
− 1

)
, (5)

zi ≥ 0, (i = 1, . . . , k), (6)
k∑

j=1

zj <
1

2
. (7)

Note that the expression c-repacking means that a given number c of elements can be
repacked in each step.

We omit the proof of this theorem, but we introduce a list-construction as the basic idea
behind the proof: consider a series of lists L1, ..., Lk , where Lj (j = 1, . . . , k) contains

⌈
n

2yj

⌉

items of size xj + εj , where εj := ε
‰

n
2yj

ı , and ε < minj=1,...,k {yj − yj+1} is an arbitrary positive

number. L0 is defined as a list of M items of size a, where a < εk
l

n
yk

m

c
and M :=

⌊ n
2
−ε

a

⌋
. It can

be seen that size(Lj), i.e. the sum of the elements in Lj is n
2 + ε, while size(L0) is n

2 − ε.
We can see that the size of the equal elements a = a(ε) in L0 is a very small number, and

the total size of the repackable items in
⌈

n
2yj

⌉
steps is less than εj (j = 1. . . . , k). The key idea

of the construction is the following: if a is small, – as it is defined above – then considering
the list-concatenations L0L1, L0L2, . . . , L0Lk, the total size of the repackable small elements
during the packing of the second list Lj is less than εj .

This way we "almost switch off" the role of the repacking. It is directly follows from the size
of any "big" element xj (= 1− yj), that such a big element can be packed only in a bin, which
level is at most yj − εj . If we denote by zin the cumulative size of the items that are packed
in yi-type bins, – we call a bin B yi-type bin if size(B) ∈ (yi+1, yi] – then because of the above
reasoning a bin containing a big element had level of at most yj after the packing of L0.

Based on the principle of the above construction, we can now estimate (2) for L0 and for
L0Lj, j = 1, . . . , k. Namely, equation (4) of Theorem 1 comes from the estimation of (2) for
the list concatenations L0Lj ,∀j, while equation (5) comes from the estimation of (2) for the
case list L0 (i.e. for the case when there is no list appearing after L0). By picking any y1, . . . , yk

values for which the condition of the Theorem 1 hold (0 < yk < . . . < y1 ≤ 0.5) we get a lower
bound for any of the three problems we are dealing with, and any such y-system will result in
a lower bound for the problem (3)–(7).

First, consider the case of k = 1 and y1 = 0.5. In this case we get a very simple system of
equations, and the optimal solution will be 4

3 , getting back the result of [11] as a special case
of our construction. It can be shown, that in the case of k = 1 this is the best lower bound,
which can be given by our construction. On the other hand, by fixing larger k (k ≥ 2) and
yj (j = 1, . . . , k) values, for which the condition of the Theorem 1 hold (0 < yk < . . . < y1 ≤
0.5), the bound given in [11] can be improved. Note, that for k ≥ 2 it is enough to consider
yj ≥ 0.25, since in the case of k = 1 with y1 = 0.5 the lower bound was 4

3 . Hence, to get
better lower bounds the elements xj (j = 1, . . . , k) in the lists L1, . . . , Lk have to be smaller
than 0.75 (otherwise the algorithm would put the larger elements alone into one bin). So in
the following we can assume that

yj ≥ 0.25 for any yj, j = 1, . . . , k, k ≥ 1. (8)
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Concerning the choice of the y values, the most obvious method is to consider the y1, . . . , yk

system as k equidistant points in the (0.25, 0.5] interval, i.e. yj := 0.5 − 0.25(j−1)
k , j = 1, . . . , k.

For this y-system, solving the received LP (if we fix y-s, (9) is an LP), we get the lower bounds
for (9). The results are displayed in the third column of our Table 1. In this way all values of
the third column of our Table 1 improve the lower bound for the on-line bin packing problem
with restricted repacking and for the same version of fully dynamic bin packing as well.

Our construction (without considering repacking) can be used for the two batched bin pack-
ing problem (2−BBPP , [9]). in cases when p different sizes are allowed. In our construction
this means p = k + 1 lists, because of the list L0.

In this way, if we used the aforementioned equidistant points as the y-system of our con-
struction, we exactly get back the results of Gutin at al. for the two batched bin packing prob-
lem when p number of different elements are allowed. The third column of our Table 1 con-
tains the values which are corresponding to their Table on page 77 of [9] for the two batched
bin packing problem.

Note that the construction in [9] was similar, but the main point is different: they used only
equidistant yj-values (in our terminology), while we can consider any y-systems (allowing not
only equidistant points). In this way our construction can be considered as a generalization of
the one of [9]. The construction of [9] placed some elements of size s in the list L0, 0 < s < 1

2 ,
while Lj contained n/j elements, each of size 1 − js (j = 1, . . . ,m, where m =

⌊
1
s

⌋
). In our

construction xj = 1− js , and yj = js, respectively. (Note, that since our first list has an index
0, their p value corresponds to k + 1 in our construction; see Table 1, columns 1–2.)

The essence of the results of the LP approach (either considering equidistant y-systems
or not) is that the obtained bounds are valid for the two above mentioned semi-on-line bin
packing problems, allowing restricted repacking.

In the following we answer a question raised in [9], namely, whether their bound given
for the cases when only p (p ≥ 2) different elements are allowed, can be improved? In our
context, the corresponding problem is whether we can produce better lower bounds from our
construction, as compared to the ones obtained from the equidistant y-points. This question
leads us to a nonlinear optimization problem which can be described in a short form using the
objective function and constraints of Theorem 1:

max b∗(y1, . . . , yk),
subject to 0.25 ≤ yk < . . . < y1 ≤ 0.5,

(9)

where b∗(y1, . . . , yk) denotes the optimal solution of the minimization problem (3) subject to
the constraints (4-7) for a fixed system of y1, . . . , yk. Recall that the 0.25 ≤ yk restriction is
allowed due to (8). The obtained problem (9) is a so called max-min problem. Nevertheless,
if we fix the y-s, then we get back the LP (3-7), and again any y-values deliver a lower bound.
Now, the question is: which y-system should be considered to maximize (9).

3. The analysis and solution of the nonlinear optimization
problem – asymptotic behavior and special cases

Problem (9) seems to be very hard to solve from a global optimization point of view in its pre-
sented form. Following the transformations introduced in details in [1], we obtain an equiva-
lent, but more convenient form (with one single objective and easily manageable bound con-
straints for the variables):

max f(y) = 1 +
1− yk

yk + 1
y1

+
∑k

i=2
yi−1

yi
− k

,

subject to 0.25 ≤ yk < . . . < y1 ≤ 0.5.

(10)
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Lemma 2. Let k ≥ 2 be an arbitrary, but fixed integer. Assume that the one-dimensional optimization
problem

max t(yk) = 1 +
1− yk

yk + 2− k − (k − 1)(2yk)−1/(k−1)
,

subject to 0.25 ≤ yk ≤ 0.5

(11)

has a unique optimal solution yk = y∗ ∈ [0.25, 0.5] with t(y∗) = t∗. Then the k–dimensional problem
(10) also has a unique optimal solution, and it is given by

y1 =
1

2
, yi =

1

2
(2y∗)

i−1
k−1 , i = 2, . . . , k.

Moreover, the optimum of the original problem also equals to t∗.

For this modified form of the original problem the following statements hold:

Lemma 3. [1] The optimal solution of (11) converges to the maximum of the function

f (x) := 1 +
1− x

x+ 1 + ln
(

1
x

)
− ln (2)

(12)

in the interval [ 14 ,
1
2 ] if k →∞.

Lemma 4. [1] The maximum of the function f(x) is 1− 1

W−1

“

−2
e3

”

+1
≈ 1.3871 in the interval [ 14 ,

1
2 ],

where W−1 (x) is a branch of the Lambert function.

We solved (11) with a branch–and–bound global optimization algorithm using interval arith-
metic calculations ( [10, 13–15]) for the parameter values of k = 2, . . . , 10, 20, 50, 100, 1000. In
each case, we have managed to verify the existence and uniqueness of y∗, and we have ob-
tained the guaranteed interval enclosures of both y∗ and t∗ with high precision. The enclosure
of y∗ allowed us to verify the additional prerequisite y∗ ≤ 0.5 as well, and thus, to construct
the interval enclosures of the unique solution of the original problem. The fourth column of
Table 1 contains the the optimum values for the solved problem instances up to 12 digits. Due
to the precision of the interval calculations there is a guarantee that the results are accurate in
the displayed digits.

Table 1. Improved lower bounds for a variation of the 2-batched bin packing problem when only k + 1 item sizes
are allowed known in advance.

k p Equidistant points (y-s) Arbitrary points (y-s)

1 2 1.3333... —
2 3 1.3658... 1.36602540378...
3 4 1.3738... 1.37393876913...
4 5 1.3773... 1.37753136189...
5 6 1.3793... 1.37958528769...
6 7 1.38051 1.38091512540...
7 8 1.38136 1.38184652163...
8 9 1.38198 1.38253525895...
9 10 1.38246 1.38306525702...

10 11 1.38296 1.38348573275...
20 21 1.38509 1.38534022765...
50 51 1.38631 1.38642436208...

100 101 1.38673 1.38678113846...
1000 1001 1.38709 1.38710030535...
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4. Summary
The paper dealt with a nice connection between a discrete (combinatorial) optimization prob-
lem and global optimization. The lower bound constructions given for special bin packing
problems led to a nonlinear optimization problem, and after some transformations the solu-
tions were delivered. Our construction is more general than the ones of [11] and [9], and its
special cases improved the results of [9] by answering the questions raised in the paper.
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Abstract We present a computer assisted proofs for the existence of so-called horseshoes of the different it-
erates of the classical Hénon map (H(x, y) = (1 + y − αx2, βx)). An associated abstract provides
algorithms and the theoretical basis for the checking of three geometrical conditions to be fulfilled by
all points of the solution region. The method applies interval arithmetic and recursive subdivision.
This verified technique proved to be fast on the investigated problem instances. So we were able to
solve some unsolved problems, the present talk will summarize these computational results.
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After having introduced our computational methodology to locate chaotic regions (see the
associated abstract and the papers [4] and [1]), now we concentrate on the obtained numerical
results. First we have checked the reported chaotic region [6] by our checking routine.

We have investigated the seventh iterate of the Hénon mapping with the parameters of
A = 1.4 and B = 0.3. The checked region consists of two parallelograms with sides parallel to
the x-axis, the first coordinates of the lower corner points were 0.460, 0.556, 0.588, and 0.620,
while the second coordinates were the same, 0.01. The common y coordinate for the upper
corner points was 0.28. The tangent of the sides was 2. We have set the ε threshold value for
the checking routine to be 10−10.

First the algorithm determined the starting interval, that contains the region to be checked:

[0.46000000000, 0.75500000000] × [0.01000000000, 0.28000000000].

Then the three conditions were checked one after the other. All of these proved to be valid
— as expected. The amount of function evaluations (for the transformation, i.e. for the sev-
enth iterate of the Hénon mapping in each case) were 273, 523, and 1613, respectively. The
algorithm stores those subintervals for which it was impossible to prove whether the given
condition holds, these required further subdivision to achieve a conclusion. The depth of the
stack necessary for the checking was 11, 13, and 14, respectively. The CPU time used proved
to be negligible, only a few seconds.

Then, We have applied the global optimization model for the 5th iterate Hénon mapping.
Note that the less the iteration number, the more difficult the related problem: no chaotic
regions were reported for the iterates less than 7 till now. We have solved the optimization
problem with a clustering method [2]. After some experimentation, the search domain set for

∗This work has been partially supported by the Bilateral Austrian-Hungarian project öu56011 as well as by the Hungarian
National Science Foundation Grants OTKA No. T 037491, T 032118, T 034350, T 048377, and T 046822.
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the parameters to be optimized was:

A ∈ [1.00, 2.00],

B ∈ [0.10, 1.00],

xa, xb, xc, xd ∈ [0.40, 0.64].

Table 1 presents the numerical results of the ten search runs.

Table 1. Numerical results of the search runs

LO ZO FE PE T

12 4 13,197 4,086 17
12 1 12,913 3,365 16
12 1 13,569 4,303 19
12 2 12,918 3,394 16
12 1 14,117 5,083 18
12 3 21,391 7,400 25
12 2 12,623 3,296 16
12 0 15,388 6,221 30
12 3 13,458 3,858 15
12 2 14,643 5,002 16

Here LO stands for number of local optima found, ZO for the number of zero optimum
values, FE for the number of function evaluations, PE for the number of penalty function
evaluations, and finally T for the CPU time used in minutes.

One example of the obtained optimized parameter values is as follows:

A = 1.7484856, B = 0.3784193,

xa = 0.4379310, xb = 0.5143267,

xc = 0.5661056, xd = 0.6339521.

Finally we consider the 3rd iterate of Hénon-mapping. The first successful run of our global
optimization algorithm involved beyond the earlier six parameters also the angle α, and 3
coordinates of the set E. The numerical results with the ten parameters (see also Figure 1):
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Figure 1. Illustration of the H3 transformation with the obtained chaotic region of two parallelograms.
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Figure 2. Illustration of the obtained interval containing only such A and B values that ensure a chaotic region
in the classic two parallelograms. Those grid points that also fulfill the conditions are denoted by small circles.

A = 2.5569088, B = 0.15963498,

tanα = 3.3579163,

xa = 0.29188440, xb = 0.53887296,

xc = 0.74663494, xd = 0.84359572,

E1,bottom = 0.18937143, E1,left = 0.21673342, E2,right = 0.84386042.

Beyond the above mentioned results, we have achieved intervals of positive measure con-
taining exclusively feasible points for our constraint satisfaction problem with a tolerance
optimization method [3]. As an illustration of the results see Figure 2.
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Abstract With application to the specific problem of multiple gravity assist trajectory design, a deterministic
search space pruning algorithm is developed that displays both polynomial time and space com-
plexity. This is shown empirically to achieve search space reductions of greater than six orders of
magnitude, thus reducing significantly the complexity of the subsequent optimisation.
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1. Introduction
A gravity assist manoeuvre uses a celestial object’s gravity in order to change a spacecraft’s
trajectory. When a spacecraft approaches a celestial object, a small amount of the object’s or-
bital momentum is transferred to the spacecraft. This manoeuvre was used for the first time
in the 1970’s, when the spacecraft Voyager used multiple gravity assist flybys of Jupiter, Sat-
urn, Uranus and Neptune, to propel itself beyond these planets. Gravity assist manoeuvres
(GAs) are frequently used to reduce fuel requirements and mission duration [1]. Most inter-
planetary trajectory design problems can be stated as optimisation problems, where one of the
fundamental goals is the minimisation of fuel requirements, with consideration also given to
intermediate planetary flybys, mission duration, type of arrival, launch and arrival windows,
and velocity constraints. Traditionally, local optimisation has been used to attempt to solve
these design problems [2,3]. However, because of nonlinearities and the periodic motion of the
planets, multiple local minima exist and, as a result, local optimisation only helps to find local
minima which are heavily dependent on the initial guesses employed and are not necessar-
ily good solutions. The use of global optimisation techniques has been proposed for tackling
these problems, as these methods have better chances of finding good solutions approaching
the global optimum [4]. Genetic algorithms and similar techniques have been employed, but
these techniques may face difficulties in tackling realistic missions due to the large size of the
search space associated with these problems. This paper considers the problem of multiple
gravity assist (MGA) trajectories with a known planetary sequence and no deep space ma-
noeuvres. In such cases, it can be shown that the vast majority of the search space consists
of infeasible, or very undesirable, solutions. This observation motivated the development of
a method for producing reduced search spaces by pruning, thus allowing standard global
optimisation techniques to be applied more successfully to the reduced box bounds [5]. The
technique presented in this paper has been named Gravity Assist Space Pruning (GASP).
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2. Gravity assist: space pruning algorithm
This section describes the motivation behind and functionality of the GASP algorithm. Con-
sider the MGA problem with a defined planetary sequence (e.g. Earth-Venus-Venus-Earth-
Jupiter-Saturn) and no deep space maneouvres. The decision vector for this problem is as
follows

x = {t0, t1, t2, t3...}, (1)
where t0 is the launch date, t1 is the phase time from the first to second planet, t2 from the
second to third planet etc. An efficient Lambert solver [6] is used to calculate appropriate Ke-
plerian orbits between the planetary positions in the given time, and then a powered swingby
model is applied, such as that designed by Gobetz [7].

2.1 Single interplanetary transfer
Consider the simplest case of a single interplanetary transfer with a braking manoeuvre at the
target planet. The objective function assumed is a simple minimisation of total thrust (the sum
of the initial hyperbolic excess velocity, vi, and braking manoeuvre, vf ), so

f = vi + vf . (2)

The decision vector in the single transfer case will be x = {t0, t1}. An important observation
is that this search space will contain a line for each time t, that a probe can arrive at the final
planet, such that t0 + t1 = t. Obviously, at a given time t, regardless of the launch time or
departure time, the target planet will be in the same position and have the same velocity. There-
fore, it is beneficial to consider the search space as t0, t0 + t1, this is departure time at the first
planet compared to arrival time at the second. The optimisation method to be investigated
is grid sampling. Grid sampling is usually considered a very inefficient optimiser, particu-
larly in high dimensionalities. For example, using the enumerative search in the Swingby
Calculator application [8] yields optimisation times approaching an hour for relatively small
search spaces (on a 600Mhz Pentium Processor). However, for only 1 and 2 dimensions grid
sampling is computationally tractable, as long as the objective function is reasonably smooth
and the exact optimum is not required. Therefore, the objective function for a single inter-
planetary transfer may be grid sampled at an appropriate resolution in the departure time vs
arrival time domain efficiently, although in this case most other optimisation methods would
yield better results in terms of objective function evaluations. However, the grid sampled ver-
sion will require many less Ephemeris calculations, as the same positions/velocities need not
be recalculated for a given departure or arrival time. If the 2D search space was discretised
into k cells in each dimension, only 2k Ephemeris calculations are required for the entire sam-
pling, and k2 Lambert problem solutions. By comparison, two Ephemeris calculations would
be required by each objective function evaluation in a standard optimiser. Even in the single
interplanetary transfer case, a large proportion of the search space corresponds to undesirable
solutions i.e. those with impractical C31. To illustrate this, the optimisation of an Earth-Mars
transfer was considered between the dates (-1200 to 600 MJD2000) and phase times of 25 to
515 days. A sampling resolution of 10 days was used in both axes. Only 12.5% of this search
space had a C3 of less than 25km2/s2. Figure 1 shows this search space plotted as departure
time vs arrival time - the diagonal lines delineate the sampled portion of the search space,
and the dark regions within the lines indicate trajectories with a fasible C3 value lower than
25km2/s2.
As a consequence, in gravity assist and multiple gravity assist cases starting with an Earth-
Mars transfer in these bounds, at least 87.5% (100%-12.5%) of the overall search space must

1C3 (units km2/s2) is the square of the hyperbolic excess velocity.
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Figure 1. A grid sampled Earth-Mars transfer. The white regions within the delineating diagonal lines indicate
solutions with a C3 of greater than 25km2/s2

correspond to undesirable solutions. Even allowing an enormous C3 of 100km2/s2, only 33%
of the search space becomes valid. The GASP algorithm was design to efficiently detect and
prune infeasible parts of the space, leaving several sets of box bounds with vastly smaller
contents. These reduced box bounds may then be optimised efficiently using a standard opti-
misation method.

Hyperbolic Excess Velocity Constraint: The maximum allowable hyperbolic excess veloc-
ity is the first main constraint of the GASP algorithm, as it determines possible launch dates
to the first target planet.

Braking Manoeuvre Constraint: As well as the C3 constraint, it is logical to add a con-
straint on the maximum braking manoeuvre that the spacecraft can perform. Applying a C3
constraint of 25km2/s2 and a braking manoeuvre constraint of 5km/s it can be estimated that
less than 5% of the search space yields feasible trajectories. By applying two very simple con-
straints to the interplanetary case it has been shown that a very significant reduction in search
space can been achieved, leaving clear launch windows and arrival time windows.

2.2 Forward Constraining
It has been shown that the C3 and braking manoeuvre constraints alone significantly reduce
the search space content for an interplanetary transfer. From Figure 1, it can be seen that for
many values of the arrival time there are no feasible departure times. This observation is the
key principle on which the GASP algorithm is based: if no feasible trajectories arrive at a
planet on a given date then there can be no departures from the planet on that date (assuming
the change in velocity from the swingby is instantaneous). Now consider a trajectory with a
single gravity assist. Using grid sampling on this function would usually involve sampling
in three dimensions, and hence as additional planets were added the number of objective
function evaluations would increase exponentially. Instead, with GASP, the search space is
sampled as a cascade of two dimensional search spaces, each with possible departure dates
(in the horizontal axis) and prospective arrival dates (in the vertical axis). Because of this, the
number of Lambert problem evaluations is vastly reduced.
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2.3 Gravity assist thrust constraint
Two constraints are added in order to maximise the probability of gravity assists being feasi-
ble. The first such constraint is the gravity assist thrust constraint, which limits the maximum
absolute difference between incoming and outgoing velocities during a gravity assist to some
threshold, Tv . This threshold is set separately for each gravity assist. The following is then
performed for every arrival time at a planet:

1. Calculate the bounds on incoming velocity, vi
min and vi

max.

2. Invalidate any outgoing trajectories that do not have outgoing velocities in the range
[vi

min − Tv − Lv, v
i
max + Tv + Lv], where Lv is an appropriate tolerance based on the

Lipschitzian constant of the current phase plot.

3. Calculate the modified bounds on outgoing velocity, vf
min and vf

max.

4. Invalidate any incoming trajectories with velocities outside the range [vf
min−Tv−Lv, v

f
max+

Tv + Lv].

2.4 Gravity assist angular constraint
The gravity assist angular constraint removes infeasible swingbys from the search space on the
basis of them being associated with a hyperbolic periapse under the minimum safe distance
for the given gravity assist body. This is determined over every arrival date at a planet as
follows, assuming i valid incoming trajectories and j valid outgoing trajectories:
1. For all i incoming trajectories
2. For all j incoming trajectories
3. If the swingby is valid for the current incoming

and outgoing trajectory, mark both incoming and
outgoing trajectory as valid.

4. End
5. End
6. Invalidate all trajectories not marked as valid

The swingby angle is decreased by an appropriate Lipschitzian tolerance θL, in order to com-
pensate for the effects of the grid sampling of the search space.

3. Time and space complexity
This section determines the time and space complexity of the GASP algorithm. It will be
shown that GASP scales quadratically in space and quartically in time with respect to the
number of gravity assist manoeuvres considered. For simplicity, the following analysis as-
sumed that the initial launch window and all phase times are the same.

3.1 Space Complexity
Consider a launch window discretised into k bins and a mission phase time also discretised
into k bins. For the first phase k2 Lambert problems must be sampled. The next phase will
need to sample (k+k)k = 2k2, as the number of possible times that the planet may be arrived
at is doubled (minimum launch date, minimum phase time to maximum launch date, maxi-
mum phase time). The third phase will require 3k2 Lambert function evaluations, and the nth

phase nk2. This gives the series

O(n) = k2 + 2k2 + 3k2 + . . .+ nk2 (3)
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O(n) = k2(1 + 2 + 3 + . . .+ n) (4)

O(n) = k2n(1 + n)

2
. (5)

Therefore, the amount of space required for n phases is only of the order O(n2), rather than
O(kn) for full grid sampling.

Similarly, it is clear that the space complexity with respect to the resolution k, is also of the
order O(k2).

3.2 Time Complexity
The memory space required is directly proportional to the maximum number of Lambert
problems that must be solved, and hence the time complexity of the sampling portion of the
GASP algorithm must also be of the order O(n2).

Launch energy constraint complexity: The launch energy constraint is only applied in the
first phase, and hence is independent of the number of swingbys. The time complexity is
O(k2) with respect to resolution.

Gravity assist thrust constraint complexity: The time complexity of applying the gravity
assist thrust constraint is O(n2) with respect to dimensionality (number of phases), due to the
inevitable increase in size of later phase plots to encompass all possible arrival dates. The first
phase requires of the order of 2k× (k+ 3k) operations in order to perform the constraining of
outgoing velocity from incoming velocity (the back constraining may be ignored at this point).
The second phase requires of the order of 3k × (2k + 4k) operations. In general, the nth phase
requires of the order of 2n2k3 operations. Therefore, the total number of operations over all
phases is

2k2[22 + 32 + 42 + . . . + n2] = 2k2n(n+ 1)(2n+ 1)

3
(6)

Therefore, applying this constraint yields cubic time complexity in dimensionality and quadratic
complexity in resolution.

Gravity assist angular constraint complexity: The maximum number of swingby models that
must be calculated for the first phase is close to k×2k×3k = 6k3. For the second swingby, this
is 2k × 3k × 4k = 24k3. In general, for n phases, the upper bound on the number of swingby
calculations, α, is

α = 3× 2× 1× k3 + 4× 3× 2× k3

+5× 4× 3× k3 + . . .+ (n+ 2)(n+ 1)nk3 (7)

From [9], it can be shown that the total number of these operations must be

α = k3
n∑

j=1

(j + 2)(j + 1)j = k3n(n+ 1)(n+ 2)(n+ 3)

4
. (8)

Therefore, the overall time complexity with respect to resolution is O(k3), while the time com-
plexity with respect to dimensionality isO(n4). Therefore, the gravity assist angular constraint
is the most computationally expensive and hence is applied after GA thrust constraint in order
to minimise the number of swingby models that must be calculated.

Overall time complexity: The overall time complexity, taken from the most complex part of
the algorithm (the gravity assist angular constraint), is cubic with respect to resolution and
quartic with respect to dimensionality.
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4. Differential evolution
Differential Evolution (DE) [10] is a novel incomplete probabilistic global optimiser based on
Genetic Algorithms [11], and was the highest ranked GA-type algorithm in the First Inter-
national Contest on Evolutionary Computation. Following [10], scheme DE1 is used in this
work as the crossover operator as it has been shown to perform the best on the most complex
test function examined.

5. Results
This section demonstrates the improvements that GASP can make over Differential Evolu-
tion alone in one test case. Consider the optimisation of an EVVEJS transfer with an orbital
insertion, where the objective function is the minimisation of the sum of the launcher and
probe thrust. The bounds on the decision vector were as follows:

t0 ∈ [−1200, 600] MJD2000

t1 ∈ [14, 284] days

t2 ∈ [22, 442] days

t3 ∈ [14, 284] days

t4 ∈ [99, 1989] days

t5 ∈ [366, 7316] days

GASP was applied to this problem with a sampling resolution of 10 days. In order to com-
plete the sampling, 144498 Lambert problem solutions and 3749 Ephemeris calculations were
required. The following constraints were defined in the GASP algorithm:

THEV = 8000m/s

TGA1....4 = 1000m/s

TBrake = 5000m/s

This configuration yields two major solution families, one with a launch window of -920 to
-660MJD2000, and the other 280 to 490MJD2000. Differential Evolution was applied to the ac-
cumulation of each solution family (the tightest decision vector bounds that all solution family
nodes exist within). A population of 40 individuals was used and a terminal number of 2000
iterations were allowed. Note that this corresponds to 40× 2000 × 5 = 400000 Lambert prob-
lem solutions and 480000 Ephemeris calculations. The later launch window was eliminated
immediately as applying Differential Evolution did not yield any valid solutions. Further op-
timisation on this launch window has consistently optimised to the same invalid minima. The
earlier launch window proved much more promising and, as a consequence, 20 optimisation
trials were performed. Of these trials, 19 found the second best known optima to this problem
(5225m/s) to within 1m/s, and one came close to the best known optimum, (4870m/s). Exper-
imentation has shown this minimum has a very small basin of attraction with respect to this
objective function, and is exceptionally hard to find even in the reduced search space. When
applying Differential Evolution alone to the entire search space, only 7 out of the 20 trials
found the second best minimum, and none the best known. Using GASP, it is apparent that
there is an extremely high probability that at least the second best solution will be found. In
subsequent trials, the objective function was altered to penalise any trajectory with hyperbolic
excess velocity of greater than 3000m/s. Only two of 20 of the GASP constrained trials failed
to find the best known solution to within 10m/s in this case (instead finding the second best
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one), while again 7 out of 20 optimisation of the entire domain found the second best solution,
and none located the best. Again, these results highlight the significant advantages of using
the GASP algorithm. Not only does it allow effective visualisation of the search space, but it
drastically reduces the requirement for optimisation restarts in order to find good solutions,
and at a fraction of the computational expense of an optimisation restart.

6. Conclusions
This paper has described the Gravity Assist Space Pruning algorithm, proved that it has both
polynomial time and space complexity, and furthermore demonstrated that it produces signif-
icant benefits over optimising the entire domain with relatively little computational expense.
Additionally, the GASP algorithm allows intuitive visualisation of a high dimensional search
space, and facilitates the identification of launch windows and alternative mission options.
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Abstract In this work, we present a hybrid global optimization method of evolutionary type. The proce-
dure uses random perturbations of descent methods in the mutation step and generates the initial
population by using a Representation Formula of the global optimum. The method is applied to
a relevant inverse problem: the calibration of a gravity–opportunity model for trip distribution in
transportation theory.

Keywords: Global Optimization, Hybrid Methods, Gravity–Opportunity Model

1. Introduction
Transportation planning is a field where the calibration of models is often used. In typical
situations, the mathematical model to be used contains parameters to be determined from
empiric data by identification procedures. Generally, these procedures lead to non convex
optimization problems and robust numerical methods are needed in the calibration process.
We consider in this work the calibration of a gravity–opportunity model which is derived by
applying the Maximum Likelihood Principle to the experimental data, such as, for instance,
measurements of O-D (origin-destination) trips (see, for instance, [5]). Such a model leads to
function exhibiting the typical behaviour shown in Figure 1. Previous works [3, 6, 7] properly
addressed the numerical difficulties in the calibration procedure, which are essentially con-
nected, on the one hand, to the nonconvexity and, on the other hand, to the wide sensibility of
the objective function with respect to the parameters to be determined: large desequilibrated
gradients are involved. We present here a hybrid global optimization procedure for solving
the problem. The method has been tested on classical functions such as Rastringin’s one (Fig-
ure 2) [4] and it is applied here to the calibration of a gravity–opportunity model from O-D
sources [5]. In this field, the standard procedures are difficulty to use, request high computa-
tional effort and uses optimization parameters specially defined for a given data set. Among
our objectives, we look for the definition of a calibration procedure less dependent on the data
set and saving computational cost.

2. The Trip Distribution Model
By limitation of the room, we do not give more detailed derivation of the model: the reader
interested in this aspect is invited to refer to [5]. Let us denote by Tij the number of trips going
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Figure 1. Function defined by the Maximum Likelihood criteria ( [2]).

Figure 2. Rastringin’s test function.

from origin number i to destination number j, Oi the number of departures from origin num-
ber i, Dj the number of arrivals at destination j, Wij a quantity measuring the opportunities
found between origin i and destination j, cij a quantity connected to the cost of the trip from
origin i to destination j. The gravity – opportunity model doubly restricted reads as

Tij = AiOiBjDje
−(λWij+βcij) , i, j = 1, 2, ..., n. (1)

Parameters Ai, Bj , λ, β are usually unknown and must be determined. Usually, the main
parameters are λ and β, since the coefficients Ai and Bj must verify nonlinear relations con-
nected to the equilibrium of the fluxes between destinations and origins. For given λ and β,
Ai andBj may be determined by solving the nonlinear equations establishing the equilibrium
of the fluxes. One of the most popular methods for this determination is Furness balancing
method, which will not be developed here.

Let us assume that a set of measurements T ∗
ij is given. Then, we have (see, for instance, [5]):
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Ai = (
∑

j

BjDje
−λWije−βcij )−1 (2)

Bj = (
∑

i

AiOie
−λWije−βcij )−1 (3)

∑

i j

T ∗
ijcij =

∑

i j

Tijcij (4)

∑

i j

T ∗
ijwij =

∑

i j

Tijwij . (5)

These relations may be derived from the principle of the Maximum Likelihood applied to
(1). The parameters β and λ are determined into a way that the results reproduce the average
cost of the observed trips and the average number observed in the intervenient opportunities
per trip: (β, λ) minimizes the function

f(β, λ) =


c−

∑

ij

Tij(β, λ)

T
· cij




2

+


w −

∑

ij

Tij(β, λ)

T
· wij




2

(6)

where

c =

∑
ij
T ∗

ijcij

T ∗ and w =

∑
ij
T ∗

ijwij

T ∗ . (7)

If Equations 4 – 5 are satisfied f(β, λ) = 0.

3. A Numerical Method
[7] has introduced an evolutionary version of an random perturbation algorithm based on

the gradient method. We present here a modification of these method, improved by the in-
troduction of a Representation Formula established by [9]. The Representation is used in
order to generate the initial population. The experiments have established improvements in
the robustness and speed of convergence. A complete set of experiments with classical test
functions is performed in [4].

The Representation Formula reads as follows: let us consider a regular function f : <n → <,
defined on a closed bounded not empty set S ⊂ <n, S 6= φ. Assume that P is a probability on
S having a strictly positive regular density. Then, we have:

x∗ = lim
λ→+∞

E(xg(λ, f(x)))

E(g(λ, f(x)))
, (8)

where λ ∈ <+, g is a function conveniently chosen and E(•) denotes the mean. Equation
8 may be interpreted as a weighted mean of x on S. The weights are connected to the value
of f(x) and, for g having suitable decreasing properties, the weights are smaller for points
corresponding to higher values of the objective function. At the limit, the weights concentrate
on the points corresponding to the global optimum. A possible choice for g, suggested by M.
Pincus (see, for instance, [9]) is:

g(λ, f(x)) = e−λ f(x). (9)
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In practice, we must choose a value of λ large enough, we generate a finite sample (x1, ..., xns)
of elements of S, according to the distribution P and we approximate

x∗ ≈ x∗ns =

ns∑

i=1

xig(λ, f(xi))

ns∑

i=1

g(λ, f(xi))

. (10)

Analogously to [7], we shall use an evolutionary algorithm where the mutation step is per-
formed by using random perturbations of a descent method which iterates as xn+1 = Qn(xn):
the perturbed method iterates as xn+1 = Qn(xn) + Pn, where Pn is a convenient random
variable such as, for instance,

Pn =
a√

log(n+ b)
Z ; ZÑ(0, σId). (11)

Equation 10 will be used in order to generate the initial population. The procedure reads as
follows ( [4]):

1. Let be given H > 0; three non negative integers NP, NF and NR;
2. We generate the initial population S0 =

{
x1

0, x
2
0, ..., x

NP
0

}
, by using (Equation 10).

3. At step n, Sn+1 is derived from Sn as follows:
Crossover: Let

Fn =
{
yi

n = αi
nx

j
n + βi

nx
k
n + γi

n : xj
n, x

k
n ∈ Sn : i = 1, ..., NF

}
,

where α i
n, β

i
n, γ

i
n are random values from the uniform distribution on [−H,H]

and j and k are randomly chosen;
Fn contains NF = (2 ∗NP ) elements;
We note Bn = Sn ∪ Fn . Bn contains NB = (NP +NF ) elements;
Mutation: Let
Mn = {xpj

n = Arg min f(Qn(xj
n) + P j,i

n ) : xj
n ∈ Bn : i = 0, ..., NR; j = 1, ..., NB},

Mn contains NM = (2 ∗NB) elements; P j,0
n = 0 e P j,1

n , ..., P j,NR
n is a sample of NR

values from Pn;
Selection: The elements of An = Bn ∪Mn = Sn ∪ Fn ∪Mn are increasing ordered
according to the value of the objective function. The population Sn+1 is formed by
the first NP elements of An, i. e., the best NP elements of Sn.

In our experiments, the deterministic descent method Qn is the gradient method with opti-
mal step (steepest descent. See, for instance, [9]). The maximum step is tmax = α

‖∇f(xn)‖ , where
α > 0 is a fixed parameter. Thus, the step tn is defined by the relation
f(xn − tn∇f(xn)) ≤ f(xn − t∇f(xn)), ∀t ∈ (0, tmax).

4. Data Sets
We have tested the method on 4 data sets: three sets of real data and one set of simulated data.
The first set of real data comes from the region of Londrina, Brazil,which is divided into 12
traffic zones [1]. The second one corresponds to a region that includes part of the State of Santa
Catarina, Brazil, divided into 77 zones [5]; The third ones is a subset of the previous region,
corresponding to 44 zones of particular interest [5]. The set of simulated data is defined on a
region divided into 30 zones [8].
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5. Results
All the experiments performed use the following set of parameters: NP = 2 (population of
two elements); ns = 100 (size of the sample for application of the Representation Formula),
generated from N(0, 0.5); NR = 5 (Number of random perturbations of the deterministic de-
scent method), with a = 0.1, b = 1 and Z generated from N(0, 0.2); initial step size α = 0.7.
The determination of the optimal step has been performed by analysis the values of the ob-
jective function on a grid of 21 points uniformly distributed on the interval (0, tmax). Furness
iterations have been stopped when either numbers of iterations has reached 100 or the value of
the objective function has attained 10−3: f(β,λ) <10−3. For each situation considered, we have
performed 100 runs. In Table 1, we show the mean value of the objective function attained,
and we underline the effect of the use of Equation 8: we observe a significant improvement.

Table 1. Mean of the final value of the objective function (Equation 6) for 100 runs.

Gonçalves Data Gonçalves Data Almeida Data Kühlkamp Data
(1992) 77 zones (1992) 44 zones (1999) 12 zones (2003) 30 zones

with/ Equation 8 70745.27 11178.77 257.27 52648.36
without/ Equation 8 22.94 7.96 1.13 43.32

In Table 2, we underline the number of iterations.

Table 2. Mean of the final value of the objective function (Equation 6) for 100 runs.

Gonçalves Data Gonçalves Data Almeida Data Kühlkamp Data
(1992) 77 zones (1992) 44 zones (1999) 12 zones (2003) 30 zones

with/ Equation 8 8800 6720 1960 3720
without/ Equation 8 5960 2120 1160 2440

In Figure 3, we compare the performance of the numerical procedure with or without Equa-
tion 8, and also with or without the optimal step procedure.

Figure 3. Influence of Equation 8 and of use of the optimum step in the gradient method - Set of data with 44
zones.
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6. Concluding Remarks
A stochastic global optimization procedure of evolutionary type has been presented. The pro-
cedure uses random perturbations of descent methods in the mutation step and generates the
initial population by using a Representation Formula of the global optimum. The Represen-
tation Formula, applied in the bettering of the generation of the initial population, placed the
points closer to the solution, causing an increase of convergence speed, and consequently, a
significant reduction in the number of evaluations of the function.

The method was applied to a relevant inverse problem: the calibration of a gravity-
opportunity model for trip distribution in transportation theory. The convergence in the cali-
bration process using a parameter set as default was verified.

The procedure is viewed as an important tool for estimation of parameters of spatial-
interaction models.
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Abstract Several Multiple-Criteria Decision Making methods require, as starting point, weights measuring
the relative importance of the criteria. A common approach to obtain such weights is to derive them
from a pairwise comparison matrix A.

There is a vast literature on proposals of mathematical-programming methods to infer weights
from A, such as the eigenvector method or the least (logarithmic) squares. Since distinct procedures
yield distinct results (weights) we pose the problem of describing the set of weights obtained by
“sensible” methods: those which are Pareto-optimal for the nonconvex (vector-) optimization prob-
lem of simultaneous minimization of discrepancies.

A characterization of the set of Pareto-optimal solutions is given. Moreover, although the above-
mentioned optimization problems may be multimodal, standard Global Optimization methods can
come up with a globally optimal vector of weights in reasonable time.

Keywords: Pairwise comparison matrices, weights, Interval Analysis.

1. Introduction
Several strategies have been suggested in the literature to associate with a setD = {d1, . . . , dn}
of decisions weights x1, x2, . . . , xn reflecting decision-maker’s preferences. In the Analytic
Hierarchy Process (AHP), [11, 12, 14, 15], an n× n matrix A,

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann




is obtained after asking the decision-maker (DM) to quantify the ratio of his/her preferences
of one decision over another. In other words, for every pair of decisions di, dj , the term aij > 0
is requested satisfying

aij ≈
xi

xj
(1)

The matrix A so obtained must be a positive reciprocal matrix, i.e.,

aji =
1

aij
> 0 for all i, j = 1, 2, . . . , n.

∗This research has been partially supported by grants BFM2002-04525-C02-02 and BFM2002-11282-E MCYT, Spain
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For a given positive reciprocal matrix A, different procedures can be followed in order to
obtain weights x1, . . . , xn according to (1), see e.g. [1, 5, 9, 10, 13]. In particular, Saaty proposes
the so-called Eigenvector method (EM): x is a column vector satisfying the equation

Ax = λmaxx,

where λmax is the dominant eigenvalue of the positive reciprocal matrix A. See e.g. [12] for
further details, and [6] for commercial software with it.

Many other choices have been proposed in the literature to derive x according to (1), mostly
given as optimal solutions of optimization problems such as

min
x∈R

n
++

γ
(
(|xi/xj − aij |)ni,j=1

)
(2)

or
min

x∈R
n
++

γ
(
(| log(xi/xj)− log(aij)|)n

i,j=1

)
(3)

where R++ denotes the set of strictly positive reals, and γ is a monotonic norm in the non-
negative orthant Rn×n

+ , i.e.,
γ(u) ≤ γ(v) ∀u, v, 0 ≤ u ≤ v (4)

such as any (weighted) `p norm, 1 ≤ p ≤ +∞ (usually p = 2 in the literature). See [3] for a
very recent and thorough discussion on different procedures for deriving weights.

It should become evident that different procedures, – (EM) or those derived from (2) or (3)–,
although following (1), may yield different weights, and even different ranking of decisions
may happen, as already shown e.g. in [13].

In the next section we deal with the problem of inferring weights under a multi-objective
point of view, focus our attention in the key property of the solutions of vector-optimization
problems, namely efficiency. In particular, we explore whether the usual weighting method-
ologies, provide (or do not) solutions with this desirable property.

In the last section we consider the generation of weights from (2), a problem that may be
multimodal. We show that standard tools of Global Optimization based on Interval Analysis
can be applied to its resolution with reasonable computational times.

2. Inferring weights: A multi-objective approach
The problem of deriving weights from a pairwise comparison matrix naturally leads to the
Nonconvex Vector-Optimization problem

min
x∈Rn

++

(|xi

xj
− aij |)i6=j (X)

We recall the reader, e.g. [2], that, given an optimization problem (P ),

min
x∈S

(f1(x), . . . , fk(x)) ,

y ∈ S is said to dominate x ∈ S if fi(y) ≤ fi(x) for all i = 1, . . . , k, with fi(y) < fi(x) for some i.
Moreover, x ∈ S is said to be efficient for (P ) if no y ∈ S dominates x, and x is said to be locally
efficient for (P ) if there exists a neighborhood V of x in S such that no y ∈ V dominates x.

We provide a test based on Linear Programming that let us to check if any vector x ∈ Rn
++

is efficient for (X), which is completed with a full description of the set of locally efficient and
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efficient solutions for this problem. Using these results, we prove that the geometric-mean
method for deriving weights, i.e.

xi =




n∏

j=1

aij




1
n

, i = 1, . . . , n (5)

provides efficient solutions for (X).
A geometric characterization of efficiency is also been obtained, based on the graph intro-

duced next.

Definition 1. Given y ∈ RN , let G(y) be the digraph G(y) := ({1, 2, . . . , N}, E(y)),

(i, j) ∈ E(y) iff i 6= j and yi − yj ≥ log(aij)

The above-mentioned geometric characterization is provided in the following result (we
recall that a directed graph is said to be strongly connected if for all pairs of nodes (i, j), i 6= j,
there exist directed paths from i to j and from j to i).

Theorem 2. Vector x ∈ Rn
++ is efficient for (X) if and only if G(log(x)) is strongly connected.

A similar characterization can be obtained for weakly efficient solutions. We recall that
x∗ ∈ Rn

++ is said to be weakly efficient for (X) if and only if no x ∈ Rn
++ exists with

∣∣∣∣
xi

xj
− aij

∣∣∣∣ <
∣∣∣∣∣
x∗i
x∗j
− aij

∣∣∣∣∣ for all i, j, i 6= j

Theorem 3. Vector x ∈ Rn
++ is weakly efficient for (X) if and only if G(log(x)) contains at least one

cycle.

Using Theorem 2 we show, by means of an example, that the Eigenvector Method may
provide non-efficient solutions. This makes preferable, under the viewpoint here considered,
the solution provided by the geometric-mean method or any other derived from (2), which
are also efficient.

3. Inferring weights: A global optimization approach
The resolution of (2) constitutes an alternative procedure to the Eigenvector Method of Saaty
for deriving the priority vector x. In spite of the fact that this problem may be multimodal,
local-search methods seem to be the only proposal so far, the exception being the recent work
[7], where different Global-Optimization strategies for solving (2) for the Euclidean norm γ
are analyzed.

From a practical viewpoint, it has been observed that it is not so easy to provide precise
values for the scalar aij , which are thus replaced by intervals Aij = [aL

ij , a
U
ij ], see e.g. [4, 8, 16]

and the references therein. In this case, the aspiration xi/xj = aij is replaced by the more
general one

xi

xj
∈ Aij , i, j = 1, 2, . . . , n, (6)

and (2) is replaced by the problem of finding strictly positive weights xj minimizing a norm γ
of the distances between the ratios xi/xj and the corresponding intervals Aij ,

min
x∈R

n
++

f(x) := γ
(
(ε (xi/xj , Aij))

n
i,j=1

)
(7)



56 R. Blanquero, E. Carrizosa, E. Conde, and F. Messine

with ε(s, [aL, aU ]) defined as the distance between s and the closest point in [aL, aU ],

ε(s, [aL, aU ]) =





0, if s ∈ [aL, aU ]
aL − s, if s ≤ aL

s− aU , if s ≥ aU
(8)

= max

{
0,

∣∣∣∣s−
aU + aL

2

∣∣∣∣−
aU − aL

2

}
(9)

Obviously (7) coincides with (2) in what we call the degenerate case in which all intervals
Aij are degenerate,Aij = {aij}.

In this context, theoretical results are given without needing the definition of a norm. We
show that well-known strategies of Deterministic Global Optimization, namely, Branch and
Bound algorithms with bounds based on Interval Analysis, provide in reasonable time glob-
ally optimal solutions to problem (7), and thus, as particular case, to model (2), for different
choices of γ. The standard interval Branch and Bound algorithm has been modified here in
order to determine the accuracy of the so-obtained optimal solution and, using this, the nu-
merical experiments show perfectly that some problems can efficiently be solved even if the
size is rather important.
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Abstract One of the most important steps in solving Multi-Attribute Decision Making (MADM) problems is
to derive the weights of importance of the attributes. The decision maker is requested to compare
the importance for each pair of attributes. The result expressed in numbers is written in a pairwise
comparison matrix. The aim is to determine a weight vector w = (w1, w2, , wn), which reflects
the preferences of the decision maker, in the positive orthant of the n-dimensional Euclidean space.
We examine a distance minimizing method, the Least Squares Method (LSM ). The LSM objective
function is nonlinear and, usually, non-convex, thus its minima is not unique, in general. It is shown
that the LSM -minimization problem can be transformed into a multivariate polynomial system.
We consider the resultant and the generalized resultant methods, which can be applied in the case
of small-size matrices, and the homotopy continuation proposed by Tien-Yien Li and Tangan Gao.
Numerical experience show that the homotopy method finds all the roots of polynomial systems,
hence all the minima of the LSM objective functions. At present the maximum size of matrices
regarding which the LSM approximation problem can be solved by using the homotopy method is
8 × 8. We show that LSM works even if some elements are missing from the pairwise comparison
matrix. The paper ends with few numerical examples.

Keywords: Pairwise comparison matrix, Least Squares Method, Polynomial systems.

1. Introduction
One of the most studied methodology in Multi-Attribute Decision Making is the Analytic Hi-
erarchy Process developed by Thomas L. Saaty [21]. Using AHP, difficult decision problems
can be broken into smaller parts by the hierarchical criterion-tree, one level of the tree can
be handled by pairwise comparison matrices. The idea of using pairwise comparison matri-
ces is that decision makers may not tell us the explicit weights of the criteria or the cardinal
preferences of the alternatives but they can make pairwise comparisons.
A pairwise comparison matrix A = [aij ]i,j=1..n is defined as

A =




1 a12 a13 . . . a1n

a21 1 a23 . . . a2n

a31 a32 1 . . . a3n
...

...
... . . . ...

an1 an2 an3 . . . 1



∈ Rn×n

+ ,

∗This research was supported by the Hungarian National Research Foundation, Grant No. OTKA-T043241.
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where for any i, j = 1, . . . , n,

aij > 0,

aij =
1

aji
.

The matrix element aij expresses the relative importance or preference of i-th object com-
pared to j-th object given by the decision maker (i, j = 1, 2, . . . , n). For example, the first
object is a12 times more important/preferred than the second one.

A pairwise comparison matrix A = [aij ]i,j=1..n is called consistent, if it satisfies the follow-
ing properties for all indices i, j, k = 1, . . . , n:

aij =
1

aji
,

aijajk = aik.

In practical decision problems, pairwise comparison matrices given by the decision maker
are not consistent. Based on the elements of the matrix, we want to find a weight vector
w = (w1, w2, . . . , wn)T ∈ Rn

+ representing the priorities of the objects where Rn
+ is the pos-

itive orthant. The Eigenvector Method [21] and some distance minimizing methods such
as the Least Squares Method [7, 18], Logarithmic Least Squares Method [1, 9–11], Weighted
Least Squares Method [2,7], Chi Squares Method [18] and Logarithmic Least Absolute Values
Method [8,17], Singular Value Decomposition [15] are of the tools for computing the priorities
of the alternatives.

After some comparative analyses [6,9,22,23] Golany and Kress [16] have compared most of
the scaling methods above by seven criteria and concluded that every method has advantages
and weaknesses, none of them is prime.
Since LSM problem has not been solved fully, comparisons to other methods are restricted to
a few specific examples.

The aim of the paper is to present a method for solving LSM for matrices up to the size
8× 8 in order to ground for further research of comparisons to other methods and examining
its real life application possibilities.

In the paper we study the Least Squares Method (LSM ) which is a minimization problem
of the Frobenius norm of (A−w 1

w

T
), where 1

w

T denotes the row vector ( 1
w1
, 1

w2
, . . . , 1

wn
).

2. Least Squares Method (LSM)
The aim is to solve the following optimization problem for a given matrix A = [aij ]i,j=1..n.

min
n∑

i=1

n∑

j=1

(
aij −

wi

wj

)2

(1)

n∑

i=1

wi = 1,

wi > 0, i = 1, 2, . . . , n.

LSM is rather difficult to solve because the objective function is nonlinear and usually
nonconvex, moreover, no unique solution exists [13, 18, 19] and the solutions are not easily
computable. Farkas, Lancaster and Rózsa [12] applied Newton’s method of successive ap-
proximation. Their method requires a good initial point to find the solution.

It is shown in the paper that the LSM minimization problem can be transformed into solv-
ing a multivariate polynomial system. For a given n × n pairwise comparison matrix, the
number of equations and variables in the corresponding polynomial system is n− 1.
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3. Polynomial systems
Polynomial systems are not easy to solve in general. The method based on Gröbner bases [5]
in Maple works for the 3 × 3 matrices but runs out of memory as n > 3. Bozóki [3] gave a
method based on resultants for solving the LSM problem for 3× 3 matrices, and an other one
with Lewis [4] based on generalized resultants for 4× 4 matrices.

Homotopy method is a general technique for solving nonlinear systems. In the paper, I
used the code written by Tien-Yien Li and Tangan Gao. Present CPU and memory capacity
allow us to solve the LSM problem up to 8× 8 matrices.

4. Pairwise comparison matrix with missing elements

If a decision maker has n objects to compare, he/she needs to fill n(n−1)
2 elements of the upper

triangular submatrix of the n × n pairwise comparison matrix. The number of comparisons
quickly increases by n.

Eigenvector Method needs all the elements of the matrix, otherwise the eigenvalues and
eigenvectors can not be computed.

The Least Squares approximation of a pairwise comparison matrix has the advantage that it
can be used in cases of missing elements, too. If we do not have a value in the (i, j)-th position
of the matrix, we simply skip the corresponding term

(
aij − wi

wj

)2
from the objective function

(1).

5. Summary
A method for solving the LSM problem for pairwise comparison matrices is given in the
paper. The LSM optimization problem is transformed to a polynomial system which can be
solved by resultant method, generalized resultant method using the computer algebra system
Fermat implemented by Robert H. Lewis, or homotopy method, implemented by Tangan Gao
and Tien-Yien Li. One of the advantages of LSM weighting method is that it can be used even
if the pairwise comparison matrix is not completely filled.
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Abstract We consider the problem of locating in the time period [0, T ] q facilities in a market in which com-
peting firms already operate with p facilities. Locations and the entering times maximizing profits
are sought.

Assuming that demands and costs are time-dependent, optimality conditions are obtained, and
different demand patterns are analyzed. The problem is posed as a mixed integer nonlinear problem,
heuristically solved via a VNS algorithm.

Keywords: Competitive location, Variable Neighborhood Search, Dynamic Demand, Covering Models, Maxi-
mal Profit.

1. Introduction
The problem of locating facilities in a competitive environment has been addressed, both at the
modelling and computational level, in a number of papers in the field of Operations Research
and Management Science, see e.g. [2, 3, 5–9, 12, 14] and the references therein.

The simplest models accommodating competition are those related with covering: a firm
is planning to locate a series of facilities to compete against a set of already operating fa-
cilities, in order to maximize its profit, usually equivalent to maximizing the market share.
Different attraction rules may be (and have been) considered to model consumer behavior,
and thus to evaluate market share. For instance, with the binary attraction rule, one assumes
that consumers demand is fully captured by the closest facility, or more generally by the most
attractive facility, where attractiveness is measured by a function decreasing in distance and
price, e.g. [1, 10, 11, 13].

Serious attempts have been made to model different metric spaces (a discrete set, a trans-
portation network or the plane), or different attraction rules (e.g. the above-mentioned binary
rule, as well as rules relying upon the assumption that consumer demand is split into the dif-
ferent facilities, each capturing a fraction of the demand, this demand being decreasing in dis-
tance, . . . ). However, most models assume that consumer demand remains constant through
the full planning horizon, which may be a rather unrealistic assumption for new goods or
high seasonality products. See e.g. [4, 15] for facility location models which do accommodate
time-dependent demand.

In this talk we introduce a covering model for locating facilities in a competitive environ-
ment in which demand is time-dependent. This implies that, as e.g. in [4], not only the facility

∗Partially supported by projects BFM2002-04525, Ministerio de Ciencia y Tecnología, Spain, and FQM-329, Junta de Andalucía,
Spain
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sites, but also the times at which facilities become operative, are decision variables, to be cho-
sen to optimize a certain performance measure: the total profit in the planning period.

2. The model and its formulation
We consider a market where demand is concentrated at a finite set of points V = {vi}ni=1. Firm
A wants to enter into the market by locating at most q facilities within the set F = {fj}mj=1
of candidate sites. Location is assumed to be sequential, in the sense that there exists a time
interval [0, T ], 0 < T < +∞, within which the facilities will start to be operating. In other
words, both the sites for the facilities and the times at which they will be located must be
determined.

Prior to entry of firmA, a seriesE of facilities (from firms different toA) are already operat-
ing in the market. We also assume that, once A opens a facility at time t, it will remain active
in the whole interval [t, T ]. Moreover, for simplicity we assume that the competing firms will
not open new facilities, so the set of competing facilities E is kept constant in [0, T ].

Demand is assumed to be inelastic, and consumer preferences are modelled via a binary
rule: for each consumer v ∈ V, there exists a threshold value dv , satisfying that, if, at time
t ∈ [0, T ], firm A has a facility open at some f ∈ F such that the travel distance d(v, f) from
consumer v to facility at f is smaller than such threshold value dv , then the demand of v at
instant twill be fully captured by firmA. Else, such demand will be fully captured by some of
the existing facilities of E, and will be lost for A. In other words, if, for each v ∈ V we denote
by Nv the set of candidate sites for A which cover v, i.e., which will capture the demand from
v, we have that

Nv = {f ∈ F : d(v, f) < dv} .
In any given infinitesimal time interval [t, t+∆t], demand of consumer v ∈ V is of the form

ωv(t)∆t, where ωv(t) is called hereafter demand function.
The net profit margin at time t per unit of revenue is ρ(t), and thus the total incomes gen-

erated by v within the infinitesimal time interval [t, t + ∆t] are given by ρ(t)ωv(t)∆t, if some
facility from A covering v is operating at t, and zero otherwise.

Operating costs of a facility at f ∈ F within the infinitesimal time interval [t, t + ∆t] have
the form cf (t)∆t.

Hereafter we assume that functions ωv, ρ and cf are continuous on the interval [0, T ].

We seek the sites and opening times for a set of at most q facilities for firm A in such a way
that the total profit, i.e. total incomes minus operating costs within [0, T ], are maximized.

To express this as a mathematical program, we will first consider the much easier case in
which the opening times are fixed, thus yielding a dynamic location problem, similar to those
addressed e.g. by [16, 17], and later these will also be considered to be decision variables.

Suppose then that facilities are scheduled to start operating at fixed instants τ1, . . . , τr, with

0 = τ0 ≤ τ1 ≤ . . . ≤ τr ≤ τr+1 = T,

and 0 ≤ r ≤ q.
For f ∈ F , v ∈ V and k with 1 ≤ k ≤ r, define the variables

yk
f =

{
1 if a facility from A located at f is operating in the interval [τk, T ]
0 otherwise

xk
v =

{
1 if v is covered by a facility from A in the interval [τk, T ]
0 otherwise.

Obviously, once the values of the variables yk
f are fixed, those for the variables xk

v become
fixed. However, in order to come up with a linear program, these are also be considered to be
decision variables.
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With this notation, for entry instants τ1, . . . , τr fixed, the covering location problem to be
solved is the following linear integer program

Πr(τ1, . . . , τr) = max
x,y

r∑

k=1

{∑

v∈V

xk
v

∫ τk+1

τk

ρ(t)wv(t)dt−
∑

f∈F

yk
f

∫ τk+1

τk

cf (t)dt
}

∑

f∈F

yr
f ≤ q (1)

xk
v ≤

∑

f∈Nv

yk
f , ∀v ∈ V, 1 ≤ k ≤ r (2)

yk−1
f ≤ yk

f , ∀f ∈ F, 2 ≤ k ≤ r (3)
yk

f , x
k
v ∈ {0, 1}, ∀f ∈ F,∀v ∈ V, 1 ≤ k ≤ r. (4)

We briefly discuss the correctness of the formulation. For the objective, within the time in-
terval [τ0, τ1], no benefit or cost is incurred, since no plants from A are operating. The interval
[τ1, τr+1] is split into the subintervals [τk, τk+1], k = 1, . . . , r. Within an interval [τk, τk+1], the
total incomes obtained from consumer v are xk

v

∫ τk+1

τk
ρ(t)wv(t)dt, whereas the total operating

cost incurred by facility at f is given by yk
f

∫ τk+1

τk
cf (t)dt.

