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Preface

The methodological advances in solving global optimization problems has allowed us to con-
sider problems which a few years ago were considered intractable. Either through the use of
deterministic or stochastic algorithms, the ability to solve multiextremal global optimization
is of practical interest for a variety of applications in biology, engineering, finance, chemistry,
etc. Consequently, coupled with increasing computing power, we have seen the creation of
new global optimization algorithms and methods.

The Global Optimization Workshop is a forum for both academic and industrial communi-
ties to present and discuss the latest results and challenges in global optimization. Global
Optimization Workshops are organized periodically by members of the Global Optimiza-
tion scientific community. The preceding workshops have been periodically held as follows:
Szeged (Hungary 1995), Florence (Italy, 1999), Hanmer Springs (New Zealand, 2001), San-
torini (Greece, 2003), San José (Spain, 2005), Mykonos (Greece, 2007), Skukuza (South Africa,
2008), and Toulouse (France, 2010). The Global Optimization Workshop (GOW 2012) in Na-
tal, Brazil, maintains this tradition. As is customary, a special issue of the Journal of Global
Optimization will be dedicated to this workshop.

The organizing committee gratefully acknowledges financial support from the Brazilian
Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Co-
ordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). In addition, we ac-
knowledge support from the Groupe de d’Études et de Recherche en Analyse des Décisions
(GERAD).

We would like to thank the invited speakers and the authors in advance for their participa-
tion and we are looking forward to a hopefully enjoyable and enriching workshop which will
contribute to this interesting field and important community.

Daniel Aloise (Natal, Brazil)
Pierre Hansen (Montreal, Canada)
Caroline Rocha (Natal, Brazil)
GOW 2012 Co-chairs
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Discrete approaches for distance geometry and
applications on molecular structure calculations

C. Lavor,1 A. Mucherino,2 L. Liberti,3 N. Maculan4
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Abstract Finding energetically stable conformations of proteins is one of the most interesting and difficult
problems in biology. Given the chemical composition of a molecule, its three-dimensional confor-
mation is of interest because it is directly related to the function it is able to perform. Since some
years, we have been working on an easier problem, where the identification of protein conforma-
tions is aided by information obtained by experiments of Nuclear Magnetic Resonance (NMR). Un-
der certain assumptions, we are able to discretize the problem and use an efficient Branch & Prune
(BP) algorithm for its solution. In this work, we move towards the more difficult situation in which
the information given by NMR is not available. The original BP does not work in this case, because
there is no information for performing its pruning phase, that is the strong point of the algorithm.
In this paper, we study and present a new energy-based pruning device to be added to the BP algo-
rithm. First computational experiences on a set of small homopolymers show that this approach is
promising for the identification of low-energy conformations of molecules.

Keywords: homopolymer conformation, energy minimization, discretization, branch-and-prune

1. Introduction

Proteins are composed by smaller molecules called amino acids. They are able to perform
several important functions in bodies of living beings, and the functions they perform are
strongly dependent on their three-dimensional conformations. While modern technologies
are currently able to easily identify the sequence of amino acids for a given protein, the iden-
tification of the corresponding three-dimensional conformation is still a real challenge.

There are different approaches to this problem, which depend on the information that are
actually available and that can be efficiently used for its solution. Experimental techniques,
such as the Nuclear Magnetic Resonance (NMR), are able to provide a subset of lower and
upper bounds on some inter-atomic distances, and this information can be exploited for iden-
tifying possible three-dimensional conformations for a given molecule. However, if the only
knowledge about the molecule is given by its chemical composition, the only way to find
an approximation of its conformation is by identifying the most stable conformation from an
energetic point of view.

Since years, we are working on the problem of identifying the conformation of a molecule
by exploiting information on the distances that NMR experiments are able to provide (see [2–
4, 6, 7]). This problem is known in the scientific literature as the Molecular Distance Geometry
Problem (MDGP) [1], and it is an NP-hard problem. In this context, our main contribution
is given by a discretization process that we can apply for reducing the search space from a
continuous domain to a discrete one. Even if this transformation does not decrease the com-
plexity of the problem (which is still NP-hard), it allowed us to conceive an efficient Branch
& Prune (BP) algorithm for the solution of MDGPs that can be discretized. We named this
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class of problems Discretizable MDGP (DMDGP). An instance of the MDGP belongs to the
DMDGP class if and only if some assumptions are satisfied [2].

The discretization is performed by intersecting three spheres centered in three consecutive
atoms and having three known distances as radii. This intersection, with probability 1, gives
two points only, which correspond to the possible coordinates for the successive atom in the
sequence [2]. This allows to generate a tree where each layer contains the potential coordi-
nates for the same atom. As a consequence, a solution to the DMDGP can be searched by
identifying a path from the root node (representing the first atom) to one of the feasible leaf
nodes (representing the last atom) of the tree. Each branch included in the solution path cor-
responds to a certain torsion angles ω (defined by 4 consecutive atoms of the molecule). The
discretization is possible when the reference distances (the radii of the spheres) are exact, as
well as when one of the three reference distances is represented by an interval [4].

Even for small-sized molecules, the complete construction of the tree can be too computa-
tionally expensive. However, distances (that NMR can provide and that are not exploited in
the construction of the tree) can be used in the BP algorithm for pruning a part of the branches
where there are no feasible solutions. The pruning phase in BP allows therefore to focus
the search on branches of the tree where there can be solutions. In protein instances of the
DMDGP, distances used for pruning are available and they allow to prune large parts of the
tree, so that the problem can be solved very efficiently by the BP algorithm [7].

In a recent work [4], we proposed a special ordering for the atoms forming protein back-
bones: all instances in which the atoms are sorted accordingly to this special ordering belong
to the DMDGP class. Moreover, all the distances that are necessary for applying the discretiza-
tion process do not have to be computed by NMR experiments, but they can rather be obtained
by simple observations on the chemical composition of protein backbones. Many distances are
related to bonded atoms and other ones are related to atoms bonded to a common atom.

It is important to remark that, if this special ordering is employed, the discretization process
is completely independent on the DMDGP instance at hand. Actually, any instance related to
any protein backbone of a given size has the same tree as a search domain. NMR data can be
used for selecting the branches of the tree that are compatible with the distances.

In this paper, we consider for the first time the possibility of replacing distance-based prun-
ing devices with energy-based ones. Since our search trees are independent on NMR, these
experiments are not necessary for performing the discretization. We can suppose therefore
that the only available information about the molecule concerns its chemical composition. At
this point, the only possibility for discarding the infeasible branches of BP trees is through
energy-based criteria.

This work opens the doors to more difficult problems in biology for which we could supply
a suitable discretization. We will present in Section 2 a new pruning device based on energetic
criteria, and we will show some preliminary computational experiments in Section 3.

2. New pruning devices for BP

In the BP algorithm, the idea is to generate the possible atomic coordinates for each atom of
the molecule, and to verify their feasibility right away after their generation [6]. In the original
BP, the pruning phase is performed by exploiting information on a subset of distances that are
not considered in the discretization process (supposed to be obtained through NMR experi-
ments). In this work, we suppose instead that all distances necessary for the discretization are
obtained by observations on the chemical structure of the molecule at hand, and that there
is no information on other additional distances. Therefore, we need to consider the internal
energy of the molecule and the pruning phase needs to be based on this energy.