Constraint (1) imposes that the number of open facilities from A cannot exceed q. Con-
straints (2) impose that, if xk

v = 1, i.e., if v is counted as captured by A in time interval [τk, T ],
then there must exist at least one facility f from A operating within such interval covering v.

With constraints (3) we express that, if plant f is operating within [τk−1, T ], then it must
also be so in [τk, T ].

Finally, constraints (4) express the binary character of the variables xk
v and yk

f for v ∈ V ,
f ∈ F and 1 ≤ k ≤ r.

Since the variables xk
v and yk

f are binary and the functions ρ(t)wv(t) and cf (t) are contin-
uous, the optimization problem above is well defined, and its optimal value Πr(τ1, . . . , τr) is
attained.

The continuity of ρ(t)wv(t) and cf (t) enables us also to define their primitives,

gv(t) =

∫ t

0
ρ(s)wv(s)ds

hf (t) =

∫ t

0
cf (s)ds,

which are differentiable functions.
Moreover, for each k, 1 ≤ k ≤ r, one has

∫ τk+1

τk

ρ(t)ωv(t)dt = gv(τk+1)− gv(τk)

∫ τk+1

τk

cf (t)dt = hf (τk+1)− hf (τk).

With this notation, we can express the optimal profit Πr(τ1, . . . , τr) for opening times τ1, . . . , τr
as

Πr(τ1, . . . , τr) = max
(x,y)∈Sr

r∑

k=1

{∑

v∈V

xk
v [gv(τk+1)− gv(τk)]−

∑

f∈F

yk
f [hf (τk+1))− hf (τk)]

}
, (5)

where Sr denotes the set of pairs (x,y) satisfying constraints (1)-(4).

Considering the instant times τ1, . . . , τr as decision variables to be optimized yields the
optimal planning for locating at most q facilities in at most r different instant times. Indeed,
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for τ1 < . . . < τr the facilities will become operative in exactly r different instants. Allowing
different τi to coincide collapses the number of different instants considered. In other words,
the problem of determining sites for at most q facilities, to become operative in at most r
different instants, can be written as

max
r∑

k=1

{ ∑
v∈V

xk
v [gv(τk+1)− gv(τk)]−

∑
f∈F

yk
f [hf (τk+1)− hf (τk)]

}

(x,y) ∈ Sr

0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τr ≤ T,
(6)

or equivalently as the bilevel problem

max Πr(τ1, . . . , τr)
0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τr ≤ T, (7)

or equivalently as the bilevel problem

max(x,y)∈Sr
max

r∑
k=1

{ ∑
v∈V

xk
v [gv(τk+1)− gv(τk)]−

∑
f∈F

yk
f [hf (τk+1)− hf (τk)]

}

0 ≤ τ1 ≤ τ2 ≤ . . . ≤ τr ≤ T.
(8)

Since (6), (7) and (8) are simply different writings of the same problem, we will use one or
other at our convenience.

Our problem, namely, the determination of optimal locations and opening times for at most
q facilities corresponds to (6), (7) or (8) with r = q.

General properties concerning the optimal sites and times are derived. These results are
strengthened for different particular instances of demand patterns, namely, the cases in which
the demand of a given consumer is constant, varies linearly in time, is increasing or is de-
creasing. A heuristic procedure is proposed to determine the optimal policy, and numerical
experiences are provided.
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Abstract The Nearest Neighbor classifier has shown to be a powerful tool for multiclass classification. In
order to alleviate its main drawbacks (high storage requirements and time-consuming queries), a
series of variants, such as the Condensed or the Reduced Nearest Neighbor, have been suggested in
the last four decades.

In this note we explore both theoretical properties and empirical behavior of another such variant,
in which the Nearest Neighbor rule is applied after selecting a set of so-called prototypes, whose
cardinality is fixed in advance, by minimizing the empirical misclassification cost.

The problem is shown to be NP-Hard. Mixed Integer Programming (MIP) programs are for-
mulated, theoretically compared and solved by a standard MIP solver for problems of small size.
Large sized problem instances are solved by a variable neighborhood metaheuristic yielding good
classification rules in reasonable time.

Keywords: Data Mining, Classification, Optimal Prototype Subset, Nearest Neighbor, Integer Programming.

1. Introduction
In a Classification problem, one has a database with individuals of |C| different classes, and
one wants to derive a classification rule, i.e., a procedure which labels every future entry v as
member of one of the |C| existing classes.

Roughly speaking, classification procedures can be divided into two types: parametric and
non-parametric. Parametric procedures assume that each individual from class c ∈ C is asso-
ciated with a random vector with known distribution, perhaps up to some parameters, to be
estimated, (e.g. data are multivariate normal vectors, with unknown mean µc and covariance
matrix Σc), and use the machinery of Statistics as main technique, see e.g. [21].

For complex databases, with no evident distributional assumptions on the data (typically
the case of databases with a mixture of quantitative and qualitative variables), non-parametric
methods, as the one described in this talk, are needed.

In recent years there has been an increasing interest in deriving (non-parametric) classifica-
tion rules via Mathematical Programming. Most of such methods require, for each individual
i, a vector vi of n numerical variables. In particular this assumes variables to be ratio-scaled,

∗Partially supported by projects BFM2002-04525-CO2-02, Ministerio de Ciencia y Tecnología, Spain, and FQM-329, Junta de
Andalucía, Spain
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and not nominal or ordinal. Moreover, no blanks are allowed, which excludes its direct use
for cases in which some measures are missing or simply do not apply. See e.g. Cristianini and
Shawe-Taylor [5], Freed and Glover [9], Gehrlein [10], Gochet et al. [12] and Mangasarian [20].

A more flexible methodology, which just requires the knowledge of a metric (or, with more
generality, a dissimilarity), is the Nearest Neighbor (NN) method [4, 6, 7, 14], which provides,
as documented e.g. in [16], excellent results.

In Nearest Neighbor methods, for each new entry i, the distances (or dissimilarities) d(i, j)
to some individuals j in the database (called prototypes) are computed, and i is classified ac-
cording to such set of distances. In particular, in the classical NN, [4], all individuals are pro-
totypes, and i is classified as member of class c∗ to which its closest prototype j∗ (satisfying
d(i, j∗) ≤ d(i, j)∀j) belongs.

A generalization of the NN is the k-NN, e.g. [7], which classifies each i in the class most
frequently found in the set of k prototypes closest to i. In particular, the NN is the k-NN for
k = 1.

These classification rules, however, require distances to be calculated to all data in the
database for each new entry, involving high storage and time resources, making it imprac-
tical to perform on-line queries.

For these reasons, several variants have been proposed in the last three decades, see e.g.
[1,2,6,7,11,13,17,18] and the references therein. For instance, Hart [13] suggests the Condensed
Nearest Neighbor (CNN) rule, in which the full database J is replaced by a certain subset I,
namely, a so-called minimal consistent subset: a subset of records such that, if the NN is used
with I (instead of J ) as set of prototypes, all points in J are classified in the correct classes.

Since such minimal consistent subset can still be too large, several procedures have been
suggested to reduce its size. Although such procedures do not necessarily classify correctly
all the items in the database, (i.e., they are not consistent), they may have a similar or even
better behavior to predict class membership on future entries because they may reduce the
possible overfitting suffered by the CNN rule, see e.g. [3, 19].

In this talk we propose a new model, in which a set of prototypes I ⊂ J, of prespecified
cardinality p is sought, minimizing an empirical misclassification cost. Hence, if p is taken
greater or equal than the cardinality p∗ of a minimal consistent subset, then all individuals
in the training sample will be correctly classified, yielding an empirical misclassification cost
of zero. On the other hand, for p < p∗ we allow some data in the training sample to be
incorrectly classified with the hope of reducing the possible overfitting which the classifier
based on a minimal consistent subset might cause. Additionally, the effort needed to classify
a new entry is directly proportional to p, which may therefore serve in practice to guide the
choice of an upper bound on p.

For simplicity we restrict ourselves to the classification rule based on the closest distance,
and hence can be seen as a variant of the NN rule. However, the results developed here extend
directly to the case in which the k closest distances, k ≥ 1, are considered in the classification
procedure, leading to a variant of the k-NN method.

The talk is structured as follows. First, the mathematical model is introduced, showing
that it is NP-Hard. Two Integer Programming formulations are proposed and theoretically
compared. Numerical results are given, showing that, when the optimization problems are
solved exactly (with a standard MIP solver) the classification rules for p < p∗ behaves better
than or equal to the CNN rule, but with enormous preprocessing times. For this reason, a
heuristic procedure is also proposed, its quality and speed being also explored. It is shown
that the rules obtained with this heuristic procedure have similar behavior on testing samples
as the optimal ones.
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Abstract The semi-continuous quadratic mixture design problem (SCQMDP) is described as a problem with
linear, quadratic and semi-continuity constraints. Moreover, a linear cost objective and integer val-
ued objective are introduced. The research question is to deal with the SCQMD Problem from a
Branch-and-Bound point perspective. Therefore, an algorithm is outlined that contains several vari-
ants. In the full paper the variants are tested on several cases derived from industry. Moreover, the
technique of grid search is used as a benchmark and new theoretical results on the number of points
and number of subsets are derived.

Keywords: Blending, Branch-and-Bound, Linear and Quadratic Constraint, semi-continuity.

1. Introduction
Consider the following formulation of the SCQMD problem which actually consists of iden-
tifying mixture products, each represented by a vector x ∈ Rn, which meet certain require-
ments. The set of possible mixtures is mathematically defined by the unit simplex S = {x ∈
Rn|∑j xj = 1.0; xj ≥ 0}, where the variables xj represent the fraction of the components in a
product x.

Additionally, there are linear inequality constraints and bounds defining the design space
X ⊂ S. The requirements are defined as quadratic inequalities.

gi(x) = xTAix+ bTi x+ di ≤ 0; i = 1, . . . ,m (1)

in which Ai is a symmetric n by n matrix, bi is an n-vector and di is a scalar. In this way we
formulate the problem to be solved as finding elements of the set of "satisfactory" (feasible)
products D = {x ∈ X|gi(x) ≤ 0; i = 1, . . . ,m}. This defines the quadratic mixture design
problem (QMDP), as studied in [1].

In mixture design (blending) problems, the cost of the material, f(x) = cTx is minimised,
where vector c gives the cost of the raw materials. In practical situations, companies are
interested in find a feasible mixture x ∈ D, minimising its cost and also in minimising the
number of raw materials in the mixture t(x) =

∑n
j=1 δj , where

δj =

{
1 if xj > 0,
0 if xj = 0.

(2)

∗This work has been partially supported by the Ministry of Education and Science of Spain through grant CICYT-TIC2002-00228.
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Moreover, usually there is a minimum acceptable dosemd. This leads to using semi-continous
variables in the problem description, i.e. either xj = 0 or xj ≥ md. A common way to
formulate semi-continuity is as follows [3]: xj ≤ δj ; j = 1, . . . , n and xj ≥ δj ·md; j = 1, . . . , n.

The following question is how to solve the SCQMD problem. The industry the problem
originates from, applies different approaches to generate good acceptable solutions. Solvers
are usually based on concepts such as generating random solutions, clustering, non-linear
programming local search and grid search [2]. The research question of our investigation is
whether we can construct a specific Branch-and-Bound approach for the SCQMD problem,
taken into accont its semi-continuous character, implement it and test it on several practical
cases. First in Section 2, we introduce many general ingredients of a specific algorithm for the
SCQMD problem. In the Section 3, convergence ideas are discussed from the point of view of
grid search.

2. Ingredients of a procedure for the SCQMDP
For setting up the Branch-and-Bound procedure for SCQMDP, many choices have to be made.
Not only the shape of the partition sets, the way of branching, the selection of the set to be
split further, etc. but also how to deal with all the goals: The linear constraints defining X ,
the quadratic requirements (1) defining D, the cost objective f and number of raw materials
objective t. Moreover, to force theoretical convergence and due to some practical reasons one
would like to discard partition sets that become too small. First we describe here the ingredi-
ents of the specific algorithm: the partition sets and the way of pruning. In the full paper an
algorithmic scheme is described that leaves some choices in the applied rules. Moreover, the
performance of variants applied to several cases is reported in there.

2.1 Partition sets and their vertices
In this work, simplicial subsets Ck are applied where the first subset is the unit simplex, C1 =
S. As a splitting rule, bisection along the longest edge is applied. Every vertex v generated in
this way is evaluated:

It is checked, whether the vertex fulfils the linear restrictions of X .
The quadratic properties gi(v) are evaluated.
The linear cost function f(v) is evaluated.
The number of used raw materials (vj > 0) is counted i.e. t(v) is evaluated.
Finally it is checked whether the generated mixture v fails the semi-continuity restriction
0 < vj < md for one of the raw materials j.

All this information can be used to determine good mixtures and to throw out those regions,
where the best design cannot be situated. This is sketched in the following section. First of all,
let’s discuss the choice of the partition sets. Intuitively, the choice may be strange, but some
advantages are outlined here. One of the strange characteristics is that most of the volume
of the first set C1 may be located in the md-interior {x ∈ Rn|∑j xj = 1.0; xj > md}, which
as such is an unappealing part of the search space. Keep in mind that one tries to minimise
t. Another approach would be to fix an upper bound RM on the number of raw materials
t ≤ RM . This would imply that one starts with a list of all facets (lower dimensional simplices

here) containing RM raw materials i.e.
(

n
RM

)
subsets. In the current algorithm we will

deal with t more as an objective to be minimised than as a predefined goal. An appealing
characteristic of the choice of the simplicial shape and bisection branching is that we start
with the vertices of the unit simplex where t = 1. During the bisection, every splitting will
only increase the number of raw materials with at most one. In this way we start sampling
in the most interesting areas with respect to the number of raw materials. A side effect was
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noticed where an implementation of [1] was applied in an industrial environment: the values
of all generated feasible designs are a multiple of (1/2)K , where K is an integer representing
the depth of the search tree.

Another advantage of the bisection splitting is due to the shape of the partition sets. The
length of the longest edge is at most twice the size of the shortest edge. Therefore the sets
never get a needle shape. For every stored partition setCk we keep the following data needed
for the pruning based on the information in its vertices v:

A lower bound zfk of the cost function: minv∈Ck
f(v)

A lower bound ztk on the number of raw materials: minv∈Ck
t(v)

2.2 Storing and pruning partition sets
In a Branch-and-Bound algorithm, partition sets Ck where the optimum can be, are stored
in memory. The challenge is not to let the algorithm fill all memory of the computer. This
is attempted by pruning, i.e. discarding areas where the optimum cannot be located. In the
SCQMDP we have several considerations for throwing away the area; it cannot contain a
feasible point and/or cannot contain an optimal point. A last consideration is to throw out
partition sets that appear to be small. We will discuss this topic separately. First we discuss
the reasons why to throw out partition sets.

First, one can check the linear constraints of X . If for one of the constraints all vertices
of Ck are infeasible, we can discard Ck.
The feasibility check for the quadratic constraints is more complicated. If for one of
the constraints i all vertices of Ck are infeasible, we determine a lower bound zgik are
determined as outlined in the full paper. If zgik > 0, Ck cannot contain a point that
fulfills gi(x) ≤ 0. Therefore Ck can be discarded.
Besides linear and quadratic feasibility, an evaluated vertex v is only labeled feasible,
when its individual doses vj are heaving a value that is either zero or greater or equal
than the minimum dose md. A reason for a subset to be discarded would be that all
its vertices are having doses 0 < vj < md, so it would be completely in the interior of
themd-boundary of the unit simplex. Given the bisection way of splitting the occurence
will be deep in the search tree.
We are dealing with two objectives, linear f and integer t we want to minimise i.e. a
so-called bi-objective problem. Finally we are looking for Pareto optimal products that,
as illustrated in Figure 1 have a minimum cost given a number of raw materials. This
means we can throw out subsets only when they are dominated, i.e. there exists a feasi-
ble product somewhere else with as well a better value for the cost f as for the number
of raw materials t. To check this, we introduce a vector of upper bounds zf U (q): best
cost found thus far for a feasible product with at most q raw materials, q = 1, . . . n. Ini-
tially its values are set on ∞ and, as soon as a feasible vertex is evaluated, values are
updated according to the definition, resulting finally in the situation as sketched in Fig-
ure 1. Given the lower bounds zfk and ztk, now a subset Ck is known to be dominated
and can be discarded if zfk > zfU (ztk). Notice that if zfu(q) was found, we can set the
values of zfu(q + i), i = 1, . . . n− q to zfu(q) if zfu(q + i) > zfu(q).

Besides the pruning rules mentioned, we would like to throw out small partition sets, because
they occupy memory space and they will not generate further information. Morover, throwing
out subsets with size(Ck) < ε theoretically will lead to convergence. Two types of candidates
for removal may still be on the list:

1. Subsets may have passed all tests before, despite that non of the vertices appeared feasi-
ble: ∀v ∈ Ck ∃i, gi(v) > 0 and moreover all lower bounds are smaller than zero; zgi < 0.
One reason to throw them out would be the fact that such a set does not contain an
ε-robust point, i.e. an element of {x ∈ D|(x+ h) ∈ D,∀h, ‖h‖ ≤ ε}.
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Figure 1. Rejection due to domination, Pareto optimality

2. Subsets that contain a feasible vertex. The reason to discard small subsets is the idea that
exploring further would only lead to a marginal gain in objective function value.

The sampling part of the algorithm consists of generating and evaluating candidate points
that are vertices. The Branch-and-Bound part with the pruning takes care of the guarantee of
infeasibility or optimality of the points found. For every value of the number of raw materials
q = 1, . . . , n, we open a list Q(q) to save the best points, also called incumbent minimum
points. Usually, for every (maximum) number of raw materials q, only one optimal solution
will exist, so we expect Q(q) to contain either no point, because q is so low that no feasible
point exists, or it contains one point with an objective function value of zf U (q).

3. Convergence
As sketched above, the algorithm has a certain guarantee to reach optima. Why the ε-accuracy
gives an effectiveness of the algorithm is outlined here. Another question is of course the
efficiency; how many function evaluations are necessary and how many simplices should be
stored in a worst case? To understand the convergence concepts, it is useful to think in an
α-grid over the unit simplex. It is also convenient to apply the∞-norm as a distance measure,
where the size of the unit simplex, i.e. the largest edge is 1 (in euclidean distance it is

√
2). An

algorithm applying bisection does not automatically generate points on a regular grid. A rule
is required for choosing the edge to be split, when there are several edges of the same size.

Consider a regular grid withM equal distant values for every axis, resulting in mesh size of
α = 1/(M−1). The concept of evaluating points over a grid, is that when α ≤ ε, we are certain
to be closer than ε to the best solution, or alternatively, know that an ε-robust solution does
not exist. A strategy to evaluate all grid points is not popular, as it is not very efficient. When
performed on a unit box, the number of function evaluations grows exponentially with the
dimension: Mn. This is not that bad on the unit simplex, as we are dealing with the mixture
equality

∑
j xj = 1.0. This is illustrated in Figure 2.

It can be verified that the total number of points on the grid is given by

n−1∑

k=1

(
M
k

)(
n− 2
k − 1

)
(3)
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Figure 2. 2-dim projection of regular grid over the unit simplex, M=5

as sketched in Table 1. This means that the number of points, although very high, is not even
exponential in the dimension. For the example in Figure 2, n = 3 and m = 5, we have 15 grid
points and an "accuracy" of α = 0.25.

Table 1. Number of regular grid points on the unit simplex

n=2 n=3 n=4 n=5 n=6 n=7
M=11 11 66 286 1001 3003 8008
M=101 101 5151 176851 4.6 106 9.7 107 1.7 109

Notice that the concept of Branch-and-Bound is not to generate all these points, as we can
throw out parts of the area where the optima cannot be found. However, if one studies the
bisection process, we arrive for the same example at more points as illustrated by Figure 3.

Figure 3. Bisection process 2-dim projection, ε ≥ 0.25

As such this is not a disaster. The main question is what happens with the storage of subsets;
the number of stored simplices should not grow out of hand. Before dealing with that, let
us remark with respect to Figure 3, that the picture does not appear straightforward. In the
implementation of the bisection, a choice rule is required that determines in case of equal sized
largest edges, which one is to be bisected first. In our implementations we did so on the basis
of the co-ordinates. To ensure reproducibility of results, it should not be chosen at random.
The number of simplices that is generated (and stored) in the worst case, depends on many
aspects. We could derive an upper bound and a lower bound on the worst case performance.
In the worst case, rules lead to splitting and storing simplices that have a size slightly larger
than ε. At every bisection over a midpoint, one edge is halved and several are getting shorter.
This means that after going n(n − 1)/2 deeper in the search tree, at least all edges have been
halved and the size of the simplex is less than half its original size. The maximum number K
of halving the simplices is given by 1/2K ≤ ε, such that K = d(−lnε/ln(2))e, where dxe is the
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lowest integer greater than or equal to x. Given the number of edges per simplex n(n− 1)/2,
the maximum depth of the search tree is K × n(n− 1)/2. The final level is not stored, as the
simplices don’t pass the size test. An overestimate for the worst case number of simplices on
the list is 2K×n(n−1)/2−1, where K = d(−lnε/ln(2))e. This analysis provides a guarantee that
the algorithm is finite given an accuracy. Looking more realistically, this upper bound of an
upper bound also leads to dispare; for ε = 1%, it gives a bound of the order of 106 for n = 3
and 1044 for n = 7. This does not sound very encouraging nor realistic.

Let us now consider a lower bound on the worst case behaviour. Consider again the regular
grid in Figure 2. Suppose an algorithm would generate with an accuracy of ε = 1

M−1 all
corresponding simplices of the regular mesh. We know that bisection has to generate more in
the worst case. How many simplices would the algorithm generate? The number of simplices
in the regular grid is

(M − 1)n−1 (4)
Formula (4) can be derived from volume considerations. The unit simplex represents a volume
in n − 1 dimensional space proportional to Sizen−1. As the size of a simplices within the
regular grid has a size of 1

M−1 times the unit simplex size, its volume is
(

1
M−1

)n−1
that of the

unit simplex. Also the number (4) turns out big; for ε = 1%, it gives 104 for n = 3 and 1012 for
n = 7. We will observe in the experiments that practically the number is much lower. The real
success of Branch-and-Bound depends on how good parts of the tree can be pruned. Search
strategies on deep or wide search determine the final result.

4. Summary
This extended abstract describes the quadratic blending problem with additional complica-
tions of semi-continuity and bi-objectivity. The ingredients are sketched of a Branch-and-
Bound approach under investigation. Some convergence analyses based on the benchmark of
grid search are given. In the full paper empirical results on cases derived from industry are
reported.
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1. Introduction
Civil engineering is a field — as many of other engineering sciences (e.g. see [1]) — where
the most of methods used for solving optimization problems are based on experience and
experiments, and models using local information, however drawn from global models [6].
The present work outlines interesting classes of problems from this field, and initiates some
possible ways to solve those problems utilizing the wide tool capabilities of interval arithmetic
for error handling and interval branch-and-bound algorithms [4, 5, 7, 8] to solve the original
or modified industrial models automating civil engineers’ work. The investigations are in an
early stage but are promising both in a theoretical and in a practical sense. The final aim is to
contribute to the refinement of emerging industrial standards and patents such as [9–12].

Reliable numerical techniques have substantial advantages and a bright future in civil engi-
neering computational procedures, still there is a long way to go. The talk highlights a simple
example problem with the traditional engineering solution and with the interval arithmetic
based result of tolerance optimization. We report on the solution and numerical experiences
collected investigating civil engineering design problems. A subsequent careful study must
clear the consequences and advantages of such approaches with special attention to the re-
lated application fields.

2. A Simple Problem
The problems arising in civil engineering are MINLP problems. The integer part describes the
decision of different materials and properties which are scaled (e.g. the thickness of different
enforcement steel bars), whilst the nonlinear part realizes the physical model in most of the
cases.

∗This work was supported by the KÉSZ Ltd. (www.kesz.hu), and by the Grants OTKA T 048377, and T 046822.
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A simple example for a civil engineering problem consisting only of the nonlinear part
is the simplified footing design problem [2]. The problem was to find the minimal volume
dimensions of a concrete footing in such a way that given constraints hold. In detail:

minhµB2 (1)

subject to

σSd ≤ σEff ,

1 ≤ µ ≤ 5,

0.5µB ≤ h ≤ −as − 0.5,

B > 0,

−5

6
B ≤ ax ≤

5

6
B,

−5

6
µB ≤ ay ≤

5

6
µB.

where ax, ay, h, µ and B are the variables to be optimized. The functional dependencies are
the following:

R = Pz + µhB2ρrc,

σSd =
R(

B − 2|Pzax+Pxh−My

R |
)(

µB − 2|Pzay+Pyh+Mx

R |
) ,

Nt = eπ tan φ tan2

(
45o +

φ

2

)
,

f =
Px

Pz
,

it = (1− 0.7f)3

σ1 =

(
1− 1

3µ

)
γ1B(Nt + 1) tanφ(1− f)3jB ,

σ2 =

(
1 +

1

2µ

)(
γ2(|as| − 0.1)Ntitjt + c(Nt − 1) cot φ

(
it −

1− it
Nt − 1

)
jc

)
,

σEff = α1α2α3(σ1 + σ2).

The variable h contains the height of the footing, B is its width, and the respective length
is µB. The building’s support point is shifted by the vector (ax, ay) from the center of the
footing’s projection to the x-y plane.

An interval method could supply a good inclusion for a suboptimal feasible set, while the
traditional engineers’ approach could only point out a single solution of this set near to the
border of it. Note that we were not able to find the global minimum even in this simple case.
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3. Structural Optimization and Verified Iteration
It is obvious that involving integer variables into models like the one above makes things
even more difficult. Our aim is to find simplified models first, which can be solved by verified
methods so that we can learn more about the structure of civil engineering problems.

Unfortunately our first endeavors are not very successful but the oral presentation enlight-
ens the methodology of this field to be able to achieve results of practical use. For this purpose
it is considered, how in a special but widely used class of problems, i.e., the reinforced con-
crete beam design problem the engineers’ experiences can be exploited. First, the handling
of the integer parameters has to be cleared up. The steel diameters, number of reinforcement
bars, steel quality, and concrete quality can be predicted based on some expertise. This leads
to an NLP, where the stirrup design is still an integer problem in reality, but appears in the
model as the weight of the used stirrup steel mass. After all, the model which is not to be
shown here for the sake of simplicity is a highly nonlinear optimization problem. Since the
objective of the problem is the cost, but several stability parameters reach the optimality at
the border of the feasible set determined by the design rules, it is better to use a suboptimal
solution set to choose from, to prevent the beam from breaking. The problem is solved with
the aid of a simple idea, called the Verified Iterating Method [3]:

1. Find an initial feasible interval of parameters exploiting engineers’ knowledge (approach-
ing parameters from ’below’).

2. Grow a set of feasible intervals around this set with halving growth.

3. Use this feasible set as an input of an advanced global optimization verified interval
search.

In step 1, a special verified local search is started to have an initial point or interval we can
grow. Then in step 2 intervals are grown around this point with halving width with a given
accuracy. After these two steps we have a suboptimal feasible solution set. If we need an
optimal result, then this can be tightened by our desire in step 3.

4. Summary
Unfortunately both the structural stage and the Verified Iterating Method set a few further
questions.

1. It is a rough estimate to make a structural pre-optimization isolated from the nonlinear
second stage. Usually we tried to incorporate the scaled variables in a special way into
the second stage to obtain better results.

2. Step 3 of the Verified Iterating Method has not worked even for the much simpler footing
problem. That is, our first attempts to solve these optimization problems with ordinary
verified interval methods failed. So we cannot expect success for a much more difficult
problem over a feasible set of several subintervals.

The presentation will, however, contain some new numerical results to demonstrate how
problems like the two above can be eliminated in future.
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Abstract We present a global optimization model to find chaotic regions of certain dynamic systems. The tech-
nique has two innovations: first an interval arithmetic based guaranteed reliability checking routine
to decide whether an inclusion relation holds, and a penalty function based nonlinear optimization
problem that enables us to automatize the search for fitting problem instances. We provide the theo-
retical results proving correctness and convergence properties for the new algorithm. A companion
talk discusses the results achieved by the presented method.

Keywords: Chaos, Computer-aided proof, Global optimization.

An important question is while studying approximations of the solutions of differential
equations, whether the given problem has a chaotic solution. The problem is usually solved
by careful studying of the given problem with much human interaction, followed by an esti-
mation of the Lipschitz constant, bounding the rounding errors to be committed, and finally
a number of grid points are checked one by one by a proper computer program [6].

We study verified computational methods to check and locate regions the points of which
fulfill the conditions of chaotic behaviour. The investigated Hénon mapping is H(x, y) =
(1 + y − Ax2, Bx). The paper [6] considered the A = 1.4 and B = 0.3 values and some
regions of the two dimensional Euclidean space: E = E1 ∪ E2 = {(x, y) | x ≥ 0.4, y ≥
0.28} ∪ {(x, y) | x ≤ 0.64, |y| ≤ 0.01}, O1 = {(x, y) | x < 0.4, y > 0.01}, O2 = {(x, y) | y < 0}.

According to [6] Theorem 1 below ensures the chaotic behaviour for the points of the par-
allelograms Q0 and Q1 with parallel sides with the x axis (for y0 = 0.01 and y1 = 0.28, respec-
tively), with the common tangent of 2, and x coordinates of the lower vertices are xa = 0.460,
xb = 0.556; and xc = 0.558, xd = 0.620, respectively. The mapping and the problem details
(such as the transformed sides of the parallelograms, H 7(a), H7(b), H7(c), and H7(d)) are
illustrated on Figure 1.

Theorem 1. Assume that the following relations hold for the given particular Hénon mapping:

H7(a ∪ d) ⊂ O2, (1)

H7(b ∪ c) ⊂ O1, (2)

H7(Q0 ∪Q1) ⊂ R2 \E, (3)
then chaotic trajectories belong to the starting points of the regions Q0 and Q1.

To check the inclusion relations required in Theorem 1 we have set up an adaptive subdivi-
sion algorithm based on interval arithmetic:

∗This work has been partially supported by the Bilateral Austrian-Hungarian project öu56011 as well as by the Hungarian
National Science Foundation Grants OTKA No. T 037491, T 032118, T 034350, T 048377, and T 046822.
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Figure 1. Illustration of the H7 transformation for the classic Hénon parameters A = 1.4 and B = 0.3 together
with the chaotic region of two parallelograms. The a, b, c, and d sides of the parallelograms are depicted on the
upper left picture of Figure 2.

Algorithm 1 : The Checking Routine

Inputs: – ε: the user set limit size of subintervals,
– Q: the argument set to be proved,
– O: the aimed set for which T (Q) ⊂ O is to be checked.

1. Calculate the initial interval I , that contains the regions of interest
2. Push the initial interval into the stack
3. while ( the stack is nonempty )
4. Pop an interval v out of the stack
5. Calculate the width of v
6. Determine the widest coordinate direction
7. Calculate the transformed interval w = T (v)
8. if v ∩Q 6= ∅, and the condition w ⊂ O does not hold, then
9. if the width of interval v is less than ε then

10. print that the condition is hurt by v and stop
11. else bisect v along the widest side: v = v1 ∪ v2
12. push the subintervals into the stack
13. endif
14. endif
15. end while
16. print that the condition is proven and stop

We have proven that this algorithm is capable to provide the positive answer after a finite
number of steps, and also that the given answer is rigorous in the mathematical sense. Once
we have a reliable computer procedure to check the conditions of chaotic behavior of a map-
ping it is straightforward to set up an optimization model that transforms the original chaos
location problem to a global optimization problem.

The key question for the successful application of a global optimization algorithm was how
to compose the penalty functions. On the basis of earlier experiences collected with similar
constrained problems, we have decided to add a nonnegative value proportional to how much
the given condition was hurt, plus a fixed penalty term in case at least one of the constraints
was not satisfied.

As an example, consider the case when one of the conditions for the transformed region
was hurt, e.g. when (2), i.e. the relation

Hk(b ∪ c) ⊂ O1
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Figure 2. The parallelograms and the starting interval covered by the verified subintervals for which either the
given condition holds (in the order of mentioning in Theorem 1), or they do not contain a point of the argument
set.

does not hold for a given kth iterate, and for a region of two parallelograms. In such a case the
checking routine will provide a subinterval that contains at least one point of the investigated
region, and which contradicts the given condition. Then we have calculated the Hausdorff
distance of the transformed subinterval Hk(I) to the set O1 of the right side of the condition,

max
z∈Hk(I)

inf
y∈O1

d(z, y),

where d(z, y) is a given metric, a distance between a two dimensional interval and a point.
Notice that the use of maximum in the expression is crucial, with minimization instead our
optimization approach could provide (and has provided) result regions that do not fulfill the
given conditions of chaotic behaviour. On the other hand, the minimal distance according to
points of the aimed set (this time O1) is satisfactory, since it enables the technique to push
the search into proper directions. In cases when the checking routine answered that the in-
vestigated subinterval has fulfilled the given condition, we have not changed the objective
function.

Summing it up, we have considered the following bound constrained problem for the T
inclusion function of the mapping T :

min
x∈X

g(x), (4)

where

g(x) = f(x) + p

(
m∑

i=1

max
z∈T (I)

inf
y∈Si

d(z, y)

)
,

X is the n-dimensional interval of admissible values for the parameters x to be optimized,
f(x) is the original, nonnegative objective function, and p(y) = y + C if y is positive, and
p(y) = 0 otherwise. C is a positive constant, larger than f(x) for all the feasible x points, m is
the number of conditions to be fulfilled, and Si is the aimed set for the i-th condition.

The emerging global optimization problem has been solved by the clustering optimization
method described in citecst. We have proven the correctness of this global optimization model:

Theorem 2. For the bound constrained global optimization problem defined in (4) the following prop-
erties hold:
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1. In case a global optimization algorithm finds a point for which the objective function g has a value
below C , i.e. when each penalty term maxz∈T (I) infy∈Si

d(z, y) is zero, then all the conditions of chaos
are fulfilled by the found region represented by the corresponding optimal parameters found. At the
same time, the checking routine provided a guaranteed reliability computational proof of the respective
subset relations.

2. In case the given problem does not have a parameter set within the bounds of the parameters to be
optimized such that the corresponding region would fulfill the criteria of chaos, then the optimization
cannot result in an approximate optimizer point with an objective function value below C .

Talk will provide an insight into the theoretical statements and their proofs. On this basis
we have checked chaos for an earlier investigated 7th iterate Hénon mapping and also other
problem instances, some of them have involved tolerance optimization too [3]. The numerical
results (see also in [1], [4]) will be covered by an other talk.
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Abstract Low-thrust space propulsion systems enable flexible high-energy deep space missions, but the de-
sign and optimization of the interplanetary transfer trajectory is usually difficult. It involves much
experience and expert knowledge because the convergence behavior of traditional local trajectory
optimization methods depends strongly on an adequate initial guess. Within this extended abstract,
evolutionary neurocontrol, a method that fuses artificial neural networks and evolutionary algo-
rithms, is proposed as a smart global method for low-thrust trajectory optimization. It does not
require an initial guess. The implementation of evolutionary neurocontrol is detailed and its perfor-
mance is shown for an exemplary mission.

Keywords: Evolutionary Neurocontrol, Spacecraft Trajectory Optimization, Low-Thrust Propulsion.

1. Introduction to Low-Thrust Missions
Innovative interplanetary deep space missions require ever larger velocity increments (∆V s)
and thus ever more demanding propulsion capabilities. Chemical high-thrust propulsion sys-
tems (rocket engines) have a limited ∆V -capability because the chemical energy of the pro-
pellant limits its exhaust velocity. Electric low-thrust propulsion systems can significantly
enhance or even enable high-energy missions by providing much larger exhaust velocities
than chemical high-thrust systems. Consequently, they permit significantly larger ∆V s, while
at the same time allowing direct trajectories with simpler mission profiles, flexible launch win-
dows, and mostly even reduced flight times because no gravity assist maneuvers are required.
Another innovative low-thrust propulsion system is the solar sail, a large ultra-lightweight
reflecting surface made of thin aluminized plastic film. Solar sails utilize solely the freely
available solar radiation pressure for propulsion and require therefore no propellant at all.
Therefore, their ∆V -capability depends only on their lifetime in the space environment (and
their distance from the sun). Electric propulsion systems have already been successfully flown
in space while solar sails are under development [10].

A spacecraft trajectory is, in simple terms, the spacecraft’s path from A (the initial body or
orbit) to B (the target body or orbit). In general, the optimality of a trajectory can be defined
according to several objectives, like transfer time or propellant consumption. Because solar
sailcraft does not consume any propellant, trajectories are typically optimized with respect
to transfer time alone. Trajectory optimization for electric spacecraft is less straightforward
because transfer time minimization and propellant minimization are mostly competing objec-
tives. Spacecraft trajectories can also be classified with respect to the final constraints. If, at
arrival, the position rSC and the velocity ṙSC of the spacecraft must match that of the target, rT

and ṙT respectively, one has a rendezvous problem. If only the position must match, one has
a flyby problem.
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For spacecraft with high thrust, optimal interplanetary trajectories can be found relatively
easily because few thrust phases are necessary during its "free fall" within the gravitational
field of the solar system. These can be approximated by singular events that change the
spacecraft’s velocity instantaneously while its position remains fixed. Low-thrust propulsion
systems, in contrast, are required to operate for a significant part of the transfer to generate
the necessary ∆V . A low-thrust trajectory is obtained from the numerical integration of the
spacecraft’s equations of motion. Besides the inalterable external forces, the spacecraft trajec-
tory xSC[t] = (rSC[t], ṙSC[t]) is determined entirely by the thrust vector history F [t] (’[t]’ denotes
the time history of the preceding variable, xSC is called the spacecraft state). The thrust vec-
tor F (t) of low-thrust propulsion systems is a continuous function of time. It is manipulated
through the nu-dimensional spacecraft control function u(t) that is also a continuous func-
tion of time. Therefore, the trajectory optimization problem is to find, in infinite-dimensional
function space, the optimal spacecraft control function u?(t) that yields the optimal trajec-
tory x?

SC[t]. This renders low-thrust trajectory optimization a very difficult problem that can
not be solved except for very simple cases. What can be solved, at least numerically, how-
ever, is a discrete approximation of the problem. Dividing the allowed transfer time interval
[t0, tf,max] into τ finite elements, the discrete trajectory optimization problem is to find the op-
timal spacecraft control history u?[t̄] (the symbol t̄ denotes a point in discrete time) that yields
the optimal trajectory x?

SC[t]. Through discretization, the problem of finding the optimal con-
trol function u?(t) in infinite-dimensional function space is reduced to the problem of finding
the optimal control history u?[t̄] in a finite but usually still very high-dimensional parameter
space. For optimality, some cost function J must be minimized. If the used propellant mass
∆mP = mP(t̄0) −mP(t̄f ) is to be minimized, J = ∆mP is an appropriate cost function, if the
transfer time T = t̄f − t̄0 is to be minimized, J = T is an appropriate cost function.

2. Evolutionary Neurocontrol as a Smart Global Low-Thrust
Trajectory Optimization Method

Traditionally, low-thrust trajectories are optimized by the application of numerical optimal
control methods that are based on the calculus of variations. All these methods can generally
be classified as local trajectory optimization methods (LTOMs), where the term optimization
does not mean to find the best solution but rather to find a solution. The convergence behavior
of LTOMs is very sensitive to the initial guess, which has to be provided prior to optimization
by an expert in astrodynamics and optimal control theory. Because the optimization process
requires nearly permanent expert attendance, the search for a good trajectory can become
very time-consuming and expensive. Even if the optimizer finally converges to an optimal
trajectory, this trajectory is typically close to the initial guess and that is rarely close to the (un-
known) global optimum. Another drawback of LTOMs is the fact that the initial conditions
(launch date t̄0, initial propellant mass mP(t̄0), initial velocity vector ṙSC(t̄0), etc.) – although
they are crucial for mission performance – are generally chosen according to the expert’s judg-
ment and are therefore not explicitly part of the optimization problem.

To evade the drawbacks of LTOMs, a smart global trajectory optimization method (GTOM)
was developed by the author [4]. This method – termed evolutionary neurocontrol (ENC)
– fuses artificial neural networks (ANNs) and evolutionary algorithms (EAs) into so-called
evolutionary neurocontrollers (ENCs). The implementation of ENC for low-thrust trajectory
optimization was termed InTrance, which stands for Intelligent Trajectory optimization us-
ing neurocontroller evolution. To find a near-globally optimal trajectory, InTrance requires
only the target body and intervals for the initial conditions as input. It does not require an
initial guess or the attendance of a trajectory optimization expert. During the optimization
process, InTrance searches not only the optimal spacecraft control but also the optimal initial
conditions within the specified intervals.
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A Delayed Reinforcement Learning Problem. In reinforcement learning (RL) problems,
the optimal behavior of the learning system (called agent) has to be learned solely through
interaction with the environment, which gives an immediate or delayed evaluation1 J (also
called reward or reinforcement) [11]. The agent’s behavior is defined by an associative map-
ping from situations to actions S : X 7→ A. Here, this associative mapping that is typically
called policy in the RL-related literature, is termed strategy. The optimal strategy S? of the
agent is defined as the one that maximizes the sum of positive reinforcements and minimizes
the sum of negative reinforcements over time. If, given a situation X ∈ X , the agent tries
an action A ∈ A and the environment immediately returns an evaluation J(X,A) of the
(X,A) pair, one has an immediate reinforcement learning problem. More difficult are de-
layed reinforcement learning problems, where the environment gives only a single evaluation
J(X,A)[t], collectively for the sequence of (X,A) pairs occurring in time during the agent’s
operation. From the perspective of machine learning, a spacecraft steering strategy may be
defined as an associative mapping S that gives – at any time along the trajectory – the current
spacecraft control u from some input X that comprises the variables that are relevant for the
optimal steering of the spacecraft (the current state of the relevant environment). Because the
trajectory is the result of the spacecraft steering strategy, the trajectory optimization problem
is actually a problem of finding the optimal spacecraft steering strategy S?. This is a delayed
reinforcement problem because a spacecraft steering strategy can not be evaluated before its
trajectory is known under the given environmental conditions (constellation of the initial and
the target body etc.) and a reward can be given according to the fulfillment of the optimization
objective(s) and constraints. ANNs can be used to implement spacecraft steering strategies.

Evolutionary Neurocontrol. For the work described here, feedforward ANNs with a sig-
moid neural transfer function have been used. Such an ANN can be considered as a contin-
uous parameterized function (called network function) Nw : X ⊆ Rni → Y ⊆ (0, 1)no that
maps from an ni-dimensional input space X onto an no-dimensional output space Y . The pa-
rameter set w = {w1, . . . , wnw} of the network function comprises the nw internal parameters
of the ANN, i.e., the weights of the neuron connections and the biases of the neurons. ANNs
have already been successfully applied as neurocontrollers (NCs) for reinforcement learning
problems [7]. The most simple way to apply an ANN for controlling a dynamical system
is by letting the ANN provide the control u(t̄) = Y (t̄) ∈ Y from some input X(t̄) ∈ X that
contains the relevant information for the control task. The NC’s behavior is completely charac-
terized by its network function Nw (that is – for a given network topology – again completely
characterized by its parameter set w). Learning algorithms that rely on a training set – like
backpropagation – fail when the correct output for a given input is not known, as it is the case
for delayed reinforcement learning problems. EAs can be employed for searching N? because
w can be mapped onto a real-valued string c (also called chromosome or individual) that pro-
vides an equivalent description of a network function. If an EA is already employed for the
optimization of the NC parameters, it is manifest to use it also for the co-optimization of the
initial conditions. This way, the initial conditions are made explicitly part of the optimization
problem.

Neurocontroller Input and Output. Two fundamental questions arise concerning the ap-
plication of a NC for spacecraft steering, what input the NC should get (or what the NC should
know to steer the spacecraft) and what output the NC should give (or what the NC should do to
steer the spacecraft). To be robust, a spacecraft steering strategy should be time-independent:
to determine the currently optimal spacecraft control u(t̄i), the spacecraft steering strategy
should have to know – at any time step t̄i – only the current spacecraft state xSC(t̄i) and the

1This evaluation is analogous to the cost function in optimal control theory. To emphasize this fact, it will also be denoted by the
symbol J .
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current target state xT(t̄i), hence S : {(xSC,xT)} 7→ {u}. If a propulsion system other than
a solar sail is employed, the current propellant mass mP(t̄i) might be considered as an addi-
tional input. The number of potential input sets, however, is still large because xSC and xT

may be given in coordinates of any reference frame. At any time step t̄i, each output neuron
j ∈ {1, . . . , no} gives a value Yj(t̄i) ∈ (0, 1). The number of potential output sets is also large
because there are many alternatives to define u, and to calculate u from Y . Good results have
been obtained by letting the NC provide a three-dimensional output vector d ′′ ∈ (0, 1)3 from
which a unit vector d is calculated.2 d is interpreted as the desired thrust direction and is there-
fore called direction unit vector. For solar sailcraft, u = d, hence S : {(xSC,xT)} 7→ {d}. For
electric spacecraft, the output must include the engine throttle 0 ≤ χ ≤ 1, so that u = (d, χ),
hence S : {(xSC,xT,mP)} 7→ {d, χ}.

Neurocontroller Fitness Assignment. In EAs, the optimality of a chromosome is rated by a
fitness function3 J . The optimality of a trajectory might be defined with respect to various pri-
mary objectives (e.g., transfer time or propellant consumption). When an ENC is used for tra-
jectory optimization, the accuracies of the trajectory with respect to the final constraints must
also be considered as secondary optimization objectives because they are not enforced other-
wise. If, for example, the transfer time for a rendezvous is to be minimized, the fitness function
must include the transfer time T , the final distance to the target ∆rf = |rT(t̄f )− rSC(t̄f )|, and
the final relative velocity to the target ∆vf = |ṙT(t̄f )− ṙSC(t̄f )|, hence J = J(T,∆rf ,∆vf ). If,
for example, the propellant mass for a flyby problem is to be minimized, T and ∆vf are not
relevant but the consumed propellant ∆mP must be included in the fitness function, hence
J = J(∆mP,∆rf ) in this case. Because the ENC unlikely generates a trajectory that satisfies
the final constraints exactly (∆rf = 0m, ∆vf = 0m/s), a maximum allowed distance ∆rf,max

and a maximum allowed relative velocity ∆vf,max have to be defined. Because in the begin-
ning of the search process most individuals do not meet the final constraints with the required
accuracy, a maximum transfer time Tmax must be defined for the numerical integration of the
trajectory. For a detailed description of the NC fitness assignment, the reader is referred to [4].

Evolutionary Neurocontroller Design. This section details how an ENC may be applied for
low-thrust trajectory optimization. To find the optimal spacecraft trajectory, the ENC method
runs in two loops. Within the (inner) trajectory integration loop, a NC k steers the spacecraft
according to its network function Nwk

that is completely defined by its parameter set wk. The
EA in the (outer) NC optimization loop holds a population P = {c1, . . . , cq} of NC parameter
sets including the additionally encoded initial conditions, and examines them for their suit-
ability to generate an optimal trajectory. Within the trajectory integration loop, the NC takes
the current spacecraft state xSC(t̄i∈{0,...,τ−1}) and that of the target xT(t̄i) as input, and maps
them onto some output. For electric spacecraft, the input includes the current propellant mass
mP(t̄i) and the output includes the current throttle χ(t̄i). The first three output values are
interpreted as the components of d′′(t̄i), from which the direction unit vector d(t̄i) is calcu-
lated. This way the spacecraft control u(t̄i) is calculated from the NC output. Then, xSC(t̄i)
and u(t̄i) are inserted into the equations of motion and numerically integrated over one time
step to yield xSC(t̄i+1). The new state is fed back into the NC. The trajectory integration loop
stops when the final constraints are met with sufficient accuracy or when a given time limit is
reached (t̄i+1 = t̄f,max). Then, back in the NC optimization loop, the trajectory is rated by the
EA’s fitness function J(ck). The fitness of ck is crucial for its probability to reproduce and to
create offspring. Under this selection pressure, the EA breeds more and more suitable steering
strategies that generate better and better trajectories. Finally, the EA that is used within this

2via d
′ = 2d

′′ − (1, 1, 1)T ∈ (−1, 1)3 and d = d
′/|d′|

3This fitness function is also analogous to the cost function in optimal control theory. To emphasize this fact, it will be denoted
also by the symbol J .
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work converges against a single steering strategy (by shrinking the solution space during the
search process), which gives in the best case a near-globally optimal trajectory x?

SC[t].

3. Results: Mercury Rendezvous With a Solar Sail
To assess the performance of of InTrance, it was used to re-calculate trajectories for prob-
lems found in the literature (henceforth called reference problems/trajectories). Due to the
limitations of this extended abstract, results for only one example can be given, a Mercury
rendezvous using solar sail propulsion.4 For an ideal solar sail with a characteristic accel-
eration5 of 0.55mm/s2 a (locally) optimal trajectory was reported in [8, 9] using a LTOM. It
launches from Earth on 15 Jan 03 and takes 665 days to rendezvous Mercury, inserting the
solar sailcraft directly into an interplanetary trajectory with zero hyperbolic excess energy
(C3 = |ṙSC(t̄0)− ṙEarth(t̄0)|2 = 0km2/s2).

InTrance was run five times with different initial populations for the launch date of the
reference trajectory (reference launch date). A neurocontroller with 12 input neurons, 1 hid-
den layer with 30 hidden neurons, and 3 output neurons was used, where the input neurons
received the solar sailcraft state xSC and the target state xT in cartesian coordinates, and the
output neurons defined the direction unit vector d (different input sets, different output sets,
and different numbers of hidden neurons/layers have been tested, but the results are beyond
the scope of this extended abstract; they can be found in [4]). The maximum transfer time was
set to Tmax = 600 days. For discretization, this time interval was divided into τ = 600 periods
of equal length. The accuracy limit was set to ∆rf,max = 0.1·106 km and ∆vf,max = 0.1 km/s.6
Based on preliminary experiments, the population size was set to q = 50. Fig. 1 shows the
resulting trajectories for the five InTrance-runs. The best trajectory is 91 days faster than the
reference trajectory, revealing that the latter is far from the global optimum. The achieved
accuracy is well better than required. The small variation of the solutions (15 days) gives
evidence for a good convergence behavior.

Figure 1. Mercury rendezvous trajectories (refer-
ence launch date, 5 different initial populations)

Figure 2. Mercury rendezvous trajectories (opti-
mized launch date, 5 different initial populations)

To find the optimal launch date, InTrance was used to determine the shortest orbit trans-
fer, which can be obtained by requiring only a rendezvous with Mercury’s orbit, not with
Mercury itself. The shortest orbit transfer found by five InTrance-runs takes T = 510 days.
By scanning the planetary positions, it can be found that within a 1 year-interval around the

4The results for further reference problems can be found in [4]. Novel applications of InTrance for low-thrust trajectory opti-
mization can be found in [1–6].
5maximum acceleration of solar sailcraft at Earth distance from the sun
6∆vf,max = 0.1 m/s was also used in [8, 9], whereas ∆rf,max is not given there.
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reference launch date, the constellation of Earth and Mercury is most similar to that of the op-
timal orbit transfer solution for a launch on 27 Mar 03. Therefore, InTrance was run five times,
being allowed to choose the launch date from the interval [26 Mar 03, 31 Mar 03]. The maxi-
mum transfer time was set again to Tmax = 600 days (with τ = 600). The small variation of
the solutions shown in Fig. 2 (4 days) gives again evidence for a good convergence behavior.
Taking 502 days to rendezvous Mercury, the best InTrance-trajectory is now 163 days faster
than the reference trajectory, the accuracy again being well better than required.

4. Summary and Conclusions
Within the work described here, low-thrust trajectory optimization was attacked from the
perspective of machine learning. A novel global method for spacecraft trajectory optimiza-
tion, termed InTrance, was proposed. It fuses artificial neural networks and evolutionary
algorithms into evolutionary neurocontrollers. The re-calculation of an exemplary Mercury
rendezvous mission with a solar sail revealed that a reference trajectory, which was generated
by a trajectory optimization expert using a local trajectory optimization method, is quite far
from the global optimum. Using InTrance, the transfer time could be reduced considerably.
InTrance runs without an initial guess and does not require the attendance of an expert in
astrodynamics and optimal control theory. Being problem-independent, its application field
may be extended to a variety of other optimal control problems.
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Abstract Suppose you are interested in estimating the slope of a line fitted to data points. How should you fit
the line if you want to treat each variable on the same basis? Least squares regression is inappropriate
here since it’s purpose is the prediction of one of the variables. If the variables are switched it
provides a different slope estimate. We present a method which gives a unique slope and line, and
which is invariant to changes in units of measurement. We attempt to extend the approach to fitting
a linear model to multiple variables. In contrast to least squares fitting our method requires the
solution of a global optimisation problem.

Keywords: Data fitting, regression models, fractional programming.

1. Introduction
Multiple Neutral Data Fitting is a method to analyse the relationship between a number of
variables alternative to the well known least squares estimation.

Least squares is so popular because it is so easily computed. From an optimisation stand-
point an unconstrained convex quadratic optimisation problem has to be solved which is done
by setting the partial derivatives of the objective equal to zero. This gives the famous normal
equations which have a nice analytic solution.

Least squares regression does, however, suffer from several shortcomings: it does not pos-
sess several properties as listed in [7] that seem desirable for a data fitting method. For exam-
ple, in order to apply least squares, the user needs to specify which variables are the indepen-
dent variables, and which one is the dependent variable. A change in this setting will lead
to a completely different least squares estimate. In practice, however, a distinction between
explanatory and response variables is not always so easy.

Another deficiency of least squares fitting is an assumption in the underlying model that
may be unrealistic in many situations: the model is based on the assumption that only the
dependent variable is subject to measurement errors. The independent variables are assumed
to be known exactly, a premise that is often not fulfilled.

Multiple Neutral Data Fitting is an approach that avoids these shortcomings. The basic
idea is that a different criterion is chosen as objective of the optimisation problem: Instead of
minimizing the sum of the squares of the residuals, we consider the deviations for each vari-
able and multiply them. As a result, we get a slope estimate different from the least squares
solution. The new estimate possesses nice theoretical properties, but comes with a higher
computational cost when fitting a model to multiple variables. In contrast to least squares
regression, our method requires the solution of a global optimisation problem.
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More precisely, the objective in the Multiple Neutral Data Fitting method is a sum of abso-
lute values of ratios. The number of ratios corresponds to the number of observations. The
number of variables equals the number of parameters needed to describe the fitted line (or,
more generally, the fitted hyperplane). In practical applications, this number is usually not
too big, which is advantageous for our global optimisation problem.

The Multiple Neutral Data Fitting approach has beeen alluded to by several statisticians
throughout the last century. Some properties of the resulting fitted line have been shown, but
generally speaking, the method has not been explored as an optimisation.

In the talk, we analyse Multiple Neutral Data Fitting as a global optimisation problem. We
discuss in detail the two dimensional case (i.e., the case of only one independent variable). We
then generalize to higher dimensions and propose an algorithm to solve the Multiple Neutral
Data Fitting optimisation problem.

2. Underlying Models
Let (Xi, Yi), i = 1, . . . , n be a set of data points and suppose we wish to estimate the slope of a
line fitted to these data. We will illustrate our ideas with the following tiny sample set of ten
data points (Xi, Yi) ∈ R× R:
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Sample Data Set

Figure 1. A tiny data set for illustration purposes.

2.1 The Least Squares Model
When using least squares regression, we usually assume the following relationship applies to
the data, cf. [3]:

Yi = β0 + β1Xi + εi, i = 1, . . . , n, (1)
that is, we have an explanatory variable Xi which is assumed to be measured exactly, and
we have a response variable Yi which is a combination of the true β0 + β1Xi plus a random
error εi. The distribution of the εi does not depend on the β’s.

The sum of the squares of deviations from the true line is

S(β0, β1) =

n∑

i=1

ε2i =

n∑

i=1

(Yi − β0 − β1Xi)
2,

and the least squares regression line is the line with minimal S, cf. Fig2.
Since this amounts to solving an unconstrained convex quadratic optimisation problem, the

estimates b0 for β0 and b1 for β1 are easily computed by setting the partial derivatives ∂S
∂β0

and



Neutral Data Fitting 93
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Regression of Y on X

Figure 2. The least squares model minimizes the sum of the squares of the deviations.

∂S
∂β1

equal to zero. This leads to the well known normal equations

b0n+ b1

n∑

i=1

Xi =

n∑

i=1

Yi and b0

n∑

i=1

Xi + b1

n∑

i=1

X2
i =

n∑

i=1

XiYi

from which we get analytical expressions for b0 and b1.
Observe that switching the variables will lead to a different solution and therefore to a

different regression line. For the sample data, this is illustrated in Fig. 3.
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Figure 3. Left: treating X as the response variable and Y as explanatory variable gives deviations in the x-
coordinate. Minimizing the sum of the squares of these deviations yields a least squares estimate different from
the one in Fig. 2. Right: the two different least squares regression lines.

In higher dimensional settings the situation is similar: Assume we have data points Xi ∈ Rk

(i = 1, . . . , n), then there are k ways to choose the response variable, and thus k different least
squares regression hyperplanes.

The sensitivity of least squares regression to the choice of the response variable is one reason
why it is desirable to consider alternatives.
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2.2 All Variables subject to Errors
Next, assume both Xi and Yi are subject to random errors, δi and εi, respectively (cf. also [4]):

Yi = ηi + εi,
Xi = ξi + δi.

In this model, ηi and ξi are the true but unobserved values. A linear relationship ηi = β0 +β1ξi
between them translates to

Yi = β0 + β1Xi + ε∗i , with ε∗i = εi − β1δi. (2)

So we have an equation similar to (1), but now the distribution of the error terms ε∗i depends
on β1 which makes the situation much more complicated from the statistical viewpoint. There-
fore, least squares regression is no longer an appropriate model:

Under the assumption of normally distributed errors (εi ∼ N(0, σ2)), the least squares esti-
mate b1 of β1 is the maximum likelihood estimate for model (1), and it provides the minimum
variance linear unbiased estimator.

For model (2), the least squares estimate has none of these properties. Since model (2) is
often more realistic in practical situations, this is a second reason why we need alternative
data fitting methods.

3. Neutral Data Fitting as an Optimisation Problem
As outlined in [11], a possibility to overcome the shortcomings of least squares regression
lies in the following approach: Consider the deviations from the fitted line in each coordinate
direction and multiply them together. In two dimensions, this looks as follows: For every
data point, we multiply the vertical (y) deviation with the horizontal (x) deviation. This gives
twice the area of the right-angled triangle formed by the fitted line and the two lines passing
through the data point parallel to the axes, cf. Fig. 4. Our fitting criterion is then to minimize
the sum of these triangular areas, i.e. the sum of the products of the deviations. For this reason
the approach is called method of least triangles in [1].
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Triangles representing Deviations

Figure 4. The product of the deviations of each data point is proportional to the area of the shaded triangle.

Consider the two variable case in more detail: Given n data points (Xi, Yi) ∈ R × R, assume
we would like to fit a line of the form

ax+ by = c.
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For each data point (Xi, Yi), the deviation is the x-direction is given by
∣∣∣∣Xi −

c− bYi

a

∣∣∣∣ =

∣∣∣∣
aXi + bYi − c

a

∣∣∣∣ ,

whereas the deviation in the y-direction is
∣∣∣∣Yi −

c− aXi

b

∣∣∣∣ =
∣∣∣∣
aXi + bYi − c

b

∣∣∣∣ .

Hence the product of the deviations associated to data point (Xi, Yi) equals
∣∣∣ (aXi+bYi−c)2

ab

∣∣∣.
Summing over all data points yields the objective function, and we are faced with the follow-
ing optimisation problem:

min
n∑

i=1

∣∣∣∣
(aXi + bYi − c)2

ab

∣∣∣∣

s.t. a, b, c ∈ R.

(3)

In the higher dimensional case, i.e. in the presence of variables Xi ∈ Rk (i = 1, . . . , n), the
model generalizes in the obvious way, cf. also [10] and [6]: The hyperplane we want to fit is
then of the form

k∑

j=1

ajxj = c,

deviation of a data point Xi from the hyperplane in coordinate direction j amounts to
∣∣∣∣∣

∑k
j=1 aj(Xi)j − c

aj

∣∣∣∣∣ ,

and the optimisation problem becomes

min

n∑

i=1

∣∣∣∣∣∣∣

(∑k
j=1 aj(Xi)j − c

)k

∏k
j=1 aj

∣∣∣∣∣∣∣
s.t. a ∈ Rk, c ∈ R.

(4)

Note that the dimension of the optimisation problem is k + 1, not the number n of data
points. Usually, k + 1 � n in practical applications. In some cases the hyperplane is known
not to pass through the origin, such that it is possible to set c = 1, thus reducing the dimension
by one.

Problem (3) falls into a class of nonlinear optimisation problems called fractional program-
ming problems which have received a considerable amount of interest in the last decades
(for a survey cf. [8]). While problems involving ratios of linear functions are well understood
(see [5] or [9] and references therein), and certain problems involving ratios of linear functions
with absolute values have been treated in [2], to our knowledge the special structure of (3) has
not yet been studied.
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Abstract Two methods for obtaining an outer approximation of the efficient set of nonlinear biobjective prob-
lems are presented. They are based on the well-known “constraint method” and allow to obtain a
superset of the efficient set by solving a finite number of single objective constraint problems. Com-
putational experience is reported.
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1. The problem
Let f1, f2 : Rn −→ R be two real functions, and consider the problem

min {f1(x), f2(x)}
s.t. x ∈ S (1)

We will denote the vector of objective functions by f(x) = (f1(x), f2(x)), and the image of the
feasible region by Z = f(S).

Definition 1. A feasible vector x∗ ∈ S is said to be efficient iff there does not exist another feasible
vector x ∈ S such that fi(x) ≤ fi(x

∗) for all i = 1, 2, and fj(x) < fj(x
∗) for at least one index j. The

set SE of all the efficient points is called the efficient set.

Efficiency is defined in the decision space. The corresponding definition in the criterion
space is as follows.

Definition 2. An objective vector z∗ = f(x∗) ∈ Z is said to be nondominated (or also efficient) iff
x∗ is efficient. The set of all nondominated vectors will be denoted by ZN .

Other related and widely used concept is the weak efficiency.

Definition 3. A feasible vector x∗ ∈ S is said to be weakly efficient iff there does not exist another
feasible vector x ∈ S such that fi(x) < fi(x

∗) for all i = 1, 2.

In many problems it is important to obtain the whole efficient set. However, to the extent of
our knowledge, no method has been proposed in the literature with that purpose. In fact, even

∗This paper has been supported by the Ministry of Science and Technology of Spain under the research project BEC2002-01026,
in part financed by the European Regional Development Fund (ERDF).
†On leave from the Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and the University of
Szeged, Hungary.
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obtaining a single efficient point can be a difficult task. Some authors have proposed to present
to the decision-maker a “representative set” of efficient points which suitably represent the
whole efficient set, either by modifying the definition of efficiency [2] or by selecting a finite set
of efficient points with the criteria of coverage, uniformity and cardinality as quality measures
[1, 9]. The approach in this paper is completely different. Instead of offering a subset of the
efficient set to the decision-maker, we give him a superset containing it, whose accuracy is
fixed before-hand (see also [3]).

2. A constraint-like method
Due to the possible non-convexity (and non-concavity) of the objective functions a global op-
timization technique is required in order to obtain efficient points. In this section, we present
a constraint-like method which uses interval analysis tools. For details about interval analysis
the interested reader is referred to [5, 6, 8].

2.1 Preliminaries
The constraint method. The constraint method was introduced in [4]. One of the objective
functions, say f1, is selected to be minimized and the other one, f2, is converted into a con-
straint by setting an upper bound f ub

2 to it. The single objective problem to be solved, called
constraint problem, is then

min f1(x)
s.t. f2(x) ≤ fub

2

x ∈ S
(2)

The goodness of the constraint method can be seen in the following results.
Theorem 4. The solution of the constraint problem (2) is weakly efficient.
Theorem 5. A feasible vector x∗ ∈ S is efficient if and only if it is a solution of the constraint problems

min f1(x)
s.t. f2(x) ≤ f2(x

∗)
x ∈ S

and
min f2(x)
s.t. f1(x) ≤ f1(x

∗)
x ∈ S

. (3)

Instead of having to solve those two constraint problems in (3), efficiency can also be guar-
anteed with only one of them, provided that it has a unique solution, as the following theorem
shows.
Theorem 6. A feasible vector x∗ ∈ S is efficient if it is a unique solution of any of the constraint
problems in (3).

From the previous theorems it follows that it is possible to find all the efficient solutions
of any multiobjective optimization problem by the constraint method. However, we need to
solve one or two problems to find ‘one’ efficient solution, which means that if the efficient set
is not a discrete set (as it is usually the case in continuous multiobjective optimization) then
the method is not practical for finding the complete efficient set.

Obtaining a region of δ-optimality. Consider the single-objective problem

min f(x)
s.t. x ∈ S ⊆ Rn (4)

We want to find the region Rδ of δ-optimality of (4), i.e. the set of feasible points whose
objective value does not exceed the optimal value of (4) by more than a fraction δ (δ > 0). In
formula, if we denote by f ∗ the optimal value of (4),

Rδ = {x ∈ S : f(x)− f ∗ ≤ δ · |f∗|}.
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In [7], a branch-and-bound method for obtaining the region of δ-optimality (of a general con-
tinuous location problem) is presented. In what follows we will refer to it as the δ-opt algo-
rithm. It consists of two phases. The first one entails the determination of the optimal objective
value of (4) up to a prespecified relative precision ε. The second phase consists of the deter-
mination of Rδ , up to a prespecified precision η. The output of the algorithm is two lists of
subsets, L3 and L4. The union of the subsets in the first list gives an inner approximation of
Rδ , whereas the union of the subsets in both L3 and L4 gives an outer approximation ORδ

of Rδ , guaranteed to lie entirely within Rδ+η(1+δ) , i.e., ORδ =
⋃

Q∈L3∪L4
Q ∩ S satisfies that

Rδ ⊆ ORδ ⊆ Rδ+η(1+δ) .
The algorithm can be easily carried out with the help of Interval Analysis. In that case, the

subsets Q will be boxes (multidimensional intervals), and the required bounds on them can
be obtained automatically with the use of inclusion functions.

2.2 The constraint problems
Going back to the determination of the efficient set of (1), we will use constraint problems of
the form1

(Pi)

min f1(x)

s.t. f2(x) ≤ f (i)
2

x ∈ S
(5)

where f (i)
2 is a given constant defined below. Let x̂(i) denote an optimal solution of (Pi), and

let R(i)
δ be the region of δ-optimality of (Pi), that is,

R
(i)
δ = {x ∈ S : f2(x) ≤ f (i)

2 , f1(x)− f1(x̂
(i)) ≤ δ · |f1(x̂

(i))|}.

In the first problem that we will consider, (P0), we set f (0)
2 = +∞. Thus, problem (P0) is in

fact the single objective problem
min f1(x)
s.t. x ∈ S

Once we have solved problem (Pi) and have obtained an outer approximation ofR(i)
δ with the

help of the δ-opt algorithm mentioned in the previous subsection, the constant f (i+1)
2 for the

next problem (Pi+1) is given by (see Figure 1)

f
(i+1)
2 = min{U2(Q) : Q ∈ L3 ∪ L4, Q ∩R(i)

δ 6= ∅} (6)

where U2(Q) is an upper bound on all objective values of f2 at Q. However, from a computa-
tional point of view, it can be better to set

f
(i+1)
2 = min{U2(Q) : Q ∈ L3, Q ∩ S 6= ∅} (7)

although this is a worst (higher) value than the one obtained with (6). Using (7) we only have
to check whether a box Q in L3 contains at least one feasible point. If so, we take that box into
account for calculating the minimum in (7).

Let us denote by Q
(i)
N the subset at which the previous minimum (either (6) or (7)) is at-

tained, i.e, f (i+1)
2 = U2(Q

(i)
N ).

Lemma 7. f1(x̂
(i+1)) ≤ f1(x̂

(i)) + δ|f1(x̂
(i))|.

1We always minimize f1 subject to a constraint on f2, but a similar process can be developed interchanging the functions.
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2.3 The method
The method that we propose to obtain an outer approximation of the efficient set of (1) is the
following (see Figure 1):

Algorithm 1.

i← 0, f (0)
2 ← +∞.

While (Pi) is feasible
Solve (Pi) and obtain an outer approximation OR(i)

δ of R(i)
δ using the δ-opt algorithm.

Calculate f (i+1)
2 as given by (6) or (7).

If f (i+1)
2 ≮ f

(i)
2 then

j ← 0.
Repeat

j ← j + 1.
Solve the problem

(Pi+j)

min f1(x)

s.t. f2(x) ≤ f (i)
2

x ∈ S
f1(x) ≥ f1(x̂

(i)) + j · δ|f1(x̂
(i))|

(8)

and obtain an outer approximation OR(i+j)
δ of R(i+j)

δ .
Calculate f (i+j+1)

2 as given by (6) or (7).
until f (i+j+1)

2 < f
(i)
2 or the problem (Pi+j) is infeasible.

If f (i+j+1)
2 < f

(i)
2 then set i← i+ j + 1.

If the problem (Pi+j) is infeasible then set i← i+ j and break
else i← i+ 1.⋃i−1

j=0OR
(j)
δ contains the efficient set of (1).

PSfrag replacements

f1(x̂
(i−1))

f1(x̂
(i−2)) + δ|f1(x̂
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δ
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Figure 1. Image space of a biobjective problem using Algorithm 1. For the shake of clarity, for each problem
(Pi) we have only drawn one of the boxes forming OR

(i)
δ , namely, Q

(i)
N . The grey region is R

(i−1)
δ , and the dotted

region is R
(i)
δ .
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Theorem 8. Algorithm 1 obtains all the efficient solutions of (1).
Notice that we need problems of type (8) to avoid that the algorithm gets stuck when

f
(i+1)
2 > f

(i)
2 . This may happen when the efficient set is not connected and the ‘jump’ (along

the abscisas axis) is greater than δ|f1(x̂
(i))| (see Figure 1; without problems of type (8) Algo-

rithm 1 will get stuck after solving problem (Pi+1)) or when there is a continuum of weakly
efficient points with the same f2-value (i.e., in the image space the weakly efficient points
form a segment parallel to the abscisas axis, being the length of that segment greater than
δ|f1(x̂

(i))|.)

3. Another constraint-like method
In the previous constraint-like method, in addition to constraint problems of the form (5) we
also needed problems of the form (8) to be able to guarantee the finiteness of the algorithm. In
this section we present another constraint-like method which only uses one type of constraint
problems, a simplified version of the one in (8).

3.1 The constraint problems
The first problem that we will consider, (P0), is again the single objective problem

min f1(x)
s.t. x ∈ S

Once we have solved problem (Pi) and have obtained a minimizer point x̂(i) and an outer
approximation of R(i)

δ with the help of the δ-opt algorithm, we compute

f
(i+1)
2 = min{f (i)

2 ,min{U2(Q) : Q ∈ L3 ∪ L4, Q ∩R(i)
δ 6= ∅}} (9)

or
f

(i+1)
2 = min{f (i)

2 ,min{U2(Q) : Q ∈ L3, Q ∩ S 6= ∅}} (10)
Notice that f (0)

2 = +∞. The next problem to be solved is

(Pi+1)

min f1(x)

s.t. f2(x) ≤ f (i+1)
2

f1(x) ≥ f1(x̂
(i)) + δ|f1(x̂

(i))|
x ∈ S

(11)

3.2 The method
The method that we propose to obtain an outer approximation of the efficient set of (1) is the
following (see Figure 2):

Algorithm 2.

i← 0, f (0)
2 ← +∞.

While (Pi) (as described in (11)) is feasible
Solve (Pi) and obtain an outer approximation OR(i)

δ of R(i)
δ . Let x̂(i) denote an

optimal solution of (Pi).
Calculate f (i+1)

2 as given by (9) or (10).
i← i+ 1.⋃i−1

j=0OR
(j)
δ contains the efficient set of (1).

Theorem 9. Algorithm 2 obtains all the efficient solutions of (1).
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Figure 2. Image space of a biobjective problem using Algorithm 2. The grey region is R
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Abstract Feasibility study of extractive distillation variants is a successful application area of interval arith-
metics based reliable computation of real function zeroes and global extrema. Feasibility of these
processes can be well estimated by studying a differential equation system coupled with algebraic
equations. Existence and location of the singular points play a crutial role in feasibility of these
processes.

From mathematical point of view, the main problem consists of reliably finding the existence
and loci of all the singular points in a given domain, and determining the bifurcations of the phase
map. Both the singular points and the bifurcations have been reliably found by applying an interval-
arithmetic based branch and bound optimization algorithm.

The mathematical model is shown, and the capability of the method is demonstrated on ex-
ample results related to the separation of acetone – methanol mixture (forming minimum boiling
azeotrope) with water as a heavy boiling entrainer, in both batch and continuous extractive distilla-
tion processes.

Keywords: interval arithmetics, branch and bound, phase map, singular point, bifurcation, extractive distilla-
tion, feasibility.

1. Introduction
Distillation as a process for separating liquid components is based on the different volatility
of the components to be separated. Separation of close-volatility mixtures by conventional
distillation is difficult and expensive. Separation of azeotrope-forming mixtures by conven-
tional distillation is impossible. A mixture is called azeotrope-forming if the volatility of the
components are identical at some composition, the so-called azeotrope.

Extractive distillation processes apply a third component, the so-called entrainer, to make
the separation feasible. There are several variants of these processes according to the volatility
relations between the components, and according to the several technical opportunities to be
chosen.

Production of components in specified purity and acceptable recovery is possible only if
the process pameters are kept inside a domain whose form and extension is not known in
advance. This is called ’the feasible domain’. The process is called feasible if such a domain
exists. The main process parameters are the so-called reflux ratio and feed ratio.
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Feasibility study is engineering activity applied for finding a feasible domain of the process
parameters. If such a domain is not found, the process is considered infeasible. However,
finding a feasible set of process parameters is a difficult task, and a feasible process can easily
be qualified to infeasible if inappropriate methodology is applied. Determining the border of
the feasible domain is an even more difficult task.

As it has earlier been shown [1–3], feasibility of the many different process variants can
be well estimated, and the feasible domain can be explored by applying approximating or-
dinary differential equations (initial value problems) for modelling the process. Feasibility
of the studied process variants can be judged by studying the phase plots of these differen-
tial equations; here the phase curves are called ’profiles’, namely rectifying profiles, stripping
profiles, and extractive profiles. (These profiles describe the behaviour of different sections of
the distillation column). Profile maps (i.e., phase maps) can take radically different shapes,
depending on the process parameters.
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Figure 1. Extractive profile maps of continuous extractive distillation, minimum boiling azeotrope, heavy en-
trainer. a/ Left hand side: infeasible. b/ Right hand side: feasible

Existence and location of the singular points of the different profiles take a key role in judg-
ing feasiblity and exploring the feasible domain. For example, two different maps are shown
in Figures 1a and 1b, belonging to the same continuous extractive distillation process with
different parameters. There is a saddle point S2 in both figures. Two of the four separatrices
of S2, namely the pair in the direction of vertex Water - S2 - edge of Acetone and Methanol,
divides the triangle to a right hand side and a left hand side. Let us call this separatrix pair
as ’boundary’. There is a stable node (SN) of the extractive profiles inside the composition
domain, in Figure 1a. Extractive profiles started from the right of the boundary approach SN;
they do not cross the rectifying profile drawn from xD , running along the Acetone-Water edge.
As a result, this process is infeasible at R = 5 and F/L = 0.1. Stable node SN and saddle S1

approach each other if the feed ratio F/L is increased. They meet over a critical feed ratio, and
suddenly disappear. The map changes shape, and looks like that in Figure 1b. The extractive
profiles are attracted to a point somewhere outside the triangle. All these extractive profiles
cross the rectifying profile. As a result, the process is feasible at R = 5 and F/L = 0.4.

Finding stable nodes is relative easy by computing phase curves; finding the unstable nodes
and saddle points is rather difficult. Even more difficult is to find the parameter values of
bifurcations, i.e. the points at which the phase map suddenly changes shape. It is this bifur-
cation, however, what finally is looked for because this sudden change designates the border
of feasible domain.
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2. Mathematical formulation
In all the studied variants, the differential equations have the form of

dx

dh
=
V

L
(y(x)− y∗(x)) (1)

where x is the array of independent variables, h is a running variable irrelevant for us, ratio
V/L is a simple function of R and F/V or F/L, y∗(x) is a non-explicit function described
below, and y(x) is an explicit function expressed in a general form as

y =

(
R

R+ 1
+
F

V

)
x +

1

R+ 1
xD −

F

V
xF (2)

Here R is one of the main parameters of the process, and F/V is another one. xD and xF are
known process specifications. Array y∗ is determined according to the following system of
equations (3 to 7):

y∗i P = γixip
◦
i (i = 1, 2, 3) (3)

lg p◦i = Ai −
Bi

T − 273.14 + Ci
(i = 1, 2, 3) (4)

lnγi =

∑
j τjiGjixj∑

lGlixl
+
∑

j

xjGij∑
lGljxj

(
τij −

∑
n τnjGnjxn∑

lGljxj

)
(i = 1, 2, 3) (5)

τij =
Uij

RGT
; Gij = exp (−αij τij) (i = 1, 2, 3) (6)

3∑

i=1

y∗i = 1 (7)

Here P is the systems pressure, RG is a universal physical constant, Ai, Bi, Ci, Uij , and αij

are model parameters. p◦i and γi can be considered as functions of x and T ; such a T is to be
found for a given x that satisfies equation (7). The problem of finding the singular points can
be formulated as solving the system of equations (2) to (8).

0 = y(x)− y∗(x) (8)

The problem of finding bifurcations can be formulated as follows. Differencial equation (1)
is linearized around the singular point in a form

dx

dh
= Ax (9)

The task is to find that parameters at which at least one of the eigenvalues of A has zero
real part. In this problem class we encounter node and saddle singularities only; thus, bi-
furcations are simply signalled by zero determinant of A. Unfortunately, entries of A (the
Jacobian) cannot by directly determined because of the non-explicite nature of function y∗(x).
This difficulty is solved by applying implicit function theorem. Computation of the partial
derivatives of γ are also rather tedious.
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3. Solution by interval optimization
In order to reliably find information about the existence of the characterisctic singular points
and, in case of existence, finding their exact loci, we have implemented an interval arithmetic
based optimization algorithm [4, 5]. Interval algebra provides us with a tool for determining
real intervals that certainly include the range of the functions studied over a given domain.
Utilizing this technique, all the roots of those functions, as well as all the minima of a real
function, can be determined.

Criteria for singular points and bifurcation points can be described by algebraic equations.
Instead of searching for zeroes of these equations, we formulated these problems as minimiz-
ing the sum of squares of the equation residues. The steps of the applied algorithm are the
following:

Step 1. Let L be an empty list, the leading box B:=X (the total studied domain), and the
iteration counter k := 1. Set the upper bound F u of the global minimum to be the
upper bound of F (X).

Step 2. Subdivide B into s subsets. Evaluate the inclusion function F (X) for all the new
subintervals, and update the upper bound F u of the global minimum as the mini-
mum of the old value and the upper bounds on the new subintervals.

Step 3. Add the new subintervals to the list L.
Step 4. Delete parts of the subintervals stored in L that cannot contain a global minimizer

point.
Step 5. Set B to be that subinterval from list L which has the smallest lower bound on F , and

remove the related item from the list.
Step 6. While termination criteria do not hold, let k := k + 1, and go to St. 2.

This is a branch-and-bound algorithm. Interval arithmetic and the interval extension of the
used standard functions were realized by the PROFIL library [6]. The algorithm itself is a
customized version of the global optimization procedure published in [7], and improved in
several steps. The computational environment was a Pentium IV PC (1 Gbyte RAM and 1.4
MHz) with Linux operation system.
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Figure 2. Subdivision of a subdomain in course of the search process
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How a subregion is subdivided into smaller boxes is demonstrated in Figure 2. This pic-
ture taken at a moment, shows the yet living boxes, and how they are subdivided. The box
containing a wide dot contains a solution.

4. Results
Feasible domain of extractive distillation of particular material systems have been explored.
Here we show the results related to separation of the acetone – methanol mixture forming
minimum boiling azeotrop, with the help of high boiling entrainer water, in batch extractive
distillation process (batch rectifier device, charge in the boiling vessel, entrainer feed to the
column) and continuous extractive distillation process (entrainer feed above the main feed).
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Figure 3. Evolution of the singularities at R = 10. a/ Left hand side: Singular point paths. b/ Right hand side:
Bifurcation diagram

Example results for the case of batch extractive distillation are shown in Figures 3a and 3b.
The exact F/V at which the bifurcation occurs could not be determined by repeatedly finding
the singular points because the computation time increases enormously in the neighborhood
of the bifurcation.
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Figure 4. Domains of distinct maps. Domain 1 is feasible.

Example results for the case of continuous extractive distillation are shown in Figure 4. The
main parameters are R and F/L. The three regions denoted by square labels correspond to
different phase maps; domain 1 is the feasible domain. The points of the domain border are
determined by finding bifurcation points. (Note: this figure is valid according to the analysis
of one criterion only, namely connection of the specified rectifying profile with an extractive
profile. Connection of the specified stripping profile with an extractive profile is not analyzed
here.)



108 Erika R. Frits, Ali Baharev, Zoltán Lelkes, Mihály Markót, Zsolt Fonyó, Endre Rév, and Tibor Csendes

5. Summary
As it has earlier been shown by researchers of Budapest Univ., Hungary, feasibility of these
processes, and the feasible domain of the process parameters, can be well estimated by study-
ing a system of an explicite autonomous first order ordinary differential equation system cou-
pled with a system of algebraic equations. Existence and location of the singular points play
a crutial role in feasibility of these processes.

From mathematical point of view, the main problem consists of reliably finding the exis-
tence and loci of all the singular points in a given domain, and determining the bifurcations of
the phase map. This problem is solved by applying an interval-arithmetic based branch and
bound optimization algorithm developed at Univ. Szeged, Hungary.

Feasibility study of extractive distillation variants is a successful application area of interval
arithmetics based reliable computation of zeroes and global extrema of real functions.

Singular points in the neighborhood of bifurcation is rather difficult to find because the
computation time increases enormously. Determination of the bifurcation points in this way,
i.e. by repeated computation of singular points and plotting bifurcation diagrams, is unre-
liable. Instead, criterion of bifurcation is applied, based on linearization of the differential
equation in the neighborhood of the singular points. Implicite function theorem was also
applied to compute elements of the Jacobian.

The mathematical model is detailed, and the capability of the method is demonstrated on
example results related to the separation of acetone – methanol mixture (forming minimum
boiling azeotrope) with water as a heavy boiling entrainer, in both batch and continuous ex-
tractive distillation processes. All the singular points inside (and even partially outside) the
physically valid composition domain are found. Bifurcation points are also found, and do-
mains of radically different maps are determined, including the feasible domain.
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Abstract We address the problem of finding tight affine lower bound functions for multivariate polynomials,
which may be employed when global optimisation problems involving polynomials are solved with
a branch and bound method. These bound functions are constructed by using the expansion of the
given polynomial into Bernstein polynomials. The coefficients of this expansion over a given box
yield a control point structure whose convex hull contains the graph of the given polynomial over
the box. We introduce different methods for computing tight affine lower bound functions based on
these control points, using either a linear interpolation of certain specially chosen control points or
a linear approximation of all the control points. We present a bound on the distance between the
given polynomial and its affine lower bound function, which, at least in the univariate case, exhibits
quadratic convergence with respect to the width of the domain. We also address the problem of how
to obtain a verified affine lower bound function in the presence of uncertainty and rounding errors.
Some numerical examples are presented.

Keywords: Bernstein polynomials, relaxation, affine bound functions, constrained global optimisation

1. Introduction
In our talk we wish to contribute to the solution of the constrained global optimisation prob-
lem

min
x∈F

f(x). (1)

The set of feasible solutions F is defined by

F :=



x ∈ S

∣∣∣∣∣∣

gi(x) ≤ 0 for i = 1, . . . ,m
hj(x) = 0 for j = 1, . . . , l
x ∈ X



 ,

where S ⊆ Rn, X is a box contained in S, and f, gi, hj are real-valued functions defined on S.
The optimisation problem

min
x∈R

f(x) (2)

is called a relaxation of (1) if the set of feasible solutions fulfils F ⊆ R and f(x) ≤ f(x) holds
for all x ∈ F .

To generate an affine relaxation for problem (1), the functions f , gi (i = 1, . . . ,m), and hj

(j = 1, . . . , l) are replaced by affine lower bound functions f , g
i
, and hj , respectively. Then the

relaxed problem (2) with the respective set of feasible solutions yields a linear programming
problem. Its solution provides a lower bound for the solution of (1). This relaxation may be
used in a branch and bound framework for solving problem (1).
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We address the use of relaxations for global optimisation problems (1) in which the objective
function f and the functions defining the constraints are all multivariate polynomials.

2. Bernstein Expansion
In [3–6] we have shown how diverse affine and convex lower bound functions for polynomials
can be constructed by applying the expansion of such a polynomial into Bernstein polynomi-
als.

Using multiindices and multivariate extensions of summation and binomial coefficients, an
n-variate polynomial p,

p(x) =

l∑

i=0

aix
i, x = (x1, . . . , xn), (3)

can be represented over I = [0, 1]n as

p(x) =

l∑

i=0

biBi(x), (4)

where
Bi(x) =

(
l

i

)
xi(1− x)l−i (5)

and the so-called Bernstein coefficients bi are given by

bi =

i∑

j=0

(i
j

)
(l
j

)aj , 0 ≤ i ≤ l. (6)

We may consider the case of the unit box I without loss of generality, since any nonempty box
in Rn can be mapped affinely thereupon.

A fundamental property for our approach is the convex hull property
{(

x

p(x)

)
: x ∈ I

}
⊆ conv

{(
i/l

bi

)
: 0 ≤ i ≤ l

}
, (7)

where the convex hull is denoted by conv.
Figure 1 illustrates the convex hull property and the straighforward construction of an

affine lower bound function based upon the convex hull of a univariate polynomial of de-
gree 5.

3. Affine Lower Bound Functions
We consider two contrasting approaches for deriving a tight affine lower bound function from
the Bernstein control points (coefficients).

The first approach relies on the minimum control point and an appropriate choice of n oth-
ers. The linear interpolant of these points constitutes a lower bound function and coincides
with one of the lower facets of the convex hull of the control points. In the general case, the
computation of such an affine lower bound function requires the solution of a linear program-
ming problem, cf. [3]. For special facets, only the solution of a system of linear equations
together with a sequence of back substitutions is needed, cf. [5]. Also, an affine transforma-
tion may be applied to flatten the global shape of the convex hull (7) such that the obtained
affine lower bound functions more tightly approximate the polynomial, cf. [6].
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Figure 1. The curve of a polynomial of fifth degree (bold), the convex hull (shaded) of its control points (marked
by squares), and an example affine lower bound function (dashed).

The second approach is to derive a linear approximation to the whole set of control points
(and thereby the graph of the polynomial) over the box. We consider the use of either a lin-
ear least squares approximation or a discrete Chebyshev approximation. This yields a linear
function which closely approximates the graph of the polynomial, with valuable shape infor-
mation. It must be adjusted by a downward shift so that it passes under all the control points,
yielding a valid lower bound function.

4. Examples
4.1 Example 1

p(x) =

l∑

i=0

(−1)i+1

i+ 1
xi, x ∈ [0, 1].

Figure 2 shows the graph of p over the box, its control points, and affine lower bound
function, for l = 3, 8, 13, 17, respectively. This example is taken from [3].

4.2 Example 2

p1(x1, x2) = α1x
2
1x2 + α2x

2
1 + α3x1x2 + α4x1 + α5x2,

p2(x1, x2) = α6x
2
1x2 + α7x1x

2
2 + α8x1x2 + α9x

3
2 + α10x

2
2 + α11x2 + α12,

α1 = −1.697 × 107 α7 = 4.126 × 107

α2 = 2.177 × 107 α8 = −8.285 × 106

α3 = 0.5500 α9 = 2.284 × 107

α4 = 0.4500 × 107 α10 = 1.918 × 107

α5 = −1.0000 × 107 α11 = 48.40
α6 = 1.585 × 1014 α12 = −27.73
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Figure 2. The polynomial of Example 1 for l = 3, 8, 13, 17, with its control points (circles), and corresponding
lower bound function.

Figure 3 shows the graphs of p1 and p2 over the unit box, their control points, and affine
lower bound functions. This example, a model for hydrogen combustion with excess fuel, is
taken from [7].

5. Rigorous Bound Functions
Due to rounding errors, inaccuracies may be introduced into the calculation of the bound
functions. As a result, the computed affine function may not stay below the given polynomial
over the box of interest. We also wish to consider the case of uncertain (interval) input data. In
our talk, we focus on a method by which an affine lower bound functions based on Bernstein
expansion can be computed such that it can be guaranteed to stay below the given polynomial.
The aforementioned methods can be adjusted to work with interval data, and the safe inter-
polation of interval control points can be facilitated by a method similar to that introduced in
[2].

6. Future Work
We report on the integration of our software into the environment of the COCONUT project
[1] funded by the European Union which aims at the solution of global optimisation and
continuous constraint satisfaction problems.

We conclude with some suggestions for the extension of our approach to the construction
of affine lower bound function for arbitrary sufficiently differentiable functions.
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Figure 3. Polynomials p1 and p2 from Example 2, with their control points (circles), and corresponding lower
bound functions.
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Abstract The objective of this work is to compare the performance of several recent multiobjective optimiza-
tion algorithms (MOEAs) with a new hybrid algorithm. The main attraction of these algorithms is
the integration of selection and diversity maintenance. Since it is very difficult to exactly describe
what a good approximation is in terms of a number of criteria, the performance is quantified with
specific metrics and is based on two main aspects: the proximity of solutions to the global Pareto
font and the suitable distribution of the located front.

Keywords: multiobjective evolutionary optimization, global Pareto-optimal front.

1. Introduction
The aim of Global Optimization (GO) is to find the best solution of decision models, in pres-
ence of the multiple local solutions. Having several objective functions, the notion of optimum
changes, because in Multiobjective Optimization Problems (MOPs) we are really trying to find
good compromises (or trade-offs) rather than a single solution as in global optimization. Since
most of the real design problems involve the achievement of several objectives, then the pres-
ence of multiple objectives in a problem, in principle, gives rise to a set of optimal solutions
(largely known as Pareto-optimal solutions), instead of a single optimal solution [2]. In the
absence of any further information, one of these Pareto-optimal solutions cannot be said to be
better than the other. This demands a user to find as many Pareto-optimal solutions as possi-
ble. Classical optimization methods (including the multicriterion decision-making methods)
suggest converting the multiobjective optimization problem to a single-objective optimiza-
tion problem by emphasizing one particular Pareto-optimal solution at a time. When such a
method is to be used for finding multiple solutions, it has to be applied many times, hopefully
finding a different solution at each simulation run.

Generating the Pareto set can be computationally expensive and is often infeasible, because
the complexity of the underlying application prevents exact methods from being applicable.
For this reason, a number of stochastic search strategies such as evolutionary algorithms, tabu
search, simulated annealing, and ant colony optimization have been developed. Over the past
decade, a number of multiobjective evolutionary algorithms (MOEAs) have been suggested
[3–6, 9]. The primary reason for this is their ability to find multiple Pareto-optimal solutions
in one single simulation run. Since evolutionary algorithms (EAs) work with a population of
solutions, a simple EA can be extended to maintain a diverse set of solutions. With an empha-
sis for moving toward the global Pareto-optimal region, an EA can be used to find multiple
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Figure 1. Pareto-dominance relations.

Pareto-optimal solutions in one single simulation run. Since the goal of approximating the
Pareto set is itself multiobjective, for instance, we would like to minimize the distance of the
generated solutions to the Pareto set and to maximize the diversity of the achieved Pareto
set approximation, then it is impossible to exactly describe what a good approximation is in
terms of a number of criteria such as closeness to the Pareto set, diversity, etc [10, 11]. In the
following, we present some general concepts of Multi-Objective Optimization.

Definition 1. Multi-Objective Optimization (MOO) is the process of searching one or
more decision variables that simultaneously satisfy all constraints, and optimize an objective
function vector that maps the decision variables to two or more objectives.

minimize/maximize(fk (s)), ∀k∈[1,K]
subject to s∈F

Definition 2. Decision vector or solution (s) = (s1, s2, .., sn) represents accurate numerical
qualities for an optimization problem. The set of all decision vectors constitutes the decision
space.

Definition 3. Feasible set (F) is the set of decision vectors that simultaneously satisfies all
the constraints.

Definition 4. Objective function vector (f) maps the decision vectors from the decision
space into a K-dimensional objective space Z∈<K ,
z=f(s), where: f(s)={f1(s), f2(s),..., fK (s)}, z∈Z, s∈F.

Let P be a MOO problem, with K≥2 objectives. Instead of giving a scalar value to each so-
lution, a partial order is defined according to Pareto-dominance relations, as we detail below.

Definition 5. Order relation between decision vectors. Let s and s’ two decision vectors.
The dominance relations in a minimization problem are:

s dominates s’ (s≺s’) iff f(s)<f(s’)
s weakly dominates s’ (s�s’) iff f(s)≤f(s’)

s,s’ are indifferent (s∼s’) iff f(s)6≤f(s’) ∧ f(s)6≥f(s’)

Definition 6. Pareto-optimal solution. A solution s is Pareto-optimal if there is no other s’∈F,
such that f(s’)<f(s). All the Pareto-optimal solutions define the Pareto-optimal set.

Definition 7. Non-dominated solution. A solution s∈F is non-dominated with respect to a
set S’∈F if only if 6 ∃s’∈S’, verifying that s’≺s.

Definition 8. Non-dominated set. Let S’∈F and Z’=f(S’). The function ND(S’) returns the
set of non-dominated solutions from S’:

ND(S’)={∀s’∈S’ | s’ is non-dominated by any other s", s"∈S’}
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Figure 1 graphically describes the Pareto-dominance concept for a minimization problem
with two objectives (k1 and k2). Figure 1(a) shows the location of several solutions. The filled
circles represent non-dominated solutions, while the non-filled ones symbolize dominated
solutions. Figure 1(b) shows the relative distribution of the solutions in reference to s. There
exist solutions that are worse (in both objectives) than s, better (in both objectives) than s, and
indifferent (better in one objective and worse in the other).

In this paper, we address all of these issues for four MOEAS, SPEA2, NSGA-II, PESA and
a hybrid version, msPESA, mainly based on PESA and NSGA-II. From the simulation results
on a number of difficult test problems, we find that msPESA outperforms three other contem-
porary MOEAs in terms of finding a diverse set of solutions and in converging near the global
Pareto-optimal set.

In the remainder of the paper, we briefly mention these MOEAs in Section II. Thereafter,
Section III presents simulation results and compares msPESA with three other elitist MOEAs
(SPEA2, NSGA-II and PESA). Finally, we outline the conclusions of this paper.

2. Multiobjective Optimization Algorithms Implemented
We mentioned earlier that, along with convergence to the Pareto-optimal set, it is also desired
that a MOEA maintains a good spread of solutions in the obtained set of solutions. In the
following, we describe this issues in each algorithm.

SPEA2 (The Strength Pareto Evolutionary Algorithm). SPEA2 [6] combines, in the same
fitness value, dominance information about the individual (with rank and count of domi-
nance) as well as the density information about its niche, computed by the nearest neighbor
technique. Therefore SPEA2 also implements fitness-sharing. As the file size is fixed, when
the number of non-dominated individuals exceeds the file size, a clearing process is followed,
considering the smallest distance to the neighbors. SPEA2 uses a fine grain assignment fit-
ness technique incorporating the density information that is useful for the selection process.
In addition, the size of the file is fixed and the file fills up with dominated individuals when
there are not enough non-dominated ones. The clustering technique is replaced (in compari-
son with SPEA) by a method which has similar characteristics but does not eliminate extreme
solutions (see [6]). Finally, with SPEA2 only the members of the file participate in the mating
process.

NSGA-II (Non-dominated Sorting Genetic Algorithm-II). NSGA-II [3] proposes a new
partial order between two solutions defined by the crowded comparison operator. The crowded
operator acts in the following way: given two solutions, their rankings are first checked. If the
rankings are different, the solution with the lower ranking is assumed to be the best one. If
they are equal, the density information is checked. In this case, the solution with the less pop-
ulated niche is assumed to be the best. Although both mechanisms seek to maintain diversity,
NSGA-II does not use the crowding mechanism of niches. NSGA-II uses tournament selection
based on the defined operator. In the algorithm operation (see [3]), when fronts are added, the
size of the allowed population can be exceeded. In this case, the least diversified solutions of
the last front are eliminated. This is a clearing procedure. Even so, this clearing is subject to the
dominance relation as established in the definition of the comparison operator. In conclusion,
while SPEA2 presented a hybrid operation between fitness-sharing and crowding, NSGA-II
uses a combination of fitness-sharing and clearing as its niching mechanism.

PESA (The Pareto Envelope-based Selection Algorithm). PESA [4] is a mixed algorithm
between PAES [9] and SPEA [5]. It uses a small internal population and a (usually) larger
external population. The external population is actually the archive which stores the current
approximation to the Pareto front, and the internal population are new candidate solutions
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vying for incorporation into the archive. PESA implicitly maintains a hyper-grid division of
phenotype space which allows it to keep track of the crowding degree in different regions
of the archive. However, unlike both PAES and SPEA, selection in PESA is based on this
crowding measure. Replacement (deciding what must leave the archive if it becomes over-
full) is also based on a crowding measure.

msPESA (Mixed Spreading between PESA and NSGA-II). A new algorithm, which is a
hybrid version between PESA and NSGA-II is implemented in order to improve the concept
of spreading. In the design of msPESA, the goal was to eliminate the potential weaknesses of
other MOEAs and to create a powerful MOEA. The main characteristics of msPESA are:

- It uses a variation of the fast non-dominated sorting algorithm of NSGA-II where only
one front is calculated.

- A new archiving strategy is implemented for the external population. Once a candidate
has entered the external archive, members of the archive which is dominated will not
be removed.If the archive temporarily exceeding the maximum size, one solution must
therefore be removed from the archive. The choice is made by first finding the maximal
squeeze factor [4] in the population, and removing an arbitrary chromosome which has
this squeeze factor.
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Figure 2. Non-dominated solutions obtained using NSGA-II, SPEA2, PESA and msPESA on ZDT1.

3. Experimental Analysis
In this section we consider the issues necessary to compare the performance of these algo-
rithms over a set of benchmarks. The elaboration of a merit ranking between the various
methods is not a trivial procedure. In general, an order of MOEA merit is impossible due
to the NFL Theorem [12], although it is possible to extract some results from the behavior of
each algorithm. In this paper we have taken into account the proximity to the Pareto front
and the uniformity in the distribution of the solutions. In the search for an impartial, accurate
comparison that excludes the effects of chance, it is necessary to consider many aspects, and
for this reason we have made our own implementation of each algorithm, and all of them
have been integrated in the same platform. Since EAs are highly configurable procedures [1],
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Figure 3. Non-dominated solutions using msPESA with 5000 and 20000 fitness function evaluations.

the first step is to assign values to the parameters. Some values are fixed and equal for all the
methods during the whole comparison. Although undoubtedly, each algorithm could be im-
proved by assigning particular values to the parameters, the authors do not suggest anything
in this respect and leave the users freedom of choice. Therefore, and for reasons of simplicity,
the following values, also chosen in other studies [5] have been used. Number of generations:
T = 250, size of the internal population IP = 100, external population EP = 100 excepts for
PESA where PE = 10, crossover probability: Px = 0.8 and mutation probability: Pµ = 0.1.
The benchmarks used were ZDT1 to ZDT6 [5], but for reason of space, we have not included
all these results in this work.

Figure 2 shows the non-dominated solutions obtained using msPESA, PESA, NSGA-II and
SPEA2 for test (a)ZDT1, (b)ZDT3, and (c)ZDT6. It is clear that msPESA is able to better dis-
tribute its population along the obtained front than other MOEAs. Figure 2 (d) shows the
non-dominated solutions when the fitness evaluations are increased from 5000 to 20000 in
msPESA.

Metric C presented in [5] have been used to evaluate the performance of the different opti-
mization methods. This metric establishes a comparison between two algorithms, indicating
how the results of the first cover those of the second. Table 1 summarizes results for the
set of experiments in which each trial run was allowed just 5000 fitness evaluations for test
ZDT1, ZDT3 and ZDT6. This table shows that the best performing algorithm is msPESA (see
msPESA row in Table 1). That is true in proximity to the Pareto front as in diversity and spread
of solutions.

Table 1. Comparison of C metric using msPESA, NSGA-II, PESA and SPEA2.

msPESA NSGA-II PESA SPEA2

ZDT1 ZDT3 1.00 1.00 1.00 1.00 1.00 1.00
msPESA

ZDT6 - 1.00 - 1.00 - 1.00 -
0.06 0.06 0.08 0.18 0.23 0.00

NSGA-II
0.01 - 0.75 - 0.12 -
0.02 0.00 1.00 1.00 1.00 0.00

PESA
0.00 - 0.57 - 0.5 -
0.09 0.16 0.79 1.00 0.18 1.00

SPEA2
0.01 - 1.0 - 0.9 -
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4. Conclusions of the work
In this paper, we have proposed a new hybrid multiobjective evolutionary algorithm based on
non-dominated sorting approach of NSGA-II and internal and external archiving approach of
PESA. We have compared its performance with three others recent MOEAs on a suite of test
function. As we have commented in the experimental results section, although an order of
merit between different algorithms is very difficult, we have focused this work to obtain a
more precise analysis about spreading of solutions. Comparative performance was measured
using a coverage metric and we found that msPESA was able to maintain a better spread of
solutions and convergence better in the obtained nondominated front. However, results on
a limited set of test functions must always be regarded as tentative, and hence much further
work is needed.
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Abstract In this paper, approximate Pareto solutions of nondifferentiable constrained multiobjective opti-
mization problems are studied via a metrically consistent ε-efficient concept introduced by Tanaka
[14]. Necessary and sufficient conditions for these solutions are obtained from a nonconvex penal-
ized scalarization process. Necessary conditions are provided in convex multiobjective optimization
problems through Kuhn-Tucker multiplier rules. Sufficient conditions are obtained via Kuhn-Tucker
multiplier rules under convexity hypotheses and via approximate solutions of a scalar Lagrangian
problem for nonconvex multiobjective optimization problems.

Keywords: Multiobjective optimization, ε-Pareto solution, scalarization, ε-subdifferential.

1. Introduction
During the last decades, interest in approximate solutions or ε-efficient solutions (ε-Pareto
solutions in the Paretian context) of vector optimization problems is growing, since these so-
lutions exist under very mild hypotheses and they are obtained by a lot of usual resolution
methods (for example, by iterative algorithms, heuristic methods, etc.).

The first and most popular ε-efficient concept was introduced by Kutateladze [8] and has
been used to establish approximate Kuhn-Tucker type conditions and approximate duality
theorems [2, 4, 9–13, 15]. However, Kutateladze’s ε-efficiency concept gives approximate solu-
tions which are not metrically consistent, i.e., it is possible to obtain feasible points (xn), x0

such that their objective values verify f(xn) → f(x0), xn is an εn-efficient solution for each n,
εn → 0, and f(x0) is far from the optimal value set.

In [1, 4–7, 15, 18], various metrically consistent ε-efficient concepts based on a previously
fixed scalar functional have been studied. However, there are a lot of problems for which is
not possible to choose any previous scalar functional and so several other metrically consis-
tent notions have been introduced without consider any additional scalar functional (see, for
example, the concepts defined by White [16] and Tanaka [14]).

Classical conditions for efficient solutions via multiplier rules, Lagrangian functionals and
saddlepoint theorems must be extended to ε-Pareto solutions in order to develop new and
better resolution methods. In [2, 3, 9–12, 17] some results have been obtained following this
line, but using not metrically consistent ε-Pareto concepts. In this work, Tanaka’s ε-Pareto
notion is analyzed from these points of view in order to extend those classical conditions to a
metrically consistent ε-Pareto concept without consider any additional scalar functional.

In Section 2, the nondifferentiable constrained multiobjective optimization problem is pre-
sented and some notations are fixed. Moreover, the Tanaka’s ε-Pareto concept is recalled and
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some properties are established. Then, we describe a general method to convert a constrained
multiobjective optimization problem into a scalar optimization problem without inequality
constraints in such a way that ε-Pareto solutions for the first problem are approximate solu-
tions for the second problem. In Section 3, Fritz John and Kuhn-Tucker necessary and suf-
ficient conditions for ε-Pareto solutions are proved via the ε-subdifferential and the scalar-
ization method developed in Section 2. In obtaining these conditions, convexity hypotheses
are assumed. In Section 4, a sufficient condition for ε-Pareto solutions is proved through ap-
proximate solutions of a scalar Lagrangian functional. From this result, it is possible to obtain
approximate metrically consistent solutions of constrained multiobjective optimization prob-
lems via suboptimal solutions of unconstrained scalar optimization problems.

2. Metrically consistent ε-Pareto solutions
Let X be a normed space and let us fix p + m functionals fi, gj : X → R, i = 1, 2, . . . , p,
j = 1, 2, . . . ,m, a continuous linear map A : X → Rk and a nonempty set G ⊂ X . In the
sequel, the following constrained multiobjective optimization problem is considered

Min{f(x) : x ∈ S}, (1)

where f = (f1, f2, . . . , fp) : X → Rp, S = K ∩Q ∩G,

K = {x ∈ X : gj(x) ≤ 0, j = 1, 2, . . . ,m},
Q = {x ∈ X : Ax = b},

and b ∈ Rk.
In solving (1), the componentwise partial order in the final space is assumed. Let us denote

by cl(M) and int(M) the closure and interior of a setM , respectively. The nonnegative orthant
in Rp is denoted by R

p
+ and we write the set int

(
R

p
+

)
as R

p
++.

Definition 1. A point x0 ∈ S is a Pareto (resp. weak Pareto) solution of (1) if

(f(x0)− R
p
+\{0}) ∩ f(S) = ∅

(resp. (f(x0)− R
p
++) ∩ f(S) = ∅).

The set of Pareto solutions and weak Pareto solutions of (1) will be denoted by E(f, S) and
WE(f, S), respectively. It is clear that E(f, S) ⊂WE(f, S).

Consider ε ≥ 0 and the scalar optimization problem

Min{h(x) : x ∈M}, (2)

where h : X → R and M ⊂ X , M 6= ∅. In the following definition, the well-known notion of
approximate (suboptimal) solution of (2) is recalled.

Definition 2. A point x0 ∈M is an ε-solution of (2) if

h(x0)− ε ≤ h(x), ∀x ∈M.

The set of ε-solutions of (2) is denoted by AMin(h,M, ε).
Let B ⊂ Rp be the unit closed ball of Rp defined by a norm ‖ ‖. Next, we recall a concept in-

troduced by Tanaka [14], which extends Definition 2 to multiobjective optimization problems.

Definition 3. A point x0 ∈ S is an ε-Pareto (resp. weak ε-Pareto) solution of (1) if

(f(x0)− ((εB)c ∩ R
p
+)) ∩ f(S) = ∅

(resp. (f(x0)− ((εB)c ∩ R
p
++)) ∩ f(S) = ∅).
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We denote by AE(f, S, ‖ ‖, ε) and WAE(f, S, ‖ ‖, ε) the sets of ε-Pareto solutions and weak
ε-Pareto solutions of (1), respectively. Let us observe that these sets depend on the norm ‖ ‖.
Moreover, it is clear that AE(f, S, ‖ ‖, ε) ⊂WAE(f, S, ‖ ‖, ε) for each ε ≥ 0 and AE(f, S, ‖ ‖, 0) =
E(f, S), WAE(f, S, ‖ ‖, 0) = WE(f, S).

Next, we show under different hypotheses that Tanaka’s concept is a metrically consistent
ε-efficiency notion.
Theorem 4. Let f : X → Rp be a continuous map at x0 ∈ S and let (εn) ⊂ R+, (xn) ⊂ S be such
that εn ↓ 0 and xn → x0.

1. If xn ∈ AE(f, S, ‖ ‖, εn) for each n, then x0 ∈WE(f, S).

2. If (f(xn)) is a nonincreasing sequence, i.e.,

f(xm) ∈ f(xn)− R
p
+, ∀m > n

and xn ∈ AE(f, S, ‖ ‖, εn) for each n, then x0 ∈ E(f, S).
3. Suppose that f(S) is externally stable with respect to the efficient set:

f(S) ⊂ f(E(f, S)) + R
p
+.

If xn ∈ AE(f, S, ‖ ‖, εn) for each n, then f(x0) ∈ cl(f(E(f, S))).

3. Multiplier rules for ε-Pareto solutions
In this section, multiplier rules for ε-Pareto solutions of (1) are proved under convexity hy-
potheses. So, let us suppose that fi and gj are p + m continuous convex functionals and G
is a convex set. We use Ker(A) and Ker(A)⊥ to denote the kernel of A and the orthogonal
complement of Ker(A). The topological dual space of X is denoted by X ∗. We write IG for the
indicator functional of the set G and ‖ ‖1 for the l1 norm in Rp.

To attain our objective, we use the ε-subdifferential of a proper convex functional and a
penalized scalarization process.
Definition 5. Let h : X → R ∪ {∞} be a convex proper functional, x0 ∈ dom(h) and ε ≥ 0. The
ε-subdifferential of h at x0 is the set ∂hε(x0) defined by

∂εh(x0) = {x∗ ∈ X∗ : h(x) ≥ h(x0)− ε+ 〈x∗, x− x0〉,∀x ∈ X}.
Let us recall that the subdifferential ∂h(x0) of h at x0 in the sense of Convex Analysis is

obtained taking ε = 0 in Definition 5.
Theorem 6. IfQ∩ int(G) 6= ∅ and x0 ∈WAE(f, S, ‖ ‖1, ε) then there exists (τ, ν, α) ∈ Rp×Rm×R

and multipliers (λ, γ, µ) ∈ Rp × R× Rm such that

(τ, ν, α, λ, γ, µ) ≥ 0, (3)
p∑

i=1

λi + γ +
m∑

j=1

µj = 1, (4)

0 ∈
p∑

i=1

∂τi
((λi + γ)fi)(x0) +

m∑

j=1

∂νj
(µjgj)(x0) + Ker(A)⊥ + ∂αIG(x0), (5)

p∑

i=1

τi +

m∑

j=1

νj − γε+ α ≤
m∑

j=1

µjgj(x0). (6)

Theorem 7. Consider x0 ∈ S. If there exists (τ, ν, α, λ, γ, µ) ∈ Rp × Rm × R × Rp × R × Rm

verifying conditions (3)-(6) with strict inequality in (6), then x0 ∈ AE(f, S, ‖ ‖1, ε).
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4. Conditions for ε-Pareto solutions via a Lagrangian
functional

In this section, a sufficient condition for ε-Pareto solutions of (1) is established through ap-
proximate solutions of a unconstrained scalar optimization problem obtained from (1) via a
Lagrangian functional.

In the sequel, we extend the final space to Rp∪{±∞} and we assume that the usual algebraic
and ordering properties hold. Let L : X×Rp×Rm×Rk → R∪{±∞} be the Lagrangian scalar
functional defined by

L(x, λ, µ, ρ) =




∞ if x /∈ G
〈λ, f(x)〉+ 〈µ, g(x)〉 + 〈ρ,A(x)〉 if x ∈ G, µ ∈ Rm

+

−∞ if x ∈ G, µ /∈ Rm
+ .

Fixed (λ, µ, ρ) ∈ Rp×Rm×Rk, let us consider the following Lagrangian scalar optimization
problem of (1):

Min{Lλ,µ,ρ(x) : x ∈ X}, (7)

where Lλ,µ,ρ : X → R ∪ {±∞} is the functional defined for all x ∈ X by Lλ,µ,ρ(x) =
L(x, λ, µ, ρ). Next, we obtain a sufficient condition for ε-Pareto solutions of (1) through ap-
proximate solutions of (7).

Theorem 8. Let (λ0, µ0, ρ0) ∈ R
p
++×Rm

+×Rk and x0 ∈ S be such that x0 ∈ AMin(Lλ0,µ0,ρ0 , X, ε).
Then x0 ∈ AE(f, S, ‖ ‖1, ε0), where

ε0 = (ε− 〈µ0, g(x0)〉)/ min
1≤i≤p

{λi}.
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On the goodness of Global Optimisation Algorithms
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Abstract The aim of the paper is to arrive at introductory text for students on the concepts of Global Optimiza-
tion algorithms. Target is to learn to read and interpret optimisation algorithms and to analyse them
on goodness. Before going deeper into mathematical analysis, it would be good for students to get a
flavour of the difficulty by letting them experiment with simple algorithms that can be followed by
hand or spreadsheet calculations. Two simple one-dimensional examples are introduced and in this
abstract two NLP algorithms are elaborated. In the final talk this is widened to some deterministic
and stochastic GO methods.

Keywords: Efficiency, Effectiveness.

1. Introduction
In this presentation, several criteria are discussed to measure effectiveness and efficiency of
algorithms. Examples are given of basic algorithms. To do so, one should first introduce
the concept of optimisation algorithms. An algorithm is a description of steps to be taken
preferably implemented into a computer program with the aim to find an approximation of
an optimum point. The aim as such can be several: reach a local optimum point, reach a
global optimum point, find all global optimum points, reach all global and local optimum
points. We will come back to that. In general, an algorithm generates a series of points xk that
approximates a (or the or all) optimum point. According to the generic description of [6]:

xk+1 = Alg(xk, xk−1, ..., x0, ξ) (1)
where ξ is a random variable and index k is the iteration counter. So the idea it describes is
that a next point xk+1 is generated and evaluated based on the information in all former points
xk, xk−1, ..., x0 (x0 is usually called the starting point) and possibly some random effect. In the
complete paper, three types of algorithms are described.

Nonlinear optimisation algorithms, that based on a starting point will try to capture the
"nearest" local minimum point.
Deterministic GO methods which guarantee to approach the global optimum and re-
quire a certain mathematical structure.
Stochastic GO methods which are based on the random generation of feasible trial points
and nonlinear local optimization procedures.

We will consider several examples for illustrative purposes. There are two questions to ad-
dress if we investigate the quality of algorithms.

Effectiveness: does the algorithm find what we want?
Efficiency: what are the computational costs?

Several measurable performance indicators can be defined for these global criteria.
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1.1 Effectiveness
Focusing on effectiveness there are several targets a user of the algorithm may have:

1. To discover all global minimum points. This of course can only be realised when the
number of global minimum points is finite.

2. To detect at least one global optimal point.

3. To find a solution with a function value as low as possible.

4. To produce a uniform covering: This idea as introduced by [3], can be relevant for pop-
ulation based algorithms.

The first and second targets are typical satisfaction targets; was the search successful or not?
What are good measures of success? In the older literature, often convergence was used i.e.
xk → x∗, where x∗ is one of the minimum points. Alternatively one observes f(xk) → f(x∗).
In tests and analyses, to make results comparable, one should be explicit in the definitions of
success. We need not only to specify ε and/or δ such that

‖xk − x∗‖ < ε and/or f(xk) < f(x∗) + δ (2)

but we should also specify whether success means that there is an indexK such that (2) is true
for all k > K . Alternatively, a recordminkf(xk) may have reached level f(x∗)+ δ and this can
be considered a success. Whether the algorithm is effective also depends on the stochastic na-
ture of it. When we are dealing with stochastic algorithms, the effectiveness can be expressed
as the probability that a success has been reached. In analysis, this probability can be derived
when having sufficient assumptions on the behaviour of the algorithm and in numerical ex-
periments it can be estimated by looking over repeated runs how many times the algorithm
leads to convergence. We will give some examples of such analysis.

1.2 Efficiency
Globally efficiency is defined as the effort the algorithm needs to be successful. A usual indi-
cator for algorithms is the (expected) number of function evaluations necessary to reach the
optimum. This indicator depends on many factors such as the shape of the test function and
the termination criteria used. The indicator more or less suggests that the calculation effort
of function evaluations dominates the other calculation effort of the algorithm. Several other
indicators appear in literature that can be considered to be derived from the main indicator.

In nonlinear programming (e.g. [5] and [2]) the concept of convergence speed is common.
It is a limiting concept on the convergence of the series xk. Let x0, x1, . . . , xk, . . . converge to
point x∗. The largest number α for which

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖α

= β <∞ (3)

gives the order of convergence, whereas β is called the convergence factor. In this terminology,
among others the following concepts appear

linear convergence means α = 1 and β < 1

quadratic convergence means α = 2 and 0 < β < 1

superlinear convergence: 1 < α < 2 and β < 1, i.e. β = 0 for α = 1.

Mainly in deterministic GO algorithms, information on the past evaluations is stored in the
computer memory. This requires efficient data handling for looking up necessary information
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during the iterations. As well memory requirement as retrieving actions become a part of the
computational burden that cannot be neglected compared to the computational effort due to
function evaluations. These aspects become important from the perspective of efficiency of
algorithms.