An accurate description of all interactions among the atoms in a molecule can be very com-
plex. There are however approximations of this potential energy that take into consideration
the most important interactions. We will consider the same expression used in [8], given by:

En = Ebond + Eangle + Etorsion + ELJ , (1)
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where

Ebond =
1

2

∑
i

kd(di − d0)2, Eangle =
1

2

∑
i

kθ(θi − θ0)2,
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Vn̄
2

∑
i

[1 + cos(n̄ωi + δ)] , ELJ =
∑
i,j

εi,j

[(
σi,j
ri,j

)12

− 2Hi,j

(
σi,j
ri,j

)6
]
.

The term Ebond considers the energy given by the interaction between two bonded atoms.
Depending on the kind of atoms, indeed, there is a typical inter-atomic distance for the two
atoms. Any modification on this distance makes the energetic term positive. The term models
therefore the repulsive force between the two atoms if they get too close to each other, as well
as the attractive force between them in case they get too far. The parameter kd is the “bond
stretching” constant, and d0 is the preferred value for the inter-atomic distance.

The energetic term Eangle is used similarly to model the local interactions among three
atoms X, Y and Z such that atom X is bonded to Y, and Y is bonded to Z. Depending on the
kind of atoms, there is a typical local conformation for the three atoms that correspond to
a typical angle between the segment XY and the segment YZ. The term Eangle ensures that
the value of this angle is close to the typical one by penalizing any modifications (in both
directions). The parameter kθ is the “angle bending” constant, and θ0 is the preferred value
for the bond angle.

The third term Etorsion allows to define a certain subset of preferred torsion angles ω for the
considered conformations. For example, if n̄ = 3 and δ = 0, then the preferred torsion angles
are 60◦, 180◦ and 300◦. The energetic term gives a penalty to all other torsion angle values,
and the penalty is proportional to the difference between the selected torsion angle and the
closest among the preferred ones. Vn̄ is a “torsional” constant, which depends on the choice
of n̄ [8].

Finally, the last term is the Lennard Jones potential [5]. εi,j and σi,j are two parameters
that can be defined by the relationships between the pairs of atoms (or agglomerate of atoms)
which are interacting. The parameter Hi,j is related to the hydrophobicity and hydrophilicity
of the interacting atoms. We will suppose that Hi,j is always equal to 1.

Pruning devices have the difficult role of identifying the atomic positions from which infea-
sible branches start. During the execution of BP, every time a leaf node is reached, the full set
of coordinates for a conformation is available, and hence the energy En for this conformation
can be computed. Let us suppose that Ên is the lowest energy found so far. Our idea is to ver-
ify in advance whether new branches of the tree can actually contain conformations with an
energy that can be smaller than Ên. This is done by computing a lower bound on the energy
concerning all the conformations belonging to a common branch.

The termsEbond,Eangle andEtorsion are always positive, and hence the lower bound for their
values can be 0. ELJ can be negative, but, depending on the range in which the inter-atomic
distances can vary, we can compute an accurate lower bound for the actual value. Let us
suppose that we are executing BP and that the current layer is the kth, where we have a partial
energy value En(≤k) (computed by using the available coordinates) and a lower bound L(>k)

on the energy En(>k). If En(≤k) +L(>k) > Ên, then there is no hope to identify a conformation
with an energy smaller than Ên by exploring the current branch of the tree. This branch can
therefore be pruned. The same strategy can be applied for electrostatic potentials

3. Preliminary computational experiments

We present in this section some preliminary experiments. All codes were written in C pro-
gramming language and all the experiments were carried out on an Intel(R) Xeon(TM) CPU
3.40GHz with 4GB RAM, running Linux. The codes have been compiled by the GNU C com-
piler v.4.1.1.

We consider homopolymers, that consist of strings of bonded atoms having the same chem-
ical properties. Bond lengths and bond angles are considered fixed, so that the first two
terms of the potential energy (1) disappear. All bond lengths are fixed to the preferred value
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n 4 5 6 7 8 9 10 11 12
energy (kcal) -0.12 -0.26 -0.42 -0.64 -0.96 -1.45 -1.99 -2.51 -3.27

time (no devices) 0.0s 0.0s 0.0s 0.6s 19.5s 9min 32s 4h 35min > 12h > 12h
time (energy-based device) 0.0s 0.0s 0.0s 0.3s 5.6s 1min 2s 9min 1s 1h 4min 10h 11min

Table 1. Experiments with homopolymers having size n ranging from 4 to 12.

d0 = 1.526Åand all bond angles are fixed to θ0 = 109◦.47. Moreover, in the termEtorsion, n̄ = 3,
δ = 0 and Vn̄ = 1.3. Finally, in the Lennard Jones term, εi,j = 0.181 and σi,j = 3.3.

Table 1 shows some experiments with homopolymers having size n ranging from 4 to 12
(in [8], they consider a little larger instances, but use a much more stronger computer system).

When BP is executed without pruning devices, the computational cost is naturally very ex-
pensive. When the energy-based pruning device is instead employed, the same solutions can
be identified in a shorter amount of time. For example, the same conformation with n = 10
and energy En = −1.99 kcal can be identified in 9 minutes when our new pruning device is
employed, and in about 4 hours and half otherwise. Therefore, the proposed pruning device
is actually able to identify and prune the branches of the tree where there cannot be conforma-
tions with a lower energy. Future works will be devoted to the development of other pruning
devices and ad-hoc strategies for speeding up the search.
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Several stories involving quadratic functions
in mathematical optimization

Jon Lee

Industrial and Operations Engineering, University of Michigan, Michigan, USA jonxlee@umich.edu

Quadratic functions are in some sense the simplest and most vexing functions to consider
for moving beyond the linear world. I will survey a variety of situations in mathematical
optimization where I have focused on quadratic functions, sometimes with good results, but
always with some frustration. Subjects include combinatorial optimization, nonlinear integer
programming and continuous global optimization.

Keywords: quadratic, integer nonlinear programming, global optimization, combinatorial optimization
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Symmetry in Mathematical Programming
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We survey techniques for automatically detect symmetries in mathematical programming for-
mulations of several types (MILP, NLP, MINLP), and present some approaches to exploit them
in order to reduce the number of nodes in Branch-and-Bound type algorithms.

Keywords: group theory, reformulation, graph symmetry, branch-and-bound
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Interval Branch and Bound Algorithms:
from theory to applications

Frédéric Messine
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Interval Branch and Bound based methods are well known to be reliable (in the numerical
sense) to determine a global minimum of a non-linear and non-convex problem [3, 4, 7]. In-
deed, no numerical error due to floating point computations can yield wrong results. More-
over, the accuracy on the solution is fixed by the users and the global minima provided by
such based algorithms are certified.

In a first part, the main principle of interval Branch and Bound methods, including propa-
gation techniques, will be presented and the way to certify the solutions will be discussed.

Affine arithmetic was introduced by Comba et al. in [1], it was extended by considering
new forms by Messine in [5]. The way to compute reliable bounds using affine relaxations
associated with a rigorous resolution of linear programs due to Neumaier and Shcherbina [6]
yields to improve the efficiency of such based interval algorithms.

A code named IBBA (for Interval Branch and Bound Algorithm) was developed and was
used to solve MINLP (Mixed-Integer Non-Linear Problem) arising in electromagnetism for
the design of electrical machines, [2].

Keywords: Interval Analysis, Affine Arithmetic, Affine Relaxation, Constraint Propagation, Reliable Global Op-
timization
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Variable neighborhood search is metaheuristic whose main idea is change of neighborhood
structures in both, local search step for intensification and in shaking step for diversification of
the search for better solution. In this talk I will present some new vatiants of this methodology
for solving continuous and discrete global optimization problems.
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Global optimality conditions in non-convex optimization
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In this talk we are going to present recent results regarding global optimality conditions for
general non-convex optimization problems. First we are going to discuss complexity issues
regarding the existence of points satisfying optimality conditions and the connection to com-
plementarity problems. In addition, we are going to discuss surprising connections between
optimality conditions and continuous formulations of discrete optimization problems.