In stochastic GO algorithms an efficiency indicator is the success rate defined as the prob-
ability that the next iterate is an improvement on the record value found thus far P (f(xk) <
minl=1,...,k−1f(xl)). Its theoretical relevance to convergence speed was analysed by [7] and [1],
who showed that a fixed success rate of an effective algorithm (in the sense of uniform cov-
ering) gives an algorithm with the expected number of function evaluations growing polyno-
mially with the dimension of the problem. However, the empirical measurements can only be
established in the limit when such an algorithm stabilises, and only for specifically designed
test cases [4].

We do not go deeper into theoretical aspects here of performance indicators on algorithms.
Instead some basic algorithms will be introduced and analysed.

2. Illustrative functions
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Figure 1. Test case g(x) with two optima

Two testcases are introduced first for which the algorithms are inspected. We consider the
minimisation of the following functions.

g(x) = sin(x) + sin(3x) + ln(x), x ∈ [3, 7] (4)

Function g is depicted in Figure 1 and has three minimum points on the interval. The global
minimum is attained at about x∗ = 3.73, where f(x∗) = −0.220. The derivative function is

g′(x) = cos(x) + 3 cos(3x) +
1

x
(5)

on the interval [3, 7]. Alternatively to function g, we introduce a function h with more local
minimum points by adding to function g a bubble function based on frac(x) = x − round(x)
where round(x) rounds x to the nearest integer. Now the second case is defined as

h(x) =

{
g(x) + 1.5frac2(4x) for x 6= 1

4k + 1
8 , k ∈ Z

g(x) + 0.375 for x = 1
4k + 1

8 , k ∈ Z.
(6)



130 Eligius M.T. Hendrix

3 3.5 4 4.5 5 5.5 6 6.5 7
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x 

h(x) 

Figure 2. Test case h(x) with 17 optima

As the function frac is not well defined in the points x = k + 1
2 , k ∈ Z, the function has been

made continuous for the points in S = {x = 1
4k + 1

8 , k ∈ Z}. The result can be observed in
Figure 2 Function h has 17 local minimum points on the interval [3, 7]. Although g nor h are
convex on the interval, at least function h is piecewise convex on the intervals in between the
points of S. At these points, h is not differentiable. For the rest of the interval one can define
the derivative

h′(x) = g′(x) + 12× frac(4x) for x ∈ S (7)

The global minimum point of h on [3, 7] is shifted slightly compared to g towards x∗ =
3.75, where f(x∗) = −0.217. In the following Sections, we will consider algorithms on their
ability to find minima of the two test cases. One should set a target on what is considered
an acceptable or successful result. For instance one can aim at detecting a local minimum or
detecting the global minimum. For the neighbourhood we will take an acceptance of ε = 0.01.
For determining an acceptable low value of the objective function we take δ = 0.01. Notice
that the range the functions take between minimum and maximum on the interval is about 4,
such that δ represents about 0.25% of the function values range.

3. Two algorithms: Bisection and Newton
Two algorithms from nonlinear programming are sketched and their performance measured
for the two test cases. First the bisection algorithm is considered.

Algorithm 2 Bisect([l, r], f, ε)

Set k = 0, l0 = l and r0 = r
while (rk − lk > ε)

xk = lk+rk

2
if f ′(xk) < 0

lk+1 = xk and rk+1 = rk
else

lk+1 = xk and rk+1 = rk
k = k + 1

End while
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The algorithm departs from a starting interval [l, r] that is halved iteratively based on the
sign of the derivative in the midpoint. This means that the method is only applicable when
the derivative is available at the generated midpoints. The point xk converges to a minimum
point within the interval [l, r]. If the interval contains only one minimum point, it converges
to that. In our test cases, several minima exist and one can observe the convergence to one of
them. The algorithm is effective in the sense of converging to a local (nonglobal) minimum

Table 1. Bisection for functions h and g, ε = 0.015

function h function g
k lk rk xk h′(xk) h(xk) lk rk xk g′(xk) g(xk)

0 3.00 7.00 5.00 -1.80 1.30 3.00 7.00 5.00 -1.80 1.30
1 5.00 7.00 6.00 3.11 0.76 5.00 7.00 6.00 3.11 0.76
2 5.00 6.00 5.50 -1.22 0.29 5.00 6.00 5.50 -1.22 0.29
3 5.50 6.00 5.75 0.95 0.24 5.50 6.00 5.75 0.95 0.24
4 5.50 5.75 5.63 -6.21 0.57 5.50 5.75 5.63 -0.21 0.20
5 5.63 5.75 5.69 -2.64 0.29 5.63 5.75 5.69 0.36 0.20
6 5.69 5.75 5.72 -0.85 0.24 5.63 5.69 5.66 0.07 0.19
7 5.72 5.75 5.73 0.05 0.23 5.63 5.66 5.64 -0.07 0.19
8 5.72 5.73 5.73 -0.40 0.23 5.64 5.66 5.65 0.00 0.19

point for both cases. Another starting interval could have lead to another minimum point. In
the end we are certain that the current iterate xk is not further away than ε from a minimum
point. Many other stopping criteria like convergence of function value or of the derivative to
zero could be used. The current stopping criterion is easy for analysis on the efficiency. One
question could be: How many iterations corresponding (derivative) function evaluations are
necessary to come closer than ε to a minimum point. The bisection algorithm is a typical case
of linear convergence with a convergence factor of 1

2 , |rk+1−lk+1|
|rk−lk| = 1

2 . This means one can
determine the number of iterations necessary for reaching ε-convergence:

| rk − lk | = (
1

2
)k× | r0 − l0 | < ε

(
1

2
)k <

ε

| r0 − l0 |

k >
ln ε− ln | r0 − l0 |

ln1
2

The example case would require at least k = 12 iterations to reach an accuracy of ε = 0.01.
An alternative for finding the zero point of an equation, in our case the derivative, is the

so-called method of Newton. The idea is that its efficiency is known to be superlinear (e.g.
[5]), so it should be faster than bisection. We will analyse its efficiency and effectiveness for the
two test cases. In general, the aim of this algorithm is to converge to a point where the deriva-
tive is zero. Depending on the starting point x0 the method may converge to a maximum. It
may also not converge at all, for instance when a minimum point does not exist. If x0 is in the

Algorithm 3 Newt(x0, f, ε)

Set k = 0,
while (| f ′(xk) |> ε)

xk+1 = xk − f ′(xk)
f ′′(xk)

k = k + 1
End while
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neighbourhood of a minimum point where f is convex, then convergence is guaranteed and
the algorithm is effective in the sense of reaching a minimum point. Let us consider what hap-
pens for the two test cases. When choosing the starting point x0 in the middle of the interval

Table 2. Newton for functions h and g, ε = 0.001

function h function g
k xk h′(xk) h′′(xk) h(xk) xk g′(xk) g′′(xk) g(xk)

0 5.000 -1.795 43.066 1.301 5.000 -1.795 -4.934 1.301
1 5.042 0.018 43.953 1.264 4.636 0.820 -7.815 1.511
2 5.041 0.000 43.944 1.264 4.741 -0.018 -8.012 1.553
3 5.041 0.000 43.944 1.264 4.739 0.000 -8.017 1.553

[3, 7], the algorithm converges to the closest minimum point for function h and to a maximum
point for the function g. This gives rise to introducing the concept of a region of attraction of
a minimum point x∗ as that region of starting points x0 where the local search procedure con-
verges to point x∗. One can observe here when experimenting further, that when x0 is close to
a minimum point of g the algorithm converges to one of the minimum points. Morever, one
should remark that the algorithm requires a safeguard to keep the iterates in the interval [3, 7].
This means that if for instance xk+1 < 3, it should be forced to a value of 3. In that case, also
the left point x = 3 is an attraction point of the algorithm. Function h is piecewise convex,
such that the algorithm always converges to the closest minimum point.

4. Summary
One of the targets of the educational system on optimisation algorithms is to teach students to
think and analyse critically. At least to see through the evolutionary, neural, self learning and
replicating humbug. Therefore it is good to start with analysing simple algorithms. This paper
aims at being an introductory text for that by showing simple cases that differ in structure and
analysing simple algorithms for that.
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Abstract A mixed-integer constrained extension of the radial basis function (RBF) interpolation algorithm
for computationally costly global non-convex optimization is presented. Implementation in TOM-
LAB (http://tomlab.biz) solver rbfSolve is discussed. The algorithm relies on mixed-integer nonlin-
ear (MINLP) sub solvers in TOMLAB, e.g. OQNLP, MINLPBB or the constrained DIRECT solvers
(glcDirect or glcSolve). Depending on the initial experimental design, the basic RBF algorithm some-
times fails and make no progress. A new method how to detect when there is a problem is presented.
We discuss the causes and present a new faster and more robust Adaptive RBF (ARBF) algorithm.
Test results for unconstrained problems are discussed.

Keywords: Expensive, global, mixed-integer, nonconvex, optimization, software, black box.

1. Introduction
Global optimization with emphasis on costly objective functions and mixed-integer variables
is considered, i.e., the problem of finding the global minimum to (1) when each function value
f(x) takes considerable CPU time, e.g. more than 30 minutes to compute [7, 10, 11, 13].
The Mixed-Integer Expensive (Costly) Global Black-Box Nonconvex Problem

min
x

f(x)

s/t
−∞ < xL ≤ x ≤ xU <∞

bL ≤ Ax ≤ bU
cL ≤ c(x) ≤ cU , xj ∈ N ∀j ∈I,

(1)

where f(x) ∈ R, xL, x, xU ∈ Rd, A ∈ Rm1×d, bL, bU ∈ Rm1 and cL, c(x), cU ∈ Rm2 . The
variables xI are restricted to be integers, where I is an index subset of {1,. . . ,d}. Let Ω ∈ Rd be
the feasible set defined by the constraints in (1).

Such problems often arise in industrial and financial applications, where a function value
could be the result of a complex computer program, or an advanced simulation, e.g., CFD,
tuning of trading strategies, or design optimization. In such cases, derivatives are most often
hard to obtain (the algorithms discussed make no use of such information) and f(x) is often
noisy or nonsmooth. One of the methods for this problem type utilizes radial basis functions
(RBF) and was presented by Gutmann and Powell in [4, 13]. The idea of the RBF algorithm is
to use radial basis function interpolation to define a utility function. The next point, where
the original objective function should be evaluated, is determined by optimizing on this util-
ity function. The combination of our need for efficient global optimization software and the
interesting ideas of Gutmann led to the development of an improved RBF algorithm [1] im-
plemented in MATLAB. This method was based on interpolating the function values so far
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computed by RBF and the algorithm handled cheap box constraints. Global non-costly sub
problems were solved with TOMLAB [5] implementations of DIRECT methods [8, 9] combined
with good local solvers.

This paper presents an important extension to the method in [1] — the Adaptive-RBF
(ARBF) method implemented in TOMLAB [6]. The standard RBF algorithm very often result
in points sampled on the boundary, which leads to poor performance and non-convergence.
Therefor we propose a one-dimensional search for a suitable target value f ∗

n to improve con-
vergence. This leads to a sequence of global optimization problems to be solved in each iter-
ation. In addition the standard RBF algorithm has bad local convergence properties and we
suggest new ways to improve local convergence.

The algorithm is described in detail and we analyze its efficiency on the Shekel test prob-
lems, that are part of the standard test problem set of Dixon-Szegö [2]. The results show that
this improved implementation of the RBF algorithm is very efficient on the standard test prob-
lems compared to the standard RBF algorithm.

2. The RBF method
The idea of the RBF algorithm is to use radial basis function interpolation and a measure of
‘bumpiness’ of a radial function, σ say. A target value f ∗

n is chosen that is an estimate of the
global minimum of f . For each x /∈ {x1, . . . , xn} there exists a radial basis function sn(x) that
satisfies the interpolation conditions

sn(xi) = f(xi), i = 1, . . . , n,
sn(x) = f∗n.

(2)

The next point xn+1 is then calculated as the value of x in the feasible region that minimizes
σ(sn). It turns out that the function x 7→ σ(sn) is much cheaper to compute than the original
function.

The smoothest radial basis interpolation is obtained by minimizing the semi-norm [3]
sn = argmin

s
< s, s > . (3)

Here, the radial basis function interpolant sn has the form

sn(x) =
n∑

i=1

λiφ (‖x− xi‖2) + bTx+ a, (4)

with λ1, . . . , λn ∈ R, b ∈ Rd, a ∈ R and φ is either cubic with φ(r) = r3 or the thin plate spline
φ(r) = r2 log r, see Table 1. The unknown parameters λi, b and a are obtained as the solution
of the system of linear equations

(
Φ P
P T 0

)(
λ
c

)
=

(
F
0

)
, (5)

where Φ is the n× n matrix with Φij = φ
(
‖xi − xj‖2

)
and

P =




xT
1 1
xT

2 1
. .
. .
xT

n 1



, λ =




λ1

λ2

.

.
λn



, c =




b1
b2
.
.
bd
a



, F =




f(x1)
f(x2)
.
.

f(xn)



. (6)

If the rank of P is d+ 1, then the matrix
(

Φ P
P T 0

)
is nonsingular and the linear system (5)

has a unique solution [12].
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Table 1. Different choices of Radial Basis Functions.

RBF φ(r) > 0 p(x) m

cubic r3 aT · x + b 1
thin plate spline r2 log r aT · x + b 1
linear r b 0
multiquadric

p
(r2 + γ2) -

Gaussian exp(−γr2) -

2.1 The Radial Basis Algorithm (RBF)
Find initial set of n ≥ d+ 1 sample points x using experimental design.

Compute costly f(x) for initial set of n points, best point (xMin, fMin).

Use the n sampled points to build a smooth RBF interpolation model (surrogate model,
response surface model) as an approximation of the f(x) surface.

Iterate until fGoal, known goal for f(x), achieved, n > nMax, MaxCycle iteration cycles
with no progress or maximal CPU time used.

– Find minimum of RBF surface, sn(xsn) = min
x∈Ω

sn(x).

– In every iteration in sequence pick one of the N + 2 step choices.
1. Cycle step −1 (InfStep). Set target value f ∗

n = −∞, i.e. solve the global
problem

g∞n = min
x∈Ω

µn(x), (7)

where the coefficient µn(x) is an estimate of the new λ-coefficient if the trial x
is included in the RBF interpolation

2. Cycle step k = 0, 1, ..., N − 1 (Global Search). Define target value f ∗
n ∈

(−∞, sn(xsn)] as f∗n(k) = sn(xsn) − wk ·
(

max
i
f(xi)− sn(xsn)

)
, with wk =

(1− k/N)2 or wk = 1− k/N . Solve the global optimization problem

gn(xk
gn

) = min
x∈Ω

µn(x) [sn(x)− f ∗
n(k)]2 . (8)

3. Cycle step N (Local search).
If sn(xsn) < fMin − 10−6|fMin|, accept xsn as the new trial point.
Otherwise set f ∗n(k) = fMin − 10−2|fMin| and solve (8).

– Compute and validate new (x, f(x)), increase n.
– Update (xMin, fMin) and compute RBF surface.

2.2 Properties of the basic RBF algorithm
Gutmann had the view that the global optimum of the surface, xsn would be close to the
current best point xMin. However, as seen in practice, this is not case. In cycle step N , xsn

should give local convergence. If the point is far from xMin, this is not true. In rbfSolve a
local optimization solver (SNOPT or NPSOL) has been used, however in almost all cases it
has found the global minimum, not the closest local minimum.

Define the number of active variables α(x) as the number of coefficients in the point x that
has components close to the bounds in the box, i.e
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α(x) =
∑

i=1,...,d

{‖xi − xLi
‖ ≤ ε+ ‖xi − xUi

‖ ≤ ε}

If the target value f ∗
n is made sufficiently low, then α(x) = d, i.e. all components in the

global optimum are on a bound. If α(x) > 0 the point is on the boundary for at least one
component, and normally is useless for the RBF interpolation. It is difficult to find a suitable
f∗n for any problem. It might very well be the case that f ∗

n is too low, making α(x) > 0, and the
point is on the boundary for at least one component, The choice made in the RBF algorithm
is not robust. Solving the global optimization problem for a sequence of decreasing f ∗

n values
shows that in general, for sufficiently high values x is interior ( α(x) = 0). Decreasing f ∗

n

further will result in α(x) > 0. Finally the threshold whereα(x) = d is reached, and decreasing
f∗n more just results in the same point reached, with all components on the boundary. The
above suggests that an adaptive strategy should be tried. Important, using the measure α(x)
makes it possible to do adjustments in the algorithmic step without actually computing the
costly f(x).

For many problems, for some selection of points, no f ∗
n value that gives α(x) = 0 exists.

When things still work, adding a few points leads to f ∗
n values having α(x) = 0, i.e. the target

value strategy then works fine. An oscillating behavior is often noticed, some iterations have
α(x) = 0, some not. When the RBF interpolations do generate α(x) = 0 rather often, the
algorithm works well and is fast converging. However, the basic RBF algorithm is still not
working well if trying to achieve many digits of accuracy, local convergence properties need
improvement. We have therefor formulated a new adaptive RBF algorithm.

3. The Adaptive Radial Basis Algorithm (ARBF)
Find initial set of n ≥ d+ 1 sample points x using experimental design.
Compute costly f(x) for initial set of n points, best point (xMin, fMin).
Iterate until fGoal, known goal for f(x), achieved, n > nMax or maximal CPU time used.

– Solve global optimization problem finding minimum of RBF surface.
– Solve global optimization problem finding maximal distance from any point in the

feasible region to the closest sampled point.
– In every third iteration cycle select one the following three types of search steps:

1. Global Search Step (G-step)
2. Global-Local Search Step (GL-step)
3. Local Search Step (L-step)

– Compute and validate new (x, f(x)), increase n.
– Update (xMin, fMin) and compute RBF surface.

Save and return all information to enable warm start, after user evaluation.

3.1 Initial step in every iteration of ARBF
IS1. The global minimum on the RBF surface

sn(xGlob
sn

) = min
x∈Ω

sn(x) (9)

Given the previously evaluated points x1, x2, ..., xn, find the maximal distance from any
point in the box to the sampled points xi (maximin distance, Regis and Schoemaker [14]), i.e.

∆ = max
xL≤x≤xU

min
1≤j≤n

||x− xj||
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Solve this problem formulating the global non-convex optimization problem:
IS2. The maximal distance ∆ from any point in the feasible region Ω to the closest sample
point

min
x,∆

−∆

xL ≤ x ≤ xU

s/t 0 ≤ ∆ ≤ ∞
0 ≤ ||x− xi||2 −∆2 ≤ ∞, i = 1, ..., n.

(10)

3.2 The Global Search (G-step) in ARBF
To find a good point first a sequence of global optimization problems are solved. If this phase
fails, the global solution xGlob

sn
of the RBF surface is considered. If rejected, the point most

distance to all the sampled points, as well as to the boundary, is computed by solving a global
optimization problem.

G-step Phase 1. For a sequence of decreasing target values f ∗
nk

, solve the global optimization
problem

gn(xk
gn

) = min
x∈Ω

µn(x)
[
sn(x)− f∗nk

]2 (11)

giving the global minimum gn(xk
gn

) for each f ∗nk
. Find

f k̂
n = min

α(xk
gn

))=0
f∗nk

If f k̂
n is non-empty, pick the global minimum corresponding to this target value, x k̂

gn
, as the

G-step. Otherwise turn to G-step Phase 2. If α(xk
gn

)) = d during the search, there is no point
in decreasing f ∗nk

further, and the sequence is interrupted. If a minimum with α(xk
gn

)) = 0 is
found, a refined set of target values are tried in order to try to decrease the target values f ∗

nk

further.

G-step Phase 2. Select the global RBF solution xGlob
sn

if it is interior, with sufficiently low
value and sufficiently far from currently best point xMin. If α(xGlob

sn
) = 0, fMin − sn(xGlob

sn
) ≥

0.01max(1, fMin) and ‖xGlob
sn
−xMin‖ > 0.2∆ pick xGlob

sn
as the G-step point. Otherwise turn to

G-step Phase 3.

G-step Phase 3. Find the point which have the maximal distance to any sample point as well
as the boundary, solving the global optimization problem

δIP = min
x ∈ Ω, δ

−δ
s/t

xLi
≤ xi − δ/d , i = 1, ..., n.

xi + δ/d ≤ xUi
, i = 1, ..., n.

0 ≤ δ ≤ ∆
0 ≤ ||x− xi||2 − δ2 ≤ ∞ , i = 1, ..., n.

(12)

3.3 The Global-Local Search (GL-step) in ARBF
To find a good point first a sequence of global optimization problems are solved. If this phase
fails, the global solution xGlob

sn
of the RBF surface is considered. If rejected, the InfStep point

(f∗n = −∞) is used.
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GL-step Phase 1. For a sequence of decreasing target values f ∗
nk

, solve the global optimiza-
tion problem

gn(xk
gn

) = min
x∈Ω

µn(x)
[
sn(x)− f∗nk

]2 (13)

giving the global minimum gn(xk
gn

) for each f ∗nk
. Find all minima which satisfies α(xk

gn
) = 0,

and among these select the element

µk̂
n = max

{k: α(xk
gn

))=0}
µn(xk

gn
)

If µk̂
n is non-empty, pick the global minimum xk̂

gn
as the GL-step. Otherwise turn to GL-step

Phase 2. This choice most often gives a point among the higher up to median f ∗
nk

values
among the global solutions with α(xk

gn
)) = 0, i.e. a more local search than in G-step Phase 1,

where the lowest possible f ∗
nk

value was used.

GL-step Phase 2. Select the global RBF solution xGlob
sn

if it is interior, with a value lower than
fMin and not too close to the currently best point xMin

If α(xGlob
sn

) = 0, fMin− sn(xGlob
sn

) ≥ εsn max(1, fMin) and ‖xGlob
sn
−xMin‖ > 10−6∆, pick xGlob

sn

as the G-step point. εsn = 10−6 is currently used. Otherwise turn to G-step Phase 3. This point
is often rather close to xMin and help to improve local convergence.
GL-step Phase 3. Set f ∗n = −∞, i.e. solve the global optimization problem (7).

3.4 The Local Search (L-step) in ARBF
Case 1: sn(xGlob

sn
) < fMin − εsn |fMin|. The global minimum value of the RBF surface is

sufficiently lower than fMin. Try to find the local minimum on the RBF surface closest to the
currently best point xMin . Solve a sequence of local optimization problems with increasing
βk in the range [0.005, 0.20] until a local optimum is found.

sn(xLoc
sn

) = min
x∈Ω

sn(x)

s/t (10−4||xMin||)2 ≤ ||x− xMin||2 ≤ (βk∆)2.

(14)

For a local minimum to be accepted, the distance constraint must not be active. If no local
minimum is found, except with active distance constraints, the solution for βk = 0.05 is used.
Case 2: sn(xGlob

sn
) ≥ fMin − εsn |fMin|.

In this case the global minimum value of the RBF surface is very close to the currently best
function value found. Then there is a danger that the local solution is too close to xMin. Set
the target value f ∗

n = fMin − 0.1|fMin| and solve

gn(xLoc
gn

) = min
x∈Ω

µn(x) [sn(x)− f∗n(k)]2

s/t (10−4||xMin||)2 ≤ ||x− xMin||2 ≤ (0.1∆)2.

(15)

4. Test on Shekel problems with steep minima
Tests on number of function evaluations needed to reach the goal fGoal

fMin−fGoal

|fGoal| ≤ ε, with
ε = 10−3 and ε = 10−5 are shown in Table 2. The Shekel test problem has very steep minima,
see Figure 1. The initial experimental design used was the Ellipsoid method producing 15
points. The− sign indicates that the algorithm did not converge to the global minimum in 400
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function evaluations. For almost all the failures a local minimum was found. For the Shekel
5 problem, the number of G-step Phase 1 and GL-step Phase 1 that produced interior points
are shown (row OK in the table). Also shown is the iteration from where these steps never got
an interior point (row Iter in the table). Only very few iterations at the start actually produced
interior points, and the convergence is entirely dependent on if these steps produced good
enough points to find the steep global minima. The Results show that ARBFMIP is about
twice as fast rbfSolve and solves slightly more of the problems. ARBFMIP is also much better in
getting local convergence and achieving higher accuracy in the global minimum, as expected.

5. Conclusions
The global search with target values on the RBF surface often does not produce interior points.
The cause must be further investigated. If it is not possible to add, delete or change the RBF
interpolation or problem formulation in a way that produce interior points, then some other

0 2 4 6 8 10
−12

−10

−8

−6

−4

−2

0

x

F
un

ct
io

n 
V

al
ue

Shekel5

Shekel7

Shekel10

Figure 1. Plot of the Shekel 5, Shekel 7 and Shekel 10, functions along the line segment from (0, 0, 0, 0) to
(10, 10, 10, 10).

Table 2. Test of Shekel problems for rbfSolve and ARBFMIP

rand(’state’) ε 0 1 2 3 4 5 6 7 8 9 Mean Fail

Shekel 5 with 10−3 74 62 66 - 77 - - 87 54 - 70 4
ARBFMIP 10−5 84 72 90 - 89 - - 105 68 - 85 4
G,GL Phase 1 OK 7 7 6 4 5 6 5 6 5 5 5.6
G,GL bad from Iter 20 18 11 11 8 60 16 12 23 8 18.7
rbfSolve 10−3 153 153 - - 171 - - 141 129 - 149 5
rbfSolve 10−5 - 195 - - - - - 165 171 - 177 7

Shekel 7 with 10−3 - 66 69 78 78 - 66 63 65 - 69 3
ARBFMIP 10−5 - 87 96 89 87 - 72 84 74 - 84 3
rbfSolve 10−3 135 123 123 - 123 129 135 141 - 123 129 2
rbfSolve 10−5 - - - - - 171 171 151 - 164 7

Shekel 10 with 10−3 66 - 66 66 72 90 72 75 - 72 72 2
ARBFMIP 10−5 75 - 72 78 90 96 80 89 - 87 87 2
rbfSolve 10−3 123 123 177 117 117 147 111 159 - 123 133 1
rbfSolve 10−5 159 147 - 171 - - 153 195 - 141 161 4
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surrogate model, e.g. Kriging models, is needed in such iteration steps. Checking for an inte-
rior point makes it possible to detect the problem and do something else before computing the
costly f(x). The new ARBF algorithm is very efficient when the RBF interpolation has global
minima that most often are interior points. It has better local convergence properties than
the original RBF algorithm. The experimental version of ARBFMIP takes about 2-4 seconds
per iteration for up to 200 function values, and 3-7 seconds per iteration if doing 400 function
values. The final version should be fast enough for practical use. The use of radial basis in-
terpolation methods for costly (expensive) mixed-integer nonlinear optimization problems is
promising.
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Abstract Global optimisation problems arise daily in almost all operational and managerial phases of a space
mission. Large computing power is often required to solve these kind of problems, together with
the development of algorithms tuned to the particular problem treated. In this paper a generic dis-
tributed computing environment built for the internal European Space Agency network but adapt-
able to generic networks is introduced and used to distribute different global optimisation tech-
niques. Differential Evolution, Particle Swarm Optimisation and Monte Carlo Method have been
distributed so far and tested upon different problems to show the functionality of the environment.
Support for both simple and multi-objective optimisation has been implemented, and the possibility
of implementing other global optimisation techniques and integrating them into one single global
optimiser has been left open. The final aim is that of obtaining a distributed global multi-objective
optimiser that is able to ‘learn’ and apply the best combination of the available solving strategies
when tackling a generic “black-box" problem.

Keywords: Distributed computing, idle-processing, global optimisation, differential evolution, particle swarm
optimisation, Monte Carlo methods.

1. The Distributed Computing Environment
Our distributed computing architecture follows the scheme of a generic server-client model
[10]: it consists of a central computer (server) and a number of user computers (clients). The
architecture is divided into three layers on both the server and the client side (Figure 1). This
promotes the modular development of the whole system: for example, the computation layer
of the clients (involving the optimisation solver modules) can be developed and maintained
independently of the other client layers.

The main tasks of the server are the following: pre-processing the whole computing (op-
timisation) problem by disassembling it into subproblems; distributing sets of subproblems
among the clients; and generating the final result of the computation by assembling solutions
received from the clients.

On the opposite side, the client computers ask for subproblems, solve them and send back
the results to the server. As with many current distributed applications (employing com-
mon user desktop machines), our approach is also based on the utilisation of the idle time of
the clients. More precisely, a client only asks for subproblems when there is no user activity
detected either on the mouse or on the keyboard. In our environment we hide the client com-
putations behind a screen saver, similarly to the most widely-known distributed computing
project, the SETI@home project (http://setiathome.ssl.berkeley.edu).

As shown in Figure 1, the basic functionalities of the individual layers are the same for
both the client and the server. The uppermost layers are visible to the client users and for the
server administrator, respectively. These layers contain the screen saver (client) and a server
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message management

server computations

message management

client computations

TCP/IP and physical network

screensaver progress monitoring UI

serverclient

Figure 1. Architecture of the distributed environment.

progress-monitoring user interface (displaying the actual state of the computation process),
on the server.

The top-level layers communicate with the real computation layers that are performing the
numerical tasks. The computation layers are responsible for disassembling, distributing and
assembling the whole computation task (server), and evaluating the subproblems (clients).

The lowermost, so-called message management layers maintain connection with the com-
putation layers, and send and receive the problem and solution ‘packages’ between the client
and the server. This service was implemented by network sockets using the Windows Sockets
version 2 Application Programming Interface [12].

The environment was programmed in Visual C++, strongly utilising the advantages of the
object-oriented language. The introduction of the detailed architecture is a subject of sepa-
rate, forthcoming publications (due to its extent); here we restrict ourselves to giving a short
overview on the key concepts and building blocks.

The environment provides several data storage classes to program the various solvers in an
easy way. The basic data type is called SOL PAIR; it is the representation of an (x, f(x)) ⊂
Rn×Rm pair. Both components are implemented as a variable size vector, which allows us to
deal with single and multi-objective optimisation problems, constraint satisfaction problems
(with no objective function), and virtually every kind of distributable (even not necessarily
optimisation!) problems. For population-based solvers, it was particularly useful to have a
POPULATION storage class, which is simply a set (list) of SOL PAIRs. The basic storage types
used during the client-server communication are called ‘packages’: the most important one is
a base class called PS PACKAGE, which is used to derive the specific problem and solution
packages for the particular solvers. A package typically involves a data storage object (such
as a POPULATION) together with instruction (server) and solution (client) information. All
the above classes have member functions which transform the data to and from a stream of
characters. The latter data type is used by the message management routines to transfer the
data on the network.

The server computation layer is based on a C++ abstract class called SERVER. The particular
servers (implementing various strategies to solve the whole problem) are derived from this
class. On the other hand, each client computation layer contains the set of available solvers.
The solvers are derived from an abstract SOLVER class. This means that the environment can
be arbitrarily extended by adding server and solver classes. Moreover, since each problem
package (sent out to a client) is always solved by one specified solver, various server strategies
can be tested without changing the client application. It is very important that the solution
packages should always be kept in a consistent state by the solver: if the computation is
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interrupted by a user action, a fraction (but still useful part) of the whole solution is sent back
to the server.

The optimisation problems are implemented as instances of an OPT PROB class: in prac-
tice, this means that for every particular optimisation problem the user have to provide the
following routines: function evaluation at a given point, random generation of a feasible point,
feasibility checking of a given point (and its substitution with a feasible point in case of infeasi-
bility), and a routine implementing a preference relation between every two feasible solutions.

2. The global optimisation algorithms
In the present version of the software, there are three different optimisation solvers available:

1. Monte–Carlo search (MC, [7]). In this method, the server requests the clients to create
a certain number of independent random samples from the feasible search space (using
uniform distribution in each variable) and sends the most promising solution back to
the server. The server maintains a set of the best solutions received (Pareto optimality
criteria are used in the case of multi-objective optimisation problems).

2. Differential Evolution (DE). This novel optimisation algorithm is based on updating
each element of a set (population) of feasible solutions by using the difference of two
other randomly selected population elements. The method is described in detail in [9].
In our environment the DE server updates a fixed-size main population, and each prob-
lem package consists of a request to evolve a randomly-selected subpopulation for a
specified number of iterations. The main population is then updated by the returned
population with respect to the preference relation of the particular problem.

3. Particle Swarm optimisation (PSO). This is another population-based algorithm inspired
by the social behaviour of bird or fish flockings [5]. In a PSO method, each element
(particle) evolves by taking the combination of the current global best and individual
best solutions into account. In the proposed distributed version of the PSO method, the
server updates a main population and sends request to the clients to evolve a random
subpopulation (in the same way as for the DE algorithm). This distributed variant shows
similarities with the Multi-Swarm optimisation techniques [1] developed as a possible
improvement of the PSO algorithm.

3. The optimisation problems
Originally, our method was designed to deal with bound-constrained optimisation problems:

minf(x) (1)

subject to x ∈ D, (2)
where D = [Li, Ui], Li, Ui ∈ R, and the objective function f : Rn → Rm is continuous in
D. Nevertheless, the currently implemented solvers allow us to handle a certain group of
inequality-constrained problems as well: namely, optimisation problems which, in addition
to (2), have further inequality constraints in the form of

gi,1(x1, . . . , xi−1) ≤ xi ≤ gi,2(x1, . . . , xi−1), i = 2, . . . , n, (3)

where the exact upper bound of gi,1 and the exact lower bound of gi,2 can be determined in
a machine computable form (e.g. as an expression or a subroutine) for all xj ∈ [Lj, Uj ], j =
1, . . . , i − 1. This property allows us to replace a infeasible solution with a ‘close’ feasible so-
lution, e.g. one located on the boundary of the feasible set. (Note, that the radio occultation
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problem below can be formalized as a constrained problem in the above form: when generat-
ing feasible satellite orbits, the orbital elements eccentricity and orbital period are bounded by a
function of the semi-major axis.)

We performed the numerical tests on the following hard test problems:

1. SAT: The radio-occultation problem described in [4] in detail. This is an optimisation
problem of satellite constellations with a complex objective function structure. The op-
timisation has a dual objective: maximising the number of satellite occultations while
distributing the occultations as uniformly as possible on the latitudes. This last objec-
tive is described by the standard deviation of the number of occultations occurring at
different latitude stripes.

2. RB: The generalisation of the Rosenbrock global optimisation test function [8] given by
minimising

f(x) =

n−1∑

i=1

(100(xi+1 − x2
i )

2 + (xi − 1)2). (4)

We have used n = 50 and xi ∈ [−5.12, 5.12], i = 1, . . . , n.

3. LJ: A potential energy minimisation problem for the Lennard-Jones atom cluster for d =
38 atoms [11]. The potential is given by

f(p) =
∑

1≤i<j≤d

4((1/rij)
12 − (1/rij)

6), (5)

where pi = (xi, yi, zi), i = 1, . . . , d is the location of the ith atom, and rij is the Euclidean
distance between atoms i and j. We have used x1 = y1 = z1 = y2 = z2 = z3 = 0 and
xi ∈ [0, 6], yi, zi ∈ [−3, 3] for all other variables. (Thus, (5) with d = 38 corresponds to
an n = 108–dimensional problem.) This problem has important practical generalisations
and it serves as a good test case for parallel and distributed solvers. The chosen problem
instance is perhaps the most challenging one in the range of 1 ≤ n ≤ 50. (Note that we
did not intend to improve the best existing solution – this would definitely require far
more sophisticated algorithms and problem formulation.)

4. Preliminary test results
We solved the above problems with each solver 10 times. The solver parameters related to the
distributed implementations were the following:

- Population-related settings of the DE and PSO solvers:

- The size of the main population was set to MP = 5n for all problems.
- The size of the subpopulations was set to SP = MP/5 for problems SAT and RB,

and to SP = MP/10 for problem LJ. The reason for the latter setting was that we
had to limit the size of problem and solution packages to about 30Kbytes in order
to keep the network communication traffic within certain bounds.

- The allowed number of iterations for evolving the subpopulations was chosen to
be IT = 2000 for problems RB and LJ, and to IT = 200 for problem SAT.

- In the case of the MC solver, the allowed number of random sample generation per
package was IT · SP .

- For all solvers, the number of function evaluations was limited to 240 000, 5 000 000, and
5 400 000 for problems SAT, RB, and LJ, respectively.
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The further control parameters of the DE and PSO algorithms were the default values taken
from the implementations [2] and [3], respectively. For DE, we employed the algorithm vari-
ant cited as ‘DE1’ in the above reference.

The computations were performed during normal working days at the European Space
Research and Technology Centre (ESTEC). The client application (hidden behind the screen
saver) was installed on nine Windows–XP desktops. The sum of the CPU frequencies of the
computers was approximately 15.1 GHz, which corresponds to a double-precision theoretical
peak performance of about 15.1 Gflops. The results are summarized in Table 1 with respect to
the best achieved objective function values. To measure the efficiency for the multi-objective
SAT problem, we used a further criterion ( [4]) in order to compare two solutions. (The vari-
ance of the individual test results was small for all strategies, thus, the displayed values can
serve as a valid base of a comparison.) The last line of the table shows the previously known
best solutions. These values come from [4] for SAT, and from [11] for LJ, respectively. The
value given for RB is the known global minimum.

Table 1. The best solutions found during the test runs

solver SAT RB LJ

MC (1 134, 6.20) 1.574e+5 -10.16
DE (2 722, 4.15) 24.98 -25.67
PSO (2 174, 4.78) 27.20 -27.19

best known (1 535, 7.78) 0 -173.93

Summarising the results, we can state that on the SAT and RB problems the DE algorithm
outperformed the other two methods, while on the LJ problem the PSO method worked best.
As we expected, these more sophisticated methods behaved far more efficiently than the MC
search. In particular, on the SAT problem the Differential Evolution resulted in a big improve-
ment on the previously known best solution (obtained by Monte–Carlo search, [4]). Our main
future task is to find suitable distributed generalisations of these (and other) solvers in order
to reach further performance improvements.

5. Conclusion and future research
Besides our future plans to extend the system with further global optimisation methods, the
most promising way of improving the performance of the distributed environment is to em-
ploy the available solvers in an intelligent, co-operative way. This idea requires the com-
parison of the behaviour of the different solvers. We plan to develop and investigate a set
of heuristics to direct the allocation of the packages and the selection of solvers. One such
heuristic indicator can be the average (or expected) effort needed to improve the best existing
solution by a unit amount, while using a given number of function evaluations and solver
strategy. This indicator can be continuously updated for each solver in running time, and can
be used as the basis measurement for further decisions.
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Abstract We report on the theory and implementation of a global optimization solver for general constrained
nonlinear programming problems based on Variable Neighbourhood Search, and we give compara-
tive computational results on several instances of continuous nonconvex problems. Compared to an
efficient multi-start global optimization solver, the VNS solver proposed appears to be significantly
faster.
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1. Introduction
This paper describes a Variable Neighbourhood Search (VNS) solver for the global solution of
continuous constrained nonlinear programming problems (NLPs) in general form:

min
x∈Rn

f(x)

s.t. l ≤ g(x) ≤ u
xL ≤ x ≤ xU .





(1)

In the above formulation, x are the problem variables. f : Rn → R is a possibly nonlinear func-
tion, g : Rn → Rm is a vector of m possibly nonlinear functions, l, u ∈ Rm are the constraint
bounds (which may be set to ±∞ as needed), and xL, xU ∈ Rn are the variable bounds.

Previous work on Variable Neighbourhood Search applied to global optimization was re-
stricted to box-constrained NLPs (m = 0 in the above formulation) [19]. To the best of our
knowledge, a VNS solver for constrained global optimization targeted at problems in general
form (1) has not been implemented yet. It is worth noting, however, that the box-constrained
VNS solver described in [19] is currently being tested on a reformulation of constrained prob-
lems based on penalization of explicit constraints.

2. The Variable Neighbourhood Search algorithm
Variable Neighbourhood Search (VNS) is a relatively recent metaheuristic which relies on iter-
atively exploring neighbourhoods of growing size to identify better local optima [6–8]. More
precisely, VNS escapes from the current local minimum x∗ by initiating other local searches
from starting points sampled from a neighbourhood of x∗ which increases its size iteratively
until a local minimum better than the current one is found. These steps are repeated until a
given termination condition is met.
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VNS has been applied to a wide variety of problems both from combinatorial and contin-
uous optimization. Its early applications to continuous problems were based on a particular
problem structure. In the continuous location-allocation problem the neighbourhoods are de-
fined according to the meaning of problem variables (assignments of facilities to custmers, po-
sitioning of yet unassigned facilities and so on) [3]. In bilinearly constrained bilinear problems
the neighbourhoods are defined in terms of the applicability of the successive linear program-
ming approach, where the problem variables can be partitioned so that fixing the variables in
either set yields a linear problem; more precisely, the neighbourhoods of size k are defined as
the vertices of the LP polyhedra that are k pivots away from the current vertex [6]. However,
none of the early applications of VNS to continuous problems was ever designed for solving
problems in general form (1).

The first VNS algorithm targeted at problems with fewer structural requirements, namely,
box-constrained NLPs, was given in [19] (the paper focuses on a particular class of box-
constrained NLPs, but the proposed approach is general). Since the problem is assumed to
be box-constrained, the neighbourhoods arise naturally as hyperrectangles of growing size
centered at the current local minimum x∗.

Algorithm 4 The VNS algorithm.
Input: maximum number of neighbourhoods kmax, number of local searches in each neigh-
bourhood L.
loop

Set k ← 1, pick random point x̃, perform a local search to find a local minimum x∗. (†)
while k ≤ kmax do

Consider a neighbourhood Nk(x
∗) of x∗ such that ∀ k > 1 (Nk(x

∗) ⊃ Nk−1(x
∗)).

for i = 1 to L do
Sample a random point x̃ from Nk(x

∗).
Perform a local search from x̃ to find a local minimum x′. (†)
If x′ is better than x∗, set x∗ ← x′, k ← 0 and exit the FOR loop.

end for
Set k ← k + 1.
Verify termination condition; if true, exit.

end while
end loop

In Algorithm 4, the termination condition can be based on CPU time, number of non-improving
steps and so on.

We implemented Algorithm 4 so that steps (†), i.e. the local search phases, are carried out
by an SQP algorithm which is capable of locally solving constrained NLPs.

The definition of the neighourhoods may vary. Consider hyperrectanglesHk(x), centered at
x and proportional to the hyperrectangle xL ≤ x ≤ xU given by the original variable bounds,
such that Hk−1(x) ⊂ Hk(x) for each k ≤ kmax. Letting Nk(x) = Hk(x), sampling becomes
extremely easy. There is a danger, though, that sampled points will actually be insideHk−1(x),
which had already been explored at the previous iteration. Even though the likelihood of this
situation arising lessens as the dimension of the Euclidean space increases (since the higher
the dimension, the higher the ratio of the volume of Hk(x) to the volume of Hk−1(x)), we
would like to make sure that the sampled points are outside Hk−1(x).

Naturally, taking Nk(x) = Hk(x)\Hk−1(x) solves this particular difficulty. Sampling in
Hk(x)\Hk−1(x) is not as straightforward as sampling in Hk(x), however. Let τ be the affine
map sending the hyperrectangle xL ≤ x ≤ xU into the unit L∞ ball (i.e., hypercube) B cen-
tered at 0. Let rk = k

kmax be the radii of the balls Bk (centered at 0) such that τ(Hk(x)) = Bk for
each k ≤ kmax. In order to sample a random vector x̃ in Bk\Bk−1 we proceed as follows:
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1. sample a random direction vector d ∈ Rn;

2. normalize d (i.e., set d← d
||d||∞ );

3. sample a random radius r ∈ [rk−1, rk] yielding a uniformly distributed point in the shell;

4. let x̃ = rd.

Finally, of course, we set x̃← τ−1(x̃). With this construction, we obtain x̃ ∈ Hk(x)\Hk−1(x).

3. The implementation
The search space is defined as the hyperrectangle given by the set of variable ranges xL ≤ x ≤
xU . At first we pick a random point x̃ in the search space, we start a local search and we store
the local optimum x∗. Then, until k does not exceed a pre-set kmax, we iteratively select new
starting points x̃ in an increasingly larger neighbourhoodNk(x

∗) and start new local searches
from x̃ leading to local optima x′. As soon as we find a local optimum x′ better than x∗, we
update x∗ = x′, re-set k = 1 and repeat. Otherwise the algorithm terminates.

For each k ≤ kmax we consider hyperrectangles Hk(x
∗) proportional to xL ≤ x ≤ xU ,

centered at x∗, whose sides have been scaled by k
kmax

. More formally, let Hk(x
∗) be the hyper-

rectangle yL ≤ x ≤ yU where, for all i ≤ n,

yL
i = x∗i −

k

kmax
(x∗i − xL

i )

yU
i = x∗i +

k

kmax
(xU

i − x∗i ).

This construction forms a set of hyperrectangular “shells” centered at x∗ and proportional
to xL ≤ x ≤ xU . As has been mentioned above, we define each neighbourhood Nk(x

∗) as
Hk(x

∗)\Hk−1(x
∗).

The main solver parameters control: the minimum neighbourhood size, the number of sam-
pling points and local searches started in each neighbourhood (L in Algorithm 4), an ε toler-
ance to allow moving to a new x∗ only when the improvement was sufficiently high, and the
maximum CPU time allowed for the search.

The solver was coded within the ooOPS optimization software framework [17]. ooOPS
allows global optimization solvers to be deployed quickly and efficiently by offering an API
which is very rich in functionality. Solvers can call each other as black-box procedures; the
solver library is still modest but growing, including SNOPT [5], the NAG library NLP solver
[21], lp solve as local solvers and sBB [12, 13], SobolOpt [10] and the VNS solver described
in this paper as global solvers; a rich symbolic computation library is provided, whose ca-
pabilities extend to the symbolic computation of derivatives and automatic simplification of
expressions, as well as to generating a convex relaxation of the problem at hand.

4. Computational results
In Table 1 we have collected a number of test instances of various constrained NLPs (small,
medium and large sized, ordered by number of problem variables) and reported solution
times of the VNS solver described in this paper versus those obtained with the SobolOpt solver
[10], a Multi Level Single Linkage algorithm based on low-discrepancy Sobol’ sequences sam-
pling. In both cases, the local NLP solver used is SNOPT [5]. Both solvers managed to locate
the global optima in all test instances. The instances were solved on a Pentium IV 2.66MHz
CPU with 1GB RAM, running Linux. All parameters were set to their default values. kmax was
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set to 10 for most of the test instances, apart from the largest ones (the last four in Table 1),
where it was set to 50.

The griewank-2 instance is a modified Griewank function described in [18]. sixhump is
a classic test function for global optimization algorithm. sntoy is the “toy problem” found
in the SNOPT documentation [5]. bilinear-eg3 was taken from [14]: it is a MINLP with 1
binary variable, reformulated to continuous subject to x2 = x. haverly, ben-tal4, example4
and foulds3 are instances of bilinear multi-quality blending problems arising from the oil
industry. kissing-24 4 solves the Kissing Number problem in 4 dimensions. lavor50 and
more4 are instances from the Molecular Distance Geometry Problem; although more4 has more
atoms and nonlinear terms, the particular way in which the instance lavor4 was generated
makes it harder to solve.

Instance From N C T VNS SobolOpt

griewank-2 [18] (Test function) 2 0 4 0.005∗ 1.03
sixhump [22] (Classic test function) 2 0 6 0.006 0.001∗

sntoy [5] (SNOPT test problem) 4 3 5 7.01 2.64∗

bilinear-eg3 [14] (MINLP test problem) 6 5 15 0.09 0.03∗

haverly [9] (Haverly’s pooling problem) 9 8 6 0.01∗ 0.04
ben-tal4 [2] (Blending problem) 10 8 6 0.01∗ 0.44
example4 [1] (Blending problem) 26 35 48 0.62∗ 1.51

kissing-24 4 [16] (Kissing Number problem) 97 300 1200 51.92∗ 213.70
lavor50 [11] (Molecular conformation) 150 0 16932 707.15∗ 3153.02
foulds3 [4] (Blending problem) 168 48 136 0.46∗ 12.65
more4 [20] (Molecular conformation) 192 0 45288 418.818∗ 2903.38

Table 1. Computational results comparing the VNS with the SobolOpt solvers in ooOPS. User CPU timings are
in seconds. Values marked with ∗ denote the best timings.

5. Conclusion
We presented a new global optimization solver for constrained NLPs based on the VNS al-
gorithm. The computational comparison with an efficient Multi-Level Single Linkage (MLSL)
algorithm called SobolOpt seems to show that in general VNS performs better than MLSL. Fu-
ture work will be two-fold: on one hand, another VNS global solver based on box-constrained
reformulation of constrained NLPs based on penalization of explicit constraints is being tested
so that more relevant comparative computational data can be gathered. On the other hand,
we plan to take into account the explicit constraint structure of the problem even in the global
phase, and not only in the local phase as is currently the case. The latter development should
be beneficial particularly for those problems for which the local solver has trouble finding a
feasible starting point.
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[8] P. Hansen and N. Mladenović. Variable neighbourhood search. In F.W. Glover and G.A. Kochenberger,
editors, Handbook of Metaheuristics, Dordrecht, 2003. Kluwer.

[9] C.A. Haverly. Studies of the behaviour of recursion for the pooling problem. ACM SIGMAP Bulletin, 25:19–
28, 1978.

[10] S. Kucherenko and Yu. Sytsko. Application of deterministic low-discrepancy sequences to nonlinear global
optimization problems. Computational Optimization and Applications, 30(3):297–318, 2004.

[11] C. Lavor. On generating instances for the molecular distance geometry problem. In Liberti and Maculan
[15].

[12] L. Liberti. Reformulation and Convex Relaxation Techniques for Global Optimization. PhD thesis, Imperial College
London, UK, March 2004.

[13] L. Liberti. Writing global optimization software. In Liberti and Maculan [15].
[14] L. Liberti. Linearity embedded in nonconvex programs. Journal of Global Optimization, (to appear) 2004.
[15] L. Liberti and N. Maculan, editors. Global Optimization: from Theory to Implementation. Springer, Berlin, (to

appear).
[16] L. Liberti, N. Maculan, and S. Kucherenko. The kissing number problem: a new result from global opti-

mization. In L. Liberti and F. Maffioli, editors, CTW04 Workshop on Graphs and Combinatorial Optimization,
volume 17 of Electronic Notes in Discrete Mathematics, pages 203–207, Amsterdam, 2004. Elsevier.

[17] L. Liberti, P. Tsiakis, B. Keeping, and C.C. Pantelides. ooOPS. Centre for Process Systems Engineering,
Chemical Engineering Department, Imperial College, London, UK, January 2001.

[18] M. Locatelli. A note on the griewank test function. Journal of Global Optimization, 25:169–174, 2003.
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Abstract In this paper we introduce a procedure with polynomial complexity for solving the set-covering-
based p-center problem that is inspired from BsearchEx (Elloumi et al., 2004). We present our new
formulation (PC-SC2) and our new efficient exact procedure, slim bisecting search, SBsearch. Fur-
thermore, we show how to simplify the continuous problem with the same distance matrix and
increasing p value. The computational results for SBsearch are compared with other existing proce-
dures.
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lem.

1. Introduction
Locating fixed facilities throughout the logistics network is an important decision problem
that gives form, structure and shape to the entire logistics system. Location decisions involve
determining the number, location and size of the facilities to be used. Facility location models
can be classified under four main topics p-center problem, p-median problem, location set
covering problem, maximum covering location problem, see Owen and Daskin (1998). The
location of emergency service facilities such as hospitals or fire stations is frequently modeled
by the p-center problem. The p-center problem is NP-hard; see Kariv and Hakimi (1979) and
Masuyama et al. (1981).

Let N be the number of clients, M be the number of potential sites or facilities, and dij be
the distance from client i to facility j. The p-center problem consists of locating p facilities and
assigning each client to its closest facility so as to minimize the maximum distance between
a client and the facility it is assigned to. Many authors consider the particular case where
the facilities are identical to the clients, i.e., N = M , and distances are symmetric and satisfy
triangle inequalities. We call this particular case the symmetric p-center problem.

Main mathematical location methods may be categorized as heuristic and exact. Exact
methods refer to those procedures with the capability to guarantee either a mathematically
globe optimum solution to the location problem or at least a solution of known accuracy; see
Drezner (1984), Handler (1990) and Daskin (1995). In many respects, this is an ideal approach
to the location problem; however, the approach can result in long computer running times,
huge memory requirements, and a compromised problem definition when applied to practi-
cal problems.

In this paper we introduce a procedure with polynomial complexity for solving the set-
covering-based p-center problem that is inspired from BsearchEx (Elloumi et al., 2004). In Sec-
tion 2, we present our new formulation (PC-SC2) and our new efficient exact procedure, slim
bisecting search, SBsearch. Furthermore, we show how to simplify the continuous problem
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with the same distance matrix and increasing p value. In Section 3, we present computational
results for SBsearch and make comparison with other past research. Conclusions of this ap-
proach are outlined in Section 4.

2. The Formulation PC-SC2 and the Efficient Exact Procedure
The formulation (PC-SC) due to BsearchEx (Elloumi et al., 2004) to solve the p-center problem,
which is based on its well-known relation to the set-covering problem, by using a polynomial
algorithm for computing a tighter lower bound and then solving the exact solution method.
In the paper, the authors show that its linear programming relaxation provides a lower bound
tighter than the classical p-center (PC) formulation, the lower bound can be computed on
polynomial time, their method outperforms the running time of other recent exact methods by
an order of magnitude, and it is the first one to solve large instances of size up toN = M=1817.

Though the formulation (PC-SC) performs better than does formulation (PC) for given val-
ues of the lower bound and the upper bound, it is hard to solve the large scale problem by
directly solving (PC-SC) within reasonable time limit. The authors proposed two algorithms
to obtain the optimal solution, with complex programming procedure, complicated heuris-
tics, and difficult concept in linear programming such as reduced cost. In this paper, we
introduce a modified formulation (PC-SC2) and an easier repeating procedure, SBsearch to
transform a large scale problem into several small scale problems, and then obtain the op-
timal solution within reasonable time limit. Let Dmin = D0 < D1 < D2 < . . .
< DK−1 < DK = Dmax be the sorted different values in the distance matrix. The for-
mulation (PC-SC2) is the following:

(PC-SC2)

min zk (1)

s.t.

M∑

j=1

yj = p; (2)

zk +
∑

j:dij<Dk

yj ≥ 1, i = 1, 2, ..., N ; (3)

zk ∈ {0 , 1} ; (4)
yj ∈ {0 , 1} , j = 1, 2, ...,M (5)

where yj and zk are binary decision variables. Let the superscript “*” denotes the optimal
solution of the decision variable. y∗j =1 if and only if facility j is open, and zk∗=0 only if it is
possible to choose p facilities and cover all the clients i within the radius Dk−1. Constraint (2)
limits the number of open facilities to p; constraints (3) mean that, for a given k, zk∗=0, if and
only if all clients can be served at a distance strictly lower than Dk.

In the optimal solution of (PC-SC2), note that zk∗= 0 implies zk+1 = zk+2 = . . . = zK = 0. Sim-
ilarly, zk = 1 implies zk−1 = zk−2 = . . . = z1 =1. Since zk∗= 1 and z(k+1)∗= 0 implies the optimal
min-max value ∆∗

p is the exact solution of the p-center problem, our procedure, based on the
bisecting search method, can be considered solving a series of integer linear programming
formulation (PC-SC2), at most O(log2(MN)) integer linear programs. Using the following p-
SBsearch procedure, one would obtain the optimal solution for p-center problem, ∆∗

p which
is equal to the L∗

p largest distance of the series D0, . . . , DK . DL and DU are respectively the
lower and upper bounds for searching the optimal solution in each iteration.

Step 1 is using bisecting search method. Step 2 is performing the (PC-SC2) to obtain the
preliminary optimal solution zk. Step 3 is performed to check the p-center problem optimality
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of the current solution zk. Until reaching the optimality, we continue to solve (PC-SC2) by
updating the upper bound DU and the lower bound DL.

p-SBsearch
Initialization: given p, D0, . . . ,DK , set L = 0, U = K and ∆∗

p = DU

Step 1. k=b(L+U)/2c.
Step 2. Solving (PC-SC2) with Dk to obtain the optimal solution zk∗.
Step 3. If zk∗=1, then
Step 3.1. If zk+1=0, then STOP, set ∆∗

p = DL, L∗
p = L and U ∗

p = U else, let L = k, goto step 1.
If zk=0, then
Step 3.2. If zk−1=0, then STOP, set ∆∗

p = DL, L∗
p = L and U ∗

p = U , else, let U = k, goto step 1.

3. Computational Results for p-SBsearch
The procedure was implemented with the code written by C++ and the MIP solver of CPLEX
7.1. We use a notebook with 512 MB of RAM and Intel P-M 1.30 GHz of CPU. The time limit
of CPLEX is set to 3600 seconds, so the solution of sub-problem stops if no integer solution is
found after one hour of CPU time. The results of the comparison on 40 OR-Lib (Beasley 1990)
p-median instances are given in Table 1. The first three columns characterize the instance, and
the optimal radius is in column 4. Columns 5, 6 and 7 are quoted from Elloumi et al. (2004).
Column 8 gives the CPU time of our procedure. Even if it is not straightforward to compare
CPU times on different machines, we can show the maximum and the average CPU time as
indication in Table 1.

Table 2 gives the results for TSP-Lib (Reinelt, 1991) instances and makes comparison of
our procedure with Elloumi et al. (2004). The first three columns characterize the instance.
Columns 4 through 8 give the results of algorithm Bsearch and BsearchEx (2004). Columns LB∗

and UB∗ give the lower bound and upper bound obtained by Bsearch, and Column cpu1 is
the CPU time devoted to Bsearch. Column Opt gives the optimal solution or the best found
solution obtained by BsearchEx, and Column cpu2 is the CPU time devoted to BsearchEx.

Columns 9 through 12 give the results of our procedure. There is tradeoff between solution
time and the preciseness of solution in large scale problem. Based on the updating of max
and min of out procedure, we could set the bound tolerance in advance to obtain a narrow
solution bound in shorter CPU time. If the relative bound tolerance (Dmax − Dmin)/Dmin

does not exceed 5% for any sub-problem, we stop the procedure and record the current bound.
Column 5% Bound gives the results of 5% bound tolerance, and Column cpu is the CPU time
of 5% bound tolerance. Column Opt gives the results of our procedure, and Column cpu2 is
the CPU time of our p-SBsearch procedure. If the optimal solution is not reached in an hour,
set zk = 1 and L = k to solve the next sub-problem. When this happens we are no longer sure
that our solution is optimal, and then we give the best solved bound in Column Opt.

4. Conclusion
In this paper, we introduced a new efficient exact procedure to obtain the globe optimization
of the set-covering-based p-center problems, which have been proved better than the classi-
cal formulation (PC), to solve the large scale problem with the simple repeating procedure.
We could maintain the globe optimality in reasonable time limit and without performing the
complex algorithm of Bsearch and BsearchEx.

Moreover, upon the proposed bisecting search method, we introduce the concept of simpli-
fication to the continuous problem with the same distance matrix and increasing p value. The
global optimal solution to the original problem still obtainable as the number of sub-problems
is decreased and the total CPU time is shortened; simultaneously.
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Table 1. Results of 40 OR-Lib instances

Instance N = M p Opt Total CPU Time in seconds
Daskin Ilhan et al. Elloumi et al. p-SBsearch

Pmed1 100 5 127 5.8 2.1 0.9 0.2
Pmed2 100 10 98 2.7 0.9 0.2 0.1
Pmed3 100 10 93 2.2 0.8 0.1 0.1
Pmed4 100 20 74 2.4 0.6 0.1 0.1
Pmed5 100 33 48 0.2 0.6 0.1 0.1
Pmed6 200 5 84 14.8 6.1 1.1 0.6
Pmed7 200 10 64 9.8 2.7 0.5 0.3
Pmed8 200 20 55 10.8 1.9 0.4 0.4
Pmed9 200 40 37 3.6 1.7 0.1 0.3
Pmed10 200 67 20 3.9 1.4 0.3 0.1
Pmed11 300 5 59 17.1 9.1 2.1 0.9
Pmed12 300 10 51 20.3 8.2 1.3 1.0
Pmed13 300 30 36 9.2 4.2 0.8 0.9
Pmed14 300 60 26 9.3 3.4 0.9 0.5
Pmed15 300 100 18 4.8 2.7 1.0 0.3
Pmed16 400 5 47 35.1 13.9 1.6 1.4
Pmed17 400 10 39 39.2 13.4 2.1 2.0
Pmed18 400 40 28 16.6 19.4 1.4 1.4
Pmed19 400 80 18 6.9 4.9 0.8 0.5
Pmed20 400 133 13 8.9 4.1 1.8 0.4
Pmed21 500 5 40 87.0 42.3 5.2 2.4
Pmed22 500 10 38 38.6 130.5 11.2 6.6
Pmed23 500 50 22 211.0 35.8 3.3 2.3
Pmed24 500 100 15 9.9 7.8 4.5 1.2
Pmed25 500 167 11 6.3 7.1 2.7 0.8
Pmed26 600 5 38 93.9 121.7 14.9 3.5
Pmed27 600 10 32 87.2 73.5 8.2 4.5
Pmed28 600 60 18 24.4 18.2 2.1 3.3
Pmed29 600 120 13 23.6 10.2 5.1 1.6
Pmed30 600 200 9 8.6 10.0 5.4 1.1
Pmed31 700 5 30 191.1 108.2 8.1 4.4
Pmed32 700 10 29 1402.5 460.3 58.4 7.2
Pmed33 700 70 15 39.7 32.4 7.4 7.5
Pmed34 700 140 11 24.9 15.6 6.5 1.5
Pmed35 800 5 30 246.2 66.5 13.7 6.7
Pmed36 800 10 27 441.8 342.1 55.7 25.6
Pmed37 800 80 15 58.7 35.2 2.0 14.8
Pmed38 900 5 29 102.3 96.0 18.5 11.5
Pmed39 900 10 23 252.1 536.5 48.5 27.2
Pmed40 900 90 13 89.1 404.9 7.8 6.4

Maximum 1402.5 536.5 58.4 27.2
Average 91.6 66.4 7.7 3.8
Coefficient of Variation (%) 249.5 195.4 182.5 161.6
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Table 2. Results of TSPLIB instances

Instance N = M p
Elloumi et al. p-SBsearch

LB* UB* Opt cpu1 cpu2 5% Bnd opt cpu cpu2

u1060 1060 10 2273 2273 2273 27 53 2272-2386 2273 36 52
u1060 1060 20 1556 1768 1581 63 2778 1531-1590 1581 135 2329
u1060 1060 30 1205 1275 1208 50 298 1185-1210 1208 36 257
u1060 1060 40 1013 1079 1021 35 366 1005-1029 1021 26 121
u1060 1060 50 895 963 905 21 383 905-921 905 191 273
u1060 1060 60 765 807 781 21 233 761-790 781 4 437
u1060 1060 70 707 761 711 17 135 708-738 710∗ (708-721) 7 3608
u1060 1060 80 652 711 652 18 60 640-670 652 2 8
u1060 1060 90 604 636 608 19 38 600-609 608 2 6
u1060 1060 100 570 570 570 18 29 570-599 570 1 2
u1060 1060 110 539 539 539 18 30 538-552 539 1 1
u1060 1060 120 510 538 510 29 44 510-515 510 3 3
u1060 1060 130 495 510 500 28 44 495-510 500 1 3
u1060 1060 140 452 500 452 28 46 452-474 452 1 2
u1060 1060 150 430 447 447 34 50 447-452 447 1 1
rl1323 1323 10 3062 3329 3077 106 1380 3017-3155 3077 62 265
rl1323 1323 20 2008 2152 2016 115 480 1949-2036 2016 97 2543
rl1323 1323 30 1611 1797 1632 99 900 1587-1640 1632 193 5147
rl1323 1323 40 1334 1521 1352 76 3000 1339-1381 1365∗(1339-1366) 3233 14132
rl1323 1323 50 1165 1300 1187 61 8580 1164-1197 1187∗(1164-1188) 156 14571
rl1323 1323 60 1047 1194 1063 55 9120 1048-1076 1066∗(1048-1067) 23 13382
rl1323 1323 70 959 1040 972 42 1740 970-1018 980∗(872-981) 3603 16665
rl1323 1323 80 889 948 895 37 420 894-936 903∗(805-904) 3603 18116
rl1323 1323 90 830 857 832 30 120 824-864 834∗(832-835) 3 7503
rl1323 1323 100 777 803 787 26 120 763-796 788∗(779-789) 145 8645
u1817 1817 10 455 467 458 611 2700 457-480 458 789 3973
u1817 1817 20 306 342 310∗ 660 4920 306-318 314∗(306-315) 937 8499
u1817 1817 30 240 287 250∗ 355 16500 251-257 251∗(232-252) 7718 8321
u1817 1817 40 205 234 210∗ 247 6420 211-221 216∗(169-217) 4344 9049
u1817 1817 50 180 205 187∗ 242 9840 183-190 189∗(145-190) 4287 15087
u1817 1817 60 163 183 163 177 1260 162-169 162 175 348
u1817 1817 70 148 152 148 166 420 143-149 148 82 106
u1817 1817 80 137 148 137 150 1140 142-148 137∗(127-140) 3696 3814
u1817 1817 90 127 148 130∗ 161 7202 127-131 130∗(127-131) 96 7296
u1817 1817 100 127 130 127 159 300 126-130 127∗(126-128) 13 3670
u1817 1817 110 108 127 109 119 420 109-111 109 181 453
u1817 1817 120 108 108 108 131 120 107-109 108 12 18
u1817 1817 130 105 109 108∗ 121 3720 105-108 107∗(99-108) 3605 7212
u1817 1817 140 102 108 105∗ 121 4020 102-107 105∗(97-107) 3606 7212
u1817 1817 150 92 108 94∗ 144 5640 99-102 99∗(89-102) 7256 7256

Note. “∗” = opt is the best found solution for that instance. The range in brackets is the best-solved value of p-SBsearch. Columns
cpu1, cpu2, cpu3 and cpu4 are recorded in seconds.
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The procedure allows one to set the bound tolerance in advance to obtain a narrow solution
bound to have shorter CPU time is another advantage of bisecting search method. For the real-
world large scale problem, the mathematical optimal solution may be not desired. Instead,
an acceptable narrow bound would be acceptable as a shorter CPU time that is achieved by
setting a bound tolerance. The proposed formulation (PC-SC2) and procedure are efficient in
the reasonable time limit and exact with good quality of the solution bounds.
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Abstract A study of global optimisation methods in the field of interplanetary trajectory has been performed.
From the No Free Lunch Theorem, it is impossible that an algorithm outperforms all others in all the
possible applications, therefore the aim of this work was two fold: to identify a suitable global op-
timisation algorithm that outperforms all others in a particular transfer typology; to identify a suit-
able global optimisation algorithm family that outperforms all others in all mission analysis transfer
problems. At first a characterisation of the different transfer families, depending on propulsion
system and number of planetary bodies involved was conducted. The model characterisation was
performed within the search space to describe the morphological features of the objective function,
and within the objective function to identify continuity and convexity. Once the optimisation prob-
lem has been fully defined, an exhaustive and systematic analysis of the resulting objective function
structure has been performed in order to identify typical features which would mostly affect the
global search.

Keywords: mission analysis, trajectory optimisation, global optimisation tools

1. Introduction
In the last two decades, global optimisation approaches have been extensively used towards
the solution of complex interplanetary transfers. As operational costs have been increasingly
reduced, space systems engineers have been facing the challenging task of maximising the
payload-launch mass ratio while still achieving the primary mission goals. Methods ranging
from genetic algorithms [1] to neurocontrollers [2], from shooting methods [3] to collocation
methods [4] have been used with varying effectiveness. Unfortunately the efficiency, both
computational and performance-wise, of these approaches are strongly linked to the type of
problem that has to be solved. It would therefore be hugely beneficial if mission designers
could rely on a limited number of global optimisation methods depending on the type of tra-
jectory design, which has to be accomplished.
To achieve this ambitious goal, initially, a thorough identification and modelling of the main
types of orbital transfers has to be performed. The orbital transfer typologies will be identi-
fied both on the basis of the propulsive system (impulsive or low thrust) and on the number
of planetary bodies contributing to the dynamics of the system. The models identified previ-
ously will then have to be characterised, in order to hopefully identify some common features
and recognize different transfer families within the same transfer typology as a function of
the parameters of the problem. This will be performed through a two-fold analysis: within
the search space, by means of a topological analysis aiming to identify variables which are
useful in the description of the morphological structure of the objective function; within the
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objective function aiming to identify its structure and evaluating its continuity and convexity
characteristics.
Systematic and/or probabilistic methodologies will be used: we first proceed by analysing
the main characteristics of common trajectory design problems in mission analysis. In doing
this we make use of two simple and basic algorithms: a random start search with SQP local
optimisation and a grid search with regular sampling of the objective function. This analy-
sis will contain the seed for the development of the appropriate solution algorithm since the
complexity of the problem is intrinsically associated to the solving algorithm.

2. Optimisation Algorithms
Algorithms for global optimisation can be mainly classified in three classes: stochastic algo-
rithms, which involve a suitably chosen random sample of points and subsequent manipula-
tion of the sample to find good local minima; guaranteed algorithms, which are deterministic
algorithms that guarantee the identification of a global optimum with a required accuracy;
metamodel algorithms that exploit the construction of metamodels, and do not perform the
global search on the real objective function, but on a metamodel of it.
Further, stochastic algorithms two main subclasses have been analysed: Simulated Annealing
(SA), which performs the global search based on successive update steps, where the update
step length is proportional to an arbitrarily set parameter which can play the role of a tempera-
ture; Evolutionary Algorithms (EAs), which globally search the solution space by simulating the
self-optimising natural process of evolution. Evolutionary Algorithms (EAs) can be further di-
vided in three main branches: Genetic Algorithms (GAs), where a wide exploration of the search
space and the exploitation of promising areas are ensured by means of the mutation, crossover
and selection operators; Evolutionary Programming (EP), whose classical scheme makes use of
the only mutation operator and simulate the natural evolution at phenotypic level; Evolution-
ary Strategies (ESs), which simulate the natural evolution at a phenotypic level, but also make
use of recombination operators.
The set chosen embraces classical genetic algorithms including different genetic operators
for performing the global search (GAOT and GATBX), genetic algorithms with sharing and
migration operators (GAOT-shared and GATBX-migr respectively), evolutionary program-
ming (Fast Evolutionary Programming, FEP), differential evolution (DE), an improved sim-
ulated annealing (Adaptive Simulated Annealing, ASA), branching methods (glbSolve and
MCS), response surface based optimisation algorithms (rbfSolve) and, an innovative hybrid
systematic-heuristic method combing branching techniques and evolutionary programming
(EPIC).

3. 2-Impulse Transfers
As an example of a 2-impulse transfer, let us consider a direct transfer from Earth to Mars. The
objective function has been taken as the overall impulsive ∆V : the sum of the magnitudes of
the relative velocities at the beginning, ∆VI , and the end, ∆VF , of the interplanetary trans-
fer phase. The search space is characterized by two design variables: date of departure from
Earth, t0, and Earth-Mars transfer time, tt.
A systematic analysis of the objective function structure allowed the identification of a re-
markable quasi-periodicity with respect to the date of departure from Earth, which can be
related to the synodic period of the Earth-Mars system.
The best identified solution is characterized by a ∆V value of 5678.904 m/s, corresponding to
a transfer time of 203.541 d starting from the 7th June 2003.
The performances of each global optimization tool in solving the 2-impulse direct planet-to-
planet transfer are now reported. The evaluation criteria is based on the analysis of the optimal
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Table 1. Summary of results for the two impulse direct planet-to-planet transfer problem.

Method ∆V [m/s] Function evaluations Runtime [STU]
GAOT 5688.424 (σ = 10.352) 1011.200 (σ = 5.903) 7.645 · 10−3 (σ = 2.082 · 10−3)

GAOT-shared 5993.229 (σ = 246.338) 1011.200 (σ = 9.259) 7.424 · 10−3 (σ = 1.706 · 10−3)
GATBX 5912.194 (σ = 468.795) 1010 (σ = 0) 5.491 · 10−3 (σ = 9.684 · 10−4)

GATBX-migr 5750.769 (σ = 186.124) 1010 (σ = 0) 4.669 · 10−3 (σ = 1.664 · 10−3)
FEP 5751.066 (σ = 185.936) 1027.900 (σ = 16.045) 9.640 · 10−3 (σ = 1.156 · 10−3)
DE 5825.500 (σ = 183.588) 1013.600 (σ = 10.384) 3.429 · 10−3 (σ = 2.601 · 10−4)

ASA 5892.491 (σ = 500.108) 1001 (s = 0) 2.994 · 10−3 (σ = 1.543 · 10−4)
GlbSolve 5931.243 1005 1.149 · 10−3

MCS 5678.904 1010 1.261 · 10−2

EPIC 5679.100 (σ = 0.579) 1040 (σ = 11) N/A

solution reached with a fixed number of model function evaluations. Due to the presence of
not optimized codes among the tested ones, timing will not be considered as a main evalu-
ation criterion. Table 1 shows the summary of results. It can be seen that all the algorithms
reach the main basin of attraction, corresponding to the global minimum. It is interesting
to observe the improvement gained by the MCS algorithm compared with the performances
of the more classic globSolve tool: MCS and globSolve algorithms have been both inspired
by DIRECT method for global optimization [6]; however, unlike the globSolve, MCS uses a
branching method which allows for a more irregular splitting procedure. The MCS approach
leads to obvious improvements in the effectiveness at identifying the basin of attraction of
the best known solution in the 2-impulse direct planet-to-planet transfer problem, making
the algorithm performances less dependent on the upper lower bounds, especially referring
to design variables associate to objective function periodicities. It is also worth highlighting
the effects of the sharing operator on the GAOT performances: by promoting the diversity
of the individuals in the population, the GAOT-shared algorithm hinders the concentration
of the individuals around the optimal solutions; this can lead to low accuracy at describing
the optimum solutions. We can then conclude that, in the simple case of 2-impulse direct
planet-to-planet transfer problem, the MCS algorithm have shown to be the best performing
one.

4. Low-Thrust Transfers
As an example of a low-thrust transfer, let us consider a direct transfer from Earth to Mars. The
thrust level has been supposed to be constant throughout the whole transfer and bounded in
intervals corresponding to real thrusters values. The thrust direction during the transfer trajec-
tory is however a design variable and is evaluated by means of azimuth and elevation angles
defined in the local horizontal plane. The objective function is assumed to be a weighted sum
of several terms: the magnitude of the spacecraft relative position with respect to Mars at the
end of the integration of motion, RF ; the magnitude of the spacecraft relative velocity with
respect to Mars at the end of the integration of motion, VF ; the propellant mass required by
the thrusters for the interplanetary transfer only, mprop. The search space is therefore charac-
terized by sixteen design variables: date of departure from Earth t0, Earth-Mars transfer time,
tt, magnitude of Earth escape velocity, VE , thrust level u and six parametrization values of the
thrust azimuth and elevation during the transfer.
In order to further analyse the structure of the objective function, the distribution of the local
minima over the whole search domain has been studied. The analysis of the normalized mean
distance of the local minima and the corresponding objective function values [5] lead to the
identification of a big-valley structure, mainly related to the quasi-periodicity with respect to
the date of departure from Earth.
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Table 2. Summary of results for the Earth-Mars low thrust transfer problem.

Method Objective function Function evaluations Runtime [STU]
GAOT 140.301 (σ = 105.016) 80011.500 (σ = 6.451) 20.157 (σ = 2.013)

GAOT-shared 321.426 (σ = 79.997) 80007.600 (σ = 5.379) 38.441 (σ = 2.937)
GATBX 145.060 (σ = 52.383) 80020 (σ = 0) 39.279 (σ = 7.476)

GATBX-migr 119.016 (σ = 74.373) 80020 (σ = 0) 14.934 (σ = 2.1802)
FEP 160.067 (σ = 89.894) 80062.800 (σ = 29.001) 20.888 (σ = 2.096)
DE 87.454 (σ = 15.589) 80020.800 (σ = 11.153) 12.676 (σ = 0.091)

ASA 199.431 (σ = 37.710) 80001 (σ = 0) 12.993 (σ = 1.090)
GlbSolve 154.175 80069 31.902

MCS 330.712 80000 17.7233
RbfSolve 352.787 1000 77.754

EPIC 10.24 (σ = 11.33) 80799 (σ = 16952) N/A

The best local minimum found, whose main features can be resumed with a transfer time of
203.541 d, a thrust level of 0.151 N , a propellant mass of 124.59 kg and an Earth escape velocity
of 2739.5 m/s, corresponds to an objective function value of 6.37.
The performances of each global optimization tool in solving the low thrust Earth-Mars trans-
fer are reported in Table 2. Results seem to indicate that GAOT and GAOT-shared tools, as
well as the non randomized algorithms glbSolve, MCS and rbfSolve are not suitable for global
optimisation of low-thrust direct planet-to-planet transfer problems using the mathematical
models here employed. Among the remaining tools, DE, and GATBX-migr showed good per-
formances in a Pareto optimal sense: in particular, DE and GATBX-migr resulted in similar,
even though low, rate of success in identifying the basin of attraction of the global minimum.
However, by considering that the rate of success is evaluated by performing local optimisa-
tion processes requiring similar further objective function evaluations and by noting that DE
reaches a lower, and less fluctuating, value for the objective function, the DE tool seems to be
preferable with respect to GATBX-migr.

5. Low-Energy Transfers
The possibility of designing low energy lunar space trajectories exploiting more than one
gravitational attraction is now investigated. In particular, the framework of the Restricted
Three-Body Problem (R3BP) is here analysed and lunar transfers are studied which take ad-
vantage of the dynamic of the corresponding libration points. The interior stable manifold
associated to the libration point L1 in the Earth-Moon system, W s

L1 , is propagated backward
for an interval of time tW . Corresponding toW S

L1, the exterior unstable manifold, W U
L1 , can be

evaluated. The manifoldsW S
L1 andWU

L1 constitute in fact a transit orbit between the forbidden
region through the corresponding thin transit region. However, the manifold W S

L1 does not
reach low distances from Earth. To solve this problem, starting from a circular orbit around
the Earth, an arc resulting from the solution of a Lambert’s three-body problem is used for
targeting a point on the stable manifold. It is worth noting that such an approach leads to a
final unstable orbit around the Moon with mean altitude equal to 21600 km.
As a consequence of the previously described formulation, a first impulsive manoeuvre, ∆V1,
is used to put the spacecraft in the Lambert’s three-body arc from the initial circular orbit
around the Earth. A second impulsive manoeuvre, ∆V2, is performed to inject the spacecraft
on the capture trajectory W S

L1. Hence, the sum of the two impulsive manoeuvres, ∆V , is cho-
sen to be the objective function for the optimisation processes. As a consequence the search
space is characterized by the following design variables: the angle identifying the starting
point over the initial circular orbit, θ; the time of the backward propagation of the stable man-
ifold, tW , and the transfer time corresponding to the Lambert’s three-body arc, tL.
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Figure 1. Families of Lunar transfers comparable with the best identified one (subgroup 8).

Table 3. Summary of results for the low-energy transfer problem.

Method ∆V Function evaluations Runtime [STU]
GAOT 3160.307 (σ = 74.987) 5012.200 (σ = 4.638) 24.788 (σ = 2.093)

GAOT-shared 3321.952 (σ = 101.235) 5010.900 (σ = 6.657) 20.197 (σ = 2.488)
GATBX 3158.640 (σ = 63.572) 5010 (σ = 0) 38.556 (σ = 4.180)

GATBX-migr 3218.439 (σ = 127.349) 5010 (σ = 0) 35.895 (σ = 5.012)
FEP 3134.626 (σ = 60.928) 5017.200 (σ = 15.640) 31.578 (σ = 5.232)
DE 3233.064 (σ = 94.020) 5019.600 (σ = 10.276) 16.106 (σ = 0.428)

ASA 3194.447 (σ = 109.524) 4783.600 (s = 58.971) 37.544 (σ = 5.110)
GlbSolve 3343.104 5025 21.640

MCS 3148.107 5010 32.575
RbfSolve 3579.249 474 6.128

The best solution identified is characterized by an overall transfer time of 108.943 d and corre-
sponds to an objective function value of 3080.767 m/s.
A careful analysis of the distribution of the local minima over the search space lead to the iden-
tification of several sets of local optimal solutions, comparable with the best identified one in
terms of objective function values, which are characterized by similar values of the time spent
on the three-body Lambert’s arc, tL. The presence of such subgroups can be related to the
presence of big valley structures deriving from the periodicity of the objective function on tW .
We can state that such subgroups describe a set of different families of Lunar transfers where
the term ”family” is referred to solutions lying on different niches on the search space, as de-
fined in [7]. In particular ten local minima groupings can be isolated over the analysed search
space, as shown in Figure 1.

The performances of each global optimization tool in solving the low-energy transfer prob-
lem are reported in Table 3. The results allow us to infer the following. The stochastic al-
gorithms GAOT-shared, GATBX-migr and DE and the non randomized codes glbSolve and
rbfSolve, cannot be considered as suitable for solving the previously identified problem, due
to their inability in identifying basin of attractions corresponding to either the best known
solution or the comparable ones. GAOT, GATBX and ASA identify the basin of attraction of
good solutions but present relatively large standard deviations, implying that not always the
attraction basins are identified successfully. As a consequence MCS and FEP turn out to be
the best performing tools for the problem of lunar transfer using libration points.
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6. Summary
The aim of this study was an investigation of the effectiveness of some global optimisation
techniques at solving practical problems related to space trajectory design. Following a com-
plete and comprehensive objective function structure analysis a set of global optimisation
tools has been selected for testing purposes. By considering the objective function value
reached at the end of the optimisation process, the number of objective function evaluations
performed required and the effectiveness at identifying the basin of attraction of the best
known solution as well as of good solutions comparable to the best known one, results of
the test phase can be resumed as follows.
Two impulse direct planet-to-planet transfer problem: due to its deterministic features, the
success at reaching the best known solution and the corresponding relatively low number of
required objective function evaluations, Multilevel Coordinate Search (MCS) turned out to
outperform all the remaining algorithms, thus resulting as the best performing one.
Low thrust direct planet-to-planet transfer problem: due to the highly complex nature of
the search space, low rate of success characterized all the tested algorithms at identifying the
basins of attraction of both the best known solution and solutions comparable to it. In such an
environment in particular, DE and GATBX-migr resulted in similar, even though low, rate of
success in identifying the basin of attraction of the global minimum. However, by noting that
DE reaches a lower, and less fluctuating, value for the objective function, the DE tool seems to
be preferable with respect to GATBX-migr.
Low energy Lunar transfer problem: the structure of the objective function and the search
space results in comparable performances for the majority of global optimisation algorithms
used. However, by taking into account the minimum value of the objective function reached,
and the standard deviation, we can identify MCS and FEP as the best performing tools for the
problem of lunar transfer using libration points.
It is worth noting that limitations affects the achieved results. First of all, each mission anal-
ysis class has been investigated by selecting a particular transfer problem and by facing it
with proper, but anyway particular, mathematical models. Further analyses should be per-
formed, including additional transfer problems, alternative mathematical models and search
space definitions. Secondly, it is widely known that optimisation algorithms can be suitably
tuned to enhance their performances. However, as already occurred in remarkable existing
comparative studies [7], due to the comparative purposes of this work, the large scale of com-
parisons performed, the available devices and the high time required by some optimisation
case, it was impossible to do such tuning.
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Abstract The linear parametrical programming approach for studying and solving a bilinear programming
problem (BPP) is proposed. On the basis of the duality theory BPP is transformed into a problem
of determining compatibility of a system of linear inequalities with a right part that depends on
parameters, admissible values of which are determined by an another system of linear inequalities.
Some properties of this auxiliary problem are obtained and algorithms for solving BPP are proposed.
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1. Introduction and preliminary results
We consider the following bilinear programming problem (BPP) [1,2]:
to minimize the object function

z = xCy + d1x+ d2y (1)

on subject
A1x ≤ b1, x ≥ 0; (2)

A2y ≤ b2, y ≥ 0, (3)

whereC,A1, A2 are matrices of size n×m,m×n, k×m, respectively, and d1, x ∈ Rn; d2, y, b1 ∈
Rm; b2 ∈ Rk. This problem can be solved by varying the parameter h ∈ [−2L, 2L] in the
problem of determining compatibility of the system





A1x ≤ b1, x ≥ 0;
xCy + d1x+ d2y ≤ h;
A2y ≤ b2, y ≥ 0,

(4)

where L is the size of the problem (1)-(3).
Furthermore we regard the compatibility problem with respect to x of the system

{
A1x ≤ b1, x ≥ 0;
xCy + d1x ≤ h− d2y.

(5)

for every y satisfying (3).
The following Theorems are proved in [3] on the basis of the linear duality theory applied

to (5).
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Theorem 1. The system (4) has no solutions if and only if the following system of linear inequalities



−A1T

u ≤ Cy + d1;
b1u < d2y − h;
u ≥ 0

is compatible with respect to u for every y satisfying (3).

Theorem 2. The minimal value of the object function in the problem (1)-(3) is equal to the maximal
value h∗ of the parameter h in the system




−A1T

u ≤ Cy + d1;
b1u ≤ d2y − h;
u ≥ 0

(6)

for which it is compatible with respect to u for every y satisfying (3). An arbitrary solution y∗ of the
system (3) such that the system 



−A1T

u ≤ Cy∗ + d1;
b1u < d2y∗ − h;
u ≥ 0

has no solution with respect to u corresponds to a solution (x∗, y∗) of the problem (1)-(3).

In this paper we study the problem of determining the compatibility of the system (6) for
every y satisfying (3). On the basis of the obtained results we propose algorithms for solving
BPP.

Note that the considered problems are NP-hard, but the mentioned above approach allows
to argue suitable algorithms for some classes of these problems.

2. Main properties of systems of linear inequalities with a
right part that depends on parameters

In order to study BPP we shall use the following results.

2.1 Duality principles for systems of linear inequalities
Let the following system of linear inequalities be given





n∑

j=1

aijuj ≤
k∑

s=1

bisys + bi0, i = 1,m;

uj ≥ 0, j = 1, p (p ≤ n)

(7)

with the right part depending on parameters y1, y2, . . . , yk. We consider the problem of deter-
mining compatibility of the system (7) for every y1, y2, . . . , yk satisfying the following system





k∑

s=1

gisys + gi0 ≤ 0, i = 1, r;

ys ≥ 0, s = 1, q (q ≤ k).
(8)
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The following Theorem holds [4].
Theorem 3. The system (7) is compatible with respect to u1, u2, . . . , un for every y1, y2, . . . , yk satis-
fying (8) if and only if the following system





−
r∑

i=1

gisvi ≤
m∑

i=1

biszi, s = 0, q;

−
r∑

i=1

gisvi =

m∑

i=1

biszi, s = q + 1, k;

vi ≥ 0, i = 1, r

is compatible with respect to v1, v2, . . . , vr for every z1, z2, . . . , zm satisfying the following system




−
m∑

i=1

aijzi ≤ 0, j = 1, p;

−
m∑

i=1

aijzi = 0, j = p+ 1, n;

zi ≥ 0, i = 1,m.

2.2 Two special cases of the parametrical problem
Note that if r = 0 and q = k in the system (8) then we obtain the problem of determining
compatibility of the system (7) for every nonnegative values of parameters y1, y2, . . . , yk. It is
easy to observe that in this case the system (7) is compatible for every nonnegative values of
parameters y1, y2, . . . , yk if and only if each of the following systems





n∑

j=1

aijuj ≤ bis, s = 0, k;

uj ≥ 0, j = 1, p

is compatible.
An another special case of the problem is the one when n = 0. This case can be reduced to

the previous one using the duality problem for it.
In such a way, our problem can be solved in polynomial time for the mentioned above cases.

2.3 General approach for determining the compatibility property for
parametrical systems

It is easy to observe that the compatibility property of the system (7) for all admissible val-
ues of parameters y1, y2, . . . , yk satisfying (8) can be verified by checking compatibility of the
system (7) for every basic solution of the system (8). This fact follows from the geometrical
interpretation of the problem. The set Y ⊆ Rk of vectors y = (y1, y2, . . . , yk), for which the
system (7) is compatible, corresponds to an orthogonal projection onRk of the set UY ⊆ Rn+k

of solutions of the system (7) with respect to variables u1, u2, . . . , un, y1, y2, . . . , yk.
Another general approach which can be argued on the basis of the mentioned above geo-

metrical interpretation is the following.
We find the system of linear inequalities

r∑

j=1

b′ij yj + b′i0 ≤ 0, i = 1,m′, (9)
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which determines the orthogonal projection Y of the set UY ⊆ Rn+k on Rk; then we solve
the problem from section 2.2. The system (9) can be found by using method of elimination of
variables u1, u2, . . . , un from the system (7). The method of elimination of variables from the
system of linear inequalities can be found in [5]. Note that in the final system (9) the number
of inequalities m′ can be too big. Therefore such approach for solving our problem can be
used only for a small class of problems.

3. An algorithm for the establishment of the compatibility of
a parametrical problem

We propose an algorithm for the establishment of the compatibility of the system (6) for every
y satisfying (3). This algorithm works in the case when the sets of solutions of the considered
systems are bounded. The case of the problem with unbounded sets of solutions can be easily
reduced to the bounded one.

Step 1. Choose an arbitrary basic solution y0 of the system (3). This solution corresponds
to a solution of the system of linear equations

m∑

j=1

bisjyj + bis0 = 0, s = 1,m. (10)

The matrix B = (bisj) of this system represents a submatrix of the matrix

B′ =




b11 b12 . . . b1m

b21 b22 . . . b2m

. . . . . . . . . . . .
bk1 bk2 . . . bkm

1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1




and the vector b′T = (bi1 , bi2 , . . . , bik) is a "subvector" of b′T = (b1, b2, . . . , bk, 0, 0, . . . , 0). The
system of inequalities

m∑

j=1

bisjbj + bis0 ≤ 0, s = 1,m,

which corresponds to the system (10), determines in Rm a cone originated in y0 with the
following generating rays

ys = y0 + b
s
t, s = 1,m, t ≥ 0.

Here b1, b2, . . . , bm represent directing vectors of respective rays originating in y0. These
directing vectors correspond to columns of the matrix B−1.

Step 2. For each s = 1,m, solve the following problem:

maximize t

on subject 



A2y ≤ b2;
y ≥ 0;

y = y0 + b
s
t, t ≥ 0
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and find m points y1, y2, . . . , ym, which correspond to m basic solutions of the system (3), i.e.
y1, y2, . . . , ym represent neighboring basic solutions for y0. If the system (6) is compatible with
respect to u for each y = y1, y = y2, . . . , y = ym, then go to step 3; otherwise the system (3) is
not compatible for every y satisfying (3) and STOP.

Step 3. For each s = 1,m, solve the following problem:

maximize t

on subject




−A1T
u ≤ Cy + d1;

b1u ≤ d2y − h;
u ≥ 0

y = y0 + b
s
t, t ≥ 0

and find m solutions t′1, t′2, . . . , t′m. Then fix m points ys = y0 + b
s
t′s, s = 1,m.

Step 4. Find the hyperplane

m∑

j=1

a′jyj + a′0 = 0,

which passes through the points y1, y2, . . . , ym. Consider that the basic solution y0 = (y0
1 , y

0
2, . . . , y

0
m)

satisfies the following condition
m∑

j=1

a′jy
0
j + a′0 ≤ 0.

Then add to the system (3) the inequality

−
m∑

j=1

a′jyj − a′0 ≤ 0.

If after that the obtained system is not compatible, then conclude that the system (6) is compat-
ible for every y satisfying the initial system (3) and STOP; otherwise change the initial system
with the obtained one and go to step 1.

Note that in [3] it is proposed an algorithm for the establishment of the compatibility of the
parametrical problem in the case when the system (3) has the following form





y1 ≤ b21;

y2 ≤ b22;
. . . . . . . . . . . . . . . . . . . . . . . .

ym ≤ b2m;

y1 ≥ 0, y2 ≥ 0, . . . , ym ≥ 0

i.e. the set of solutions of the system (3) is am-dimensional cube. Even in this case the compat-
ibility problem remains NP-hard, but the approach from [3], based on Theorems 1,2, allows to
propose suitable algorithms.
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In [3] it is shown that the proposed approach can be used for studying and solving the
following concave programming problem:

minimize z =

q∑

i=1

min{cilx+ cil0 , l = 1, ri}

on subject {
Ax ≤ b;
x ≥ 0,

where cil ∈ Rn, cil0 ∈ R1, A is a m × n-matrix, b ∈ Rn. This problem can be transformed into
BPP:

minimize z′ =

n∑

i=1

ri∑

l=1

(cilx+ cil0 )yil

on subject 



Ax ≤ b, x ≥ 0;
ri∑

l=1

yil = 1, i = 1, q;

yil ≥ 0, l = 1, ri, i = 1, q.

The proposed approach related to this problem is described in [3].

4. Summary
The approach for studying and solving the bilinear programming problem based on linear
parametrical programming and duality principle for linear inequalities with a right part that
depends on parameters is proposed. This approach allows to study the nonlinear optimization
problem by using linear programming methods. Algorithms and general schemes for solving
different classes of bilinear programming problems are derived.
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Abstract In this paper, an extension of affine arithmetic introduced by Stolfi et al. [1–5] is proposed. It is
based on a general quadratic form which leads to most efficient computations of errors due to non-
affine operations. This work recalls the main results published in [10] and emphasizes the interest of
such a technique for solving unconstrained global optimization problems of multivariate polynomial
functions.

1. Introduction
We focus in this paper on unconstrained bounded minimization problems of polynomial func-
tions, written as follows:

min
x∈X⊆IRn

f(x), (1)

where X is a hypercube of IRn and f is a polynomial function.
The Branch-and-Bound algorithms can be based on interval arithmetic for the computations

of the bounds of a function over a box. The outwardly rounded interval arithmetic was then
introduced by Moore to deal with numerical errors, [11]. Thus, its utilization inside Branch-
and-Bound algorithms makes these methods rigorous [7]; we speak about rigorous global
optimization methods when no numerical error can render wrong the computations of the
bounds. The principle of a Branch-and-Bound algorithm is to bisect the initial domain where
the function is sought for into smaller and smaller boxes, and then to eliminate the boxes
where the global optimum cannot occur; i.e. by proving that a current solution is lower (resp.
upper for a maximization problem) than a lower (resp. upper) bound of the function over this
box. Therefore in such a box, there does not exist a point such that its value is lower (resp.
upper) than the current solution already found.

An inclusion function is an interval function such that the interval result encloses the range
of the associated real function over the studied box; i.e. if F (X) denotes the inclusion function
of a function f over a box X , one has by definition that [minx∈X f(x),maxx∈X f(x)] ⊆ F (X).
The extension of an expression of a function into interval (by replacing all the occurrences of
the variables by the corresponding intervals, and all the operations by interval operations)
defines an inclusion function which is called the natural extension inclusion function; it is
denoted NE(X). Nevertheless, the direct use of NE is generally inefficient and then, the
computed bounds are not sufficiently accurate to solve both rapidly and with a high numerical
precision certain optimization problems of type (1). Therefore, for the past several years, a
lot of new techniques which permit to improve the computations of the bounds have been
studied. Generally, these techniques are based on the combinations of first or second order
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Taylor expansions and on interval computations of an enclosure of the gradient or the Hessian
matrix [6, 7, 9]; one uses here an centered inclusion function based on a Taylor expansion at
the first order, it is denoted T1(X) in the following.

Affine arithmetic was proposed and developed recently by Stolfi et al. [1–5], although a
similar tool, the generalized interval arithmetic, have been developed in 1975 by Hansen [6].
Its principle is to keep some affine informations during the computations of bounds. Like
generalized interval arithmetic [6], affine arithmetic was developed to take into account the
problems of the dependencies of the variables generated by interval computations. This tool
permits to limit some negative effects due to interval arithmetic: The links between different
occurrences of a same variable. The interest of the bounds computed by using this affine arith-
metic was shown in [8]. Furthermore in [8], two new affine forms and a first quadratic form
were introduced and have proved their real efficiency solving optimization problems such
as defined in (1). The purpose in this paper is to consider the complete quadratic form such
as defined in [10] and to show its efficiency for solving unconstrained global optimization
problems for multivariate polynomial functions. Affine arithmetic such as defined in [4] is
reliable. In this article, one uses a different way to render reliable affine arithmetic by convert-
ing all the floating point coefficients into interval ones and by introducing rounded interval
computations. This reliable inclusion function is denoted by AF(X) in the following.

The general quadratic form aims to conserve some affine informations and also some quadratic
informations (about the error due to non-affine operations) during the computations. There-
fore, these added informations permit to improve the quality of the so-computed bounds (in
spite of an expansion of the complexity of such an algorithm). The gain of this technique is
validated on some global optimization polynomial problems.

A complete work on the general quadratic form, presenting some properties, are detailed in
[10]. Here, one recalls the principle of this technique to compute bounds and we emphasizes
the interest of this tool in global optimization.

2. Reliable General Quadratic Form
A general quadratic form is represented by ̂̂x:





̂̂x = εTAε+ bT ε+ c+ e+εn+1 + e−εn+2 + eεn+3,

=
n∑

i,j=1

aijεiεj +
n∑

i=1

biεi + c+ e+εn+1 + e−εn+2 + eεn+3,
(2)

where A ∈ IRn×n, b ∈ IRn, c ∈ IR, (e+, e−, e) ∈ (IR+)3 and εi ∈ [−1, 1], ∀ i ∈ {1, . . . , n},
εn+1 ∈ [0, 1], εn+2 ∈ [−1, 0] and εn+3 ∈ [−1, 1]. The symbolic variables εn+1, εn+2 and εn+3

represent the noise for the errors generated by performing non-affine computations.
The conversions between interval and a general quadratic form are performed as follows:

Interval −→ General Quadratic Form:

X = [xL, xU ]

−→ ̂̂x = εTAε+ bT ε+ c+ e+εn+1 + e−εn+2 + eεn+3
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with





A = 0 ,

b =

(
0, · · · , 0, x

L − xU

2
, 0, · · · , 0

)
,

c =
xL + xU

2
,

e+ = 0,
e− = 0,
e = 0.

The rank i where bi =
xL − xU

2
is generally determined by the variable x. When a vector

is considered x ∈ IRn, then the rank i corresponds to xi.

General Quadratic Form −→ Interval:

̂̂x = εTAε+ bT ε+ c+ e+εn+1 + e−εn+2 + eεn+3

=

n∑

i,j=1

aijεiεj +

n∑

i=1

biεi + c+ e+εn+1 + e−εn+2 + eεn+3

−→ X =
n∑

i,j=1
i6=j

[−|aij |, |aij |] +
n∑

i=1

[−|bi|, |bi|] +
n∑

i=1

aii[0, 1] + [|c|, |c|] +

[0, e+] + [−e−, 0] + [−e, e].

Other conversions, such as for example between general quadratic forms and affine forms,
are possible, refer to [10].

The operations between general quadratic forms are performed as follows:
let ̂̂x and ̂̂y be two general quadratic forms and a a real number, with

̂̂x = εTAxε+ bTx ε+ cx + e+x εn+1 + e−x εn+2 + exεn+3,
̂̂y = εTAy ε+ bTy ε+ cy + e+y εn+1 + e−y εn+2 + eyεn+3.

One obtains:

−bbx = −εT Axε − bT
x ε − cx + e−x εn+1 + e+

x εn+2 + exεn+3,

bbx + bby = εT (Ax + Ay)ε + (bx + by)T ε + (cx + cy) + (e+
x + e+

y )εn+1 + (e−x + e−y )εn+2 + (ex + ey)εn+3,

bbx − bby = εT (Ax − Ay)ε + (bx − by)T ε + (cx − cy) + (e+
x + e−y )εn+1 + (e−x + e+

y )εn+2 − (ex + ey)εn+3,

bbx ± a = εT Axε + bT
x ε + (cx ± a) + e+

x εn+1 + e−x εn+2 + exεn+3,

a × bbx =

(
εT (a × Ax)ε + (a × bx)T ε + a × cx + a × e+

x εn+1 + a × e−x εn+2 + a × exεn+3, if a > 0,

εT (a × Ax)ε + (a × bx)T ε + a × cx + |a| × e−x εn+1 + |a| × e+
x εn+2 + |a| × exεn+3, if a < 0.

For the multiplication (a non-affine operation), the following computations are performed:

̂̂x× ̂̂y = εTA×ε+ bT×ε+ c× + e+×εn+1 + e−×εn+2 + e×εn+3, (3)

with





A× = cyAx + cxAy + bxb
T
y ,

b× = cy bx + cx by,
c× = cx cy.

The computations of the errors e+, e−, e are not so obvious, but are quiet difficult and atten-
tion must be paid on it, see [10].

Therefore, this technique allows to construct a new inclusion function based on this general
quadratic form; i.e. one converts all interval vector with dimension n into n general quadratic
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forms which correspond to each occurrence of each variable, the computations are performed
using operations between general quadratic form and then, the result is converted into an
interval. This resulting interval encloses rigorously the range of the function over the consid-
ered box (interval vector). This technique defines a new automatic tool for the computations
of bounds for a function over a box. One denotes by GQF an inclusion function constructed
such a way (using general quadratic forms).

Example 1. The interest of this general quadratic form can be illustrated on this simple example
f(x1, x2) = x2

1x2 − x1x
2
2 over [−1, 3]2. We have:

x2
1x2 − x1x

2
2 = (1− 2ε1)

2(1 − 2ε2)− (1− 2ε1)(1 − 2ε2)
2

= (1− 4ε1 + 4ε21)(1− 2ε2)− (1− 4ε2 + 4ε22)(1− 2ε1)

=
(
1− 4ε1 + 4ε21 − 2ε2 + 8ε1ε2 − 8ε21ε2

)
+
(
−1 + 4ε2 − 4ε22 + 2ε1 − 8ε1ε2 + 8ε1ε

2
2

)

= −2ε1 + 2ε2 + 4ε21 − 4ε22 − 8ε21ε2 + 8ε1ε
2
2

AF(X) = [−2ε1 + 2ε2 + 40ε3] = [−44, 44], with εn+1 = ε3 ∈ [−1, 1].

GQF(X) = [−2ε1 + 2ε2 + 4ε21 − 4ε22 + 16ε5] = [−24, 24], with εn+3 = ε5 ∈ [−1, 1].

NE(X) = X2
1X2 − X1X

2
2 = [−1, 3]2[−1, 3] − [−1, 3]2[−1, 3] = [−9, 27] − [−9, 27] =

[−36, 36].

In that case, NE is better than AF but GQF is the most efficient.

In [10], some theoretical properties about the efficiency of the bounds of such a technique
are reported. Furthermore, the extension into reliable forms are defined by replacing all the
floating point coefficients by intervals and by replacing all the operations by rounded inter-
val operations. Thus, the bounds computed by introducing interval components inside the
general quadratic form become reliable; no numerical error can occur performing these com-
putations. The bounds are also guaranteed.

3. Application to Rigorous Global Optimization
The main global optimization algorithm is based on a classical Branch-and-Bound technique
due to Ichida-Fujii [12]. To show the efficiency of the use of general quadratic forms, the
computations of the bounds are replaced inside this algorithm. One can speak here about rig-
orous global optimization because the bounds are numerically guaranteed; all the computed
bounds are reliable using the four techniques presented above NE,T1,AF and GQF. In or-
der to show the efficiency of such an inclusion function based on the general quadratic form
some multivariate polynomial problems are taken into account, see Table 1. All these prob-
lems are solved by a basic interval Branch-and-Bound algorithm due to Ichida-Fujii, see [12].
This algorithm is modified in order to determine the global minimum f ∗ with a maximal accu-
racy (by solving the problem with an accuracy divided by 10), see [10]. In fact, the algorithm
stops when the new precision (divided by 10) of the global solution cannot be improved after
a consequent computational effort (here 100000 iterations).

In Table 1, we summarize for each polynomial problem, the initial domain of research and
the global minimum f ∗. Generally, these functions came from the literature [8, 9, 12]; f2 is the
well known Golstein Price function and f5 a function due to Ratschek.

All these numerical tests have been performed on a HP-UX, 9000/800, 4 GB memory, quadri-
processor 64-bit processor, computer from the Laboratoire d’Electrotechnique et

d’Electronique Industrielle du CNRS/UMR 5828 ENSEEIHT-INPT Toulouse. The codes
have been developed in Fortran 90. The algorithm uses iteratively the following inclusion
functions: natural extension into interval NE, a technique based on Taylor expansions at the
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Functions Initial Domain of Research Global minimum

f1(x) = x3
1x2 + x2

2x3x
2
4 − 2x2

5x1 + 3x2x
2
4x5 X = [−10, 10]5 f∗

1 = −1042000

f2(x) = [1 + (x1 + x2 + 1)2 X = [−2, 2]2 f∗
2 = 3

(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2

(18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

f3(x) = 4x2
1 − 2x1x2 + 4x2

2 − 2x2x3 + 4x2
3 − 2x3x4 X = [−1, 3] × [−10, 10]× f∗

3 = 5.77

+4x2
4 + 2x1 − x2 + 3x3 + 5x4 [1, 4] × [−1, 5]

f4(x) = x3
1x2 + x2

2x3x
2
4 − 2x2

5x1 + 3x2x
2
4x5 X = [−10, 10]5 f∗

4 = −1667708716.3372

− 1
6
x5

5x
3
4x

2
3

f5(x) = 4x2
1 − 2.1x4

1 + 1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2 X = [−1000, 1000]2 f∗
8 = −1.03162845348366

Table 1. Test Functions.

Pbs NE T1 AF GQF

CPU εp #its CPU εp #its CPU εp #its CPU εp #its

f1 0.61 10−8 248 146.1 10−8 9148 1.01 10−8 314 1.97 10−8 269

f2 612.0 1 117552 9.88 10−12 6536 6.12 10−12 1849 3.23 10−12 1071

f3 307.6 10−1 47738 135.8 10−12 10980 13.41 10−13 5495 15.76 10−13 4121

f4 0.60 10−5 257 — — — 17.1 10−4 3278 7.55 10−5 626

f5 3.93 10−2 13125 2.61 10−14 4431 8.52 10−14 3009 4.24 10−14 1553

avg 184.8s 35784 73.59s 7774 9.2s 2789 6.5s 1528

Table 2. Comparative Tests between Different Reliable Inclusion Functions

first order T1, AF and GQF. All these inclusion functions use the double precision floating
point representation.

The first thing that we must compare is the accuracy (εp) obtained by each method. There-
fore, considering equal accuracy, the CPU-times (CPU) and the number of iterations (# its)
can then be compared.

Table 2 shows that, the obtained accuracy (εp) are quiet similar for all the considered inclu-
sion functions (GQF is always the most efficient) except for the natural extension NE which
is clearly less efficient (for f2, f3 and f5); this remark is not true when the functions f1 and
f4 are considered, because those functions are particular examples constructed to show that
sometimes the inclusion function T1 can be inefficient (here the global optimum is on a side
of the initial domain). — in Table 2 means that the inclusion function T1 cannot produce a
result with an accuracy 1 in 100000 iterations; this case is not taken into account for the av-
erage of T1. Furthermore, the inclusion function T1 is less efficient when the problems have
a relatively high number of variables (4 or 5) because the computations of enclosures of the
gradient become very expensive, considering the CPU-time, by using an interval automatic
differentiation code, [7].

Considering the average in Table 2, the interval Branch-and-Bound algorithm associated
with GQF proves is own efficiency on these 5 examples providing the best accuracy for all
cases, the best CPU-time average and the best average for the number of iterations. A gain
around 30% is denoted comparing both CPU-time and number of iterations between GQF
and AF. The gains induced by the GQF method are important even if the polynomial func-
tions are quiet simple in the sense that the so-generated quadratic forms are not dense (a lot
of elements of the matrix are equal to 0).
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To summarize, these numerical results show that interval Branch-and-Bound algorithm
based on the GQF inclusion function are the most efficient. Furthermore, this seems to be
emphasized when a critical size of the problem is reached (4 or 5 variables) and also if the
degree of the considered polynomial function is relatively high (≥ 4).

4. Conclusion
In this paper, one recalls the interest to construct new inclusion functions for solving global
optimization problems by using an interval Branch-and-Bound algorithm. On five numerical
tests, one shows the efficiency of the bounds computed with our general quadratic forms lead-
ing to solve difficult global optimization problems in only a few seconds for a high required
precision.
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Abstract The search for a point set configurations of the R3 space which contains the smallest value of the
Euclidean Steiner Ratio is almost finished. In the present work we introduce some analytical meth-
ods which aim to support a famous conjecture of Discrete Mathematics literature. The relations of
this problem with that of molecular architecture in terms of motivation as well as application of the
formulae obtained is also emphasized.

Keywords: Euclidean Full Steiner Trees, Steiner Ratio Function, Macromolecular structure modelling.

1. Introduction
One of motivations for modelling the macromolecular structure is the careful observation of
the protein data banks. In the present stage of macromolecular evolution, the site of the atoms
in a biomacromolecule can be modelled by Steiner points of an usual Steiner Problem. This
is the Steiner Tree modelling with three edges converging at a Steiner Point and each pair
of edges making angles of 120◦ therein. This looks as a last stage in the Nature’s plans for
modelling these structures since it can be shown that this tree conformation is the most stable
one [1]. After an exhaustive series of computational experiments by working with evenly
spaced given points along a right circular helix of unit radius or,

Pj = (cos(jω), sin(jω), αjω); 0 ≤ j ≤ n− 1 (1)

where ω is the angular distance between consecutive points and 2πα is the helix pitch, we
get a sequence of Steiner points in a helix of smallest radius and the same pitch 2πα, i. e.,
belonging to the same helicoidal surface. All the experimental results led to write the formula
for angular distance of consecutive Steiner points along the internal helix as [2]

ωk = arctan

(
yk

xk

)
+ 2π

[ zk
2πα

]
+ π

[m
2

]
, 1 ≤ k ≤ n− 2 (2)

and ωk+1 − ωk ≈ bω + c, with b ≈ 1, c ≈ 0. The squared brackets stand for the greatest integer
value and m = 1, 2, 3, 4, according to the quadrant of the angle arctan

(
yk

xk

)
.

We have worked with a modified version of a famous algorithm [3]. This reduced search
space version of the algorithm was developed in 1996 and is available at http://www.biomat.org
/apollonius.

From eq. (2), we write the Ansatz for the Steiner Points Sk(xk, yk, zk) as

Sk(r(ω, α) cos(kω), r(ω, α) sin(kω), αkω), 1 ≤ k ≤ n− 2. (3)
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By forming a Steiner tree with points Pj and Sk with a 3-Sausage’s topology [4], we can
obtain from the condition of edges intersecting at 120◦, an expression for the radius function
r(ω, α) or:

r(ω, α) =
αω√

A1(1 +A1)
(4)

where
A1 = 1− 2 cosω. (5)

The restriction to full Steiner trees can be obtained from eq. (1) alone. We then have for the
angle of consecutive edges formed by the given points

−1

2
≤ cos θ(ω, α) = −1 +

(1 +A1)
2

2(α2ω2 + 1 +A1)
. (6)

2. The generalization of the formulae to sequences of
non-consecutive points

The generalization of the formulae derived in section 1 to non-consecutive points [5] along
a right circular helix is done by taking into consideration the possibility of skipping points
systematically to define subsequences. Let us consider the subsequences of fixed and Steiner
points respectively.

(Pj)m, ljmax
: Pj , Pj+m, Pj+2m, ..., Pj+ljmax.m

(7)

(Sk)m, lkmax
: Sk, Sk+m, Sk+2m, ..., Sk+lkmax.m (8)

with 0 ≤ j ≤ m− 1 ≤ n− 1, 0 ≤ k ≤ m− 1 ≤ n− 2 and

ljmax =

[
n− j − 1

m

]
; lkmax =

[
n− k − 2

m

]
(9)

where (m− 1) is the number of skipped points and the square brackets stand for the greatest
integer value. It is worth to say that the sequences (1) and (3) correspond to (P0)1,n−1 and
(S1)1,n−2 respectively.

The n points of the helical point set are then grouped intom subsequences and we consider
a new sequence of n given points which is written as

Pj =
m−1⋃

j=0

(Pj)m, ljmax
(10)

Analogously, a new sequence for the union of the subsequences of the Steiner points is
introduced in the form

Sk =

m−1⋃

k=1

(Sk)m, lkmax
(11)

If the points Pj+lm, Sk+lm are evenly spaced along the helices, their coordinates are given
analogously to eqs. (1) and (3) of section 1. We can write,

Pj+lm (cos(j + lm)ω, sin(j + lm)ω, α(j + lm)ω) (12)

Sk+lm (rm(ω, α) cos(k + lm)ω, rm(ω, α) sin(k + lm)ω, α(k + lm)ω) . (13)



A New approach to the Studyof the Smith + Smith Conjecture 179

We can now form Steiner trees with the points Pj+lm and Sk+lm with the 3-Sausage’s topol-
ogy. We get from the condition of an angle of 120◦ between each pair of edges meeting at a
Steiner point, the expression of radius rm(ω, α),

rm(ω, α) =
mαω√

Am(1 +Am)
(14)

where
Am = 1− 2 cos(mω). (15)

The restriction to full Steiner trees is now obtained from the points Pj+lm only and we have

−1

2
≤ cos θm(ω, α) = −1 +

(1 +Am)2

2(m2α2ω2 + 1 +Am)
(16)

3. A Proposal for a Steiner Ratio Function
After a straightforward but tedious calculation, we get that the Euclidean lengths of the m-
spanning tree and of the m-Steiner tree for a great number of fixed points, n >> 1, are given
by

lmSP (ω, α) = n
√
m2α2ω2 + 1 +Am (17)

lmST = n

(
1 +mαω

√
Am

1 +Am

)
. (18)

The usual prescription for the Steiner Ratio Function (SRF) lead us to write

ρ(ω, α) =
min
m

(1 +mαω

√
Am

1 +Am
)

min
m

√
m2α2ω2 + 1 +Am

(19)

The “min
m

” in eq. (19) should be understood in the sense of a piecewise function formed by
the functions corresponding to the values m = 1, 2, ..., n− 1.

The restriction to full trees is applied by remembering that for 3-dimensional macromolec-
ular structure there is not tree built from partial full trees. The tree which represents the
“scaffold” of the structure is itself a full tree or it is completely degenerate. It is seen that the
surfaces corresponding to eq. (16) for m ≥ 2 violate the inequality there for a large part of
their domain. The surface form = 1 has the largest feasible domain. Our proposal for the SRF
function of a helical point set should be written then as

ρ(ω, α) =
1 + αω

√
A1

1+A1

min
m

√
m2α2ω2 + 1 +Am

. (20)

We can also suppose necessary bounds on ρ(ω, α), or
√

3

3
≤ ρ(ω, α) ≤ 1 (21)

where the first inequality stands for the Graham-Hwangs’s greatest lower bound [6] for the
Euclidean Steiner Ratio.

The corresponding ω-region is given by

arccos(1/4) ≤ ω ≤ 2π − arccos(1/4). (22)
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For the region defined by eqs. (21) and (22), we can define the unconstrained optimization
problem of eq. (20) in the form

ρ(ω, α) = max
m

ρm(ω, α) (23)

where the surfaces ρm(ω, α) are

ρm(ω, α) =
1 + αω

√
A1

1+A1√
m2α2ω2 + 1 +Am

. (24)

The first three surfaces meet at a possible global minimum of the surface (20) or (23). Fur-
thermore, in this point, beyond the 3-Sausage’s topology for the Steiner tree structure we also
have a 3-Sausage’s configuration for the fixed points or the familiar set of vertices of regular
tetrahedra glued together at common faces [7]. This non trivial solution can be written

ωR = π − arccos(2/3); αR =
√

30 [9(π − arccos(2/3))] (25)
and

ρ(ωR, αR) =
1

10
(3
√

3 +
√

7) = 0.78419037337... (26)

which is the value assumed by the main conjecture of authors of ref. [4] for the Steiner Ratio
in R3 with Euclidean distance.

It is worth to notice that there is always a pair of values which give the same value of ρ,
namely (ω, α) and

(
2πN − ω, ωα

2πN−ω

)
, N ∈ Z. This means that

ω̄ = π + arccos(2/3), ᾱ =
√

30 [9(π + arccos(2/3))]

correspond to the same ρ-value, eq. (26).

4. The Existence of a Global Minimum. The Weierstrass
Theorem

The use of the Weierstrass Theorem has as a requirement the definition of a compact domain.
We shall define it in the diagram below where we have depicted the curves ρm = 1, m =
1, 2, 3, 4, 5.

The compact region can be defined as

(Hρ1 −
⋃

k≥ 2

Hρk)
⋂
{(ω, α)| arccos(1/4) ≤ 2π − arccos(1/4)} (27)

where Hρ1, Hρk are the hypographs of the functions ρ1 = 1, ρk = 1, respectively. Since the
functions ρk(ω, α) are continuously decreasing from the boundaries of this compact domain
towards its interior, the Weierstrass Theorem guarantees the existence of a global minimum
inside it.