In the second part of the talk we are going to discuss our recent result regarding optimality
conditions of locally Lipschitz functions. Namely, we show how the necessary conditions for a
local minimum can be used to obtain a sufficient optimality condition of first order for a global
minimum of a locally Lipschitz function on a closed convex set in a Banach space. Using a
theorem of F. Clarke, we obtain a short proof and an extension to Banach spaces of a result of
J.-B. Hiriart-Urruty and J.S. Ledyaev. This result generalizes previous work of A. Strekalovsky
and M. Dür, R. Horst, and M. Locatelli.
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[11] A.S. Strekalovsky, On the global extremum problem, Soviet Dokl., 292 (1987), pp. 1062–1066 [in Russian]
[12] A.S. Strekalovsky, Global Optimality Conditions for Nonconvex Optimization, Journal of Global Optimization, 12

(1998), pp. 415–434.





EXTENDED ABSTRACTS





Proceedings of GOW 2012, pp. 19 – 22.

A column generation algorithm for semi-supervised
minimum sum-of-squares clustering

Daniel Aloise1, Pierre Hansen2, and Caroline Rocha1

1Universidade Federal do Rio Grande do Norte, Campus Universitário s/n, 59072-970, Natal-RN Brazil
aloise@dca.ufrn.br, caroline.rocha@ect.ufrn.br

2GERAD and HEC Montréal, 3000, Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 2A7, Canada
pierre.hansen@gerad.ca

Abstract Clustering is a powerful tool for automated analysis of data. It addresses the following problem:
given a set of entities find subsets, called clusters, which are homogeneous and/or well separated.
In addition to the entities themselves, in many applications, information is also available regard-
ing their relations in the space. Once a priori knowledge is incorporated into the clustering learn-
ing process, we have a semi-supervised classification task. This work addresses a basic problem in
semi-supervised clustering. It presents a column generation algorithm for minimum sum-of-squares
clustering in the presence of must-link and cannot-link pairwise constraints. Computational experi-
ments, including a comparison with Xia’s algorithm [10], are reported.

Keywords: semi-supervised clustering, column generation, sum-of-squares

1. Introduction

Classification tasks can be categorized in two broad classes. In supervised classification there ex-
ists a data training set, for which classes are known, and the objective is to infer a discriminant
function that correctly classifies it. Posteriorly, the same funcion is used to classify new data,
hopefully with high accuracy. When no background knowledge is available, hidden structures
are sought from data by unsupervised classification procedures. Clustering is a major represen-
tative of unsupervised learning approaches. It deals with the problem of given a set of entities
find subsets, called clusters, which are homogeneous and/or well separated. Homogeneity
means that entities in the same cluster are similar and separation that entities in different clus-
ters must differ one from another. Many different criteria are used in the literature to express
homogeneity and/or separation of the clusters to be found. Among them, a frequently used
one is the minimum sum of squared Euclidean distances from each entity to the centroid of
the cluster to which it belongs.

One of the most frequently used types of clustering is partitioning, where given a set V =
{v1, v2, . . . , vn} of n entities we look for a partition Pk = {C1, C2, . . . , Ck} of V into k clusters
such that: (i) Cj 6= ∅ j = 1, 2, . . . , k; (ii) Ci ∩ Cj = ∅ i, j = 1, 2, . . . , k and i 6= j; and (iii)
k⋃
j=1

Cj = V . Partitioning n entities into k clusters with this criterion is known as minimum

sum-of-squares clustering (MSSC).
Although clustering is often seen as an unsupervised classification task, data analysts have

very often some knowledge about the data itselt which could be used to yield a clustering
more coupled with expert’s data representation. Semi-supervised clustering incorporates this
domain knowlege, provided by experts, into the learning process.

Instance-level constraints are a typical way to express a priori knowledge about which data
entities should or should not be clustered together [9]. A must-link constraint obliges two en-
tities to be clustered together while a cannot-link constraint assures that two entities are placed
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in different clusters. In this work, we will present a column generation algorithm for semi-
supervised MSSC in the presence of instance-level constraints, denoted here semi-supervised
MSSC. Section 2 presents the different mathematical formulations used to approach the prob-
lem as well as the fundamentals of our column generation algorithm. Section 3 presents pre-
liminary computational results. Finally, conclusions are given in Section 4.

2. Methodology

A mathematical programming formulation of the semi-supervised MSSC is as follows:

min
x,y

n∑
i=1

k∑
j=1

xij‖pi − yj‖2 (1)

s.t.
k∑
j=1

xij = 1, ∀i = 1, . . . , n (2)

xi1j = xi2j ∀(i1, i2) ∈M,∀j = 1, . . . , k (3)
xi1j + xi2j ≤ 1 ∀(i1, i2) ∈ C, ∀j = 1, . . . , k (4)
xij ∈ {0, 1} ∀i = 1, . . . , n;∀j = 1, . . . , k (5)
yj ∈ Rs ∀j = 1, . . . , k. (6)

The n entities V = {v1, v2, . . . , vn} to be clustered are at given points pi = (pri , r = 1, . . . , s) of
Rs for i = 1, . . . , n; k cluster centers must be located at unknown points yj ∈ Rs for j = 1, . . . , k
(the number of entities n is assumed to be greater than k, otherwise the problem is trivially
solved by locating one cluster center at the position of each entity); the norm ‖ · ‖ denotes the
Euclidean distance between the two points in its argument in the s-dimensional space under
consideration. The decision variables xij express the assignment of the entity vi to the cluster
j. Thus, constraints (2) assure that each entity is assigned to exactly one cluster. SetsM and C
contain pairs of entities involved in must-link and cannot-link constraints, represented by (3)
and (4), respectively.

From Huygens’ theorem, which states that the sum of squared distances from all entities of
a given cluster to its centroid is equal to the sum of squared distances between pairs of entities
of this cluster divided by its cardinality, the objetive function (1) can be expressed by

min
x

k∑
j=1

n−1∑
i1=1

n∑
i2=i1+1

‖pi1 − pi2‖2xi1jxi2j
n∑
i=1

xij

(7)

As proposed in [7], a must-link constraint with (i1, i2) ∈ M can be removed from the model
if we replace entities vi1 and vi2 by a single superentity vi1i2 . Whenever this is done, we reduce
by one the number of variables in the model and coefficients are accordingly updated. In the
case of a cannot-link constraint with (i1, i2) ∈ C, it suffices to set coefficient ‖pi1 − pi2‖2 to an
arbitrary large value M .

Partitioning problems in cluster analysis can also be mathematically formulated by consid-
ering all possible clusters (i.e. those satisfying must-link and cannot-link constraints). Let us
consider any cluster Ct for which ait = 1 if entity pi belongs to cluster Ct, and 0 otherwise,
and let us denote by yt the centroid of points pi such that ait = 1. Thus, the cost ct of cluster
Ct can be written as ct =

∑n
i=1 ‖pi − yt‖2ait. An alternative formulation for semi-supervised

MSSC is then given by
min
z

∑
t∈T

ctzt

subject to∑
t∈T

aitzt = 1, ∀i = 1, . . . , n∑
t∈T

zt = k

zt ∈ {0, 1} ∀t ∈ T,

(8)
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where T = {1, . . . , 2n−1}. The zt variables are equal to 1 if clusterCt is in the optimal partition
and to 0 otherwise. The first set of constraints state that each entity belongs to one cluster, and
the following constraint expresses that the optimal partition contains exactly k clusters.

This is a extremely large set partitioning problem with a side constraint, for which the
number of variables is exponential in the number of entities. Therefore, it cannot be explicitly
written and solved in a straightforward way unless n is small. The column generation method
proposed in [1] for MSSC works with a reasonably small subset T ′ ⊆ T of the columns in (6),
i.e., with a restricted master problem. The method is combined with branch-and-cut in order to
solve exactly (6) for instances with about 2000 entities, with n/k roughly equal to 10. For the
Euclidean plane, the method is able to solve instances with n up to 2392 entities and k ≥ 2.

Problem (6) is solved iteratively, augmenting the number of columns in the restricted master
problem until optimality is proved with the columns at hand. Entering columns are found by
solving an auxiliary problem, i.e., finding the list of entities of a cluster whose associated
variable in (6) has negative reduced cost. The auxiliary problem is expressed by:

σ + min
v∈{0,1}n

n−1∑
i=1

n∑
j=i+1

(‖pi − pj‖2 − λi − λj)vivj −
n∑
i=1

λivi

n∑
i=1

vi

, (9)

where λi, for i = 1, . . . , n, and σ are the dual variables associated to constraints of (6). Prob-
lem (9) is a hyperbolic (or fractional) program in 0-1 variables with quadratic numerator and
linear denominator. This problem is solved by an adaptation to binary variables of Dinkel-
bach’s algorithm [4]. This algorithm begins with a tentative value for (7) then reduces the
problem to unconstrained quadratic 0-1 optimization by multiplying both sizes by the de-
nominator and regrouping terms. If a positive value is obtained for the optimal solution of
this last problem its corresponding value in (7) is computed and the procedure iterated. Its
most expensive step is the resolution of a sequence of unconstrained quadratic 0-1 programs,
which are solved by a VNS heuristic as long as an improving column can be found. Then,
optimality must be checked by a branch-and-bound algorithm.

3. Preliminary computational experiments

To the best of our knowledge, the first and up to now the unique global optimization algo-
rithm for semi-supervised MSSC is due to Xia [10]. It consists of an adaptation of Tuy’s [8]
cutting plane method to solve the problem. Approximate results are reported for a version
where this algorithm is halted before global convergence. From our experience with the un-
supervised MSSC, this kind of adaptation of Tuy’s method proposed by the author leads to
exact solution of small instances with about only 25 entities. Moreover, the available code at
http://www.uoguelph.ca/~yxia (accessed in April/2012) is limited in CPU memory to ap-
proximately 3000 concavity cuts, so that we cannot state the efficiency of the algorithm while
searching for the global optimum.

We tested our algorithm in the same data provided by Xia with the available code. It con-
sists of the Wine data set [2] with n = 178, s = 13, 6 cannot-link constraints and 13 must-link
constraints. The tests were performed in a AMD Phenom II with a 800 Mhz clock and 8 Gb of
RAM memory. The restricted master problem was iteratively solved by CPLEX 12 and uncon-
strained 0-1 quadratic programs were solved by a specialized branch-and-bound algorithm
proposed in [6]. Remark that the problem of knowing if there exists a k-partition of n enti-
ties given a general set of must-link and cannot-link constraints is NP-hard using a reduction
from the k-coloring problem [3]. The tested instances were all feasible. Table 1 presents the
computational results obtained by Xia’s algorithm (used in a heuristic way: the best of 5 runs
is reported), denoted concave, and by our column generation algorithm, denoted cg, stabi-
lized [3] with the solution obtained by concave. All instances were solved at the root node,
without branching. We notice from the table that cg improves its perfomance as the number of
clusters increases, making the number of entities per cluster small. In other direction, the per-
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Table 1. Solution values and computing times obtained by algorithm concave and cg for instances of the Wine
data with 6 cannot-link constraints and 13 must-link constraints

concave cg# clusters
cost CPU time(s) cost CPU time(s)

2 4948494.5 0.03 4948494.5 295460.66
5 1380458.7 0.13 1380458.7 8080.99

10 688553.4 0.27 675021.9 1614.83
20 555786.0 0.50 517466.1 932.78

formance of algorithm concave deteriorates as the number of cluster increases both in terms
of solution quality and computing times.
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Formalization decisions in mathematical programming could significantly influence the
complexity of the problem, and so the efficiency of the applied solver methods. This widely
accepted statement induced investigations for the reformulation of optimization problems in
the hope of getting easier to solve problem forms, e.g. in integer programming. These trans-
formations usually go hand in hand with relaxation of some constraints and with the increase
of the number of the variables. However, the quick evolution and the widespread use of
computer algebra systems in the last few years motivated us to use symbolic computation
techniques also in the field of global optimization.

We are interested in potential simplifications generated by symbolic transformations in
global optimization, and especially in automatic mechanisms producing equivalent expres-
sions while possibly decrease the dimension of the problem. As it was pointed out by Csendes
and Rapcsák [1, 6], it is possible in some cases to simplify the unconstrained nonlinear objec-
tive function by nonlinear coordinate transformations. That means mostly symbolic replace-
ment of redundant subexpressions hopefully resulting in less computation effort of the solver,
while the simplified task remains equivalent to the original in the sense that a conversion
between the solutions of the two forms is possible.

Consider the unconstrained nonlinear optimization problem

min
x∈Rn

f(x), (1)

where f(x) : Rn → R is a nonlinear, twice continuously differentiable function, given by
symbolic expression, a formula. Our aim is to produce an equivalent problem form:

min
y∈Rm

g(y), (2)

where g(y) : Rm → R is simpler than f(x), and a direct transformation between the optimal
solutions y∗ and x∗ is possible. We mean a problem is simpler that an other one, if the earlier
is easier to solve by optimization methods.

This kind of reformulation is usually done by hand in the stage of stating the problem,
but that is not the only possibility. There are several techniques, that do automatic manipu-
lations on optimization problems in order to increase the efficiency of the solver. However,
such a usage of symbolic computation is applied better just for linear and integer program-
ming. One can mention examples as the “presolving” mechanism of the AMPL processor
[2], LP preprocessing[5], reformulation with relaxation for IP/MINLP solving [4], and also
unusual problem solving approaches that use algebraic techniques as quantifier elimination
(QE), Gröbner bases, etc. for symbolic optimization [3].

Our approach is different, because it is not a relaxation, and we do not want to solve the
complete problem with algebraic techniques (since it can be quite slow and may be not even
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successful), just to make our problem easier for the solver. We are interested in mechanisms
producing equivalent transformations and such that possibly decrease the dimension of the
problem.

Our reformulation method for unconstrained nonlinear optimization problems based on
nonlinear coordinate transformations described by Csendes and Rapcsák [1, 6]. The possible
aims of the automatic simplifier method for unconstrained nonlinear optimization problems
are as follows:

substitute some subexpressions in the objective function in order to

eliminate parts of the computation tree,

recognize unimodality (generalized unimodal property of n-dimensional functions),

get an equivalent simpler form of the problem requiring less computation, and

reduce (or at least not extend) the dimension of the problem.

We present a proper implementation of the referred theoretical algorithm in a popular sym-
bolic programming environment, and testing on some examples both from the original publi-
cations and from the set of standard global optimization test problems to illustrate the capa-
bilities of the method. Our results show, that this kind of preprocessing of an unconstrained
optimization problem could be done usually relatively quickly, and the result is favorable in
many cases.