5. Concluding Remarks
This work is one of the last steps in our effort to proof the Smith+Smith Conjecture. There
are also nice results to be reported about the study of configurations in the neighbourhood
of this value of the Euclidean Steiner Ratio. They are associated to a continuous description
of molecular chirality [8, 9] and their influence in the strengthening of molecular interaction.
Studies of this subject are now in progress and will be published elsewhere.
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Figure 1. The compact region to be used in the Weierstrass Theorem ωi = arccos(1/4), ωf = 2π − arccos(1/4)
according the Graham-Hwang’s lower bound.
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Abstract According to the superposition principle time-resolved spectra may be described by a product of
concentration profiles and spectra of components. We review here methods for fitting the resulting
separable nonlinear spectrotemporal model based on alternating least squares and variable projec-
tion algorithms. Comparison of the algorithms on simulated spectrotemporal data reveals that the
variable projection-based techniques are advantageous in terms of iterations and function evalua-
tions required to convergence, sensitivity of computational efficiency to starting values, and accu-
racy of linear approximation standard error estimates of parameter values.

Keywords: Time-resolved spectra, global analysis, separable nonlinear models, variable projection, alternating
least squares.

1. Introduction
In many applications (an overview of which is found in [5]) it is possible to separate the pa-
rameters x of the unconstrained minimization problemMinimize ϕ(x), x ∈ Rn into x = (y, z)
where y ∈ Rp, z ∈ Rq, p+ q = n, and the subproblem

Minimize ϕ(y, z), (1)

is an overdetermined linear system with the parameters y occurring linearly (the parameters
y are termed conditionally linear, since they may be found by solving a linear optimization
problem given fixed nonlinear parameters z). Then the n-dimensional unconstrained problem
may be replaced by the q-dimensional problem

Minimize ϕ(y(z), z), (2)

where y(z) denotes a solution of (1) which must be computed each time ϕ is evaluated. A
problem in which the variables separate in this sense is

Minimize ‖ vec(F (z)H −G) ‖2 (3)

where F ∈ Rm×q is a matrix determined by nonlinear parameters z, H ∈ Rn×p is a matrix
of conditionally linear parameters, G ∈ Rm×n is a response matrix, and vec(.) denotes trans-
formation to a vector representation. A problem of the form contained in (3) arises in fitting
spectrotemporal models to time-resolved spectral measurements collected in a matrix Ψ of m
time points and n wavelengths, the columns of which represent decay traces and the rows of
which represent time-gated spectra. By the superposition principle, application of a kinetic
model describing the evolution of the concentrations cl(φ) of components contributing to Ψ
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results in a model of general form

Ψ = C(φ)ET + Ξ =

ncomp∑

l=1

cl(φ)eTl + Ξ (4)

where C is an m by ncomp matrix dependent on intrinsically nonlinear parameters φ, with
ncomp representing the number of distinct components contributing to Ψ, E is an n by ncomp

matrix of conditionally linear parameters, and Ξ is an m by n residual matrix with spherical
Gaussian distribution [13]. The cl (columns of C) represent concentration profiles of compo-
nents contributing to Ψ. The el (columns of E) represent spectra of these components. Data
of this form arises in the investigation of photophysical systems by means of time-resolved
optical spectroscopy; typical experiments result in Ψ containing on the order of 1,000-100,000
measurements. Estimates for nonlinear parameters φ describing the evolution of component
concentrations and conditionally linear parameters E describing the component spectra pro-
vide a concise description of Ψ and yield insight into the underlying system dynamics.

2. Optimization methods
In seeking φ that solve

Minimize ‖ vec(C(φ)ET −Ψ) ‖2 (5)

both the alternating least squares method (e.g., [3], [14]), and the variable projection method
( [9], [13]) are often applied. [14] states “alternating least squares regression is rapidly becom-
ing the most commonly used method to solve spectroscopic image analysis problems based on
either a bilinear or trilinear model”, despite “slow processing speed due to convergence prob-
lems”. Here alternating least squares and several variants of variable projection are presented
in terms of their gradient in φ-space.

We consider two gradients derived from variable projection: the original method intro-
duced by Golub and Pereyra [6], [4] (GP), and the approximation introduced by Kaufman [7]
(KAUF). The alternating least squares gradient (ALS) gradient we consider was introduced
by Wold [15] as NIPALS. We also consider a finite-difference approximation of the gradient
(NUM).

Using the notation of [1], let the derivative of C with respect to the nonlinear parameters be
denoted Cφ = dC

dφT . Applying the QR decomposition, C = QR = [Q1 Q2][R11 0]T , where Q is
m×m and orthogonal and R is m× ncomp. Assuming C is of full column rank, C+ = R−1

11 Q
T
1 .

Using ÊT (φ) = C+Ψ, the matrix of residuals Ψ − C(φ)ÊT = (I − C(φ)C+(φ))Ψ. The algo-
rithms ALS (both the ALS-GN and ALS-LS variants), KAUF, GP, NUM may then be defined
as follows, where “convergence” is some appropriate stopping criterion. For compactness of
representation the iteration subscript s is suppressed.

Algorithms ALS, KAUF, GP, NUM:

1. Choose starting φ approximately
2. For s := 1, 2 . . . until convergence do

Determine the gradient in φ-space according to:
ALS := −CφC

+Ψ
KAUF := −Q2Q

T
2 CφC

+Ψ

GP := −Q2Q
T
2CφC

+Ψ−Q1R
−T
11 C

T
φQ2Q

T
2 Ψ

NUM := finite difference approximation of d(I−CC+)
dφ Ψ

φs+1 := step(φs, gradient, . . .)
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By basing our discussion and implementation of the ALS, KAUF, GP, NUM algorithms
on the direction in φ-space that φ is incremented each iteration, we leave undetermined the
method (referred to as step in the description of the algorithms) of determining the step-size
in this direction, allowing the question of an optimal method to remain separate from the
differences in the gradient proscribed by each algorithm. We introduce two varieties of ALS
differing in the step method. The first (ALS-GN) makes a Gauss-Newton step given the ALS
gradient. The second (ALS-LS) makes a Gauss-Newton step augmented by a line search in
the gradient direction until the sum-square error (SSE) is seen to increase. For KAUF, GP,
and NUM, we use a Gauss-Newton step. Implementation of algorithms was based on the
nls package from the R language and environment for statistical computing [10]. Simulation
studies (utilizing the minpack package from [10]) have indicated that for all algorithms under
consideration, replacement of the Gauss-Newton step with a Levenberg-Marquardt step does
not alter performance.

We now summarize some prior results comparing subsets of the methods under considera-
tion. Ruhe and Wedin [11] have shown that for starting φ close to the solution, the asymptotic
convergence rates of KAUF and GP are superlinear whenever application of Gauss-Newton
to the unseparated parameter set (φ + E) has a superlinear rate of convergence, and that
ALS always has only a linear rate of convergence. Bates and Lindstrom demonstrated that
for a simple model having a single nonlinear parameter the performance of KAUF and GP
was similar [1]. Gay and Kaufman also performed a comparison of KAUF and GP on mod-
els inappropriate for time-resolved spectra using datasets containing < 70 data points [8].
We have not found in the literature a clear comparison of alternating least squares and vari-
able projection methods for fitting time-resolved spectral data to appropriate models, despite
widespread application of both classes of algorithms.

3. Simulation
For a simulation study we generated data Ψ with ncomp = 2, φ = {k1, k2}, cl = exp(−klt),
where cl is the column of C describing the lth concentration profile. The spectral shapes are
described by a Gaussian in the energy domain, with ν̄ = λ−1, so that

el(µν̄ , σν̄) = alν̄
5 exp(−ln(2)(2(ν̄ − µν̄)/σν̄)2), (6)

where el is the column l of E describing the lth spectrum, with parameters µν̄ and σν̄ for the
location and width of el, and amplitude parameter al.

Table 1. Rate constants, spectral parameters, and amplitudes for simulated Ψ

component k µν̄ σν̄ a

1 .5 22 9 1
2 .6 18 8 2

The simulated data were inspired by real datasets [12], [13] representing a mixture of two
emitting states with close kinetic rate constants (lifetimes) decaying exponentially and with
overlapping spectra. The dataset was made to contain m = 51 time points equidistant in the
interval 0-2 ns andm = 51 wavelengths equidistant in the interval 350-550 nm. The simulation
parameters are collated in Table 1. Gaussian noise with zero mean was was added, with the
width σ of the noise distribution equal to 3× 10−3 of the maximum of the data.
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Figure 1. Contour map of the sum square of residuals ||vec(Ψ − CET )||2 as rate constants k1, k2 vary, at a
relatively large (Left) and relatively small (Right) scale. The progress of ALS-GN (red), ALS-LS (black), KAUF
(cyan), and GP/NUM (both blue) is depicted from starting values k1 = .1, k2 = 1; rate constant estimates after
each iteration are marked with a circle.

4. Results
For a simulated dataset, we have evaluated the SSE ||vec(Ψ − CET )||2 as rate constants k1, k2

vary, with the result being the surface shown in Figure 1. Figure 1 also shows the values found
by each algorithm under consideration for each of 50 iterations from the starting values k1 =
.1, k2 = 1. KAUF, GP, ALS-LS and NUM converge on the same (globally optimal) solution
in 4 iterations, (note however that the performance of ALS-LS depends on the choice of an
efficient line-search method). ALS-GN is not convergent, and from this case study and others
we conclude that the Gauss-Newton step coupled with the ALS-gradient is not sufficient for
the solution of typical estimation problems in time-resolved spectral modelling.

Performance of the algorithms from a range of starting values and on variants of the dataset
under different noise realizations was examined. For cases in which the globally optimal
parameter values are located at the end of a valley with respect to the starting values, we
observe that the performance of ALS-LS is very much hampered in terms of iterations required
to convergence in comparison to KAUF, GP, and NUM. A plot of the SSE surface (as in Figure
1) in this case shows that ALS-LS follows a zig-zagging path between the walls of the valley,
toward the globally optimal solution to which it eventually converges.

In order to examine the properties of standard error estimates as returned by the fitting
algorithms under consideration, 1000 realizations of the dataset were simulated. For each
realization, the deviation(k) = k̂ − k, where k̂ is the estimated rate constant value, and k is
the value used in simulation, the (linear approximation) standard error (σ̂ k̂), derived from
cov(φ̂) = ς̂2(JT J)−1, where ς̂2 denotes the estimated variance and J is the Jacobian (the gradi-
ent of the residual vector) evaluated at φ̂, and the ratio of these two calculations (the studen-
tized parameter deviation [2], [12]), were calculated. Table 2 reports root mean square (RMS)
results.

At the level of precision collated in Table 2, results for NUM, KAUF and GP are identical.
NUM and GP only differ from KAUF in the 3rd decimal place of deviation/σ̂k̂, and from each
other in the 6th. RMS deviation/σ̂k̂ is expected to be 1 in linear models, and hence the degree
to which this ratio approximates 1 can be used as a measure of the applicability of the standard
error returned by the respective algorithms. Under the ALS gradient, σ̂k̂ is much too small,
and not useful as a measure of confidence in parameter value estimates.

Likelihood-based confidence regions may be constructed around parameter estimates based
on the likelihood ratio between the sum square of residuals S(φ̂) = ||vec(Ψ − CET )||2 at the
solution and at values S(φ) around the solution as φ = {k1, k2} is varied. The confidence level
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Table 2. Root mean square deviation and standard error of nonlinear parameters

ALS-LS KAUF/GP/NUM
RMS deviation (k̂ − k) k1 0.022 0.022

k2 0.025 0.025

RMS σ̂k̂ k1 0.00033 0.021
k2 0.00048 0.027

RMS (deviation/σ̂k̂) k1 55 1.3
k2 37 1.2

1− α is determined as

1− α = F

(
P,N − P, (N − P )/P

S(φ)− S(φ̂)

S(φ̂)

)
(7)

where F is the cumulative F -distribution, N = (times− ncomp)(wavelengths) = (51 − 2)(51),
and P = ncomp = 2. The resulting contour plot of confidence regions about the parameter
estimates is shown in in the left panel of Figure 2. For comparison, the linear approxima-
tion confidence regions calculated from cov(φ) for KAUF, GP, or NUM are shown in the right
panel of Figure 2. Note that the linear approximation confidence regions are slightly too small
as compared to the likelihood-based confidence regions, which is consistent with the slight
underestimation of σ̂k̂ in Table 2, as measured by the overshoot of deviation/σ̂k̂ to 1.
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Figure 2. For the dataset depicted in Figure 1, (Left) contour map of confidence levels 1 − α as determined by
Equation 7 as rate constants k1, k2 vary, (Right) linear approximation confidence regions as found using KAUF,
GP, or NUM for the same levels as at left. In both (Left) and (Right) the closed red circle marks the rate constant
values used in simulation, and the open red circle marks the globally optimal values found by KAUF, GP, NUM,
and ALS-LS.

5. Conclusions
We observe that the performance of GP, KAUF, NUM, and ALS-LS is equal or near-equal in
terms of the accuracy of returned parameter estimates after convergence. In terms of itera-
tions and function evaluations required to convergence, ALS-LS is not favorable in compar-
ison to GP, KAUF, and NUM. The lack of computational efficiency under ALS-LS is due to
the additional function evaluations necessary to perform the line-search each iteration, and to
sensitivity to the choice of starting values that results in estimates that zig-zag through param-
eter space over iterations from some starting values. The standard error estimates returned
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by KAUF, GP, and NUM are usable as a measure of confidence in the associated parame-
ter values, and allow, e.g., the construction of confidence regions about parameter estimates.
The standard error estimates returned by ALS-LS do not allow inference regarding the asso-
ciated parameter estimates, which is a significant drawback in practical application. Under
the criteria of computational efficiency and goodness of standard error estimates, we thus
conclude that variable projection based algorithms are advantageous over alternating least-
squares based techniques, and are to be preferred for application to this problem domain. Of
the variable projection techniques, the KAUF algorithm is the least computationally expen-
sive as evident from comparison of the equations determining the gradient. Hence we rec-
ommend that KAUF be considered the optimal variable projection-based technique for fitting
spectrotemporal models to time-resolved spectra.
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Abstract Robustness Programming is introduced as a framework for expressing Robustness optimisation
problems. Robustness bounding techniques can be used for feasible domain range reduction. Ro-
bustness bounding techniques are based on finding largest enclosed and enclosing shapes. Global
optimisation techniques are essential for finding Robustness bounds.

Keywords: Robustness Programming, Probability Theory, Global Optimisation.

1. Introduction
Consider a wooden table with 4 table legs, each with a diameter of 20cm and a tabletop that is
10cm thick. There are 10 persons sitting at the table, telling jokes and having a good time with
beer and wine. Suppose that the uncontrolable factors such as bumping and pushing against
the table, hardly moves the table. Since the desirable table properties such as stability and
maximum weight support appear not sensitive to the considered uncertainties, the table can be
called robust. A similar table, where the mentioned dimensions are twice as big, is probably
more robust. Apparently an object can have some level of robustness, since some objects can be
more robust than others.

As another example, consider a container of margarine. Typically the container is stored in
the refrigerator, but is warming up towards room temperature, during breakfast and lunch.
The daily cycle of cooling down and warming up can have an effect on the structure of the
margarine, such that over time the margarine does not look appealing anymore. A margarine
product which appears not to be effected by the temperature fluctuations can be called ro-
bust. A margarine product which maintains the desirable properties for the widest range of
temperature fluctuations has the highest robustness.

Robustness is related to uncertain uncontrolable factors. There exist alternative modelling
paradigms for modelling uncertainty and each gives rise to alternative measures for robust-
ness. For instance, Taguchi [8] and Markowitz [6] implicitly model robustness using the mean
and variance statistics. Ben-Tal [1] uses a binary approach: an object is either robust or not, i.e.
an object either maintains its desired properties under all possible conditions or not.

Focus is on the computation and optimisation of a robustness measure. The basic assump-
tions are, (i) that object requirements can be quantified and (ii) uncertain object properties
can be modelled mathematically as a function of controllable and uncontrollable factors. The
vector x represents the controllable factors, v the uncontrollable factors and S object proper-
ties are represented by the functions us(x, v) for s = 1, .., S. Non-negative values of us(x, v)
represent the desired object properties.

As a simplified food product design example, consider a product which is a mix of i =
1, ..., I raw materials, where xi represents the proportion of raw material i in the mix. Let
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for instance x8 represent the proportion of orange juice in the food product. It is likely that
the concentration of vitamin C in the orange juice will vary, depending on the country of
origin, weather conditions during growth and harvest period and storage time. Likewise,
there is uncertainty in the vitamin C concentration of the other raw materials. The vector
element vi represents the uncontrollable vitamin C concentration in raw material i. If food
scientists determined that there should be at least 0.05% vitamin C in the food product, then
the following condition should be fulfilled:

u1(x, v) = v′x− 0.05 ≥ 0 (1)

For the general case, a set of uncontrollable factors can be defined for which it is certain that
the object properties fulfill the requirements:

H(x) := {v ∈ V|us(x, v) ≥ 0, s = 1, .., S}

where V is the set of all possible realisations of v. The set H(x) is called the Happy set, since
elements of this set correspond to the favourable situation that all uncertain object properties
are as intended. A design x is called robust, if and only if the design will perform as intended
for all possible variations in V:

H(x) ≡ V⇐⇒ "x is robust"

Consequently, we will say a design has some level of robustness, if the design only performs as
intended for a subset S ⊂ V of all possible realisations of v:

H(x) ⊂ V⇐⇒ "x is less than robust"

Perhaps the most common approach in science for modelling uncertainty, is studied in the
science field called probability theory [4] [5]. In probability theory, the notions random vector and
probability space are formally introduced, which can be used to model a collection of uncertain
events. The following notation is used:

1. The probability space is defined as (V,V,Pr), with sample space or support set V ⊆ RN ;
the σ-field V of all subsets of V; a probability measure Pr : V → [0, 1] and by definition
Pr (∅) = 0 and Pr (V) = 1

2. The stochastic vector (in bold) v has realisations v in the support set: v ∈ V.

3. The probability that v will have realisations in a subset S ∈ V , S ⊆ V is formally denoted
with Pr (S). Also an informal notation is used, which makes reference to the connected
random vector: Pr {v ∈ S} = Pr (S).

Under the assumption that it is appropriate to model the uncontrollable factors as stochastic
variates, authors such as Du and Chen [3], Bjerager [2] and Nie et al. [7] studied probabilistic
robustness computation and optimisation approaches with encouraging results.

RobustnessR(x) can be expressed in a probabilistic way: the probabilistic robustness of an
object is the probability that an object will have desired properties:

R(x) = Pr {v ∈ H(x)} (2)

The framework for robustness optimisation problems is here defined as Robustness Program-
ming (RP) and can be formulated as:

R∗ = max
x∈RI

[Pr {v ∈ H(x)}] (3)

In practice, there is often not a closed form expression to compute (2). Alternatively, one can
estimate or find (exact) upper and lower bounds for (2). Typically estimation algorithms can
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be slow and can be inefficient to start with, in the context of robustness optimisation. An
improvement would be to explore efficient R(x)-bounding approaches to reduce the feasible
domain of x. The notation for upper bound is +R(x) and for lower bound is −R(x). An
approach can be, to start with computing a lower bound for the optimum −R∗ = max

x∈RI
[−R(x)],

followed by reducing the feasible domain
X =

{
x ∈ Rn|+R(x) ≥− R∗} (4)

and reduce RP roblem (3) to
R∗ = max

x∈X

[Pr {v ∈ H(x)}] (5)

The optimal bound solution −x∗ corresponding −R∗, can be used as a starting point when
using an iterative optimisation method.

Feasible domain range reduction is an application example of R(x)-bounding approaches.
From a practical point of view, only knowing the optimal R(x) bounds can already be valu-
able information and sufficient for decision making. One can conclude that R(x)-bounding
methods can be relevant in the context of robustness optimisation.

The R(x)-bounding methods are based on the following basic principle: Consider an en-
closed shape −H(x) ⊆ H(x) and an enclosing shape +H(x) ⊇ H(x). Based on these shapes, for
any two points xa and xb for which it holds that

−H(xa) ⊇+ H(xb)
(
⊇ H(xb)

)

it follows that
R(xa) ≥ R(xb) (6)

Even without knowing the actual probability space of v. Of course, this method only works if
H(x) is bounded. In this study, three types of shapes in the v-space are considered:

1-norm (diamond): D(c, rd) =

{
v ∈ RN

∣∣∣∣
N∑

n=1
|vn − cn| ≤ rd

}

2-norm (ball): B(c, rb) =
{
v ∈ RN |(v − c)′(v − c) ≤ r2

b

}

∞-norm (cube): C(c, rc) =
{
v ∈ RN |∀1≤n≤N : −rc ≤ vn − cn ≤ rc

}
(7)

where vector c is the centre of the shape and rd, rb and rc the radius. By definition it holds that
D(c, rd) ⊂ B(c, rb) ⊂ C(c, rc) (8)

for rd = rb = rc. For simplicity reasons, the centre of the shapes is fixed at c = E[v]. For fixed
x, the smallest shapes enclosing H(x), are defined by

1-norm (diamond): +D

(
c, max

v∈H(x)

N∑
n=1
|vn − cn|

)

2-norm (ball): +B

(
c, max

v∈H(x)

√
(v − c)′(v − c)

)

∞-norm (cube): +C

(
c,max

n
max

v∈H(x)
|vn − cn|

)
(9)

For fixed x, the biggest shapes enclosed by H(x), can be determined by identifying that re-
quirement s, that is in distance closest to nominal value c. Alternatively, when blowing up the
shape, one should find out which constraint s, s = 1, .., S is touched first:

1-norm (diamond): −D

(
c,min

s
min

v

{
N∑

n=1
|vn − cn|

∣∣∣∣us(x, v) = 0

})

2-norm (ball): −B
(
c,min

s
min

v

{√
(v − c)′(v − c)

∣∣∣us(x, v) = 0
})

∞-norm (cube): −C
(
c,min

n
min

s
min

v

{
|vn − cn|

∣∣∣ us(x, v) = 0
})

(10)
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Any of the enclosed or enclosing shapes can be used for the computation of respectively a
robustness lower bound or upper bound. Since c is fixed, the radius of any of the shapes, is
proportional to the corresponding probability bound. Thus the comparison of the bounds,
can be based on the radius in combination with property (8).

The challenges for GO are two-fold:

1. For the maximisation and minimisation problems inside the definitions (9) and (10), it is
crucial to find global optima, since only in that situation a bound can be guaranteed.

2. The R(x)-bounding approach is competing with R(x)-estimation. In the situation a
Monte Carlo sampling approach for estimating R(x) and N samples are sufficient for
estimating R(x) at a satisfying accuracy level, then it only makes sense if the bounding
approach can find a bound within < N function evaluations. In practice this means fast
global optimisation routines are needed.

As an illustration see figure 1 where

u(x, v) = 2− (x1 ∗ (v1 − p1))
2 + (x2 ∗ (v2 − p2))

2

and
H(x) =

{
v ∈ R2|u(x, v) ≥ 0

}

and exogenous restrictions for the initial feasible domain are given by

X =
{
x ∈ R2|2x1 = x2

}

In the illustration E(v) = c 6= p, such that graphically speaking: p is little above and to the left
from c. Let

−rc(x) = min
n

min
s

min
v

{
|vn − cn|

∣∣∣us(x, v) = 0
}

be the radius of the cube enclosed by H(x) and
+rc(x) = max

n
max

v∈H(x)
|vn − cn|

be the radius of the cube enclosing H(x). The left part of figure 1 illustrates the v-space and
the right part the x space. The lower left part of figure 1, illustrates the search for the largest
enclosed cube. The inner cube is a subset of H(xI) which intersects with the closure of H(xI)
and thus corresponds to the global solution for the optimisation problem in the definition
of −rc(xI). The other three larger cubes are partially outside H(xI) and correspond to local
solutions for the optimisation problems in the definition of −rc(xI). In figure 1, the happy set
corresponding point xIII is enclosed by a cube with a radius identical to the radius of the cube
belonging to point xI: −rc(xI) =+ rc(x

III). Without knowing the details of the probability
space (V,V,Pr), the bounds guarantee that the probability mass of H(xIII) is smaller than or
equal to the probability mass of H(xI). Thus R(xI) ≥ R(xIII). Therefore the feasible domain X

can be reduced to
X′ :=

{
x ∈ X|x1 ≤ xIII

1

}

A second illustration of the R(x)-bounding methods, is the application in the context of con-
ditional MC sampling for estimating R(x). In the situation that the probability mass of shape
−H(x) inside H(x) is known, then only samples outside −H(x) are needed to estimate R(x).
The largest diamond is an example of such an enclosed shape: −D(c,− r∗d(x)) ⊆ H(x), with
−r∗d(x) = min

s
min

v

{
N∑

n=1
|vn − cn|

∣∣∣∣us(x, v) = 0

}
. Consider that Robustness Programming tech-

niques exist which can compute −R(x) = Pr {v ∈− D(c,− r∗d(x))} efficiently and can generate
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Figure 1. Illustration of R(x)-bounding by cube shape

conditional samples from v, outside −D(c,− r∗d(x)). These conditional samples can be used to
estimate Pr

{
v ∈ H(x)|v /∈− D(c,− r∗d(x))

}
, such that an estimate for

R(x) = −R(x) + (1− −R(x)) Pr
{
v ∈ H(x)|v /∈− D(c,− r∗d(x))

}

can be computed.
The standard error of the conditional MC estimate will be a factor (1 − −R(x)) smaller, in

comparison to the standard error of an ordinary MC estimate. As a concequence, in expecta-
tion, the conditional MC approach requires less samples. Less samples means shorter com-
putation time. However, the conditional MC approach is more efficient, only in the situation
that the shorter computation time in the sampling stage, compensates the extra computation
time for finding the largest diamond.

2. Summary
Robustness of an object can be defined as the probability that uncertain factors have a favourable
effect on the object. Favourable realisations of the uncertain factors can be collected in a set,
which is called the Happy set.
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Robustness bounds can be defined, which are proportional to the radius of shapes enclosed
by the Happy set and shapes enclosing the happy set. Finding the radius of the largest en-
closed and smallest enclosing shapes, are global optimisation problems, where it is essential
to find global optima to guarantee a lower bound or upper bound respectively.

From an end-user perspective, the extreme values of robustness bounds, can be useful for
decision support. From a technical perspective, robustness bounding methods are useful in
the context of feasible domain reduction and efficient conditional sampling techniques.
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Abstract In this paper we suggest a new approach for solving disjoint bilinear programming problems. This
approach is based on the Global Search Strategy for d.c. maximization problems, developed by
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1. Introduction
A number problems in engineernig design, decision theory, operation research and economy
can be described by the bilinear programming problems. For example, finding the Nash equi-
librium in bimatrix games [3, 4] and bilinear separation problem in IRn [5] can be formulated
as specific bilinear problems.

In spite of external simplicity such problems are nonconvex. As is well known in non-
convex problems there exist a lot of local extremums or even stationary (critical) points, that
are different from global solutions. And classical methods of convex optimization [1] are not
applicable in such problems.

There are two types of bilinear programs: with joint constraints and with disjoint con-
straints. The former is more hard problem than the latter. But even for problems with dis-
joint constraints development of fast algorithm is complicated problem. Several methods
have been proposed in literature to solve jisjoint bilinear problems [6]). The aim of this pa-
per is to study the usefullness of Global Optimality Conditions approach, developed by A.S.
Strekalovsky [2], for disjoint bilinear programs.

2. Problem statement and d.c. decomposition of goal function
Let us consider the bilinear function

F (x, y) = 〈c, x〉 + 〈x,Qy〉+ 〈d, y〉, (1)
where c, x ∈ IRm; d, y ∈ IRn; Q is an (m× n) matrix.

The disjoint bilinear programming problem can be written as follows:
F (x, y) ↑ max

(x,y)
,

s.t. x ∈ X 4
= {x ∈ IRm | Ax ≤ a, x ≥ 0},

y ∈ Y 4
= {y ∈ IRn | By ≤ b, y ≥ 0},





(BLP )

∗This work was supported by RFBR Grant No. 05-01-00110
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where A is (m1 ×m) matrix, B is (n1 × n) matrix, a ∈ IRm1 , b ∈ IRn1 . We will assume that X
and Y are bounded polytopes.

It is readily seen that goal function of (BLP ) can be represented as difference of two convex
functions:

F (x, y) = f(x, y)− g(x, y), (2)

where f(x, y) =
1

4
‖x+Qy‖2 + 〈c, x〉, g(x, y) =

1

4
‖x−Qy‖2 − 〈d, y〉.

Therefore Global Search Strategy for d.c. maximization problems may be using for solving
(BLP ) [2].

3. Local Search
A searching of critical (stationary) points in nonconvex problem under consideration is one of
significant part of Global Search Strategy above mentioned. In this case definition of a critical
point depends on properties of the problem and the corresponding local search method.

Further we presented two local search methods in (BLP ).
Let (x0, y0) be a starting point.

X-procedure.

Step 0. Let s := 0, xs := x0.
Step 1. Find ρs/2-solution ys+1 of Linear Program

〈d+ xsQ, y〉 ↑ max
y
, y ∈ Y, (LPy).

Here
〈d+ xsQ, ys+1〉+ ρs/2 ≥ sup

y
{〈d+ xsQ, y〉 | y ∈ Y }. (3)

Step 2. Find ρs/2-solution xs+1 of Linear Program

〈c+Qys+1, x〉 ↑ max
x
, x ∈ X, (LPx).

Here
〈c+Qys+1, xs+1〉+ ρs/2 ≥ sup

x
{〈c+Qys+1, x〉 | x ∈ X}. (4)

Step 3. If
F (xs+1, ys+1)− F (xs, ys+1) ≤ τ, (5)

where τ is accuracy of solution, then Stop, else let s := s+ 1 and go to step 1.

The sense of this algorithm is to approximate solution of the linear programming problems
in x and y. This method is modification of algorithm from [3].

Further we formulate the convergence theorem for this method.

Theorem 1. Let F (·) be bounded above function on X×Y and suppose ρs > 0, s = 1, 2, . . .
∞∑

s=1
ρs <

+∞. Then sequence of points (xs, ys) from X-procedure converge to (x̂, ŷ):

F (x̂, ŷ) ≥ F (x̂, y) ∀y ∈ Y, (6)

F (x̂, ŷ) ≥ F (x, ŷ) ∀x ∈ X. (7)

The pair (x̂, ŷ) is called the critical point of (BLP ) if (6) and (7) takes place. This point is
global solution of (BLP ) in x and y separately.
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When the algorithm stop (i.e. inequality (5) hold), we have approximate critical point of
(BLP ).

Further notice features of the algorithm. First, algorithm is needed only x0 from (x0, y0) for
starting. Second, this point may be not feasible. In spite of the last fact, the convergence of
this method was proven.

Below we presented another "symmetric" method for local search in (BLP ). This algorithm
is needed only y0 from (x0, y0) for starting.

Y-procedure.

Step 0. Let s := 0, ys := y0.
Step 1. Find ρs/2-solution xs+1 of Linear Program

〈c+Qys, x〉 ↑ max
x
, x ∈ X, (LPx).

Here
〈c+Qys, xs+1〉+ ρs/2 ≥ sup

x
{〈c+Qys, x〉 | x ∈ X}. (8)

Step 2. Find ρs/2-solution xs+1 of Linear Program

〈d+ xs+1Q, y〉 ↑ max
y
, y ∈ Y, (LPy).

Here
〈d+ xs+1Q, ys+1〉+ ρs/2 ≥ sup

y
{〈d+ xs+1Q, y〉 | y ∈ Y }. (9)

Step 3. If
F (xs+1, ys+1)− F (xs+1, ys) ≤ τ, (10)

where τ is accuracy of solution, Then Stop, else let s := s+ 1 and go to step 1.

Theorem 2. In conditions of theorem 1 sequence (xs, ys) from Y-procedure converge to (x̂, ŷ), such as
(6) and (7) takes place.

Notice, that both above methods converges to the point with identical properties.

4. Global Search Algorithm
Since we not obtain the global solution by local search, further the global search algorithm is
presented.

Suppose (x0, y0) ∈ D
4
= X × Y is a starting point, {τk}, {δk} are sequences of num-

bers, τk, δk > 0, k = 0, 1, 2, ..., τk ↓ 0, δk ↓ 0, (k → ∞), Dir = {(u1, v1), ..., (uN , vN ) ∈
IRm+n|(us, vs) 6= 0, s = 1, ..., N} is set of vectors, γ−

4
= inf(g,D), γ+

4
= sup(g,D), ν and q are

scalars.

Global search algorithm

Step 0. Let k := 1, (x̄k, ȳk) := (x0, y0), s := 1, p := 1, γ := γ−, 4γ = (γ+ − γ−)/q.
Step 1. Beginning from (x̄k, ȳk) ∈ D by X-procedure or Y-procedure obtain τk-critical point

(xk, yk) ∈ D in (P). Here F (xk, yk) ≥ F (x̄k, ȳk). Let ζk := F (xk, yk).

Step 2. Compute point (ūs, v̄s) of level surface approximation of f(·) by (us, vs) ∈ Dir. Here
f(ūs, v̄s) = γ + ζk.

Step 3. If g(ūs, v̄s) > γ + νγ, then let s := s+ 1 and go to step 2, else go to step 4.
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Step 4. Beginning from (ūs, v̄s), by X-procedure or Y-procedure obtain δk-critical point (x̂s, ŷs) ∈
D in (P).

Step 5. Find δk-solution (xs
0, y

s
0), f(xs

0, y
s
0) = γ + ζk, of level problem

〈∇xf(xs
0, y

s
0), x̂

s − xs
0〉+ 〈∇yf(xs

0, y
s
0), ŷ

s − ys
0〉+ δk ≥

≥ sup
x,y
{〈∇xf(x, y), x̂s − x〉+ 〈∇yf(x, y), ŷs − y〉 : f(x, y) = γ + ζk}. (11)

Step 6. Compute

ηk(γ) = γ − g(x̂s, ŷs) + 〈∇xf(xs
0, y

s
0), x̂

s − xs
0〉+ 〈∇yf(xs

0, y
s
0), ŷ

s − ys
0〉. (12)

Step 7. If ηk(γ) ≤ 0, s < N, then let s := s+ 1 and go to step 2.
Step 8. If ηk(γ) ≤ 0, s = N , then let γ := γ +4γ, s := p and go to step 2.
Step 9. If ηk(γ) > 0, then let (x̄k+1, ȳk+1) := (x̂s, ŷs), k := k + 1, s := s+ 1, p := s and go to

step 1.
Step 10. If s = N, ηk(γ) ≤ 0, ∀γ ∈ [γ−, γ+] then Stop.

Let us explain some steps and parameters of above algorithm.
On step 2 we construct the level surface approximation by the set of vectors Dir. On step 3

we examine the point of level surface approximation on applicability by the Global Oplimality
Conditions inequality (see [2]). Scalar ν is a first parameter of algorithm. By this parameter we
can change accuracy of inequality on step 3. On step 4 we implement additional local search
instead of linearized problem solving (see [2]).

On step 6 we compute the quality assessment of algorithm’s iteration. On steps 7–10 we
check on stopping criterion and perform returns on internal (on points of level surface ap-
proximation and on parts of segment [γ−, γ+]) and external (on critical points) cycles. Scalar
q is a second parameter of algorithm. By this parameter we can change number of above
mentioned segment parts.

The testing of the developed algorithm performed on the special disjoint bilinear program.
This program is equivalent to finding Nash equilibrium point in bimatrix games [4].
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Abstract We propose a new genetic-like algorithm, GASUB, for finding solutions to different facility loca-
tion problems which are hard to solve. We deal with the p-median problem, the maximum capture ,
and the location-price problem with delivered prices. In each one of them, a given number s of facil-
ity locations must be selected in a set of potential locations, containing m location points, so as to
optimize a predetermined fitness function. Although these problems can be formulated as integer
linear optimization problems, they can only be solved by standard optimizers for moderately small
values of s and m. GASUB is compared with MSH, a multi-start substitution method widely used
for location problems. Computational experiments with location-price problems (the ones with the
more complex fitness function) show that GASUB obtains better solutions than MSH. Furthermore,
the proposed algorithm finds global optima in all tested problems, which is shown by solving those
problems by Xpress-MP, an integer linear programming optimizer [11].

Keywords: Combinatorial optimization, Discrete location problems, Stochastic algorithms.

1. Introduction
Location models have been developed to help decision makers in a variety of situations in
which new facilities have to be located to serve a set of users which are aggregated in a given
number of demand points (see [5]). These models can be classified in two big groups: Non-
competitive models and Competitive models, depending on a single player in the market is
considered or more than one. A detailed taxonomy can be found in the survey papers [3, 8].

In a non-competitive environment, the most important objective is minimization of trans-
portation costs, which are due to the interaction between users and facilities, being the p-
MEDIAN problem the basic model for many distribution systems (see [2]). In a competitive
environment, firms compete for users and the usual objective is profit maximization. Since users
are supposed to buy at the cheapest facility, strategic decisions on location and price have to
be made. Firms normally use either a mill price or a delivered price policy. Under mill pricing
(the seller sets a factory price, equal for all the customers in the market, and the buyer takes
care of carriage). A basic model is MAXCAP (see [10]) in which a common mill price is set
by all competing firms; there is a finite set of possible facility locations; and the objective is
market share maximization (which is equivalent to profit maximization in this setting). Un-
der delivered pricing (the seller charges a specific price in each market area, which includes the
freight cost, and takes care of transport), there exist equilibrium prices that are determined by

∗This research has been supported by the Ministry of Science and Technology of Spain under the research projects BEC2002-
01026 and CICYT-TIC2002-00228, in part financed by the European Regional Development Fund (ERDF). We are very grateful
with Dashoptimization for providing aXpress-MP license for testing.
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the facilities location (see [6] ), thus the location-price problem becomes a location problem
when firms charge equilibrium prices. To our knowledge, the resultant location problem only
has been studied in discrete space and it will be referred here as the MAXPROFIT problem
(see [4]).

The aim of this paper is to show that the above mentioned problems can be formulated
in the same framework and solved by using the same type of algorithms. By using integer
linear programming formulations of the problems, standard optimizers can be applied to find
optimal solutions to moderated size problems. By determining its fitness functions, heuris-
tics algorithms can be used to get good solutions for large size problems. We propose a new
genetic algorithm with subpopulation support, GASUB , which is related to a previous algo-
rithm given in [9]. The new algorithm is compared with the multi-start substitution heuristic,
MSH, a procedure widely used for many combinatorial location problems (see [2]).

2. The location problems formulation
We will use the following notation when necessary:

i, I = 1, 2, ..., n Index and collection of demand points
j, J = 1, 2, ..., m Index and potential sites for facility location
k, K = 1, 2, ..., q Index and pre-existing facility locations
wi Demand (or buying power) at point i
dij Distance between demand point i and point j
Di = min{dik : k ∈ K} Distance from demand point i to the closest pre-existing facility
N<

i = {j ∈ J : dij < Di} Collection of potential locations for servers that are closer to point i
than the closest pre-existing facility

N=
i = {j ∈ J : dij = Di} Collection of potential locations for servers that are at the same distance

to point i than the closest pre-existing facility
I∗ = {i ∈ I : N<

i ∪ N=
i 6= ∅} Collection of demand points that have at least one potential location for

server closer or at the same distance than the pre-existing facilities
t Unit transportation cost
s Number of new facilities to be built

In the p-MEDIAN problem, there is no pre-existing facility in the market (K = ∅) and the
objective is to minimize total transportation cost between demand points and their closest
facilities. The following decision variables are defined:

yj =

{
1 if a new facility is opened in j
0 otherwise

xij = proportion of demand at i served from site j

Then the problem is formulated as follows:

(P1)





min
∑

i∈I

∑

j∈J

twidijxij

s.t.
∑

j∈J

xij = 1, i ∈ I

xij ≤ yj, i ∈ I, j ∈ J
∑

j∈J

yj = s

xij ≥ 0

yj ∈ {0, 1}
In MAXCAP, there already exist some competing pre-existing facilities. Customer pays for

transportation and buys at its closest facility. If a new facility and a pre-existing facility are
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the closest to a demand point i, then demand in i is divided so that a fixed proportion θi of
customers buy at the new closest facilities, 0 ≤ θi ≤ 1. The following decision variables are
defined:

yj =

{
1 if a new facility is opened in j
0 otherwise

xi =

{
1 if the new facilities capture demand point i
0 otherwise

zi =

{
1 if demand point i is divided
0 otherwise

then the problem is formulated as follows:

(P2)





max
∑

i∈I

wixi +
∑

i∈I

θiwizi

s.t. xi ≤
∑

j∈N<
i

yj, i ∈ I∗

zi ≤
∑

j∈N=
i

yj, i ∈ I∗

xi + zi ≤ 1, i ∈ I∗
∑

j∈J

yj = s

xi ≥ 0, zi ≥ 0

yj ∈ {0, 1}
In MAXPROFIT, facilities take charge of transportation and deliver the product to cus-

tomers. Each facility offers a specific price at each demand point. As result of price com-
petition, the optimal price a new facility can offer at demand point i is the equilibrium price,
which is given by pmin + tDi, where pmin is the minimum selling price at the firm’s door. With
equilibrium prices, only the closest facility to a demand point i can offer the lowest price in i.
Then, the same rule as in MAXCAP is used for tie breaking when two or more facilities are the
closest to a demand point. Let pnet = pmin− pprod, where pprod is the production cost, which is
supposed not to depend on site location. The following decision variables are defined:

yj =

{
1 if a new facility is opened in j
0 otherwise

xij = proportion of demand at i served from site j

zi =

{
1 if demand point i is divided
0 otherwise

then the problem is formulated as follows:

(P3)





max
∑

i∈I∗

∑

j∈N<
i

[pnet + t(Di − dij)]wixij +
∑

i∈I∗

pnetθiwizi

s.a.
∑

j∈N<
i

xij + zi ≤ 1, i ∈ I∗

xij ≤ yj, i ∈ I∗, j ∈ N<
i

zi ≤
∑

j∈N=
i

yj, i ∈ I∗

∑

j∈J

yj = s

xij ≥ 0, zi ≥ 0
yj ∈ {0, 1}
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Problems (P1), (P2) and (P3) can be exactly solved by standard integer linear programming
optimizers only for data of moderated size, which is due to the optimizer can not manage the
corresponding matrices when the cardinalities of I and/or J are very large. In fact, (P1) and
(P2) have been proved to be NP-Hard (see [1, 7]) and (P3) is also NP-Hard since it becomes
(P2) by taking pnet = 1, t = 0 and xi =

∑

j∈N<
i

xij .

3. The GASUB algorithm
In this section the basic concepts, the algorithm, and the setting of the parameters are outlined.
First we will determine the fitness function for the above problems (notice that (P1) will be
considered as a maximization problem).

For each problem, once the y-variables are fixed (which means that s elements in the set J
are selected), the optimal values of non y-variables can easily be determined. Let S ⊂ J be
any subset of s elements, we denote with di(S) the distance from demand point i to the closest
location in S, di(S) = min{dij : j ∈ S}. If we consider the sets I1

S = {i : di(S) < Di} and
I2
S = {i : di(S) = Di}, then the fitness functions are given as follows:

p-MEDIAN: Π1(S) = −
∑

i∈I

widi(S)

MAXCAP: Π2(S) =
∑

i∈I1
S

wi +
∑

i∈I2
S

θiwi

MAXPROFIT: Π3(S) = pnet(
∑

i∈I1
S

wi +
∑

i∈I2
S

θiwi) + t
∑

i∈I1
S

(Di − di(S))wi

3.1 Problem encoding
A point (individual in terms of genetic algorithms) consists of a single string that is a collection
of m bits. The position of a bit in the string coincides with the index of the associated facility.
Because of the set S of selected facilities is predetermined for every problem, the number of
bits to 1 value must be fixed to the number of new facilities to be selected (cardinal of S). We
must consider this constraint when generating any search point.

3.2 Basic concepts
A key notion in gasub is that of a subpopulation. A subpopulation would be equivalent to
a single individual, which is defined by a center, a fitness function and a radius value. The
center is a solution and the radius indicates the attraction area of this subpopulation.

Of course, this definition assumes a distance defined over the search space. For our combi-
natorial problem we define the Hamming distance. Because of the constraint of the problem,
where the number of chosen facilities and hence the number of bits (genes) to 1 is fixed, the
Hamming distance between any two feasible points (individuals) must be always multiple of
2.

The radius of a subpopulation is not arbitrary; it is taken from a list of decreasing radii that
follows a cooling schedule. The first element of this list is the diameter of the search space. If
the radius of a subpopulation is the ith element of the list, then the level of the subpopulation
is said to be i. Given the largest radius and the smallest one (r1 and rlevels, respectively) the
radii in the list are expressed by the exponential function

ri = 2r1

(
rlevels

r1

) i−1
levels−1

(i = 2, . . . , levels). (1)
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The parameter levels indicates the maximal number of levels in the algorithm, i.e. the num-
ber of different ’cooling’ stages. Every level i (i.e. for levels from [1, levels]) has a radius value
(ri) and two maxima on the number of function evaluations (f.e.) namely newi (maximum f.e.
allowed when creating new subpopulations) and ni (maximum f.e. allowed when mutating
individuals).

During the optimization process, a list of subpopulations is kept by gasub and this subp−
list defines the whole population.

3.3 Input parameters
In gasub the most important parameters are those defined at each level: the radii (ri) and
the numbers of function evaluations for subpopulations creation (newi) and optimization (ni).
These parameters are computed from some user-given parameters that are easier to under-
stand:

evals: The maximal number of function evaluations the user allows for the whole op-
timization process.It could be called as Whole Budget. Note that the actual number of
function evaluations may be less than this value.

levels: The maximum number of levels, i.e. the number of cooling stages.

max subp num: The maximum length of the subp− list.
rlevels: The radius associated with the maximum level, i.e. levels.

3.4 The Algorithm
The gasub algorithm has the following structure:

Begin gasub

Initializing population
Mutation(n1)
for i = 1 to levels

Determine ri, newi, ni

Generation and crossover(newi/length(subp list))
Selection(ri, max subp num)
Mutation(ni/max subp num)
Selection(ri, max subp num)

end for
End gasub

In the following, the different key stages in the algorithm are described:

Initializing population: A new subpopulations list consisting of one subpopulation with a
random center at level one is created. The center must have as many genes to 1 value as
the number of new facilities are being chosen.

Generation and crossover: For every individual in the subp− list, new random individuals
are generated, and for every pair of new individuals the objective function is evaluated
at the middle of the section connecting the pair (see Figure 1). All generated individuals
must satisfy the constraint of having a fixed number of genes to 1 value. If the fitness
value of the middle point is better than the fitness value of the center of the subpopu-
lation, then this individual will be the new center, keeping the same level value. If the
value in the middle point is worse than the values of the pair, then the members of the
pair are inserted in the subp− list. Every newly inserted subpopulation is assigned the
actual level value (i).
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Figure 1. Generation and crossover

As a result of this procedure the subp − list will eventually contain several subpopu-
lations with different levels (hence different radii). The motivation behind this method
is to create subpopulations that are on different ’hills’ so ensuring that there is a valley
between the new species.

Selection: This procedure has two mechanisms, the first tries to fuse subpopulations that
are too close and the second selects the subpopulations that will be maintained in the
subp− list.

Fuse species: If the centers of any pair of subpopulations from the subp− list are closer
to each other than the given radius, the two subpopulations are fused. The center of the
new subpopulation will be the one with the better function value while the level will be
the minimum of the levels of the fused subpopulations (so the radius will be the largest
one).

Select species: It deletes subpopulations to reduce the list length to the given value.
Higher level subpopulations are deleted first; therefore subpopulations with larger radii
are always kept. For this reason one subpopulation at level 1 whose radius is equal to
the diameter of the search domain always exists, making it possible to escape from local
optima.

Mutation: It applies consecutive mutations to every center of every subpopulation. A muta-
tion means an interchange of one facility, so one gene of the center is changed from 0 to
1 and other gene is changed from 1 to 0, according to our problem encoding.
If when mutating an individual, its function value is better than the value of the center,
then this new individual will replace the center. At level i, the maximum number of
consecutive mutations applied to each center is ni/max subp num.
Note that the fact that gasub may terminate simply because it has executed all its levels.
The final number of function evaluations thus depends on the complexity of the ob-
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jective function. This behavior is qualitatively different from genetic algorithms which
typically run until a maximum number of function evaluations.

4. Computational experiments
For computational experiments we selected 1046 cities in Spain as nodes, and their popula-
tions as demand. The geographic coordinates and population of each city was obtained from
http://www.terra.es/personal/GPS.2000 and http://www.ine.es, respectively. Distances were taken
as the Euclidean distances between cities and each city demand was taken proportional to its
population. All cities were chosen as location candidates (the set J ) in all test problems.

In order to have an overall view on the performance of MSH and GASUB, we fixed pnet = 1
and generated different types of problems, varying the number of pre-existing facilities (q =
2, 4, 6, 8, 10), the number of new facilities (s = 2, 4, 6, 8, 10) and the unit transportation cost
(t = 0.001, 0.005, 0.01, 0.05, 0.1). These 125 problems were optimally solved by using Xpress-
MP and their optimal values were used to evaluate the performance of both heuristics. All the
computational results have been obtained under Linux on a Pentium IV with 3GHz CPU and
2GB memory. The algorithms were implemented in C++.

Results show that the parameter t practically doesn’t affect to the computational time, in
such a way that given fixed values for q and s, the required times to solve the problem are
similar for different values of t. For this reason, graphics in Figure 2 showing the compu-
tational times are average values from the computational times obtained for the different t
values (0.001, 0.005, 0.01, 0.05, 0.1). Anyway it is interesting to remark that MSH do not get
optimal locations for some small values of t and high values of s. On the other hand, GASUB
not only finds the global solution for all runs of every problem but also finds more than one
existing global optima. For instance, for q = 4 two global optima were found by GASUB.
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Figure 2. Computational results for q=2, 4, 6, 8
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Figure 2 shows four comparative graphics with computational results of the problems for
different values of the number of pre-existing facilities (q = 2, 4, 6, 8). Each graphic shows the
average value of computational time (varying t) required for MSH and GASUB, for the five
values of s (2, 4, 6, 8, 10). For cases where MSH doesn’t find the solution at all runs, we have
drawn a circle and the corresponding percentage of success on finding the global solution
(below 100%). Note that these are average values for different values of t. For those cases
where GASUB finds the two optima we have drawn a square.

5. Conclusions and future research
We have shown some basic discrete location problems which can be solved, exactly and ap-
proximately, by the same type of algorithms. Then we have proposed a genetic-like heuristic,
GASUB, to deal with large instances of these problems. This algorithm has been compared
with an optimizer, Xpress-MP, and a well known heuristic used for many location problems,
MSH. For this, 125 instances of MAXPROFIT have been solved by the three algorithms. Com-
putational experiments show that optimal locations can also be obtained by the heuristics.
MSH obtained optimal locations in 20% of the solved problems, while GASUB always found
optimal locations in the tested problems. An additional advantage of GASUB is that this al-
gorithm can generate more than one global optimum (in 8 out of the 125 solved problems),
the contrary happens with MSH and Xpress-MP which obtain only one optimum. Compu-
tational times for both heuristics increase significantly when the s value increases, which is
explained by the fact that the number of location combination exponentially increases when
the parameter s increases.

As future research we will conduct more experiments with instances of the three mentioned
models and we will compare GASUB with another genetic algorithm. Furthermore, a paral-
lelization of GASUB will be investigated in order to reduce computational times.
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Abstract In this paper we propose an algorithm which determines the path that minimizes the expected value
of an utility function over a dynamic probabilistic network with discrete real random variables (pa-
rameters) associated to each emerging arc. To obtain the optimal dynamic path from a source to
sink node, we use a generalization of Bellman first-in-first-out labelling-correcting algorithm used
to the determine the shortest path in directed networks with deterministic parameters associated
to each arc. Additionally some initialization techniques that improve the running times without
jeopardizing memory are also considered.

The topology of the networks is not known in advance, which means that we only have knowl-
edge of the incoming (outgoing) arcs, and their parameters, of some specific node once we reach it.
Thus the optimal path is determined in a dynamic way.

We also present computational results for networks with 100 up to 10000 nodes and densities 2,
5 and 10.

Keywords: Probability Networks, Expected Value of an Optimal Path, Dynamic paths, Utility Functions

1. Introduction
Suppose we want to obtain de optimal path in a directed random network, where the param-
eters associated to the arcs are real random variables following discrete distributions. The
criteria that has been chosen to decide which path is optimal is the one that minimizes the
expected value of an utility function over the considered network.

This methodology can be used in different applications, as energy network or data network,
where real on time optimal solutions are necessary.

Different types of optimal path problems over random probabilistic networks are consid-
ered in the literature. Considering networks with random parameters that are all realized at
once, the first publication belongs to Frank, [6] who determined the shortest path on a random
graph and presented a process for obtaining the probability distribution of the shortest path.

In 1991 Bard and Bennett, [2] developed heuristic methods based on Monte-Carlo simula-
tions for the stochastic optimal path with non-increasing utility function. Their computational
results regarded networks with 20 up to 60 nodes.

For the special case of acyclic networks Cheung and Muralidharan [4] developed a poly-
nomial time algorithm (in terms of the number of realizations per arc cost and the number of
emerging arcs per node) to compute the expected cost of the dynamic stochastic shortest path.

In 2004 Rasteiro and Anjo, [11] developed an algorithm to solve the stochastic optimal path
considering random continuous parameters associated to the network arcs.

In this paper we propose an algorithm which determines the path that minimizes the ex-
pected value of an utility function over a dynamic probabilistic network with discrete real
random variables (parameters) associated to each emerging arc. Our algorithm is a general-
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ization of Bellman first-in-first-out labelling-correcting algorithm used to the determine the
shortest path in directed networks with deterministic parameters associated to each arc.

The most common methods used to solve the classical deterministic shortest path problem
are the label-correcting methods. In this approach to each node i ∈ N , ((N ,A) is a probabilis-
tic network where N = {v1, . . . , vn} is the set of nodes and A = {a1, . . . , am} ⊆ N ×N is the
set of arcs) is assigned a label (usually the distance or cost to the destination node) and put
into a queue. Then we scan through the nodes in the queue and update the labels, if neces-
sary. After a node is scanned it will be removed from the queue, and then some nodes may
be inserted or repositioned in the queue. The process is repeated until the queue is empty or
all labels are correct. There are several implementations of this methods including the first-
in-first-out algorithm of Bellman [3]. A review of these methods, which basic difference is the
way how the queue is manipulated, can be found in Ahuja et al [1].

We present computational results, for networks with 100 up to 10000 nodes and densities 2,
5 and 10, which prove that our approach is very efficient in terms of memory and time.

2. Problem Definition
In the stochastic shortest path problem a directed probabilistic network (N ,A) is given where
each arc (i, j) ∈ A is associated to the real random variable Xij which is called the random
parameter of the arc (i, j) ∈ A. We assume that the real random variables Xij have discrete
distributions and are independent. The variables Xij are sometimes referred as cost, time or
distance.

The set of outcomes of Xij will be denoted by SXij
=
{
d1

ij , d
2
ij , . . . , d

r
ij

}
. We will assume

that the dimension of SXij
, i.e, r is always a finite value. The probability of Xij assume the

value dl
ij is denoted by pl

ij .
If an appropriate utility measure is assigned to each possible consequence and the expected

value of the utility measure of each alternative is calculated, then the best action is to consider
the alternative with the highest expected utility (which can be the smallest expected value).
Different axioms that imply the existence of utilities with the property that expected utility is
an appropriate guide to consistent decision making are presented in [5, 7–10]. The choice of
an adequate utility function for a specific type of problem can be taken using direct methods
presented in Keeney and Raiffa’s book.

The utility of the arc (i, j) ∈ A in the optimal path is measured calculating the minimum
of the real random variables Xiw where w is such that the arc (i, w) ∈ A, i.e, w belongs to the
forward star1 of i. Thus U((i, j)) = min

w∈F(i)
Xiw.

Associated to the path p, we define the real random variable

Xp =
∑

(i,j)∈p

min
w∈F(i)

Xiw

representing the random parameter of the loopless path p ∈ P .
With the objective of determine the optimal path, we consider a real function U : P −→ IR,

called utility function, such that for each loopless path p, U(p) depends on the random variables
associated to the arcs of p and is defined as

U(p) = E


 ∑

(i,j)∈p

min
w∈F(i)

Xiw


 .

1The forward star of node i is the set formed by the terminal nodes of its outgoing arcs.
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In the dynamic stochastic shortest path, we want to determine the loopless path p? ∈ P
that minimizes the expected value of the utility function. The loopless path p? is called optimal
solution of the referred problem.

The problem can then be mathematically defined as

min
p∈P

U(p) = min
p∈P

E



∑

(i,j)∈A
min

w∈F(i)
Xiw




= min E


 ∑

(i,j)∈A
min

w∈F(i)
Xiw


Yij (1)

s.t

∑

(i,j)∈A
Yij − Yji =





1 , i = s
0 , i /∈ {s, t}
−1 , i = t

Yij ∈ {0, 1}

Since the constraint matrix is totally unimodular, by the integrality property, the solution of
the previous problem is equal to the solution of its linear relaxation.

In order to exemplify the problem consider the following network

Figure 1. Network Example

The solution for the referred example is

Figure 2. Solution

which means that the dynamic stochastic optimal loopless path is the following

< 1, (1, 2), 2, (2, 3), 3 >

with value 5.5.
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3. An algorithm
In order to build the algorithm consider the variables l1, . . . , ln associated to the linear relax-
ation of problem (1) constraints. Its dual is

max l1 − ln (2)
s.t

li − lw ≤ E
(
minw∈F(i)Xiw

)

l S 0

and thus the condition to obtain a dual feasible (which is the generalization of Bellman’s equa-
tion) solution will be the main step of our algorithm.

We will denote by l[i] the actual label of node i, i.e, the actual minimum expected value of
the utility function from node i to the terminal node; L is the set of nodes already labelled
which will work as a first-in-first-out list; B(j) is the set of predecessor nodes of node j; F(i)
is the set of successor nodes of node i.

The solution to problem (2) is obtained using the following algorithm

Algorithm 1 {
Initialize l[terminal] = 0;
Initialize all label nodes (except the terminal) to "infinity";
Initialize the set L with the terminal node;
While L 6= ∅ do
{

Remove node j from L;
For each i ∈ B[j] do
{

If (l[i] > E(minw∈F [i]{Xiw + l[w]}))
{ l[i] = E

(
minw∈F [i]{Xiw + l[w]}

)
};

If (i /∈ L)
{L = L ∪ {i}}

}
}
}

When applying the above algorithm to the network example we observe that node 1 was
first labelled with 6 and inserted in L to be removed in order to label other nodes. Fortunately,
in this case, there were no predecessors of node 1 otherwise we would have had unnecessary
work since its label was in a future iteration improved! Thus improvements must be done!
One that is clear and solves this type of "wrong" labelling can be done by using the following
property.

Theorem 1. Let X and Y be two random variables with finite mean value. Then the following in-
equality holds E(min(X,Y )) ≤ min(E(X),E(Y )).