Keywords: unconstrained nonlinear optimization, symbolic computation, reformulation
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Abstract
In deterministic constrained global optimization, upper bounding the objective function gener-

ally resorts to local minimization at the nodes of the branch and bound. The local minimization
process is sometimes costly when constraints must be respected.

We propose in this paper an alternative approach when the constraints are inequalities or relaxed
equalities so that the feasible space has a non-null volume. First, we extract an inner region, i.e., an
(entirely feasible) convex polyhedron or box in which all points satisfy the constraints. Second, we
select a point inside the extracted inner region and update the upper bound with its cost.

We use two inner region extraction algorithms implemented in our interval B&B called IbexOpt [7].
This upper bounding shows good performance in medium-sized systems proposed in the CO-
CONUT suite.

Keywords: global optimization, upper bounding, intervals, branch and bound, inner regions

1. Upper bounding in inner regions

In deterministic constrained global optimization, upper bounding the objective function con-
sists in finding a feasible point that improves the best cost already found in the branch and
bound. Most global optimizers resort to local minimization1 using a Lagrangian relaxation.
The considered function is sometimes big, which may render the local minimization slow.

This paper describes an alternative approach for global optimization under inequality con-
straints defined by: minx∈[x] f(x) subject to g(x) ≤ 0, where f : Rn → R is the real-valued
objective function and g : Rn → Rm is a vector-valued function. x = {x1, ..., xi, ...xn} is a
vector of variables varying in a box [x].2 x is said to be feasible if it satisfies the constraints.

The main idea is to exploit so called inner regions, i.e., subsets of the search space in which
all points are feasible.

Definition 1. Consider a system (f, g, x, [x]) comprising only inequality constraints. An inner re-
gion rin is a feasible subset of [x], i.e., rin ⊂ [x] and all points x ∈ rin satisfy g(x) ≤ 0.

At every node (iteration) of our interval B&B named IbexOpt [7], the cost is bounded above
by using two inner region extraction algorithms, called InHC4 and InnerPolytope. InHC4 is
described in Section 2. It tries to extract an inner box from the current outer box. If it fails, one
simply picks a point randomly inside the outer box and checks its feasibility. If it succeeds,
a simple monotonicity analysis of f replaces the intervals of the monotonic variables by the

1We consider minimization in this paper without loss of generality.
2An interval [xi] = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi. A box [x] is the Cartesian product of intervals
[x1]× ...× [xi]× ...× [xn].
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adequate bounds in the found inner box and the other values are randomly chosen. Then,
InnerPolytope [7] builds a hyperplane for every inequality constraint. The hyperplane is
produced by a special convex form of interval Taylor where the expansion point is chosen
at a corner of the studied outer box. If it succeeds in building an inner polytope, the point
minimizing the linearized form of the objective function is used to update the upper bound.

Contribution and limits

Contrarily to existing approaches, the proposed inner region extraction algorithms separate
the feasibility part (handled first, by inner region extraction) and the computation of the cost
(handled next, inside the found inner region).

It is important to highlight that, like the other inner region extraction algorithms, ours can
fail in finding an inner region even if one such region exists. However, they are rather in-
expensive. In particular, InHC4 is faster when it fails in finding an inner region for a given
constraint because the loop on all the constraints can be prematurely stopped (see below).

This upper bounding based on inner region extraction could also apply to “thick” and re-
laxed equations that define a feasible space with a non-null volume. A thick equation has at
least one coefficient that can be modeled by an interval constant. This parameter corresponds
to a bounded uncertainty, e.g., an imprecision on a measurement, or an irrational constant,
like π. A pure equality fk(x) = 0 can also be handled with a relaxation as a thick equation
fk(x) ∈ [−εeq,+εeq], i.e, two inequalities −εeq ≤ fk(x) ≤ εeq. In this case of course, we can
only guarantee the global optimum of the relaxed system, but εeq can often be chosen almost
arbitrarily small.

2. The InHC4 inner box extraction algorithm

InHC4 follows the simple and general scheme proposed in [1, 4]. A main loop handles every
constraint once in sequence and intersects incrementally the different boxes built.3

The handling of the jth constraint uses as input the inner box returned by the handling
of constraint gj−1(x) ≤ 0. This box is inner w.r.t. the first j − 1 contraints. Handling the
first constraint g1(x) ≤ 0 is achieved with the outer box.

Handling the constraint gj(x) ≤ 0 consists in finding, inside the input box under con-
struction, a box which is inner w.r.t. this single constraint.

Thus, if a box is returned by the handling of the last constraint, this box is inner w.r.t. all
the constraints.

The handling of an individual constraint in InHC4 is radically different from [4, 1]. Con-
trarily to their refutation process, our InHC4-Revise procedure tries to extract an inner region
at each operator of the constraint. Like the main procedure of the state-of-the-art constraint
propagation algorithm HC4 [2, 5], our InHC4-Revise procedure (InHC4R) works with a tree
representation of the constraint, as illustrated in Fig. 1.

Let us denote by [x] the input box and gj(x) ≤ 0 the constraint. Each node of the tree is asso-
ciated to an interval, the intervals related to the leaves are initialized with the corresponding
values in [x]. Then, the following two phases are performed:

Bottom-up evaluation (see Fig. 1–left): The tree is traversed from the leaves to the root
and intervals associated to an operator are computed with interval arithmetics. For
example, the node pointed by the arrow is initialized with the interval [0, 10]− [0, 15] =
[−15, 10]. Thus, every node contains an interval corresponding to the natural interval
evaluation of the subexpression.

Top-down inner projection (see Fig. 1–right): In each node related to a binary operator
op and to an interval [z], the 2-dimensional box corresponding to its children x1 and x2

is reduced to an inner box [x1]in × [x2]in such that:

3This scheme radically differs from constraint propagation achieved by HC4 that can handle a constraint several times.
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Figure 1. Binary tree representation of the constraint 10y − x − y2 ≤ 0. Left: First bottom-up evaluation phase.
Right: top-down inner projection phase.

∀(x1, x2) ∈ [x1]in × [x2]in : x1 op x2 ∈ [z] (1)

If op corresponds to a unary operator, its unique child is reduced to [x]in, such that:

∀x ∈ [x]in : op(x) ∈ [z] (2)

If the inner projection returns an empty box (i.e., no box satisfies relation (1) or (2)), then
the top-down process is interrupted. It means that InHC4R has failed in finding a box that is
inner w.r.t. gj(x) ≤ 0. Since the approach is not complete because not all the feasible space is
extracted during the top-down traversal, an inner box could be indeed missed by the process.

Consider the product operator of Fig. 1–right and its two children. The reduced intervals
appear in bold in the left side of each node. After the reduction of the product operator, its
interval becomes [0, 5]. Before reduction, its children are associated to the intervals [10, 10]
and [0, 1]. They are then reduced to [10, 10] and [0, 0.5] respectively. The reduction agrees with
relation (1), i.e, ∀y ∈ [0, 0.5] : 10 ∗ y ∈ [0, 5].

2.1 Inner projection for unary and binary basic operators

For unary, monotonic and continous operators, like log and exp, the inner projection is trivial
and computes the (maximum) inner interval (i.e, no feasible point is lost, modulo roundoffs).
It is very close to a standard projection in HC4R. However, for managing floating-point round-
off errors, the outward rounding of HC4R is replaced by inward rounding.

For non monotonic unary operator like x2 or sinus, a union of intervals is computed by
HC4R, before returning the hull of these intervals. For an inner projection in InHC4R instead,
only a single interval is kept since holes between these intervals contain inconsistent points.

For binary operators, Chabert and Beldiceanu in [3] proposed inner projections, but with a
case-by-case approach. We have extended their approach and built a more generic projection
based on monotonicity properties. There usually exists an infinite number of maximal boxes
(as depicted in Fig. 2), and we have succeeded in designing inner projection operators that
select randomly one maximal inner box. Note that these inner projections lead to heuristic
choices since a single box cannot include the whole inner/feasible space. Also note that the
two inequalities z ≤ (x1 op x2) ≤ z are handled in sequence, the inner box computed for one
inequality being used as input of the second one.

For binary (or n-ary) operators that are monotonic w.r.t. each of their variables, a generic
procedure, called MonoMaxInnerBox, can compute randomly one maximal inner box, if one
such box exists, as shown in Fig. 2. This procedure is of course used for the addition and
subtraction operators. It is also used for handling several (monotonic) subcases of the non
monotonic binary operators: the multiplication and the division. Fig. 3 illustrates the two
main cases for the multiplication x1 ∗ x2 ∈ [z], depending whether 0 belongs or not to [z].

Handling the division operator amounts in rewriting x1/x2 = x1 ∗ 1
x2
∈ [z], although a

direct implementation would also be possible.
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x1

x2

g(x1,x2)=0
(x1,x2)
. .

x1

x2
.

.

[z]

other maximal
inner boxes

Figure 2. The dotted box corresponds to a maximal inner box of [z] w.r.t. the constraint g(x1, x2) ≤ 0. A point ẋ1

is randomly picked inside the range of allowed values illustrated by the horizontal segment. Only one remaining
value ẋ2 can then make the computed inner box maximal.

x1*x2 >z

maximal innerbox
w.r.t. x1*x2 ∈ [z]

x1

x2x2

x1

0 ∈ [z]  0 ∉ [z]  

x1

x1*x2 <z

[x']=hull([xA],[xB])

[xA]

x2

[xB]

Figure 3. Inner projection for the binary multiplication. Left: Two maximal boxes that can indifferently be
computed by MonoMaxInnerBox in the two disjoint inner regions (quadrants) defined by the operator x1∗x2 ∈ [z] ≥
0. Middle and right: Maximal box computed for x1 ∗ x2 ∈ [z] 3 0 (z ≥−z) with four calls to MonoMaxInnerBox

(boxes in grey).

2.2 Properties

We have proven that every implemented unary and binary operator computes a maximal
inner box, modulo the loss involved by inward roundoffs. In case a constraint contains only
a single occurrence of each variable, InHC4R thus computes a maximal inner box, when one
such box is found. The result finally holds for a system of inequality constraints handled by
InHC4.

3. Experiments

We have tested our original upper bounding procedure on a sample of about thirty con-
strained global optimization found in the COCONUT benchmark suite. 24 of them correspond
to the most difficult systems selected by Ninin et al. [6]. Equations fk(x) = 0 are relaxed by
inequalities −εeq ≤ fk(x) ≤ εeq, with εeq = 1.e-8. The main results are the following. A first
experiment highlights the benefits of this upper bounding, compared to a simple probing in
every explored outer box. A second experiment underlines that, in a large majority of the
tested systems, the upper bounding is satisfactory since the upper bound converges faster
than the lower bound towards the final value. Third, a qualitative study determines which
of the two inner region extraction heuristics is the most useful in every system. A last study
analyzes the size of the outer boxes in which the algorithms succeed in extracting an inner
region.
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Abstract
A parallel strategy for solving a centroid problem with variable demand is proposed. In the com-

petitive location problem considered in this paper, the aim is to maximize the profit obtained by a
chain (the leader) knowing that a competitor (the follower) will react by locating another single facil-
ity after the leader locates its own facility. The demand is supposed to be concentrated at n demand
points, which split their buying power among the facilities proportionally to the attraction they feel
for them. The attraction for a facility depends on both the location and the quality of the facility. In
most competitive location literature it is assumed that the demand is deterministic, i.e., fixed regard-
less the conditions of the market. However, demand can vary depending on prices, distances to the
facilities, etc. Taking variable demand into consideration, as we do here, increases the complexity
of the problem and, therefore, the computational effort needed to solve it, but it makes some mod-
els more realistic. Several heuristic methods were proposed to cope with this hard-to-solve global
optimization problem. Through a comprehensive computational study, it was shown that the evo-
lutionary algorithm TLUEGO was the heuristic which provides the best solutions. Nevertheless,
TLUEGO requires high computational effort, even to manage problems with small sizes. This is
mainly due to the high cost at evaluating the leader’s objective function, which requires the resolu-
tion of another hard-to-solve optimization problem, namely, the follower’s problem. In this work,
we propose the development of a hybrid parallel strategy, where two programming paradigms are
implemented simultaneously, i.e. both shared memory and distributed programming are considered
at different levels of the algorithm.

Keywords: Nonlinear bi-level programming problem, centroid (or Stackelberg) problem, evolutionary algo-
rithm, high performance computing approaches, parallelism, distributed memory, shared memory

1. Introduction

Competitive location deals with the problem of locating facilities to provide a service (or
goods) to the customers (or consumers) of a given geographical area where other compet-
ing facilities offering the same service are already present (or will enter the market in the near
future).

The scenario considered in this paper is that of a duopoly. A chain, the leader, wants to locate
a new single facility in a given area of the plane, where there already exist m facilities offering

∗This work has been funded by grants from the Spanish Ministry of Science and Innovation (TIN2008-01117, ECO2011-24927),
Junta de Andalucía (P08-TIC-3518 and P10-TIC-6002) and Fundación Séneca (The Agency of Science and Technology of the
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Corresponding author: P.M. Ortigosa.
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the same goods or product. The first k of those m facilities belong to the chain (0 ≤ k < m)
and the other m − k to a competitor chain, the follower. The leader knows that the follower,
as a reaction, will subsequently position a new facility too. The demand is elastic (it varies
depending on the location of the facilities) and is supposed to be concentrated at n demand
points, whose locations pi are known. The location fj and quality of the existing facilities is
also known. The aim is to maximize the profit obtained by the leader following the follower’s
entry. These types of bilevel programming problems were introduced by Hakimi, who in-
troduced the terms medianoid for the follower problem, and centroid for the leader problem
[2].

For handling the centroid problem, several heuristics were proposed in [5]. The computa-
tional studies showed that the evolutionary algorithm TLUEGO (Two-Level Universal Evolu-
tionary Global Optimizer) was more robust than the other strategies. However, the computa-
tional time employed by TLUEGO for solving small size problems was very high. This clearly
suggests that a parallelization of the algorithm is needed, especially if real problems, with
more demand points, are to be solved.

It is important to mention that to solve a single centroid problem, many medianoid prob-
lems have to be solved, since the evaluation of the leader’s objective function at a given point
requires the resolution of the corresponding medianoid problem. Recently, in [4], the medi-
anoid problem considered in this work, has been studied and solved using the evolutionary
algorithm UEGO (Universal Evolutionary Global Optimizer), initially described in [3]. The com-
putational studies showed that the heuristic algorithm UEGO was a good alternative to deal
with the medianoid problem, and hence it will be considered in this work. Nevertheless, solv-
ing a medianoid problem is not a negligible task; on the contrary, the medianoid problem is a
hard-to-solve global optimization problem (as most competitive location problems are).

In this work, we propose a parallel algorithm which, simultaneously, make use of two par-
allel programming paradigms. The aim is to increase the efficiency and scalability of the
parallel version. On the one hand, we propose a shared memory programming model to
achieve a substantial reduction in the computing effort of the sequential optimization algo-
rithm UEGO, which is used to solve the medianoid problems. This means, that the evaluation
of the the leader’s objective function will be carried out concurrently. On the other hand, we
propose a parallel model based on message-passing protocols, whose objective is to reduce
the computational time of TLUEGO when coping with the centroid problem.