The improved algorithm differs from the previous one only in the first step, since instead
of initializing the labels to infinity we initialize them to the labels obtained when running an
algorithm to obtain the shortest deterministic path from t to s, considering the means of the
random variables associated to the arcs. The improved algorithm is
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Algorithm 2 {
Initialize l[terminal] = 0;
If (network is acyclic)
{Initialize all label nodes (except the terminal) using the
shortest path considering the mean of the arcs parameters};

else{network is cyclic}
{Initialize all label nodes (except the terminal) using the
maximum of the labels obtained when determining the shortest
path considering the mean of the arcs parameters};

Apply Algorithm 1 }

The result of applying the improved algorithm to the example network presented above is

Figure 3. Solution with improvements

4. Computational Results and Conclusions
The computational effort of the proposed algorithms is highest in the calculation of the mini-
mum of real random variables since we have to compare the set of outcomes for each random
variable and then compute the resulting probability mass function. The time consumed on
this step of the algorithm is highly dependent of the density of the network and of the dimen-
sion of the set of outcomes of each random variable.

The algorithm was implemented in C++. The experiments were done on a Pentium IV 2.8
GHz with 256 Mbyte memory.

For each dimension 30 network topologies were generated. For each topology 30 arc prob-
ability mass functions were generated. The number of outcomes of each arc random variable
is 5.

The execution times presented, in seconds, are the mean of the 30 times obtained for each
topology.

In this paper we presented two algorithms, for acyclic and cyclic directed networks and
also two variants - one without initialization and other with initialization.

As it was referred the computational effort is highest when we want to determine the min-
imum of the random variables, and this is one of the features that has to be considered in
future theoretical work.

For the networks examples generated the obtained results are strongly encouraging either
in terms of time consuming or memory occupation.

To summarize the developed algorithms are very efficient to the proposed problems and
we think that they will also perform very well for real problems that can be modulated to fit
on our problem definition.
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Figure 4. Running times (seconds) for acyclic net-
works without initialization.

Figure 5. Running times (seconds) for acyclic net-
works with initialization.

Figure 6. Running times (seconds) for cyclic net-
works without initialization.

Figure 7. Running times (seconds) for cyclic net-
works with initialization.
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Abstract In this contribution, we consider the multicriteria optimization of nonlinear dynamic systems in
the field of biochemical process engineering. For these problems, computing the set of optimal
solutions can be a challenging task due to their highly constrained and non-linear nature. Thus,
global optimization methods are needed to find suitable solutions.

We present a new multi-objective evolution strategy for dealing with this class of problems.
The proposed approach combines a well-known multicriteria optimization technique with a recent
stochastic global optimization method. The usefulness and efficiency of this novel approach are
illustrated by considering the integrated design and control of a wastewater treatment plant.

Keywords: Multiobjective optimization, evolution strategy, bioprocess engineering, nonlinear dynamic systems.

1. Introduction
For most real world applications, the optimization problem involves multiple performance
criteria (often conflicting) which must be optimized simultaneously. In general, there does
not exist a single solution which is simultaneously optimal for all the objectives. Instead, the
solution of a multi-objective optimization problem is a set of optimal trade-offs between the
different criteria, the so-called Pareto-optimal set (or Pareto front). All points in this set are
optimal in the sense that an improvement in one objective can only be achieved by degrading
one or more of the others. In the absence of any further information, no solution can be
considered better than another and, ideally, the entire Pareto-optimal set should be found.

In this work, we consider the multicriteria optimization of nonlinear dynamic systems in
the field of biochemical process engineering. Particularly, the integrated design and control
of bioprocesses is formulated as a nonlinear multi-objective optimization problem subject to
dynamic (differential-algebraic) constraints. As in the single-objective case, these problems
can be very challenging to solve due to the highly constrained, non-linear and sometimes
non-smooth nature of most bioprocess models [1]. Furthermore, the optimization problems
associated with the integration of design and control are frequently multimodal (non-convex)
as described by e.g. Schweiger and Floudas [7]. Thus, computing the Pareto-optimal set is far
from trivial and global optimization methods are needed to find suitable solutions.

Many methods have been suggested for finding Pareto-optimal solutions. Full reviews can
be found in the books by Deb [3] and Miettinen [4]. Traditionally, the most common strategy
is to combine multiple criteria into one single objective function (e.g. a weighted sum of the
objectives), or to optimize one of the objectives while the others are converting to inequality
constraints. In order to obtain different solutions, these approaches require solving repeatedly
a set of single non-linear programming (NLP) problems (e.g. by changing the weights), and
the solution depends largely on the chosen parameters.



214 José-Oscar H. Sendín, Antonio A. Alonso, and Julio R. Banga

On the other hand, an increasing number of evolutionary, population-based, algorithms
have been developed in the last decade for handling multi-objective optimization problems.
Since a set of candidate solutions is used in each iteration, these methods are capable of finding
multiple Pareto-optimal solutions in one single optimization run.

In this contribution, we present an alternative multi-objective optimization approach which
is ultimately based on an extension of a recent Evolution Strategy (ES) for single-objective
NLPs. The proposed approach makes use of a well known multicriteria optimization method
to generate an even spread of points in the Pareto front. The usefulness and efficiency of this
novel strategy are illustrated by solving a wastewater treatment plant case study.

2. Problem Statement
Given a process dynamic model, the multi-objective optimization problem can be mathemat-
ically stated, without loss of generality, as follows:

Find v to minimize simultaneously

J(ẋ,x,v) =
[
J1(ẋ,x,v), J2(ẋ,x,v), . . . , Jm(ẋ,x,v)

]T (1)
subject to:

f(ẋ,x,v) = 0 (2)
ẋ(t0) = x0 (3)

h(x,v) = 0 (4)
g(x,v) ≤ 0 (5)
vL ≤ v ≤ vU (6)

where J is the vector of objective functions, v is the vector of decision variables, f is the
set of differential and algebraic equality constraints describing the system dynamics (i.e. the
nonlinear process model), x is the vector of state variables, h and g are possible equality and
inequality path and point constraints which express additional requirements for the process
performance, and vL and vU are the lower and upper bounds for the decision variables.

The solution to this problem is a set of points known as Pareto-optimal. A feasible solution
v∗ is said to be Pareto-optimal solution if there is no v such that Ji(v) ≤ Ji(v

∗), for all i =
1, ...,m, with at least one strict inequality. The vector J(v∗) is said to be non-dominated.

3. Multi-Objective Optimization Methods
Computing the Pareto-optimal set can be a very challenging task due to the highly constrained
and non-linear nature of most biochemical systems. In this regard, the ability of evolution-
ary, population-based, algorithms to deal with problems involving non-convex Pareto fronts
makes them attractive to solve highly nonlinear multi-objective problems. As a drawback,
a very large population size is usually required, which is translated into a large number of
Pareto-optimal solutions. Besides the associated rise in computational effort, such a large set
can be very difficult to handle, especially as the number of objectives increases. In order to
facilitate the selection of a suitable compromise, from a practical point of view it would be de-
sirable to generate only a small number of optimal solutions capturing the complete trade-off
among the objectives.

3.1 NBI-based Evolution Strategy
Here we propose a new multi-objective evolutionary algorithm which combines the recent
SRES (Stochastic Ranking Evolution Strategy) by Runarsson and Yao [6] with the Normal
Boundary Intersection (NBI) method developed by Das & Dennis [2].
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NBI transforms the original multi-objective optimization problem into a set of NLPs which
are solved sequentially. Mathematically, the so-called NBI subproblem is formulated as:

min
v,γ

−γ (7)

subject to:
Φw + γn = J(v) − J∗ (8)

Φ is the m × m pay-off matrix in which the ith column is J(v∗
i ) − J∗, where J∗ is the vector

containing the individual minima of objectives (i.e., the Utopia point) and v∗
i is the minimizer

of the ith objective; w is a vector of weights such that
∑m

i=1 wi = 1, wi ≥ 0 and n is the unit
normal to the Convex Hull of Individual Minima (CHIM) pointing towards the origin. Thus,
Φw defines a point in the CHIM and Φw + γn, γ ∈ <, represents the set of points on the
normal. In practice, the method uses a quasi-normal direction given by an equally-weighted
linear combination of the columns of Φ multiplied by -1.

The solution to the above NLP is expected to be Pareto-optimal. If the NBI-subproblem
is systematically solved for an equally distributed set of weights w, an even spread of non-
dominated points can be obtained (Fig. 1). It should be noted that this technique requires
minimizing each objective function individually to find the utopia vector.

J1

J2

CHIM

Pareto 
Front

J(v1* )

J(v2*)

Figure 1. How NBI works.

J(v2*)

J(v1*)

J*

JNadir

CHIM

J1

J2

wmaxγγγγmax

γγγγmin

Figure 2. Bounds for parameter γ.

The original MATLAB implementation works by solving the associated NLPs by means
of a Sequential Quadratic Programming (SQP) method. Thus, it can fail with non-convex
problems. In order to surmount this difficulty, the SQP solver can be replaced by a suitable
stochastic algorithm like SRES, which has been found to be efficient and robust even for large
nonlinear problems [1]. SRES is based on a (µ,λ)-ES where each member in the population λ is
sorted according to the stochastic ranking scheme proposed for handling the constraints (see
Ref. [6] for details). The best µ individuals are selected to create a new population of size λ.

The new approach proposed here takes advantage of the population-based component of
SRES to simultaneously solve the set of NBI-subproblems associated to an equally distributed
set ofK weights vectors. This allows to generate an even spread of Pareto-optimal solutions in
one single optimization run instead of solving repeatedly the NBI-subproblem with different
weight vectors. This is done in the following way:

For each weight vector wk , k ∈ {1, . . . ,K}, a fitness function is defined as:

ϕk = γ̄k +RP · Σh̄2
NBI,k (9)

where h̄NBI,k are the normalized equality constraints introduced by NBI (Eq. 8), RP is a
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penalty coefficient, and γ̄k is:

γ̄k =

(
1− γ − γmin

γmax − γmin

)
.

For a bi-objective optimization problem, the upper bound γmax is defined as the euclidean
distance to the Utopia vector from the point in the CHIM given by wmax = [0.5, 0.5]T (Fig. 2).
Similarly, the lower bound γmin is the euclidean distance to the Nadir point, JNadir (i.e., the
vector of upper bounds on each objective in the entire Pareto set), multiplied by -1.

In each iteration (generation), the basic procedure of the algorithm is as follows:

1. For each individual j ∈ {1, . . . , λ} evaluate the objective vector and the constraints;
2. For each weight vector k ∈ {1, . . . ,K}:
3. For each individual j ∈ {1, . . . , λ}:
4. Evaluate the fitness function ϕk (Eq. 9);
5. Perform Stochastic Ranking;
6. Select the best µk individuals (µk ≈ λ/(3K ));
7. Update the mutation strength (non-isotropic self-adaptation);
8. Mutate the (K · µk) parents to create the new population of size λ.

The algorithm has been implemented in Matlab version 6.5. For the sake of comparison,
we have made an implementation of the standard NBI in which the set of NLPs are solved
sequentially by means of SRES. Also, the original Matlab 5.0 implementation of NBI has been
rewritten for running on version 6.5 (with the FMINCON code, which is part of the Matlab
Optimization Toolbox).

4. Case Study: A Wastewater Treatment Plant
This case study, solved previously by Moles et al. [5] using a weighted sum approach, rep-
resents an alternative configuration of a real wastewater treatment plant located in Man-
resa (Spain). The process flowsheet (Fig. 3) consists of two aerated bioreactors, where the
biodegradable substrate is transformed by a microbial population (biomass), and two settlers,
where the activated sludge is separated from the clean water and recycled to the correspond-
ing reactor. The activated sludge in excess is eliminated via a purge stream (qp). The aim of
the control system is to keep the substrate concentration at the output (s2) under a certain ad-
missible value. We consider a step disturbance to the input substrate concentration (si), taking
the flowrate of the sludge recirculation to the first tank (qr1) as the manipulated variable.

xd1
xb1
xr1

q12 
s1
c1
x1

q22 
s2
c2
x2

xd2
xb2
xr2

fk1
fk2

q1
s1 qsal

s2

q3
qr2

sir2
xir2

q2

qr3qr
sr
xrqp

qr1

qi si xi

sir1
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Figure 3. Process flowsheet of the wastewater treatment plant.
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The dynamic model consists of a set of 33 DAEs (14 of them are ODEs) and 44 variables.
Three flow rates (qr2, qr3 and qp) are fixed at their steady-state values corresponding to a given
nominal operational conditions. Therefore, this leaves 8 design variables, namely the volume
of the aeration tanks (v1 and v2), the areas of the settlers (ad1 and ad2), the aeration factors
(fk1 and fk2), and the gain and the integral time of a PI controller.

The integrated design and control problem is formulated to minimize a weighted sum of
capital and operation costs (J1) and simultaneously a controllability measure (J2), taken here
as the Integral Square Error (ISE):

J =

[
J1 = (c1v

2
1) + (c2v

2
2) + (c3ad

2
1) + (c4ad

2
2) + (c5fk

2
1) + (c6fk

2
2)

J2 =
∫∞
0 e2(t)dt

]
(10)

subject to:
the 33 model DAEs (system dynamics), acting as equality constraints;

a set of 152 inequality constraints which impose limits on the state variables, residence
times and biomass loads in the bioreactors, the hydraulic capacity in the settlers, the
sludge ages in the decanters, and the recycle and purge flow rates.

This problem was handled by solving the DAEs using an initial value problem (IVP) solver
(e.g. RADAU5) for each evaluation of the objective vector and the constraints. The IVP solver
implemented in Fortran was called from Matlab using a mex-file interface.

5. Results and Discussion
First of all, the utopia vector was found by minimizing each objective function separately.
These NLPs were solved by means of SRES with a population size λ = 100 and 100 genera-
tions. For the minimization of the economic function, SRES arrived at J ∗

1 = 1023.01, with an
ISE of J2 = 25.7412. For the minimization of the ISE, the best value found was J ∗

2 = 0.2828,
with a cost of J1 = 2596.33.

The NBI-based Evolution Strategy suggested here was applied with a set of weightsK = 15
(the uniform spacing between two consecutive wi is 1/16). Population sizes λ of 150 and 250
were used, and the algorithm was run for 500 generations in order to assure convergence. For
both population sizes, the best Pareto fronts obtained are quite similar (Fig. 4) and present
a very good distribution of points. Computation times1 of 12 and 17 hours were required,
respectively, but it is important to mention that these times can be reduced since the majority
of points could be found with a lesser number of generations.

For the problem under consideration, an obvious conclusion is that a considerable improve-
ment of the economic objective can be obtained while maintaining a very good controllabil-
ity (low values of the ISE), but for a cost of about 1470, more economic designs can only be
achieved at the expense of a large increase in the ISE.

This problem was also solved using the standard NBI with the gradient-based solver, taking
as initial guess the optimal solution of the previous NLP. Fig. 5 shows the results obtained for
K = 15, 20 and 30. For the majority of NLPs, FMINCON did not converge to a solution and,
although better points can be found as K increases, not all the solutions were Pareto-optimal.

When SRES is used as solver in the standard NBI, the initial population is created from the
solution of the previous NLP, including also the solutions of the NBI-subproblems that have
just been solved. For the chosen K = 15, the Pareto front was obtained after a computation
time of 43 hours, with λ = 100 and 200 generations (Fig. 5). Although the Pareto-optimal set
is practically equal to that obtained using the NBI-based ES, the computational effort required
was about 3 times more.

1 Computation times are referred to a Pentium IV-2.4 GHz
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Figure 4. Pareto-optimal sets obtained with the
NBI-based ES.
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Figure 5. Pareto-optimal sets obtained with the
standard NBI.

6. Conclusions
In this work, we have presented an alternative method for the multi-objective optimization of
nonlinear dynamic systems. The NBI-based Evolution Strategy has been specially designed
to produce an even spread of Pareto-optimal solutions in one single optimization run, instead
of solving repeatedly a set of NLPs. This novel approach has been successfully applied to the
integrated design and control of a wastewater treatment plant. A very good approximation of
the optimal trade-offs between cost and controllability has been generated with less compu-
tational effort than the standard NBI (using also SRES as solver). It should be noted that this
problem could not be solved satisfactorily with traditional gradient-based methods.

In the near future, we will consider selected case studies where the NBI-based ES will be
compared with other techniques. Also, new ideas will be suggested to increase its efficiency.
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In this presentation, the problem of global minimization of a multidimensional multiex-
tremal “black-box” function satisfying the Lipschitz condition over a hyperinterval D ⊂ RN

with an unknown Lipschitz constant L is considered:

f∗ = f(x∗) = min
x∈D

f(x), (1)

|f(x′)− f(x′′)| ≤ L‖x′ − x′′‖, x′, x′′ ∈ D, 0 < L <∞, (2)
where

D = [a, b ] = {x ∈ RN : a(j) ≤ x(j) ≤ b(j), 1 ≤ j ≤ N}, (3)
a, b are given vectors in RN , and ‖ · ‖ denotes the Euclidean norm.

The function f(x) is supposed to be non-differentiable. Hence, optimization methods using
derivatives cannot be used for solving problem (1)–(3). It is also assumed that evaluation of
the objective function at a point is a time-consuming operation.

Numerous algorithms have been proposed (see, e.g., [1, 2, 4–10, 12]) for solving problem
(1)–(3). In these algorithms, several approaches for specifying the Lipschitz constant can be
considered.

First, it can be given a priory (algorithms of this kind were surveyed in [4, 5]). This case is
very important from the theoretical viewpoint but is not frequently encountered in practice.
The more promising and practical approaches are based on an adaptive estimation of L in the
course of the search. In such a way, algorithms can use either a global estimate of the Lipschitz
constant (see, e.g., [8, 9, 12]) valid for the whole region D from (3), or local estimates Li valid
only for some subregions Di ⊆ D (see, e.g., [7, 10, 12]).

An interesting approach for solving problem (1)–(3) has been proposed in [6]. At each
iteration of this algorithm, called DIRECT, instead of only one estimate of the Lipschitz con-
stant a set of possible values of L is used. Due to its simplicity and efficiency, DIRECT has
been widely adopted in practical applications (see references in [1]). However, some aspects
limit the applications of DIRECT, especially when multidimensional multiextremal “black-
box” functions are to be minimized.

∗This work has been partially supported by the following grants: FIRB RBAU01JYPN, FIRB RBNE01WBBB, and RFBR 04-01-
00455-a.



220 Ya. D. Sergeyev and D. E. Kvasov

Figure 1. Estimation of the lower bound of f(x) over an interval Di = [ai, bi].

The goal of this work is to present a new algorithm oriented to solving difficult multi-
dimensional multiextremal “black-box” problems (1)–(3). In the algorithm, partition of the
admissible region into a set of smaller hyperintervals is performed by a new efficient diagonal
partition strategy (see [8, 11]). This strategy allows one to accelerate significantly the search
procedure in terms of function evaluations with respect to the traditional diagonal partition
strategies (see, e.g., [9]), especially in high dimensions. A new technique balancing usage of
the local and global information has been also incorporated in the new method.

Following the diagonal approach (see [9]), the objective function is evaluated at two vertices
of each hyperinterval (see Fig. 1). The procedure of estimating the Lipschitz constant evolves
the ideas of the center-sampling method DIRECT from [6] to the case of diagonal algorithms.

Particularly, in order to calculate the lower bounds of f(x) over hyperintervals, possible es-
timates of the Lipschitz constant varying from zero to infinity are considered at each iteration
of the proposed diagonal algorithm. An auxiliary function is considered over the main diago-
nal of each hyperinterval Di = [ai, bi]. This function is constructed as maximum of two linear
functions P1(x, L̃) and P2(x, L̃) passing with the slopes±L̃ through the vertices ai and bi (see
Fig. 1). An estimate of the lower bound of f(x) over the main diagonal of Di is calculated at
the intersection of these two lines and is given by the following formula (see [7, 9])

Ri = Ri(L̃) =
1

2
(f(ai) + f(bi)− L̃‖bi − ai‖), 0 < L ≤ L̃ <∞. (4)

For any L̃ ≥ L, the value Ri is the lower bound of f(x) over the diagonal [ai, bi], but not
over the whole hyperinterval Di. It is shown, that inequality

L̃ ≥
√

2L

guarantees that the value Ri from (4) is a valid estimate of the lower bound of f(x) over the
whole hyperinterval Di, i.e.,

Ri(L̃) ≤ f(x), x ∈ Di.

Numerical results performed to compare the new algorithm with two algorithms belong-
ing to the same class of methods for solving problem (1)–(3) – the original DIRECT algorithm
from [6] and its locally-biased modification DIRECTl from [1, 2] – are presented. In the fol-
lowing, we briefly describe results of wide numerical experiments performed.
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Table 1. Number of trial points for GKLS test functions.

N ∆ Class 50% 100%
r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 0.90 0.20 111 152 166 1159 2318 403
2 10−4 0.90 0.10 1062 1328 613 3201 3414 1809

3 10−6 0.66 0.20 386 591 615 12507 13309 2506
3 10−6 0.90 0.20 1749 1967 1743 >1000000 (4) 29233 6006

4 10−6 0.66 0.20 4805 7194 4098 >1000000 (4) 118744 14520
4 10−6 0.90 0.20 16114 33147 15064 >1000000 (7) 287857 42649

5 10−7 0.66 0.30 1660 9246 3854 >1000000 (1) 178217 33533
5 10−7 0.66 0.20 55092 126304 24616 >1000000 (16) >1000000 (4) 93745

Table 2. Number of hyperintervals for GKLS test functions.

N ∆ Class 50% 100%
r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 0.90 0.20 111 152 269 1159 2318 685
2 10−4 0.90 0.10 1062 1328 1075 3201 3414 3307

3 10−6 0.66 0.20 386 591 1545 12507 13309 6815
3 10−6 0.90 0.20 1749 1967 5005 >1000000 29233 17555

4 10−6 0.66 0.20 4805 7194 15145 >1000000 118744 73037
4 10−6 0.90 0.20 16114 33147 68111 >1000000 287857 211973

5 10−7 0.66 0.30 1660 9246 21377 >1000000 178217 206323
5 10−7 0.66 0.20 55092 126304 177927 >1000000 >1000000 735945

In all the experiments, the GKLS-generator described in [3] (and free-downloadable from
http://wwwinfo.deis.unical.it/ ỹaro/GKLS.html) has been used. It generates several classes of mul-
tidimensional and multiextremal test functions with known local and global minima. The
procedure of generation consists of defining a convex quadratic function (paraboloid) sys-
tematically distorted by polynomials. Each test class provided by the generator includes 100
functions and is defined by the following parameters:

N – problem dimension;
M – number of local minima;
f∗ – value of the global minimum;
ρ∗ – radius of the attraction region of the global minimizer;
r∗ – distance from the global minimizer to the vertex of the paraboloid.

The other necessary parameters are chosen randomly by the generator for each test function
of the class. Note, that the generator produces always the same test classes for a given set of
the user-defined parameters.

By changing the user-defined parameters, classes with different properties can be created.
For example, fixed dimension of the functions and number of local minima, a more difficult
class can be created either by shrinking the attraction region of the global minimizer, or by
moving the global minimizer far away from the paraboloid vertex.

In executed numerical experiments, eight GKLS classes of continuously differentiable test
functions of dimensions N = 2, 3, 4, and 5 have been used. The number of local minima
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Table 3. Number of trial points for shifted GKLS test functions.

N ∆ Class 50% 100%
r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 0.90 0.20 111 146 165 1087 1567 403
2 10−4 .090 0.10 911 1140 508 2973 2547 1767

3 10−6 0.66 0.20 364 458 606 6292 10202 1912
3 10−6 0.90 0.20 1485 1268 1515 14807 28759 4190

4 10−6 0.66 0.20 4193 4197 3462 37036 95887 14514
4 10−6 0.90 0.20 14042 24948 11357 251801 281013 32822

5 10−7 0.66 0.30 1568 3818 3011 102869 170709 15343
5 10−7 0.66 0.20 32926 116025 15071 454925 > 1000000(1) 77981

Table 4. Number of hyperintervals for shifted GKLS test functions.

N ∆ Class 50% 100%
r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 0.90 0.20 111 146 281 1087 1567 685
2 10−4 0.90 0.10 911 1140 905 2973 2547 3227

3 10−6 0.66 0.20 364 458 1585 6292 10202 5337
3 10−6 0.90 0.20 1485 1268 4431 14807 28759 12949

4 10−6 0.66 0.20 4193 4197 14961 37036 95887 73049
4 10−6 0.90 0.20 14042 24948 57111 251801 281013 181631

5 10−7 0.66 0.30 1568 3818 17541 102869 170709 106359
5 10−7 0.66 0.20 32926 116025 108939 454925 > 1000000 685173

M was equal to 10 and the global minimum value f ∗ was equal to −1.0 for all classes (these
values are default settings of the generator). For each dimension N we considered two test
classes: a simple class and a difficult one. The difficulty of a class was increased either by
decreasing the radius ρ∗ of the attraction region of the global minimizer (as for two- and five-
dimensional classes), or by increasing the distance r∗ from the global minimizer x∗ to the
paraboloid vertex (three- and four-dimensional classes).

The global minimizer x∗ ∈ D was considered to be found when the algorithm generated a
trial point x′ inside a hypercube with a vertex x∗ and the volume smaller than the volume of
the initial hypercube D = [a, b] multiplied by an accuracy coefficient ∆, 0 < ∆ ≤ 1, i.e.,

|x′(i)− x∗(i)| ≤ N
√

∆(b(i)− a(i)) (5)

for all i, 1 ≤ i ≤ N , where N is from (3).
The algorithm stopped either when the maximal number of trials equal to 1 000 000 was

reached, or when condition (5) was satisfied.
In view of the high computational complexity of each trial of the objective function, the

methods were compared in terms of the number of evaluations of f(x) required to satisfy
condition (5). The number of hyperintervals generated until condition (5) is satisfied, was
taken as the second criterion for comparison of the methods. This number reflects indirectly
degree of qualitative examination of D during the search for a global minimum.

Results of numerical experiments with eight GKLS tests classes are reported in Tables 1
and 2. These tables show, respectively, the maximal number of trials and the correspond-
ing number of generated hyperintervals required for satisfying condition (5) for a half of the
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Table 5. Improvement obtained by the new algorithm with respect to DIRECT and DIRECTl.

N ∆ Class GKLS Shifted GKLS
r ρ DIRECT/New DIRECTl/New DIRECT/New DIRECTl/New

2 10−4 0.90 0.20 2.88 5.75 2.70 3.89
2 10−4 0.90 0.10 1.77 1.89 1.68 1.44

3 10−6 0.66 0.20 4.99 5.31 3.29 5.34
3 10−6 0.90 0.20 >166.50 4.87 3.53 6.86

4 10−6 0.66 0.20 >68.87 8.18 2.55 6.61
4 10−6 0.90 0.20 >23.45 6.75 7.67 8.56

5 10−7 0.66 0.30 >29.82 5.31 6.70 11.13
5 10−7 0.66 0.20 >10.67 >10.67 5.83 >12.82

functions of a particular class (columns “50%”) and for all 100 function of the class (columns
“100%”). The notation “> 1 000 000 (k)” means that after 1 000 000 trials the method under
consideration was not able to solve k problems.

In order to avoid a redundant accumulation of trial points generated by DIRECT near the
paraboloid vertex (with the function value equal to 0) and to put DIRECT and DIRECTl in a
more advantageous situation, we shifted all generated functions, adding to their values the
constant 2. In such a way, the value of each function at the paraboloid vertex became equal
to 2.0 and the global minimum value f ∗ was increased by 2, i.e., became equal to 1.0. Results of
numerical experiments with shifted GKLS classes (defined in the rest by the same parameters)
are reported in Tables 3 and 4.

Note that on a half of test functions from each class (which were simple for each method
with respect to the other functions of the class) the new algorithm manifested a good per-
formance with respect to DIRECT and DIRECTl in terms of the number of generated trial
points (Tables 1, 3). When all functions were taken in consideration, the number of trials pro-
duced by the new algorithm was significantly fewer in comparison with two other methods
(see columns “100%” of Tables 1, 3), providing at the same time a good examination of the
admissible region (see Tables 2, 4).

Table 5 summarizes (based on the data from Tables 1 – 4) results of numerical experiments
performed on 1600 test functions from GKLS and shifted GKLS continuously differentiable
classes. It represents the ratio between the maximal number of trials performed by DIRECT
and DIRECTl with respect to the corresponding number of trials performed by the new algo-
rithm.

As it can be seen from Tables 1 – 5, the new method demonstrates a quite satisfactory per-
formance with respect to DIRECT [6] and DIRECTl [1, 2] when multidimensional functions
with a complex structure are minimized.
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Abstract We examine the problem of building or fortifying a network to defend against enemy attack scenar-
ios. In particular, we examine the case in which an enemy can destroy all or part of the arcs that
we construct on the network, subject to some interdiction budget. This problem takes the form of
a three-level, two-player game, in which we act first to construct our network and simultaneously
transmit an initial set of flows through the network. The enemy acts next to destroy a set of con-
structed arcs in our network, and we act last to transmit a final set of flows in the network. Most
studies of this nature assume that the enemy will act optimally; however, in real-world scenarios one
cannot assume rationality on the part of the enemy. Hence, we prescribe network design principals
for three different profiles of enemy action: an enemy destroying arcs based on capacities, based on
initial flows, or acting optimally to minimize our maximum revenues obtained from transmitting
flows.

Keywords: Network design, integer programming, network interdiction, game theory.

1. Introduction
The continuous increase of competition among suppliers due to society’s fast growing telecom-
munications and transportation needs has made the design of cost-efficient networks that
meet requirements concerning flexibility and survivability a major challenge. Many tradi-
tional network design algorithms do not take into account the survivability aspect of a net-
work, which can perhaps leave the network susceptible to failures of small subsets of its arcs.
It is important to design networks that are robust with respect to accidental failures like trans-
portation breakdowns, road closures, and telephone line breaks, or some failures made mali-
ciously by enemy entities. Important applications that inspire this research include networks
in voice and data communication, military services, and transportation.

In this paper, we discuss the design of capacitated networks built in anticipation of a com-
petitor or an enemy who inflicts some destruction to the networks. Some prior research efforts
consider the enemy’s response to be some stochastic scenarios with estimated probabilities of
happening. By contrast, as is often the case in real-world scenarios, we consider the case in
which the enemy has its own objective function with a budget constraint on destroying the
arcs we construct, and may or may not be smart enough to optimize it.

This problem can be modeled as a three-stage problem. In the first stage, we construct
a network in which each arc has a fixed construction cost, a maximum capacity, and a per-
unit flow cost. We also stipulate a budget on the arc construction costs. Before the enemy
acts, we place an initial set of multicommodity flows on the network, which gives us some
measure of initial profits (measured by the revenue generated by successfully shipping units
of commodity from origins to destinations minus the flow costs). The purpose of these flows
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might not only be to generate initial revenues for us, but might also be used as decoys to trick
the opponent into making a poor interdiction decision, if their algorithm relies on these initial
flows.

In the second stage, the enemy acts to inflict damage to our network arcs by reducing the
capacity of certain arcs (perhaps setting some of their capacities to zero). This action is often
referred to as interdiction. The enemy’s objective function can vary depending on its goal. In
particular, we consider three different cases of the enemy’s objective function. The first case
handles the situation in which the enemy destroys the largest-capacity arcs in our network
design. The second case deals with the problem in which the enemy destroys arcs having the
largest initial commodity flows. In the third case, the enemy makes an effort to minimize the
total profit obtained from transporting commodities to the destination nodes in the network.
The first two cases might represent the case in which our enemy intends to maximally disrupt
our network, but is acting according to a heuristic strategy due to real-time considerations
or due to the complexity of the system. For all of these cases, it is important to note that
the enemy can destroy portions of arcs by removing some of their capacity, rather than being
restricted to integer interdiction actions.

In the third stage, after the enemy interdiction, some of the arcs in the network will be
inaccessible and we will modify the flow in the surviving proportion of the arcs in order to
meet the demand. If some arcs in the network that consist of some demand flows should fail
and become completely or partially unavailable, another flow pattern must be built on the
existing (previously constructed) arcs. There might not be any possible flows at all if there
exists a small cut-set of network arcs that are inexpensive to destroy. Under this condition,
redundant arcs and nodes in the network design are needed to ensure the survivability of the
network, given the importance of meeting demands under inopportune situations.

The network interdiction problem has received much attention in the literature due to its
applications in military and homeland security operations. Such papers form the basis for
solving the last two echelons of the problem considered in this paper. Wollmer [6] proposes
an algorithm that interdicts a prescribed number of arcs in a network in order to minimize
the follower’s maximal flow. Wood [7] provides an integer programming formulation for a
discrete interdiction problem, and provided an extension of the model to allow for continuous
interdiction, multiple sources and sinks, undirected networks, multiple interdiction resources,
and multiple commodities. This work is continued by Cormican et al. [1], in which the leader
minimizes the expected maximum flow, given uncertainties regarding the success of inter-
diction and arc capacities. A different interdiction problem is examined by Fulkerson and
Harding [2], who examine the problem of maximizing the shortest source-sink path in the
presence of arc-extension costs, which serve as interdiction costs. A recent study by Israeli
and Wood [3] develops two decomposition algorithms using super-valid inequalities and set
covering master problems. Finally, Lim and Smith [4] examine the multicommodity flow net-
work interdiction problem under assumptions of discrete and continuous enemy action.

2. Models and Solution Methods
In this section, we describe models and solution methods under three different interdiction
scenarios. To facilitate our discussion, consider a graph G(N,A), with node set N and arc
set A. Associated with each arc i ∈ A are a nonnegative construction cost ci, a nonnegative
disruption cost bi, and a mutual arc capacity qi. Define RS(j) and FS(j), ∀j ∈ N , to be the
set of arcs going to and going from node j, respectively. Furthermore, define K to be the
set of commodities, and let dj

k denote the demand of commodity k ∈ K at node j ∈ N . If
dj

k > 0, then j is a supply node of commodity k, while dj
k < 0 implies that j is a destination

of commodity k. Without loss of generality, we assume that
∑

j∈N dj
k = 0, ∀k ∈ K . We are
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given per-unit flow revenue f i
k for transmitting a unit of commodity k over arc i for each

i ∈ A and k ∈ K . This flow revenue accommodates the flow cost as well as the reward as
necessary. That is, f i

k includes the reward for commodity k if it enters a destination node of k,
and has this reward subtracted from the flow cost if it exits a destination node for k. If neither
or both of these cases hold, f i

k is simply the negative per-unit flow cost associated with arc i
and commodity k. The enemy’s interdiction is subject to a budget limitation of B, given the
different disruption costs bi for each arc i ∈ A. We will introduce some dummy arcs in the
network to ensure the feasibility of our models; these dummy arcs have zero construction and
flow costs, and large enough interdiction costs and capacities to ensure that they cannot be
effectively destroyed by the enemy.

The first set of decision variables determines whether or not we construct an arc. Let xi,
∀i ∈ A, be a binary decision variable that equals to 1 if arc i is constructed and 0 otherwise.
For the flow decision variables, we let ui

k and vi
k, ∀i ∈ A, ∀k ∈ K , be the decision variables that

represent actual flows of commodity k before and after the enemy’s interdiction, respectively.
Also, let wi ∈ [0, 1], ∀i ∈ A, represent the remaining percentage of arc i after the enemy
destroys his/her preferred set of arcs. Although wi is determined by the enemy, we view it as
a decision variable induced by our choice of x-variables. Finally, we define ũ and ṽ to be the
weights of the initial flow profit and final flow profit, respectively.

2.1 Capacity-Based Greedy Interdiction Case
In this subsection, suppose that the enemy repeatedly destroys arcs with the largest capacity
until the budgetB is exhausted. Assume that the enemy breaks a tie with a certain preference-
order known a priori. Order the arc indices i = 1, . . . , |A| so that the enemy prefers arc i to arc
i+ 1. A first attempt at formulating this problem is given as follows.

Maximize ũ
∑

k∈K

∑

i∈A

fk
i u

k
i + ṽ

∑

k∈K

∑

i∈A

fk
i v

k
i −

∑

i∈A

cixi (1a)

subject to
∑

i∈A

cixi ≤ C (1b)

∑

i∈FS(j)

uk
i −

∑

i∈RS(j)

uk
i = dk

j ∀k ∈ K ∀j ∈ N (1c)

∑

i∈FS(j)

vk
i −

∑

i∈RS(j)

vk
i = dk

j ∀k ∈ K ∀j ∈ N (1d)

∑

k∈K

uk
i ≤ qixi ∀i ∈ A (1e)

∑

k∈K

vk
i ≤ qiwi ∀i ∈ A (1f)

wi ≤ xi ∀i ∈ A (1g)
wi ≥ 0 ∀i ∈ A (1h)
uk

i , v
k
i ≥ 0 ∀i ∈ A ∀k ∈ K (1i)

xi ∈ {0, 1} ∀i ∈ A. (1j)

Note that (1b) is a construction budget constraint, (1c)-(1d) are flow conservations before and
after enemy’s action, respectively, and (1e)-(1f) are arc capacities before and after enemy’s
action, respectively. Also, (1g) imply that the remaining portion of an arc can have a positive
value only when its arc is constructed. However, these conditions are only necessary for the
w-solution to this problem to reflect the true decision of the enemy, and are certainly not
sufficient.
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In order to force the w-variables to match the enemy’s true solution, we can enact the fol-
lowing cutting plane method. Suppose that we solve (1) and obtain variables x̂ and ŵ. Let
wi be the true action of the enemy for i ∈ A. For each i ∈ A such that w i < ŵi, we add the
following constraint:

wi ≤ wixi +

i−1∑

g=1

(min{1− wi, bg/bi}) (1− x̂g)xg. (2)

Each such constraint is then passed back to (1), and the model is resolved until w = ŵ. Es-
sentially, (2) imposes an upper bound on wi of wi, unless some other higher-preference arcs
that are not currently being built will be built in the next iteration, thus forcing the enemy to
expend resources on other arcs. There exist several other necessary conditions forw-feasibility
that can be stated a priori in (1), but we omit them here for the sake of brevity.

A model that can be solved statically makes use of the fact that there will exist only one w-
variable value that can be fractional, as in the case in any knapsack decision problem. Define
binary decision variables zi ∀i ∈ A equal to one if and only if xi = 1, all constructed arcs
with an index smaller than i are completely destroyed, and all constructed arcs with an index
greater than i are not affected by the enemy. Arc i itself may be interdicted in any manner.
The total enemy interdiction must exhaust their entire budget. (This forces us to build at
least enough capacity so that the enemy can destroy B units; we can remove this restrictive
assumption by use of some simple modeling tricks.) These restrictions are enforced as follows:

∑

g∈A

zi = 1 (3a)

wi ≤
i∑

g=1

zg ∀i ∈ A (3b)

wi ≥ xi −
|A|∑

g=i

zg ∀i ∈ A (3c)

wi ≤ xi ∀i ∈ A (3d)
∑

i∈A

bi(xi − wi) = B. (3e)

Our preliminary computational experience has shown that incorporating (3) into (1), and solv-
ing as a static integer program, is a much more effective method of solving this problem than
by using the initial cutting-plane method developed above.

2.2 Flow-Based Greedy Interdiction Case
In this case, the enemy wishes to interdict the arcs having the most initial flows on them. Since
the enemy decision does not depend on a simple set of binary decision variables, the foregoing
algorithm must be modified for this case.

Once again, we determine an index i∗ such that arc i∗ may be partially destroyed, implying
that every arc with a greater flow than i∗ must be completely destroyed, while all arcs with
a smaller flow than i∗ cannot be interdicted. Unlike the previous case, we do not define a
decision variable to determine the identity of i∗, but must solve one integer program for each
possible value that i∗ can take. If there exists an arc that has the same amount of flow as i∗, we
will use the enemy’s secondary priority to determine whether or not it is destroyed. Letting
pi ∀i ∈ A be the enemy’s secondary priority for arc i (a smaller number denotes a higher
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preference), we can add the following constraints to model (1):

∑

k∈K

uk
i −

∑

k∈K

uk
i∗ ≤M(xi − wi) + ε(pi − pi∗) ∀i 6= i∗, i ∈ A (4a)

∑

k∈K

uk
i∗ −

∑

k∈K

uk
i ≤M(1− (xi − wi)) + ε(pi∗ − pi) ∀i 6= i∗, i ∈ A (4b)

∑

i∈A

bi(xi −wi) = B (4c)

0 ≤ wi∗ ≤ 1 ∀i∗ ∈ A (4d)
wi ∈ {0, 1} ∀i ∈ A− {i∗}, (4e)

where ε is a very small constant. The addition of the constraints in (4) captures the flow-based
greedy enemy interdiction model. If there exists more initial flow on arc i than on i∗, then
since xi = 1, we have by (4a) that arc i must be interdicted (by setting wi = 0). If there is a tie,
but i∗ is preferred to i, then (4a) once again implies that wi = 0. Similarly, (4b) forces wi = xi

if there is less flow on i than i∗, or if there is a tie when i has a lower priority than i∗.

2.3 Optimal Interdiction Case
Finally, we consider the third case in which the enemy optimally disrupts arcs so as to mini-
mize our profit. We assume that the enemy has complete information of our network design
including arc capacities, flow revenues, and demands. Given a network topology x, there-
fore, the enemy solves a continuous multicommodity flow network interdiction problem in a
min-max structure. Taking the linear dual of the inner maximization problem, this problem
can be reformulated as a disjointly constrained bilinear program (BLP), in which the enemy’s
decision variables and our dual variables associated with arc capacity constraints constitute
bilinear terms in the objective function.

One important property of this BLP formulation is that a global optimum can be found
among pairs of extreme points from respective feasible regions. In particular, the enemy has
a single knapsack constraint besides bounds on variables, and hence, each extreme point has
only one basic variable while other nonbasic variables are set at one of their bounds 0 or 1.
Exploiting this fact, Lim and Smith [4] recently proposed an optimal algorithm that solves
linearized mixed integer subproblems obtained by designating one variable as basic. Thus, an
exact solution can be identified after solving |A| subproblems. (See [4] for details.)

Note that there exists a finite number of pairs of extreme points for disjoint polyhedral sets
of the bilinear programming problem. Let P denote the set of such pairs. Furthermore, let
θx(p) denote the objective value of the bilinear program at p ∈ P given x. Then, our network
design problem can be formulated as follows.

Maximize ũ
∑

k∈K

∑

i∈A

fk
i u

k
i −

∑

i∈A

cixi + ṽz (5a)

subject to (1b), (1e), (1j), and uk
i ≥ 0 ∀i ∈ A ∀k ∈ K (5b)

z ≤ θx(p) ∀p ∈ P (5c)
z unrestricted. (5d)

As a solution method, we prescribe the following cutting plane algorithm, BCPA that exploits
Benders cuts in an iterative fashion.
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Algorithm BCPA.
Step 0 Set P = ∅ and k = 1.
Step 1 Solve the problem (5) to obtain a solution xk and zk.
Step 2 Given xk, solve the bilinear programming problem using the algorithm of [4] to ob-

tain a solution pk and its objective value θxk(pk).
Step 3 If zk ≤ θxk(pk), then xk is optimal and stop. Else, put P = P ∪ {pk}, increment

k ← k + 1, and return to Step 1.

3. Summary
The three problems described above are all strongly NP-hard, but can be optimally solved
with the using of integer programming and decomposition algorithms. Although the compu-
tational results and finer details of these algorithms have been suppressed here due to space
limitations, the development of these models is only part of the challenge in solving our test
problems. Additional research is being conducted on the effectiveness of initial cutting planes
and model tightening procedures. For instance, one notable tightening strategy could use
the Special Structures Reformulation Linearization Technique [5] to obtain the convex hull of
solutions for which the z-variables are binary in the problem described by Section 2.1. We
continue to explore these avenues for improving the solvability of the problems encountered
in this research. Our outcomes have application in actual human subject testing, in which
the subjects play the role of the enemy interdictor. These experiments will help us to exam-
ine whether or not humans rely on simple capacity-based or initial flow-based heuristics, and
whether a practical network design against suboptimal humans should actually prepare for
the worst-case scenario (as discussed in Section 2.3), or if it is more practical to prepare for
suboptimal enemy behavior.
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Precision and Accuracy in Generating Globally Optimum
Shapes
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Abstract Two issues that come up during shape optimization are precision and accuracy. The optimization
problem is to obtain globally optimal shapes for two-dimensional structures subject to in-plane
loads. The objective function to be minimized is the volume (or weight) of the structure. Opti-
mization is achieved by a stochastic search algorithm called Direct Simulated Annealing (DSA),
which seeks the global minimum through randomly generated configurations. In order to obtain
random configurations, a boundary variation technique is used. In this technique, a set of keypoints
is chosen and connected by cubic splines to describe the boundary of the structure. Whenever the
positions of the keypoints are changed in random directions, a new shape is obtained. Thus, coordi-
nates of the keypoints serve as design variables. The precision of the global optimum configuration
is an indication of how well the optimized system is defined by the design variables.As to the preci-
sion in our problem, the larger the number of keypoints, the more precisely the shape of a structure
can be defined. The accuracy of the optimum configuration is an indication of how well it repre-
sents the global optimum configuration for the given design variables. In the following, the ways of
increasing precision and accuracy in the search of global configuration are discussed.

Keywords: Shape optimization, Direct Search Simulated Annealing (DSA), boundary variation, FEM , 2D-
structures

1. Introduction
The general purpose of shape optimization is to find the best shape for a structure under
various constraints imposed by the requirements of the design. The best shape provides either
the most efficient and effective use of material or the best performance.
In typical structural optimization problems, there may be many locally minimum configura-
tions. For that reason, a downhill proceeding algorithm, in which a monotonically decreasing
value of objective function is iteratively created, may get stuck into a locally minimum point
other than the globally minimum solution. Its success depends on the choice of initial design.
In order to find the absolute minimum of an objective function without being sensitive to the
starting position, a global optimization method has to be employed in structural optimization
problems. The simulated annealing (SA) algorithm as one of the most popular stochastic op-
timization techniques is suitable in this respect. SA is relatively easier to implement and can
easily be adapted to any application.
Kirkpatrick et al. [1] first proposed simulated annealing as a powerful stochastic search tech-
nique. The method attempts to model the behavior of atoms in forming arrangements in solid
material during annealing. Although the atoms move randomly, as their natural behavior
they tend to form lower-energy configurations. As the temperature is slowly decreased, the
arrangement of the atoms gets closer and closer to the lower energy state.
There is an analogy between the physical annealing process and an optimization process. Dif-
ferent configurations of the problem correspond to different arrangements of the atoms. The
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cost of a configuration corresponds to the energy of the system. Optimal solution corresponds
to the lowest energy state. Just in the same manner the atoms find their way to build a per-
fect crystal structure through random movements, the global optimum is reached through a
search within randomly generated configurations.
The main advantage of SA is that it is generally more reliable in finding the global optimum
even with large numbers of design variables. In this study, we adopted an improved version
of SA called direct search simulated annealing (DSA) with slight modifications. DSAwas de-
veloped by Ali, Törn and Viitanen [2], which differs from SA basically in two aspects. Firstly,
DSA uses a set of current configurations rather than just one current configuration. Secondly,
it always retains the best configuration. In a way, this property imparts a sort of memory to
the optimization procedure.

2. Problem Statement
Consider a two dimensional structure as in Figure 1 which can be defined by its boundary and
thickness. The structure is subject to in-plane static loads; it is also restrained from moving
at some points of the boundary. Applied loads and restraints are considered as boundary
conditions. The structure should be able to resist the loads without failure. This means stresses
should not exceed the yield strength of the material. Besides, no part of the structure is to
lose its connection to the restraints; i.e. the structure should remain in one piece. Therefore,
the constraints imposed on the structure are the maximum allowable stress and the model
connectivity. Our objective is to minimize the volume (or weight) of the structure without
violating the constraints.

Figure 1. Representation of a 2D shape optimization problem

3. Problem Solution
As optimization algorithm we adopted DSA [2] with minor modifications, and applied it to
the shape optimization problem as follows.

3.1 Cost Function
Because the thickness of the structure is fixed and only its lateral area is allowed to vary, the
objective function to be minimized may be taken as its area instead of its volume. By in-
tegrating a penalty function for constraint violations into the cost function, the constrained
optimization problem can be transformed into an unconstrained problem, for which the algo-
rithm is suitable. A combined cost function may be constructed as

f =
A

Aini
+ c〈 σmax

σallow
− 1〉2 (1)
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Here, the bracketed term is defined as

〈 σmax

σallow
− 1〉 =

{
0 for σmax ≤ σallow

(σmax/σallow)− 1 for σmax > σallow
(2)

where Aini is the area of the initial configuration; c is a weighing coefficient, for which a value
of 0.7 was found to be satisfactory. Any excursion into the infeasible region (σmax > σallow)
results in an increase in the cost function. On the other hand, if model connectivity is lost,
the new configuration is never accepted, and therefore there is no need to calculate its cost
function.

3.2 The Boundary Variation Technique
SA requires random generation of a new configuration (in our case a new shape) in each itera-
tion. Definition of a configuration should be made based on optimization variables. Shape of a
2D-structure can easily be described by spline curves passing through a number of keypoints.
Some of these points may be fixed, while others are allowed to move during optimization. As
illustrated in Figure 2, whenever the positions of the moving keypoints are changed in random
directions through random distances, a new boundary, thus a new configuration is obtained.
The x and y coordinates of the moving keypoints thus become optimization variables. The
keypoints are allowed to move only within a region, S, defined by the designer.

Figure 2. Generation of a random configuration through movement of keypoints

3.3 The Set of Current Configurations
DSA unlike ordinary SA starts with a set of N configurations, A, rather than starting with
only one configuration. The initial set of N configurations is selected randomly within the
search domain, S, and their cost function values are stored. The highest and lowest cost
function values are denoted as fh and fl. The number of these configurations depends on the
dimension of the problem.

N = 7(n+ 1) (3)
where n is the dimension of the problem, i.e. the number of design variables. Since the x and
y coordinates of the moving keypoints are the variables, in our case n is two times the number
of moving keypoints.

3.4 Acceptability
Acceptability of a new configuration depends on the value of its cost function, ft; its accept-
ability, At, is calculated by

At =

{
1 if ft ≤ fh

exp((fh − ft)/Tk) if ft > fh
(4)
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here fh is the highest cost function value in A. This means every new design having a cost
lower than the cost of the worst design is accepted. But, if the cost is higher, the trial con-
figuration may be accepted depending on the value of At. If it is greater than a randomly
generated number, the trial configuration is accepted, otherwise rejected. If the trial function
is accepted, it replaces the worst configuration.

3.5 Cooling Schedule
The simulated annealing process consists of first "melting" the system being optimized at a
high "temperature", T , then lowering the temperature slowly until the system "freezes" and
no further changes occur. Here, temperature, T , has no physical meaning; it is just a control
parameter. Melting corresponds to the initial stage where configurations are generated within
the solution domain, S, without much regard to the cost. At high temperatures, (high values
of T ) the probability of acceptance is high as Eq. (4) implies. Accordingly, configurations that
have even very high cost values may be accepted, just as in the physical annealing process the
atoms may form configurations having very high energy in the melting state. At low values
of temperature parameter, acceptability becomes low and acceptance of worse configurations
is then unlikely. The cooling schedule in SA controls the convergence of the algorithm to the
global minimum just as the cooling scheme in the physical annealing process controls the final
microstructure. Therefore, performance of SA depends on the cooling schedule. In a cooling
schedule, first an initial value, To, is specified for the temperature parameter. A scheme is then
required for reducing T and for deciding how many trials are to be attempted at each value
of T . Lastly, the freezing (or final value of the) temperature parameter is specified.

4. Accuracy of the Optimum Design
The measure for the accuracy of the optimum configuration is the degree of how well it rep-
resents the global optimum configuration for the given design variables.
As one of the sources detracting from the accuracy, search algorithm may get stuck into one of
the local optimums that fail to approximate the global optimum. One may not ensure that the
resulting configuration is globally optimal, but may use relatively reliable search algorithms
such as simulated annealing. With a good choice of optimization parameters, one may achieve
reliability greater than 90% at the same time avoid excessively long computational times.
Another source of low accuracy is due to errors in calculating the cost of the configurations.
In many structural optimization problems, maximum stress value is used either in calculating
the cost function or in checking constraint violations. Designers usually carry out a finite
element (FE) analysis to calculate the stress state in the structure, but they tend to choose a
rough FE mesh to alleviate the computational burden. However, this may lead to erroneous
values of stress, and the resulting design, as will be shown, will not be the optimum design.

5. Precision of the Optimum design
How well the optimized system is defined by the design variables is a measure for the preci-
sion of the global optimum configuration. Some of the parameters that define the system are
allowed to be changed during an optimization process. The number of these parameters and
the range of values they may take determine the degree at which the system can be tailored
to the best performance. By increasing the number of the design variables and range of their
values, one may obtain a better performance. In our shape optimization problem, by using
a larger number of moving keypoints, one may better describe the boundary, i.e. shape, of
the structure, and minimize its volume to a larger extent. However, the chances of locating
the globally optimum design become smaller and smaller as the number of design variables
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increases, at the same time computational times get longer and longer. With a large number of
optimization variables, locating the global minimum also becomes difficult. As the designer
tries to obtain a more precise definition, he or she becomes less sure of the accuracy of the re-
sults. One may repeat the optimization process many times and designate the design having
the lowest cost as the global optimum design. However, because of the long computational
times this approach is not feasible. Another way to overcome this difficulty is to start opti-
mization by choosing only a few design variables and finding the optimum design. In this
case, the reliability of locating globally optimum design will be high, even though precision
will be low. Then, the designer keeps increasing the number of variables and finding the opti-
mum design. With the assumption that the difference between the optimum designs will not
be large as the number of design variables is increased, one may observe convergence to the
most precise global optimum design.

6. Results and Discussions
One of the problems that we considered in this study is the optimal design of an eccentrically
loaded plate restrained at one end and loaded at the other (Figure 3). One segment of the
border on the right is fixed in length and subject to 200MPa pressure. The left border is
defined by a line between two keypoints; the lower one is fixed, while the upper one is free
but restrained to move in the vertical direction. The problem is to find the optimum shape of
this plate as stated above.
Firstly, five keypoints were used to describe the boundary and using their coordinates as de-
sign variables the best shape was found. Figure 4 shows the optimal shape with its finite
element mesh. Because the number of design variables was low, the optimum design could
be obtained with high reliability. Then, optimization process was repeated using seven and
nine moving keypoints resulting in the optimum designs shown in figures 5 and 6. The lat-
eral areas of the optimum shapes defined by five, seven, and nine keypoints turned out to
be 37.100, 36.313, and 35.903 cm2, respectively. Consequently, with a higher number of key-
points, we could obtain a better definition of shape and also find an optimum configuration
with a lower cost. Although reliability of the solution is low when the number of design vari-
ables is large, because optimum designs defined by a high number of keypoints approximate
the more reliable optimum designs defined by lower number of keypoints, the reliability is
ensured.

Figure 3. The design problem

In order to ensure the accuracy at which the cost was calculated, convergence of the FE solu-
tion was frequently checked during the optimization process. If the change in the magnitude
of the maximum stress was greater than 1% when FE analysis was carried out using one
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Figure 4. The optimal shape defined by five key-
points

Figure 5. The optimal shape defined by seven
keypoints

Figure 6. The optimal shape defined by nine key-
points

Figure 7. Inaccurate optimal shape obtained with
a rough mesh

fourth of the current size of finite elements, then the E mesh was refined. Figure 7 shows the
optimum shape obtained when a rough mesh was used. Although the error in stress level was
only 10%, the discrepancy in shape was quite large.

7. Summary
In this extended abstract, a 2D shape optimization procedure based on the DSA method was
presented. The importance of precise definition of the optimized system was indicated. With
a more precise definition, one may find a better optimum design. Accurate calculation of the
cost function was also found to be a crucial factor in global optimization. If the FE mesh is not
sufficiently refined, consequently the cost function is not accurately calculated, the resulting
shape could not considered to be optimum.
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Abstract In this paper we propose new approach based on Global Optimality Conditions for solving contin-
uous nonconvex optimization problems.
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1. Introduction
A huge of optimization problems arising from different application areas are really noncon-
vex problems [1]– [3]. The most of such problems deal with (d.c.) functions which can be
represented as a difference of two convex functions.

The present situation in Continuous Nonconvex Optimization may be viewed as domi-
nated by methods transferred from other sciences [1]– [3], as Discrete Optimization (Branch &
Bound, cuts methods, outside and inside approximations, vertex enumeration and so on),
Physics, Chemistry (simulated annealing methods), Biology (genetic and ant colony algo-
rithms) etc.

On the other hand the classical method [7] of convex optimization have been thrown aside
because of its inefficiency [1]– [6]. As well-known the conspicuous limitation of convex opti-
mization methods applied to nonconvex problems is their ability of being trapped at a local
extremum or even a critical point depending on a starting point [1]– [3]. So, the classical
apparatus shows itself inoperative for new problems arising from practice.

In such a situation it seems very probable to create an approach for finding just a global
solution to nonconvex problems on one side connected with Convex Optimization Theory
and secondly using the methods of Convex Optimization.

Nevertheless we risked to propose such an approach [8] and even to advance the following
principles of Nonconvex Optimization.

1. The linearization of the basic (generic) nonconvexity of a problem of interest and conse-
quently a reducing of the problem to a family of (partially) linearized problems.

2. The application of convex optimization methods for solving the linearized problems
and, as a consequence, within special local search methods.

3. Constructing of "good" (pertinent) approximations (resolving sets) of level surfaces and
epigraph boundaries of convex functions.

Obviously, the first and the second are rather known. The deepness and effectiveness of the
third may be observed in [8]– [19].

∗This work was supported by RFBR Grant No. 05-01-00110
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Developing the principles we get the solving methodology for nonconvex problems which
can be represented as follows.

1. Exact classification of a problem under study.

2. Application of special local search methods.

3. Applying the special conceptual global search methods (strategies).

4. Using the experience of similar nonconvex problems solving to construct pertinent ap-
proximations of levels surfaces of corresponding convex functions.

5. Application of convex optimization methods for solving linearized problems and within
special local search methods.

It is easy to note that this approach lifts Classical Convex Optimization up a new altitude,
where the effectiveness and the fastness of the methods become of paramount importance not
only for Convex Optimization, but for Nonconvex.

Our computational experience certifies that if you follow the methodology above you have
more chance to reach a global solution of a nonconvex problem of a big size (≥ 1000) than
applying the Branch&Bound or cuts methods.

2. Investigation
At present, together with our collaborators we are investigating teh following problems.

1. Solving the system of nonlinear equations

Fi(x) = 0, i = 1, ...,m

by means of reducing on to the following optimization problem:

F (x) =

m∑

i=1

|Fi(x)| ↓ min . (1)

Here every function Fi is supposed to be d.c. so that

Fi = gi(x)− hi(x), i = 1, ...,m,

where gi, hi are convex functions.

2. The polyhedral separation problem when you have to separate two finite sets of points
in IRn by means of a minimal number of hyperplanes. This problem is equivalent to the
minimization of a d.c. function which is not differentiable as it was in problem 1.