Currently, a comprehensive computational study is being carried out in the supercomputer
Ben Arabi of the Supercomputing Center of Murcia, Spain. In particular, the executions are
running in Arabi, which is a Blade Cluster with 816 cores, organized in 32 nodes with 16GB
of memory each, and 70 nodes with 8GB each (102 nodes altogether). Each node has 8 cores,
divided into 2 Intel Xeon Quad Core (E5450) to 3.0 GHz. At this moment, only a small portion
of the studies has been executed, which is not enough to be able to infer conclusions. In future
versions of this work, sound computational results will be shown. In the following, for the
sake of completeness, some details about the parallel algorithm are shown.

2. The shared memory programming approach to solve the
follower problem

The medianoid (follower) problem with variable demand (see [4] for an analytical description
of the model) has been solved in [4] using the evolutionary algorithm UEGO. In this work,
such an algorithm has been paralellized through a multithreaded approach which takes ad-
vantage of the computer power in multicore architectures.

In modern multicore systems, all the processing units have direct access to the whole mem-
ory. Processing units are connected to some interconnection network, through which they
can access the common memory banks. There exist several ways to deal with parallelism
in a shared memory model. For the problem at hand, OpenMP (Open Multi-Processing)
(www.openmp.org) is recommended, since it is a portable and scalable model, and gives pro-
grammers a simple and flexible interface for developing parallel applications. Programmers
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use the OpenMP directives to tell the compiler which parts of the program must be executed
concurrently and to specify synchronization points [1].

In SharedMemUEGO, as we will call the parallel implementation of UEGO, the parallelism
comes from the concurrent execution of the creation and optimization procedures. Those pro-
cedures are in charge of generating a new offspring using recombination operators, and of
improving the current population through local optimization mechanisms, respectively. Fur-
thermore, it is worth to mention that there exist a “synchronization point” imposed by a selec-
tion procedure, since to be able to decide which portion of the population is going to continue
as the next generation of the algorithm, it is necessary to have the whole population. Par-
tial selections are also carried out concurrently, although finally a global one is required for a
correct performance of the algorithm in terms of quality in the solutions.

In the parallel model, MaxTh threads are created. This value refers to the maximum num-
ber of available process units to solve the problem. Basically, the algorithm distributes the
individuals in the population among the MaxTh threads. They apply either the creation or op-
timization procedures, and write back the evaluation results. Threads only receive the address
memory of the corresponding individuals and they are in charge of either reading or updat-
ing through this value. Notice that the distribution is carried out so that a single individual is
assigned to each thread each time. When a particular thread finishes its task, another single
individual will be picked up for working on it.

In our implementation, this process will be executed at each of the nodes of Arabi.

3. The message-passing parallel algorithm to solve the leader
problem

The centroid (leader) problem with variable demand was solved by means of TLUEGO algo-
rithm in [5]. The interested reader is referred to that paper for an in-detailed description of
both the model and the algorithm.

TLUEGO is parallelized through a master-slave technique. Master-slave is a communica-
tion model where one processing element (the master) has unidirectional control over one or
more processing elements (the slaves). This technique is called “global parallel model” too,
since the management of the population, is global (i.e. all the individuals in the population are
considered when the selection procedure is carried out). For the problem at hand, the master
takes charge of performing such a selection procedure. In our model, the parallelism comes
from the evaluation of the individuals in the population. This is because the fitness of an in-
dividual is independent from the rest of the population, and there is no need to communicate
during this phase. The evaluation of individuals is parallelized by assigning a fraction of the
population to each ‘node’ of Arabi. Notice, that a single evaluation involve the resolution of a
medianoid problem, which will be executed concurrently, as mentioned in Section 2.

Communications occur only as each node receives its subset of individuals for working on
it and when the nodes return the result values. Two versions of this parallel algorithm will be
studied. In the first one, the algorithm stops and waits to receive the fitness values for all the
population before proceeding to the next generation; in this case, the global parallel algorithm
is considered synchronous and it has exactly the same properties as the sequential one. For
the second case, the algorithm does not stop to wait for all processing elements, it does not
work exactly like the sequential algorithm, i.e. it is asynchronous, although it may increase the
efficiency of the parallel algorithm.

MPI has been used to implement the message-passing procedures. It is a language indepen-
dent communications protocol used to program parallel computers [6]. Processes are written
in a sequential language (C,C++, FORTRAN), and communications and synchronizations are
made by calling functions from the MPI library.
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Abstract We address the construction of tight convex underestimators for an edge-concave function over a
box. In contrast to common relaxation methods we derive the underestimators by a simultaneous
convexification of one edge-concave function together with the set of all multilinear monomials.
We show that the tightest underestimators are polyhedral and give a complete facet-description.
A computational case study demonstrates the usefulness of the proposed relaxation technique in
global optimization.

Keywords: global optimization, convex relaxations, edge-concave functions, simultaneous convexification

1. Introduction

The efficiency of global optimization solvers heavily depends on the ability of construct-
ing strong convex relaxations. Common methods typically derive convex relaxations for a
general mixed-integer nonlinear optimization problem by replacing every nonlinear function
f : [l, u] ⊆ Rn → R by convex under- and concave overestimating functions (e.g., see [13, 20,
4]). The underlying mathematical object is the convex set conv({(x, f(x)) ∈ Rn+1 | x ∈ [l, u]}).
However, such a separate convexification strategy ignores the interactions between different
nonlinearities and leaves potential to improve the quality of the resulting relaxations by a
simultaneous consideration of several nonlinearities.

One way to take the interactions between the nonlinearities into account is to study the
simultaneous convex hull conv({(x, f1(x), . . . , fm(x)) ∈ Rn+m | x ∈ [l, u]}) for a finite set of
functions fi : [l, u] ⊆ Rn → R, i = 1, . . . ,m. A famous example, that has been intensively
studied in the literature, is given when the set of functions consists of all quadratic monomials
(e.g., see [15, 6, 3]). In this case, a tight relaxation is obtained by the Boolean quadric polytope
and semidefinite constraints. The strength of this relaxation was shown both theoretically and
computationally (cf. [3]).

Recently, Tawarmalani [19] has analyzed the simultaneous convex hull of finitely many
functions more generally. He has derived necessary conditions on the extreme points of such
sets. For a set of submodular functions, it has been, in particular, shown that parts of the
simultaneous convex hull can be already described by all convex hulls of the corresponding
single functions.

In this work, we focus on edge-concave functions. A function f : Rn → R is called edge-
concave on a box [l, u] if it is componentwise concave (cf. [17]). Thus, multilinear functions
also belong to the class of edge-concave functions. It was shown in [17] that the tightest
convex underestimator of a single edge-concave function is polyhedral. Explicit formulas are
known up to dimension three [13, 14]. Formulas are not known for higher dimensions as
this would require a complete enumeration of all possible (non-isomorphic) triangulations of
the underlying box [l, u]. Such an approach is impracticable as already in dimension four, a
full-dimensional box [l, u] has 87,959,448 regular triangulations which can be partitioned into
235,277 symmetry classes (cf. [8, Thm. 2]).
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In the following, we will derive an explicit formula for a convex underestimator of an edge-
concave function on a box by a simultaneous convexification with all multilinear monomials.
Our point of departure is the polyhedral description of the following set

Q (n)

[l,u] := conv
({
F (n)(x) ∈ R2n−1 | x ∈ [l, u]

})
, (1)

where F (n) := (x1, . . . , xn, x1x2, . . . , xn−1xn, x1x2x3, . . . ,
∏n
i=1 xi) denotes the vector consist-

ing of all multilinear monomials in n variables. It has been shown in [2, 5] that Q (n)

[l,u] is a
simplex.