3. An optimal control problem with a terminal functional given by d.c. function.

For all problems we investigate the convergence of local and global search and carry out
the computational experiments. The results of computational solving are very promising.
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Abstract This work is in the context of reliable global optimization algorithms, which use branch and bound
techniques and interval arithmetic to obtain inclusion functions. The search region have to have
edges parallel to the axes (box) in order to allow the use of interval arithmetic to obtain bounds
of the objective function in that region. We study a method to determine the largest region inside
the current box where the global minimum cannot exist, based on the gradient information. If the
current box cannot be rejected completely, the removed region have to satisfy that the generated
subproblems (that can contain the global minimum) have to have a box shape, in order to apply the
branch and bound algorithm, but we are also interested in generate the smaller number of them to
reduce the overall computational cost. The method is presented for two and n dimensional problems
and numerical results show that is worth to incorporate it to interval global optimization algorithms.

1. Introduction
The context of our study is unconstrained global optimization. Thus, the general problem can
be defined as minx∈S f(x), where f is a continuously differentiable function defined over the
n-dimensional interval S ⊂ Rn, where the minimum have to be found.

In our context, real numbers are denoted by x, y, . . . and compact intervals byX = [xL, xU ], Y =
[yL, yU ], . . ., where xL = min{x ∈ X} and xU = max{x ∈ X} are the lower and upper bounds
ofX , respectively. The set of compact intervals is denoted by I := {[a, b] | a, b ∈ R, a ≤ b}. The
notation x = (x1, . . . , xn)T , xi ∈ R and X = (X1, . . . , Xn)T , Xi ∈ I (i = 1, . . . , n) is used for
real and interval vectors, respectively. The set of n-dimensional interval vectors (also called
boxes) is denoted by In.

Let f : Y ⊆ Rn → R be a continuous function, and I(Y ) = {X | X ∈ I, X ⊆ Y }. The
function F : I(Y ) ⊆ In → I is an inclusion function of f , if for every X ∈ I(Y ) and x ∈ X ,
f(x) ∈ F (X), i.e. f(X) = {f(x) |x ∈ X} ⊆ F (X). This inclusion can be obtained, for
instance, by Interval Arithmetic [2].

Let X be such a box that x, c ∈ X . If G(X), i.e. an inclusion function of the gradient vector
g(X) is known, then the centered form is defined as Fc(X) = F (c)+G(X)(X−c). Many times
c is the midpoint of X , but it can be anywhere in X .

∗This work has been partially supported by the Ministry of Education and Science of Spain through grant CICYT-TIC2002-
00228.
† On leave from the Research Group on Artificial Intelligence of the Hungarian Academy of Sciences and the University of
Szeged, H-6720 Szeged, Aradi vértanúk tere 1., Hungary.
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2. The idea (in 2 dimensions)
Let us examine the visualization of the centered form for a boxX = (X1, X2). We suppose that
0 ∈ G(X), because otherwise the function is monotone in the box and it could be discarded or
reduced. A "tent" can be drown from the point (c, F L(c)) using the bounds of the derivatives
(see Figure 1). It is easy to see that the function have to be above the tent. If we have a
good upper bound on the global minimum (f̃ ) that is smaller than F L(c) we know that the
minimum cannot be in the region defined by the intersection of the tent and the plane defined
by f̃ . This region is drawn in dark(red) in Figure 2, and will be called as the Pruneable Region
(PR) in the rest of the paper. The use of this Pruneable region was discarded in [3] because PR
is not parallel to the coordinate axes and the division of X to reject some region will generate
a lot of boxes. We will show here that PR is still of interest.
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Figure 1. The tent.
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PR can be defined by its vertices:
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1 =
{

(x1, c2) | f̃ = F L(c) + gL

1 (x1 − c1)
}

=
(
c1 +

(
f̃ − F L(c)

)
/gL

1 , c2

)
, (1)

vL

1 =
(
c1 +

(
f̃ − F L(c)

)
gU

1 , c2

)
, vI

2 =
(
c1, c2 +

(
f̃ − F L(c)

)
/gI

2

)
, I = L,U, (2)

if gL

i 6= 0 and gU

i 6= 0, i ∈ 1, 2, otherwise vL

i = −∞ or vU

i =∞ for the appropriate vertex as the
limit of the fractions suggest.

Let us introduce the notation prI

i =
(
f̃ − F L(c)

)
/gI

i , I = L,U, i = 1, 2 to reduce the
formulas. Then vL

1 = (c1+prL
1 , c2), vU

1 = (c1+pr
U
1 , c2) and vL

2 = (c1, c2+prL
2 ), vU

2 = (c1, c2+prU
2 ).

Because our algorithm works with boxes, we cannot use other shapes (different than boxes)
to divide the non-rejected area. On the other hand, if we try to prune generating boxes, too
many boxes can be generated, and/or only a small part of the pruneable region can be dis-
carded. In general more than four generated subboxes is not desired.

One of the goals of the pruning can be to obtain the largest box to be removed from the
original box. This can be done by computing the largest rectangle in the triangle defined by
its vertices vU

1 , v
L

2 , c. The area of the rectangle is A = a · b, where b = prU

2 − prU

2 /pr
U

1 a. Thus,
it can be computed by maximizing A respect to a and b. The maximal area is prU

1 pr
U
2 /4 with

a = prU
1 /2 and b = prU

2 /2. From the above result one can see, that the same can be obtained
for all of the four triangles. Fortunately all the rectangles share one edge, thus the resulting
box can be given by c+ ([prL

1/2, pr
U
1 /2], [pr

L
2/2, pr

U
2 /2]).

To calculate the pruneable box, the only important thing is the intersection between PR and
OB. Therefore, to obtain easier formulas let us change c to be the origin.
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Thus, we introduce the following notation:
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Figure 4. The new notation
for the easier formulation.

OB (Original Box): OB = X − c,
BPR (Box containing PR): BPR = ([prL

1 , pr
U
1 ], [prL

2 , pr
U
2 ]),

PB (Pruneable Box): PB = ([pbL

1 , pb
U

1 ], [pbL

2 , pb
U

2 ]),
(3)

whereBPR is the smallest box which contains the pruneable region
(PR). In our new notation CPB = ([prL

1/2, pr
U
1 /2], [pr

L
2/2, pr

U
2 /2]),

and the area of the CPB is

A(CPB) =

(
prU

1

2
− prL

1

2

)(
prU

2

2
− prL

2

2

)
=

1

4
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1 − prL

1 )(prU

2 − prL

2 ) =
1

4
A(BPR),

i.e. half of the area of PR, what is the half of the area of BPR.

2.1 Shifting CPB (Centered Pruneable Box)
As it can be seen in Figure 5, sometimes it is better to shift the CPB to the edge of OB. This
can improve the method by reducing the number of the generated subboxes at the cost of
the reduction of the rejected area compared to the area of CPB. To differentiate the centered
pruneable box (CPB) from the shifted pruneable box, we notate the later as SPB. In the cases
when OB ∩ CPB 6= CPB, the area of SPB can be larger than the area of CPB (see the third
case in Figure 5).

Figure 5. Shifting cases.

The areas of the boxes (supposing that the resulting SPB is inside of the original one (OB))
can be computed as:

A(SPBobU
2
) =

(
prU

1

(
1− obU

2
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)
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(
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2

prU
2

))(
obU

2 − prL

2

obU

2

prU
2

)

= (prU

1 − prL

1 )

(
1− obU

2

prU
2

)
obU

2

prU
2

(prU

2 − prL

2 ) =

(
1− obU

2

prU
2

)
obU

2

prU
2

A(BPR) (4)
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i
) =

(
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i

prI

i

)
obI

i

prI

i

A(BPR), i = 1, 2, I = L,U (5)

If an SPB is inside the original box then the shifted area only depends on the value obI
i

prI
i

, i =

1, 2, I = L,U , obtaining larger area if it is nearer to 1/2. If it equals to 1/2 we obtain the
A(CPB), what also means that SPBobI

i
= CPB.

These equations show, that knowing the vector
(

obU
1

prU
1
,

obL
1

prL
1
,

obU
2

prU
2
,

obL
2

prL
2

)
one can choose the best

Pruneable Box (PB), if these are inside the original box. The other cases do not differ too
much, but those have to be treated differently. This would lead to a case analysis, that cannot
be extended for multidimensional case. In case we use the Baumann point, it is guaranteed
that the CPB is inside OB, therefore the case analysis can be avoided.
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2.2 Simplification using the Baumann point
In this section we will see that the use of the Baumann point [1], in place of the center c,
simplify our computations. For a given box X = (X1, X2), if the enclosure of the derivative of
f , i.e. G(X) = ([gL

1 , g
U
1 ], [gL

2 , g
U
2 ]) is given, the Baumann point b is defined as:

bi =





gU

i x
L

i − gL

i x
U

i

gU

i − gL

i

, if gL

i < 0 < gU

i

xU

i if gU

i ≤ 0
xL

i if gL

i ≥ 0

i = 1, 2 (6)

In the following theorem it is shown that using the Baumann point the different intersection
cases between OB and PR can be avoided from the case analysis.

Theorem 1. Suppose a given differentiable function f : R2 → R, its inclusion function F and the
inclusion function of its derivative G(X) = ([gL

1 , g
U
1 ], [gL

2 , g
U
2 ]) over a given box X . The pruneable

region defined by its vertices as in (1-2) centered in the Baumann point (i.e. c = b) include all the
corners of X , or none of them.

Corollary 2. From the fact, that xU
i −bi

prU
i

=
xL

i −bi

prL
i

, ∀i, it can be deduced easily that the shifted pruneable
box SPBobU

i
is exactly the same as SPBobL

i
, thus it can be denoted as SPBi. Therefore, in the shifted

cases there are only two new generated boxes, and only the direction to shift have to be determined.

Remark 3. The above results suggest to denote for i = 1, 2 the xU
i −bi

prU
i

(
=

xL
i −bi

prL
i

)
, i.e. obU

i

prU
i

(
=

obL
i

prL
i

)

values and the 1− xU
i −bi

prU
i

, i.e. 1− obU
i

prU
i

values by sfi (Shifting Factor) and osfi (Opposite Shifting Factor),
respectively. Therefore, A(SPBi) = sfiosfiA(BPR).

Theorem 4. If CPB 6⊂ OB, then exists SPB such that A(SPB) > A(CPB ∩OB).

The advantages of the usage of the Baumann point are that it makes our computation easier,
and it equilibrates the pruneable region above the box.

3. The n-dimensional case
Now we generalize the above results for multi-dimensional case. As in the two-dimensional
case let us center the problem at the point c. Thus, we will use the same notation for the
Original Box OB = X − c.

It is easy to see that, similarly to the two-dimensional case, but already re-centered in c, the
vertices are:

vL

i = (0, . . . , 0, prL

i , 0, . . . , 0), vU

i = (0, . . . , 0, prU

i , 0, . . . , 0), i = 1, . . . , n, (7)

where prU

i = f̃−F L(c)

gL
i

, prL

i = f̃−F L(c)

gU
i

, i = 1, . . . , n.
From (7) we know that in a 3-dimensional case the shape of PR is as in Figure 6. To see the

properties of this body, we do a small geometrical evasive.

Definition 5. An n-dimensional polytope is called orthopeder, if the diagonals intersect in one point
and are orthogonal to each other.

Proposition 6. The PR defined by its vertices (7) is an orthopeder.

Definition 7. The cross polytope is the regular polytope in n dimensions corresponding to the convex
hull of the points formed by permuting the coordinates (±1, 0, 0, . . . , 0).
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Figure 6. The shape of PR in 3-dimensional case.

Every orthopeder is a special scaled cross polytope, with different scaling on all direction.
It can be seen, that the corresponding scaling vectors are PRL and PRU . The cross polytope
is a dual of an n-dimensional hypercube, i.e. its vertices are the centers of the faces of the
hypercube. As it is known in geometry, in the cross polytope the largest hyper-rectangle is its
dual, i.e., the hypercube what has its vertices on the center of the faces of the cross polytope.
Proposition 8. It is trivial that, in a scaled cross polytope, the largest hyper-rectangle is the rescaled
hypercube with the same scalevector.
Corollary 9. The largest box in the orthopeder PR defined by its vertices (7) is CPB = (CPB1, . . . ,
CPBn), where CPBi = [prL

i /n, pr
U

i /n] .

Corollary 10. The volume of CPB is V (CPB) =
∏

i=1,...,n
prU

i −prL
i

n = 1
nnV (BPR).

Theorem 11. Suppose a given differentiable function f : Rn → R, its inclusion function F and the
inclusion function of its derivative G(X) = ([gL

1 , g
U
1 ], . . . , [gL

n , g
U
n ]) over a given box X . The pruneable

region defined by its vertices as in (7), centered in the Baumann point (i.e. c = b), include all the corners
of X , or none of them.

4. Shifting the n-dimensional CPB
When CPB is inside of OB, the number of generated boxes pruning CPB is 2n. If n > 3
this is much more than desired. Shifting in k directions reduces the number of new boxes to
2(n− k), therefore it is important to find the best directions to shift.

To choose the best PB we are going to construct a simple and powerful method that deter-
mine the SPB with the largest volume ratio/less new boxes index. We already know that using
the Baumann point the equations obU

i

prU
i

=
obL

i

prL
i

hold for i = 1, . . . , n. In the following formulas
these values would appear many times. Thus let us introduce the notation as in the two-
dimensional case for the Shifting Factor, i.e. sfi =

obU
i

prU
i

=
obL

i

prL
i

, i = 1, . . . , n.
Let us formulate only the general shifting form. For instance, let shift in the j1, . . . , jk ∈

{1, . . . , n} dimensions. First, let us generalize the notation of the Opposite Shifting Factor for
this case as osfj1,...,jk

= 1 −∑i=j1,...jk
sfi. The shifting is possible only if osfj1,...,jk

> 0. After
some computation we can obtain the coordinates of the SPBj1,...,jk

as:

spbI

i =
prI

i

n− k osfj1,...,jk
, i = 1, . . . , n I = L,U.

Now we can obtain the volume, when SPBj1,...,jk
is inside of OB:

V (SPBj1,...,jk
) =

∏
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(
prU
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nn

(n− k)n−k
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 osf n−k

j1,...,jk
V (CPB)
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One can see, that the nearer a sfj to 1/n, the grater the volume is. It also implies that
knowing the vector (sf1, . . . , sfn) we can choose the best directions to shift.

Let us note, that if we have the volume for the SPB shifted in the dimensions j1, . . . , jk−1 ∈
{1, . . . , n}, and we want to shift it in one more dimension, jk ∈ {1, . . . , n} too, the new volume
can be computed from the known V (SPBj1,...,jk−1

) in the following way:

V (SPBj1,...,jk
) = sfjk

(
n− k + 1

n− k

)n−k
(

osfj1,...,jk−1
− sfjk

osfj1,...,jk−1

)n−k
n− k + 1

osfj1,...,jk−1

V (SPBj1,...,jk−1
)

Similarly to Theorem 4 it can be shown that if CPB is not inside OB we can always show
an SPB with larger volume inside OB. Although in the next theorem we state a bit more.

Theorem 12. Suppose CPB 6⊂ OB in the dimensions j1, . . . , jk ∈ {1, . . . , n}, (k < n), i.e. obU

i <
cpbU

i and obL

i > cpbL

i for all i ∈ {j1, . . . , jk}, but not for i ∈ {1, . . . , n} \ {j1, . . . , jk}. Then
SPBj1,...,jk

is such that V (SPBj1,...,jk
) > V (CPB ∩ OB), and V (SPBj1,...,jk

) > V (SPBj1,...,jl
∩

OB), l < k.

5. Results and conclusions
The presented pruning method was included in a general Interval Global Optimization algo-
rithm which use centered form and naiv interval arithmetic as inclusion functions and mono-
tonicity test, for some hard test problems. Table 1 shows the effort of the algorithm without
and with the new pruning method which let to cut the pruneable box with the best pruning
rate = volume ratio/new boxes rate. The smallest allowed pruning rate was 0.035. One can see,
that the pruning method works for multi-dimensional cases, and it is worth to incorporate it
to Interval Global Optimization Algorithms.

Table 1. Numerical results for the use of the new pruning method compared to the general B&B algorithm.

Function name n ε Effort Effort With Pruning SpeedUp

Ratz 3 10−3 633508 535196 1.18
Kowalik 4 10−3 4883230 2125330 2.30
EX2 5 10−3 3448563 1970996 1.75
Ratz 5 10−3 1201476 1035922 1.16
Ratz 7 10−3 1900512 1667050 1.14
Ratz 9 10−3 3183190 2435704 1.31
Griewank 10 10−3 1551366 1551366 1.00
Rastrigin 10 10−3 1551366 1593770 0.97
Rosenbrock 10 10−3 510041 335433 1.52

#F : number of function evaluation, #G: number of gradient evaluation, Effort= #F + n#G
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Abstract In this paper a novel algorithm is proposed for the solution of single and multiple objective problems
in space mission analysis and design. The underlying idea is to look for the set collecting all the
solutions that satisfy a given optimality criterion or property. A population of agents is associated
to a set of general solutions and behavioural rules are devised for each agent and for the entire
population in order to drive the agents toward the optimal set. This mechanism is hybridised with
a particular adaptive domain decomposition technique, which is used either to extend the search or
to favour convergence. Some example cases will show the effectiveness of the proposed approach.

Keywords: global optimisation, multiobjective optimisation, hybrid methods, space mission design.

1. Introduction
In many space mission design problems there is the need to extensively search for optimal
solutions in highly complex solution domains. Typical problems of trajectory design, opti-
mal control, multidisciplinary design and concurrent engineering can be translated into mul-
tiobjective optimisation problems characterised by multimodal functions and heterogeneous
parameters (mixed integer-real parameters) [1,2]. Moreover it is often required to procure reli-
able sets of solutions, where reliability is measured in terms of repeatability and predictability
of the result. This would suggest a purely deterministic approach to many problems occur-
ring in mission analysis. In turn the request for exhaustiveness of the search leads often to
long computational time (few days up to a week). Although this is generally acceptable com-
pared to standard development time of a space mission, it might become not acceptable in
the early or preliminary phase of the design or in case of extremely costly evaluations (as in
multidisciplinary design). An alternative to deterministic search could be to use stochastic
based approaches, especially when the solution space is deceiving. In this case predictability
of the algorithm has to be dropped. In particular in most stochastic algorithms the width of
the intervals for each parameter is not always easy to define although it can change the prob-
ability to find the global optimum. Moreover the need for sets of optimal solutions, rather
than a single global optimum, requires a reformulation of single objective problems in order
to allow the convergence to a set as for multiobjective problems. In this paper a unifying for-
mulation of both multiobjective and single objective problems is proposed and an algorithm
that combines a deterministic domain decomposition technique and a stochastic-based multi-
agent search is presented. This algorithm is intended to improve performances and reliability
of optimisation in some space mission design problems by allowing a partial or complete
reconstruction of the set of optimal solutions. The domain decomposition procedure gener-
ates branches along which the multiagent collaborative search is performed. Non promising
branches are then pruned while promising ones are further explored until termination. The
branching scheme is initially inferred and then updated on the basis of the outcome of the
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multiagent exploration. The proposed approach is here tested at first on a well known suite
of multiobjective optimisation problems and compared to known algorithms and then on one
standard mission analysis problems and compared to some state of the art global optimisation
tools either based on deterministic or stochastic methods

2. Problem Formulation
In many practical cases both single and multiobjective problems require the identification of
multiple optimal solutions and therefore to reconstruct a set of values and not just a single
one. Therefore the general problem, no matter if single or multiple objective, could be to find
a set X of feasible solutions x such that a property P (x) is true for all x ∈ X ⊆ D:

X = {x ∈ D | P (x)} (1)

where the domain D is a hyperectangle defined by the upper and lower bounds on the com-
ponents of the vector x:

D = {xi | xi ∈ [bli, b
u
i ] ⊆ <, i = 1, . . . , n} (2)

All the solutions satisfying property P are here defined to be optimal with respect to P or P-
optimal and X can be said to be a P-optimal set. Now property P might not identify a unique
set therefore a global optimal set Xo can be defined such that all the elements of Xo dominate
the elements of any other X :

Xo = {x∗ ∈ D | P (x∗) ∧ ∀x ∈ X ⇒ x∗ ≺ x} (3)

where ≺ represents the dominance of the x∗ solution over the x solution. In the case of single
objective function, the set X may contain all solutions that are local minimisers or are below
a given value. In this case if more than one solution exists within the required domain D the
interest could be more to find a number of solutions forming the setX , rather than finding the
global optimum with a high level of accuracy. In the case of multiobjective optimization, if P
is a dominance condition or Pareto optimality condition for the solution x then the solution is
Pareto-optimal if P (x) is true.

3. Multiagent Collaborative Search
The proposed multiagent collaborative search is based on the following principle: each one
of a set of agents explores locally the solution space within a hypercube (local environment
perception), at the end of each exploration session agents showing improvements communi-
cate (collaborate) with the others, their findings. A pool of embryonic agents is maintained
in order to randomly generate new agents. A filter is used to select exploring and embryonic
agents: if an agent falls out of the filter, is inserted in the pool.

Each solution x is associated to an agent j and is represented by a string, of length n, con-
taining in the first m components integer values and in the remaining n − m components
real values. This particular encoding allows the treatment of problems with a mixed integer-
real data structure. A hypercube S is associated to each agent xj , the hypercube, enclosing
a region of the solution space surrounding the individual, is defined by a set of intervals
S = S1xS2xSn ⊆ Dl, where xi ∈ Si. The solution space is then explored locally by acquir-
ing information about the landscape within each region S and globally using a population of
agents. A sequence of actions is then performed by each agent xj according to a behavioural
scheme βj , in order to acquire a minimum set of samples sufficient to decide in which direction
to take the next move. For an agent xj , a behavioural scheme is a collection of displacement
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vectors ∆ξs generated by a function fβ :

βj = {∆ξs | ∀s ∈ N ⇒ xk+1
j = xk

j +∆ξs ∈ S ⊆ D∧∆ξs = f(xk
i , xk−1

i ,w, r, x, s)∧s ≤ smax} (4)

where fβ is a function of the current and past agent state xk
j and xk−1

j , of a set of weights
w, a set of random numbers r, the current state of the other agents in the population x and
the index s. The index s is increased until a better solution is found and s is not larger than
a given smax. The behaviour scheme is conceptually equivalent to the pattern of common
pattern search direct methods. The size of the hyperrectangle S and the maximum number of
available samples (level of resources) are adapted according to the number of discoveries of
each agent.

3.1 Knowledge Sharing and the Global Archive
At every stage of the optimisation process, a number of solutions (i.e. of agents) belongs to an
optimal set X . This set is saved at every stage into a global archive which represents also the
repository of the best achieved and perceived locations of each agent. After the behavioural
scheme has been applied, all the agents presenting an improvement are inserted in a commu-
nication list and communication is performed between each element of the list and an equal
number of agents randomly selected form the population. Moreover the elements of X are
ranked according to their crowding factor and used to define the behavioural scheme of dom-
inated agents and of agents presenting no improvement. The crowding factor is the number
of agents in the hypercube S divided by the number of agents in the population.

4. Domain Decomposition
Before each run of MACS the solution space is decomposed according to a predictive scheme.
A branching model is initially provided by the user and later updated using the MACS output.
During MACS the subdomains generated by the branching scheme are used to evolve niches
in particular highly crowded agents are regenerated into subdomains with a low density.

The initial domain D is progressively decomposed into smaller domains Dl ⊆ D accord-
ing to the branching scheme. The branching scheme is represented by a set Is containing the
indices of the coordinates that have to be split and a set CB containing the cutting points for
each coordinate. The initial set Is is defined by the user while the set CB contains the middle
point of the interval defining each coordinate. After each run of MACS the branching scheme
is adapted depending on the outcome of the MACS. The subdomains Dl with the minimum
number of collected samples among the ones containing elements of X is selected for fur-
ther decomposition provided that the number of times nb its parent subdomains have been
branched without improvement is below a given threshold. This strategy however excludes
from further exploration all the subdomains containing no elements of X . Therefore when an
exhaustive search is required, the following merit function is used:

ψDl
= (1− υ)$Dl

+ υϕDl
(5)

where $Dl
is the density of function evaluations in Dl,ϕDl

is best fitness in Dl and υ is a
weighting factor used to favor either convergence or exploration. For multiobjective prob-
lems, in the following, we used the former strategy.

5. Sample Multiobjective Problems
The proposed hybrid approach (EPIC) was tested on several different test cases: a standard
set of multiobjective problems and some space related problems. Multiobjective optimisation
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problems were taken from [4] and [3] and listed in Tab. 1. EPIC was compared to MPSO,
NSGA-II and PAES in terms of number of function evaluations and of average distance from
the optimal Pareto set (metric M1 in [3]).Test function 1 is one-dimensional and has a dis-
connected Pareto set made of 2 subsets. EPIC was run with 5 exploring agents and a total
population of 10 agents. The number of function evaluations was fixed to 600. Test function 2
has a disconnected Pareto set made of 4 subsets. In this example, 5 exploring agents were used
over a total number of 10 agents in the population. The total number of function evaluations
was fixed to 3000. Test function 3 has 60 local Pareto fronts for q = 1 and n = 2 while has 219

local Pareto fronts with n = 10 and q = 2. The maximum number of function evaluations was
fixed to 3000 for n = 2 and to 20000 for n = 10 and the number of exploring agents was 3 over
a population of 5.

Table 1. Multiobjective test functions

Scha f2 = (x − 5)2 ; f1 =

8
>><
>>:

−x if x ≤ 1
−2 + x if 1 < x < 3
4 − x if 3 < x ≤ 4
−4 + x if x > 4

x ∈ [−5, 10]

Deb f1 = x1 x1, x2 ∈ [0, 1]

f2 = (1 + 10x2)
h
1 −

“
x1

1+10x2

”α

− x1

1+10x2

sin(2πqx1)
i

α = 2;. q = 4

T4 g = 1 + 10(n − 1) +
Pn

i=2[x
2
i − 10cos(2πqxi)]; h = 1 −

q
f1

g
x1 ∈ [0, 1]; xi ∈ [−a, a]

f1 = x1; f2 = gh i = 2, . . . , n

The objective space for a typical run of EPIC is represented in Fig. 1 for all the three test
functions. The results for the performance index M1 averaged over 30 runs are summarised
in Tab. 2 and compared to MPSO, PAES and NSGA-II (the standard deviation is reported
in brackets). In [4] the three algorithms were run for a maximum of 4000, 1200 and 3200
function evaluations respectively on case Deb, Scha and T4 with q = 1,n = 2 and a = 30.
Then the average value µM1=1.542e-3 and the standard deviation σM1=5.19e-4 of M1 over 20
runs of EPIC on problem T4 with q = 2,n = 10 and a = 5 was compared to the results in [5]
for NSGA-II(µM1=0.513053 σM1 =0.118460),SPEA (µM1=7.340299 σM1 =6.572516)and PAES
(µM1=0.854816 σM1 =0.527238). In should be underlined that, for this test function, in all the
20 runs, EPIC converged to the global Pareto front.
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Figure 1. Pareto fronts for the three test functions, Scha on the left, Deb in the middle, T4 on the right.

5.1 Multi Gravity Assist Trajectories
A common problem in space mission analysis is the optimal design of transfer trajectories ex-
ploiting one or more gravity assist manoeuvres (MGA) to change the orbital parameters of a
spacecraft. Each gravity manoeuvre occurs at a planet and exploits the gravity action of the
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Table 2. Summarising results for multiobjective test cases

MPSO PAES NSGA-II EPIC

Deb 0.002057 (0.000286) 0.002881 (0.00213) 0.002536 (0.000138) 5.4179e-4 (1.7e-4)
Scha 0.00147396 (0.00020178) 0.070003 (0.158081) 0.001594 (0.000122) 1.4567e-4 (3.61e-4)
T4 (n=2,q=1,a=30) 0.0011611 (0.0007205) 0.259664 (0.573286) 0.094644 (0.117608) 2.8527e-4 (8.38e-4)

planet to produce a change in the velocity vector of the spacecraft, a so called ∆v. Since ∆v
changes are normally produced by propelled manoeuvres, optimal sequences of gravity assist
manoeuvres minimise the total propelled ∆v required to reach a given target. A general grav-
ity assist manoeuvre in the solar system can be modelled assuming the planet a point mass
and the manoeuvre to be instantaneous. In this simplified model the gravity action produces
a simple rotation of the incoming velocity vector, relative to the planet, in the plane identified
by the incoming and the outgoing velocity vectors. This rotation is normally a function of
the modulus of the incoming velocity and of the minimum distance of the spacecraft relative
to the planet [6]. Due to this functional dependency, caused by physical reasons, not all the
desired rotations can be achieved. Therefore an additional propelled manoeuvre is generally
necessary to correct the outgoing velocity vector. The total cost of a MGA transfer can be de-
fined as the sum of all the corrective vc

i manoeuvres for all the N planetary encounters plus
the initial v0 at launch from Earth.

f(x) = ∆v0 +

N∑

i=1

∆vc
i (6)

The conic arc connecting two subsequent planets i and i+1 at position ri and ri+1 is computed
as a Lambert’s [7] solution. The two position vectors are functions of the encounter dates ti
and ti+1. Therefore the solution vector x = [t0, T1, ..., Ti, ..., TN ] is defined by the launch date
t0 and by all the times of flight (TOF) from one planet to the subsequent one Ti = ti+1 − ti.

The results for a transfer to Saturn through a multiple gravity assist of Venus and the Earth
is reported in Tab.4. The sequence of planets is fixed and has been taken equal to that of
the Cassini mission to Saturn, i.e. Earth-Venus-Venus-Earth-Jupiter-Saturn, the boundaries
of the domain D for this problem are reported in Tab. 3. The ∆v column in Tab. 4 shows
the average value of the solutions found over 10 runs of the algorithms listed in the first col-
umn, along with the standard deviation σ. The last column reports the mean value of the
total number of function evaluations for each algorithm with the associated standard devia-
tion. EPIC has been compared to 10 algorithms, 7 based on stochastic processes: GAOT and
GAOT-s (respectively real coded Genetic Algorithms and Genetic Algorithms with sharing),
GATBX and GATBX-mig (different forms of Genetic Algorithms), FEP (fast evolutionary pro-
gramming), DVEC (differential evolution), ASA (fast simulated annealing). The last three are
deterministic algorithms: GlbSolve (implementation of the branch and prune strategy based
on DIRECT), MCS (multilevel coordinate search developed by Neumaier et al.), and RbfSolve
(response surface based algorithm), read [2] for additional details on the algorithms. For the
stochastic algorithms the stopping criterion is the number of function evaluations after which
no improvement of the objective is registered. For EPIC the stopping criterion is approxi-
mately the number of function evaluations of the best performing algorithm. A total of 20
exploring agents, over a population of 30, have been used and the maximum branching level
nb has been fixed to 1.



252 Massimiliano Vasile

Table 3. Solution domain D for the Earth-Saturn MGA transfer

t0(MJD2000) T1 (day) T2 (day) T3 (day) T4 (day) T5 (day)

bl -1277 14 11 14 99 365
bu 548 292 449 146 1000 3650

Table 4. Summarising results for the MGA test case

Software Tool ∆v(m/s) Function Evaluations

GAOT 8256.416 (σ =1555.107) 8543.4 (σ =4075.382)
GAOT-s 21874.731 (σ =5741.406) 1350.4 (σ =559.057)
GATBX 8317.45 (σ =2339.832) 39468 (σ =29981.599)
GATBX-m 8237.81 (σ =972.517) 59220 (σ =27105.666)
FEP 9287.112 (σ =2860.194) 22238.3 (σ =16233.713)
DVEC 10145.388 (σ =3494.605) 10250 (σ =4696.157)
ASA 12712.987 (σ =6646.187) 96255.8 (σ =3281.118)
MCS 13782.954 46601
GlbSolve 15347.899 4345
RbSolve 16970.001 1000
EPIC 7133.900 (σ = 431.79) 10127 (σ =115.9)

6. Summary
In this paper a novel algorithm for single and multiple objective optimisation has been pre-
sented. The algorithm blends together a deterministic branching technique with a stochastic
based multiagent collaborative search. This particular hybridisation is used to partially recon-
struct a set of solutions, which are optimal with respect to a given criterion. This formulation
of the problem allows a unifying prospective on both single and multiobjective problems. The
effectiveness of the proposed approach has been demonstrated through a suite of standard
well known mutliobjective optimisation problems and on common space mission analysis
problems. The hybridisation of domain decomposition and MACS has performed quite well
on all the test cases showing a significant gain in accuracy along with a reduction of function
evaluations in the solution of both multiobjective and single objective problems.
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Abstract A general method is introduced to obtain size independent lower bounds for the minimal inter-
particle distances in optimal atom cluster problems with pair potential functions. For the considered
pair potential function only reasonable properties are supposed. Derivation of explicit linear lower
bounds on the optimal energy values are also given. As demonstration new lower bounds for the
Lennard-Jones and Morse clusters are reported.
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1. Introduction
Given a cluster of n atoms, define xi ∈ Rd (i = 1, . . . , n, and d > 1) as the center of the ith
atom. The potential energy of the cluster x = (x1, . . . , xn) ∈ Rdn is defined as the sum of the
two-body inter-particle pair potentials over all of the pairs, i.e.,

E(x) =
∑

i<j

v(rij), (1)

where rij = ‖xi − xj‖ and v(r) is the value of a pair potential of distance r.
The aim of this work is to obtain lower bounds for the minimal interatomic distance in the

optimal structure of (1) under weak, natural conditions on the pair potential v(r).
A global minimizer of the function E is any configuration x∗ ∈ Rdn with

E∗ := E(x∗) = min
x∈Rdn

E(x). (2)

Let rij be the Euclidean distance of the points x∗i and x∗j (i, j = 1, . . . , n). The minimal inter-
particle distance in the optimal structure is r∗ = mini,j rij (i, j = 1, . . . , n). Without loss of
generality let us suppose that x1 = 0 and 0 = r1 < r2 ≤ . . . ≤ rn, where

rj = ‖xj − x1‖ = ‖xj‖ (j = 1, . . . , n).

We consider only the cases n > 2.

2. Improved lower bounds
We consider the particles in the cluster as balls and based on geometrial properties a lower
bound on the largest distance (measured between the origin and the balls) is given.

∗This work has been supported by the grants OTKA T 034350 and AÖU 56oü11.
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Lemma 1. Suppose that we have k small d-dimensional balls with radius r/2. Let ri be the distance of
the ball i from the origin and suppose that r1 ≤ . . . ≤ rk. Then a lower for the maximal distance rk of
a small ball from the origin is

d√
k−1
2 r ≤ rk.

Theorem 2. Let Ei(x
∗) :=

∑
i6=j v(‖x∗i −x∗j‖) (i = 1, . . . , n) and assume that in the configuration

taken into account the minimal distance between the particles equals to q.
(i) E1 < −|v(s)| holds.
(ii) E∗

1 =
∑

rj≤s v(rj) +
∑

rj>s v(rj) ≥ F (q) + S(q).
(iii) If the inequality F (y) + S(y) > −|v(s)| holds for all y ∈ Y then r∗ /∈ Y , where

F (y) := v(y) + v(s)

((
2s+ y

y

)d

− 1

)
and S(y) :=

∞∑

j=d(2s/y+1)de
v

(
d
√
j − 1

2
y

)
.

If we have a size independent lower bound on the minimal inter-particle distance then
lower bound on the values E∗

i for all i = 1, . . . , n can be established. Thus linear (in the
number of atoms) lower bound on the optimal values can be given as well [6].

3. Lennard-Jones clusters

In general form the Lennard-Jones pair potential function is vσ,ε(r) = 4ε
[(

σ
r

)12 −
(

σ
r

)6]
,

where ε is the pair well depth and 21/6σ is the pair separation at equilibrium. In the global
optimization literature the function vσ,ε with reduced units, i.e. ε = σ = 1 and s = 21/6, or the
so-called scaled Lennard-Jones pair potential (ε = 1, σ = 2−1/6, s = 1) is investigated.

In the literature one can find previous results about the minimal distance in optimal scaled
Lennard-Jones clusters. These results are compared in the following table including that one
obtained in the present work. Note that all these results are independent of the number of
particles in the configuration.

dimension Xue [6] Blanc [1] Vinkó [5] present work

2 – 0.7286 (0.7284) 0.7533
3 0.5 0.6108 0.6187 0.6536

Based on these results linear lower bounds on the optimal values can be calculated. They
are−67.88673405n · ε in dimension three and−9.565562565n · ε in dimension two (n=2, 3, . . . ).

Note that for the scaled Lennard-Jones cluster even better lower bound (q ≥ 0.72997) is
reported by Huang. This result is not included in the table above since one can prove that his
argument leading to such a good result is incorrect.

4. Morse clusters
The pair potential function in Morse cluster is vρ(r) = eρ(1−r)

(
eρ(1−r) − 2

)
, where ρ > 0 is a

parameter. In the context of global optimization, the cases ρ > 6 are interesting, since these
are more difficult problems than finding the optimal Lennard-Jones structures [2].

We must emphasize that Theorem 2 gives an exclusion interval for r∗. For the Morse clus-
ters (because it is defined even in the case r = 0) the function F (y)+S(y)+ |vρ(s)| in Theorem
2 becomes negative for small y values. The very tiny y values are handled using [4].

In Table 1 the results from [4] and form [5] collected and compared with the results can be
achieved with the usage of the general technique introduced in this paper. Note that the new
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Table 1. Lower bounds for the minimal distances in optimal three dimensional Morse clusters for different ρ. The
last column contains linear lower bounds for the optimal values.

ρ Locatelli-Schoen [4] Vinkó [5] present work lower bound on the optimal value

6 0.114 0.499 0.559 −81.23699155n
7 0.376 0.611 0.652 −51.83256650n
8 0.468 0.680 0.710 −40.34618808n
9 0.528 0.727 0.752 −33.74384634n
10 0.574 0.762 0.782 −29.76671162n
11 0.613 0.789 0.807 −26.58857202n
12 0.644 0.810 0.826 −24.62136302n
13 0.672 0.828 0.841 −23.40692214n
14 0.695 0.842 0.854 −22.11827825n
15 0.715 0.855 0.865 −21.19287270n

results are achieved using the fact that by [4] q must be greater than the second column in
Table 1.

5. Usefulness of the results
The information on the minimal interatomic distance can be applied

in Branch-and-Bound methods as an accelerating tool;

in a starting point generator used in incomplete or asymptotically complete global solvers.
For instance, in [3] this kind of information is used to improve the performace of the pro-
posed solving technique;

and –as it is proved in [7]– one can construct efficient data structure to accelerate the
computation of the potential function. Surprisingly, the value of the potential function
(1) can be computed inO(n) time (with a naive method we haveO(n2) time complexity).

The lower bound for the global minimum can be used in Branch-and-Bound methods as a
cut-off test.
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Abstract Global optimisation techniques can be used to determine how to feed animals in order to maximise
profitability, so extending the way in which linear programming has been used to find minimum
cost diets. Keys to the extension are recently developed animal growth models and algorithms for
nonlinear optimisation. The problem is described, a solution is presented and the nature of the
objective function is explored.
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1. Introduction
Efficient animal production is of critical importance on our increasingly finite planet. For
many decades, linear programming has been used to determine minimum cost animal diets,
based on a range of feedstuffs, their cost, their composition and dietary constraints. With the
advent of animal growth models (see, for example [2]) and efficient nonlinear optimisation
algorithms, it is now possible to extend this traditional use of optimisation to determine a
feeding schedule which maximises profitablity [1]. The purpose of this paper is to describe,
from a global optimisation perspective, how this is carried out.

The main findings to date of the research are i) that efficient optimisation methods are
needed to find practical and useful feeding schedules and ii) that optimal feeding schedules
can differ from the “feed-to-lean" schedules [4] generally used in the industry. The approach is
limited by our ability to accurately measure needed on-farm growth model parameters (such
as maximum protein deposition levels) and the accuracy of the growth models themselves.
Nevertheless, trials have been conducted in New Zealand, based on the outcomes of the opti-
misation, in an attempt to improve production efficiency.

The paper is organised as follows. In the next section we describe the objective function to
be maximised and its domain. In Section 3 we discuss algorithms used to find the objective
function optimum. The nature of the objective function is explored in Section 4 and an idea
for an improved algorithm proposed. The paper concludes with a summary.

2. The domain and the objective function
In this section the domain of the objective function and the objective function itself are de-
scribed.
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2.1 Domain
An animal “diet", specifying nutrition for a certain growth period, and required as input to
a simple growth model, can be described using only three parameters, p, r and d, defined as
follows:

p = proportion of the ad libitum digestible energy intake
r = minimum lysine to digestible energy ratio, in grams per megajoule
d = digestible energy density, in megajoules per kilogram

The ad libitum digestible energy intake is determined by a standard National Research Coun-
cil (NRC) [3] curve, relating digestible energy to live weight of the animal. Parameter p de-
termines the proportion (typically around 0.8) of that amount to be fed. Lysine is an amino
acid, required for growth, and generally the amino acid found to be limiting in a diet. For
that reason we specify the level of lysine required using parameter r and specify the other
amino acids needed for growth (in a particular ratio to lysine - providing so-called “balanced"
protein) using the lysine level. Finally, the energy density d of the diet must be within limits
in order to ensure palatability.

We term a “feeding schedule" to be a finite sequence of diets, indexed by i, with the ith diet
fed for a predetermined time of Ti days (fixed at the outset). Thus we write a feeding schedule
as

F = (p1, r1, d1; p2, r2, d2; . . . ; pn, rn, dn)

Typically Ti = 7 for each i, so diets are fed for a week, and n = 15 diets are offered. This total
period of 105 days, for New Zealand conditions, amply covers the usual time from weaner
arrival (it is assumed that the producer buys in weaners) to slaughter date. Typical parameter
ranges used are [0.8, 1] for p, [0.2, 1.2] for r and [12, 17] for d. Our aim will be to find the optimal
feeding schedule and slaughter date, so the domain of the problem is

P1 ×R1 ×D1 × P2 ×R2 ×D2 × . . .× Pn ×Rn ×Dn × {1, 2, . . . , T}

where Pi = [0.8, 1], Ri = [0.2, 1.2] and Di = [12, 17] for each i = 1, . . . , n and T =
∑

i Ti.

2.2 Objective function
The objective function to be maximised is profit, or gross margin at market, given by

g(F, x) = Gross Return(F, x)− Feed cost(F, x) −Weaner Cost

where F is a feeding schedule and x the slaughter date. Throughout, we measure this as
“profit per pig" (an alternative is to measure “profit per pig place per year"). The weaner
cost is fixed, typically in New Zealand at NZ$70. Feed cost FC is a function of F and x, as is
the gross return GR. In Table 1 we give a typical linear programme using New Zealand data,
showing ingredients, their cost, their composition and the associated constraints, when using
a diet with r and d. In Table 2 we show a typical New Zealand price schedule; the return on a
pig depends on backfat thickness and carcass weight.

Objective function: Single pig The flow chart in Figure 1 details how, given a feeding
schedule F and slaughter date x, together with the pi and genotype parameters of

minLP = minimum allowable lipid to protein ratio
Pdmax = maximum daily protein deposition

The gross returnGR(F, x) and total feed cost FC(F, x) can be computed. In turn, the objective
function g(F, x) is then calculated. An iteration of the routine uses ri and di to complete the



Global optimisation applied to pig nutrition 259

Table 1. A linear programme providing the least cost diet.

Barley Soybean . . . Meat
and
bone

Minimise: 0.25B + 0.715S + · · · + 0.5M
Digestible energy 13.2B + 15.86S + · · · + 12M = d
Lysine lower bound 3.19B + 27.33S + · · · + 16.19M ≥ rd
Balanced 2.85B + 10.74S + · · · + 20.3M ≥ 0.62rd
amino 1.2B + 4.68S + · · · + 1.09M ≥ 0.19rd
acid 2.42B + 11.48S + · · · + 9.95M ≥ 0.32rd
lower 8.34B + 36.75S + · · · + 18.91M ≥ 0.95rd
bounds 3B + 16.22S + · · · + 9.54M ≥ 0.67rd

6.85B + 33.25S + · · · + 21.5M ≥ rd
...

Mineral 0.5B + 3S + · · · + 105M ≥ 8
bounds 0.5B + 3S + · · · + 105M ≤ 13

3.1B + 2.6S + · · · + 52M ≥ 7
3.1B + 2.6S + · · · + 52M ≤ 11
0.2B + 0.1S + · · · + 5.5M ≥ 10
0.2B + 0.1S + · · · + 5.5M ≤ 20

...
Ingredient −0.4B + 0.6S − · · · − 0.4M ≤ 0
upper −0.1B − 0.1S − · · · − 0.1M ≤ 0
bounds −0.3B − 0.3S − · · · − 0.3M ≤ 0

−0.4B − 0.4S − · · · − 0.4M ≤ 0
...

Diet mass B + S + · · · + M = 1

Table 2. A New Zealand price schedule giving prices in cents per kg for pigs at slaughter in July 2001.

Carcass weight (kg)

35.0 35.1 40.1 45.1 50.1 55.1 60.1 65.1 70.1 75.1 80.1
Backfat and to to to to to to to to to and
(mm) under 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 over

<6 300 300 300 300 300 300 300 300 300 300 300
6-9 360 385 395 395 385 370 370 370 370 365 335

10-12 360 385 385 390 375 370 370 370 370 365 335
13-15 330 330 330 330 330 335 335 335 335 330 305
16-18 260 260 260 260 260 270 270 270 270 270 270
>18 230 230 230 230 230 240 240 240 240 240 240
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Figure 1. Calculation of g(F, x)
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right-hand-side constraints in the linear programme (see Table 1); the least cost makeup of 1kg
of feed for this period is the output. Together with pi and the standard NRC feed intake curve
this allows the feed cost for this ith period to be computed. The amount of balanced amino
acid can also be calculated. This, together with the genotype parameters (and at the start the
initial mass P0 of protein in the pig) and the growth model, allows us to grow the pig for the
ith period; protein and lipid deposition are recorded. Continuing until the slaughter date in
this way allows us to compute FC(F, x) (by summing the individual period feed costs) and
GR(F, x) (by referring the configuration of the pig at slaughter date to the price schedule of
Table 2).

Finally, we determine the maximum gross margin per pig, using feeding schedule F , as
g(F ) = maxx g(F, x).

Objective function: Multiple pigs The optimal feeding schedule for a single pig is an unre-
alistic schedule, since in practice many pigs, exhibiting minor variations in genotype and feed
intake, are grown on a single feeding schedule. The optimum schedule in such a situation
is different from that found for a single pig. For this reason we have introduced variation
to minLP , Pdmax and the feed intake curve values across the pigs in a batch (using a co-
efficient of variation for these quantities of generally 5%, and 200 pigs in a batch). In this
case, g(F, x) =

∑N
i=1 gi(F, x) where gi is the gross margin for the ith pig, calculated as in the

previous subsection. As before, g(F ) = maxx g(F, x)

3. Optimisation
For moderately complex problems, pure random search is not able to find the optimum. To
date, a number of standard optimisation techniques have been applied to this problem - tabu
search, ascent, simulated annealing, Nelder-Mead and a genetic algorithm. The last men-
tioned has been found to be most successful to date. The “genome" is the feeding schedule;
crossover and mutation act in a natural way. Associated software, called “Bacon Max" has
been developed in Visual C++. Extensive testing to tune the genetic algorithm has been con-
ducted and generally a population size of 20 feeding schedules has been found to be satis-
factory. Twenty iterations with no change in the value of the objective function has provided
a suitable stopping rule. The genetic algorithm is slow, however, taking up to an hour to
satisfactorily solve a typical problem.

4. The nature of the objective function
Cross-sections through the objective function have been drawn, revealing the structure of a
craggy volcano. A representative cross-section is shown in Figure 2.

We are currently exploring applying the idea behind the “conjugate gradients" method to
this problem - successively performing one-dimensional optimisations, using orthogonal di-
rections, to reduce the time required to find the optimum.

5. Summary
A combination of nonlinear optimisation tools, an animal growth model and linear program-
ming can be used to find feeding schedules which maximise pig producer profitability. Pure
random search fails to find the optimum; a genetic algorithm has been found so far to be the
most successful approach. Knowledge of the objective function shape is expected, in the near
future, to lead to an improved optimisation routine.
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Figure 2. The craggy volcano shape of a section through the objective function at the optimal solution. (Dr. D.L.J.
Alexander is thanked for this graphic.)
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Abstract The optimal triangulation is an important topic in computational geometry and arises in many dif-
ferent fields. This paper surveys several unsolved problems in optimal triangulations and especially
focus on some new problems which need further research.

Keywords: minimum weight triangulation, Delaunay triangulation, k−optimality, β−skeleton, computational
complexity

1. Introduction
A triangulation of a given points set S in the plane is a maximal set of non-crossing line seg-
ments (called edges) which have both endpoints in S. In two dimensions, a triangulation par-
titions the interior of the convex hull of the given point set into triangles and these triangles
interest only at shared edges and vertices. There are many areas of engineering and scientific
applications for triangulation, such as finite element, numerical computation, computer aided
design(CAD), computational geometry, etc [4, 7].

From the view of application, it is important to confine geometric constraints on the shape
of triangle in obtained triangulation. Several measures of triangle quality have been proposed,
which are based on edges length, angles, areas and other elements of the individual triangles
in a triangulation. An optimal triangulation is the one that is best according to some criterion
of these measures.

More recently, there have already some surveys on the optimal triangulation, such as [5, 5,
8, 20, 22]. This paper also deals with this topic, but our focus is the set of planar points with
the Euclidean metric in E2, which is the most important case for applications. The emphasis
of our work is on problems of optimal triangulation. The goal is to survey some unsolved
problems and propose some new problems which need further research.

2. Optimal Triangulation
2.1 Delaunay Triangulation
The Delaunay triangulation of a point set S,DT (S), is the planar dual of the Voronoi diagram,
V (S). The Voronoi diagram is a partition of the plane into polygonal cells, one for each in-
put point, so that the cell for input point s consists of the region of the plane closer to s than
to any other input point. See [4, 13, 18] for extensive discussion and surveys. Various global

∗This research is supported by NSF of China under Grants No. 10371094 and 70471035.
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optimality properties of DT (S) can be proved by observing that every good flip gives a local
improvement of the respective optimality measure [5, 5]. On the contrary, DT (S) fails to fulfill
some optimization criteria, such as minimizing the longest edge or minimizing the maximum
angle. There are still no any results on some optimal criteria such as following.

Old Problem 1: How to find a minmax area triangulation or a minmax perimeter traingulation?

2.2 Minimum Weight Triangulation(MWT)
The most longstanding problem among all the optimal criteria is the minimum weight triangu-
lation (MWT ), in which we assign a weight for the edge as its Euclidean length, define the
weight of a triangulation as the sum of the edge weight in the triangulation and our goal is to
find or generate a triangulation with the minimum weight.

The complexity of computing the MWT for arbitrary planar point set is still open: this
problem is not known to be NP-hard, nor is it known to be solvable in polynomial time.

Old Problem 2: Whether MWT is a NP − hard problem?

Dynamic Programming is a powerful tool to deal with some discrete optimization problems.
Gilbert [14] and Klincsek [15] gave a dynamic programming algorithm for computing a min-
imum weight triangulation of a convex polygon, and their algorithm do also well for simple
polygon. The time complexity and the space complexity are O(n3) and O(n2) respectively. If
we may find a fast algorithm to compute a MWT of a convex polygon, there will be a light to
improve some heuristics for computing the MWT .

Old Problem 3: Whether the MWT of a convex polygon can be found in o(n3) time?

However, for some special points arrangement, such as [3, 10, 16, 20], the minimum weight
triangulation of the point set can be computed in polynomial time with Gilbert and Klincsek’s
algorithm. The detailed discussion is omitted in this extend abstract.

Some studies, see [20,24], have pointed out that to find more edges in a MWT can improve
the performance for some heuristics. Thus to find some new subgraphs in a MWT is very
helpful. Some problems about the edges which always belong to MWT and their properties
are discussed in the full version of this paper.

For the minimum weight Steiner triangulation (MWST) problem, our goal is to find or gener-
ate a triangulation of a superset of S with minimum total Euclidean length. There have large
number of result in this field, such as [12]. Among these studies, following problem is an im-
portant and unsolved one.

Old Problem 4: Whether the Steiner points in the minimum weight Steiner triangulation of a convex
polygon all lie on the boundary?

2.3 Local Optimal Triangulation
Call a triangulation local optimal triangulation if no any diagonal edge of any convex quadri-
lateral can be flipped to reduce its weight. A triangulation T (S) is called a k-optimal triangu-
lation for 4 ≤ k < n, denoted by LOTk(S), if every k-sided simply polygon drawn from T (S)
is optimally triangulated by some edges of T (S) with minimal weight. It is easily to observed
thatGT (S) and the triangulation obtained by longer diagonal edge’s flipped to shorter diago-
nal edge in any convex quadrilateral are all local optimal, thus are all 4-optimal triangulations.
All of these triangulations can be computed in polynomial time, but up to now there is no any
result on how to get a 5-optimal triangulation in polynomial time.
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New Problem 1: Whether there is a polynomial time algorithm to find a 5-optimal triangulation?

We are able to give an algorithm, which is motivated by the Edge Insertion algorithm [6], to
compute a 5-optimal triangulation for a point set S:

Given a triangulation A of a point set S, the function EDGE-lNSERTION of ab, a, b ∈ S is

Function EDGE-lNSERTION(A, ab): triangulation.
1. B := A;
2. Remove from B all edges that intersect ab and produce a polygon Pab;
3. Use the Dynamic Programming to retriangulate the polygonal regions Pab in step 2;
4. return B.

Thus, our algorithm can now be formulated as follows.

Input. A set S of n points in <2.
Output. A triangulation T of S.
Algorithm. Construct an arbitrary triangulation A of S.

repeat T := A;
for all pairs a, b ∈ S do

B: =EDGE-INSERTION(A, ab);
if the weight of B is less than the weight of A then A := B;
exit the for-loop
endif

endfor
until for all pairs a, b ∈ S and B=EDGE-INSERTION(A, ab), the weight of B is no

less than the weight of A.

We can obtain the following theorem.

Theorem 1. The above algorithm gives a 5-optimal triangulation for given point set S.

However, we do not know whether the above algorithm terminates in polynomial time.

New Problem 2: Whether the above algorithm is a polynomial time algorithm to find a 5-optimal
triangulation?

Let E(S) denote the set of all the segments with endpoints in S. A line segment pq with
p, q ∈ S is called a stable line segment of all triangulations of S, if no line segment in E(S)
properly intersects pq. The stable line segments thus have to appear in any triangulation of
S and are in MWT (S). Denote E3(S) is the set of all stable line segments in S. Xu [21] has
discussed some properties of this segment set and shown that the number of E3(S) does not
exceed 2n − 2. An important property is the relationship between E3(S) and the k-optimal
triangulations. Let Ek(S) denote the intersection of all possible LOTk(S), then we have

E3(S) ⊆ E4(S) ⊆ · · · ⊆ Ek(S) ⊆ · · · ⊆ En−1(S) ⊆MWT (S)

For some special cases of point set S, E3(S) forms a connected graph, thus an MWT (S) can
be constructed in polynomial time using the dynamic programming algorithm. Mirzaian et
al. [17] have shown that E3(S) can be found in O(n2 log n) time and O(n) space.

It is pointed out that for uniformly distributed points, the expected number of connected
components is Θ(n), see Bose et al. [9]. A surprisingly larger subgraph of E4(S), the so-called
LMT−skeleton can be constructed inO(n3 log n) time andO(n2) space [11]. But even LMT−
skeleton has many edges and it is still a proper subset of E4(S) for some point set [1]. From
the practical point of view, the LMT − skeleton is always nearly a triangulations of S [5].
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The fact that E4(S) is the subgraph of MWT (S), but no algorithm is found to compute
E4(S) in polynomial time, leads to the following problem.

Old Problem 5: Is it possible to find the intersection of all local optimal triangulations in a polynomial
time?

For a given edge e, we may ask a question as whether there is a local optimal triangulation
TL(S) such that e is an edge of TL(S). To observe an edge e in E4(S), we may know that e is
in any local optimal triangulation of S and for any edge e′ with endpoints in S interests e, e′
can not be in any local optimal triangulation. Let E ′

4(S) denote the set of edges do not in any
4-optimal triangulation for point set S, and E∗

4(S) = {e | there is a local optimal triangulation
T (S) such that e ∈ T (S)}. From the definition of E4(S), E ′

4(S) and E∗
4(S), we have

E(S) = E
′

4(S) ∪E∗
4(S), E4(S) ⊂ E ′

4(S), E4(S) ∩E ′

4(S) = φ,E
′

4(S) ∩E∗
4(S) = φ

If any one of E4(S), E ′

4(S), E∗
4(S) can be computed in polynomial time then we may compute

the another two in polynomial time easily. So the following problem is interesting.

New Problem 3: How to test whether there is a local optimal triangulation contains a given edge e?

2.4 Pseudo-triangulation
A pseudo-triangle is a simple polygon with exactly three vertices where the inner angel is less
than π. A pseudo-triangulation of a point set S is a partition of the interior of the convex hull of
S into a set of pseudo-triangles.

In many ways, pseudo-triangulations have nicer properties than classical triangulations of
a point set [2,19]. Among them, a minimum pseudo-triangulation of a points set is one with the
smallest possible number of edges and a minimum weight pseudo-triangulation (MWPT ) is a
pseudo-triangulation which minimizes the sum of the edge lengths. No result is known about
the complexity of computing a MWPT of a given point set S, and a similar problem arises
for finding a pseudo-triangulation within a given triangulation.

New Problem 4: Whether to find a MWPT is NPC?

New Problem 5: How to find a MWPT as a subgraph of a given triangulation?

2.5 Mesh Generation
Generating triangular meshes is one of the fundamental problems in computational geometry,
and has been extensively studied; see e.g. the survey article by Bern Eppstein [5]. In view of
the field of application, it is quite natural to consider mesh generation problem under some
optimal criteria. Recently, we consider the problem of a mesh generation with some edge
length constraints. Among the most fascinating and challenging, we mention the following.

New Problem 6: For given real numbers α ≤ β ≤ γ, and a convex polygon P , how to find a triangu-
lation, T (P ), of P such that the inner edge length in T (P ) is in the interval [α, γ] and the number of
edges with edge length different from β is minimum?

In [23], we have presented a heuristics to generate a triangular mesh for a special case of
the above problem, but for a general case, this problem is still open.
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3. Conclusion
We give a list of unsolved problems related with optimal triangulations both from the theoret-
ical and the application aspects, and show some partial results on the problems in the paper.
To keep our attention on the practical aspects of computing for computational geometry, some
new challenge problems on optimal triangulations need to be solved.
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