We extend the investigations by adding a further continuous function f : [l, u] ⊆ Rn → R to
the set of all multilinear monomials. The corresponding simultaneous convex hull is then not
necessarily polyhedral. In Section 2 we will present that the following part of the simultaneous
convex hull is polyhedral

U (n)

[l,u] [f ] := conv({(F (n)(x), µ) ∈ R2n−1 × R | µ ≥ f(x), x ∈ [l, u]}),

if f is edge-concave on [l, u]. We also discuss sufficient and necessary conditions for f such
that U (n)

[l,u] [f ] is polyhedral and provide a complete facet-description. Finally, we give a com-
putational case study in Section 3, where we apply the proposed polyhedral relaxation to test
instances of the Molecular Distance Geometry Problem [12]. We show the practical efficiency
of our approach in comparison to standard relaxation methods.

2. A tight polyhedral description underestimating
edge-concave functions over the set Q (n)

[l,u]

Let f : [l, u]→ R be a real-valued, continuous function on [l, u] ⊆ Rn. We first observe that the
description of Q (n)

[l,u] is essential to describe U (n)

[l,u] [f ]. It is straightforward to check

Lemma 1. Each facet-defining inequality of Q (n)

[l,u] also induces a facet for U (n)

[l,u] [f ].

Next, we consider edge-concave functions f . The following Theorem shows that a complete
description for U (n)

[l,u] [f ] requires only one further inequality, in addition to Q (n)

[l,u].

Theorem 2. Let f : Rn → R be a continuous function that is edge-concave on [l, u]. Then,

U (n)

[l,u] [f ] = {(z, µ) ∈ R2n−1 × R | z ∈ Q (n)

[l,u], µ ≥ a∅ +
∑
∅6=J⊆I

aJzJ},

where I := {1, . . . , n} and for all J ⊆ I

aJ =
( ∑
v∈vert([l,u])

(−1)α(v)+|J | f(v̄)
∏
i∈I\J

vi
) / ∏

i∈I
(ui − li) (2)

where α(v) denotes the number of components of v which are at their lower bounds and v̄ is the opposite
vertex of v, i.e. defined by v̄j = lj , if vj = uj and v̄j = uj , if vj = lj .

A sufficient and necessary condition for Theorem 2 on f is that f is underestimated over
the box [l, u] by the following multilinear function mf (x) :=

∑
J⊆I aJ

∏
j∈J xj , where the co-

efficients are given in Equation (2). In fact the values of the multilinear function mf and f
coincide at the vertices of [l, u]. Therefore, the additional cut is induced by the linearized ver-
sion of the function mf . Thereby the description can also be deduced from the RLT-approach
introduced by Sherali and Adams (cf. [16, 2, 10] and references therein). This is also remarked
in [19].

Note that a necessary condition on functions f for Theorem 2 is that f must be a function
whose best possible convex underestimator is vertex-polyhedral as defined by Tardella in [18].
Edge-concave functions also belong to this class of functions. However, the property of vertex-
polyhedrality is not a sufficient condition for Theorem 2.
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3. Computations

In this section we present a computational case study which compares the relaxation tech-
nique based on sets U (n)

[l,u] [f ] with standard relaxation methods. We consider a series of in-
stances from the Molecular Distance Geometry Problem (MDGP) (e.g., see [12]). The MDGP
is to determine the three-dimensional structure of a molecule consisting of a finite set A =
{1, . . . , s} of atoms and given distances di,j ≥ 0 between every two atoms {i, j} ∈ E ⊆ A×A.
The MDGP is solved if the optimal objective function value of the following unconstrained
nonconvex optimization problem equals zero:

min
∑
{i,j}∈E

(
||ξi − ξj ||2 − d2

ij

)2 s. t. ξ := (ξ1, . . . , ξs) ∈ R3s, (3)

where ξi := (ξi1, ξ
i
2, ξ

i
3) ∈ R3 represents the position of atom i in the three-dimensional space.

In order to illustrate the impact of the proposed relaxation method we follow the work [7]
and expand each summand in Equation (3). The expanded model formulation involves the
following types of expressions: x1x2, x1x2x3, x1x2x3x4, x

2
1, x

4
1, −x2

1x2x3, −x3
1x2.

We implemented three different relaxation strategies. For StandRelax, each term is refor-
mulated in terms of products of univariate or bilinear/trilinear terms and the formulas for
their envelopes are applied. This approach follows the relaxation strategies given by Cafieri
et al. [7]. For Q4Relax, we relax each quadrilinear term x1x2x3x4 and all involved bi- and tri-
linear monomials simultaneously by the facet-description ofQ (4)

[l,u]. The third strategy Q4Relax+

applies the relaxations U (2)

[l,u] [−x3
1x2] and U (3)

[l,u] [−x2
1x2x3], for each term of the form −x3

1x2 or
−x2

1x2x3, respectively. For this, we add the corresponding inequalities µ ≥ a∅ +
∑
∅6=J⊆I aJzJ

of Theorem 2 to Q4Relax.
All instances were randomly generated as described in [11] and were given to us by Jon Lee.

We implemented a branch-and-bound framework in the programming language C and solved
all linear subproblems with SCIP 2.1.1 [1] together with CPLEX 12.3 [9]. The computations were
accomplished on a 2.67 GHz INTEL X5650. The time limit for all computations was one hour.
Table 1 summarizes our computational results. It is evident that the computations benefit
from the derived simultaneous relaxations.

Bound at root node Bound after one hour
StandRelax Q4Relax Q4Relax+ StandRelax Q4Relax Q4Relax+

lav6 -36,871.1 -14,770.3 -14,770.3 -15,554.0 -7,212.0 -6,333.0
lav7 -141,278.7 -56,698.8 -56,698.8 -69,754.6 -32,564.3 -30,002.2
lav8 -176,869.1 -70,946.4 -70,946.4 -100,891.1 -46,212.7 -43,218.0
lav10 -602,754.7 -241,694.4 -241,694.4 -423,748.9 -184,078.4 -176,735.0
lav20 -15,840,033.3 -6,367,589.5 -6,367,589.5 -13,291,564.3 -5,618,446.6 -5,529,058.1

Table 1. The table reports on the lower bounds obtained at the root node and after one hour of computation time.

We also present a comparison of our relaxation techniques with state-of-the-art optimiza-
tion software. We remark that the software package BARON [20] can solve the MDGP efficiently
in the factorized model formulation of Equation (3), but it is outperformed by our ad-hoc
implementation when the expanded model formulation is used.

Acknowledgments

This work is part of the Collaborative Research Centre “Integrated Chemical Processes in Liq-
uid Multiphase Systems” (CRC/Transregio 63 “InPROMPT”) funded by the German Research
Foundation (DFG). Especially, the second author thanks the DFG for its financial support.

We would like to thank Jon Lee for providing the Lavor test instances used in this paper.



38 Martin Ballerstein, and Dennis Michaels

References

[1] Tobias Achterberg, SCIP: Solving Constraint Integer Programs, Mathematical Programming Computation 1
(2009), no. 1, 1–41.

[2] Warren P. Adams and Hanif D. Sherali, A hierarchy of relaxations leading to the convex hull representation for
general discrete optimization problems, Annals of Operations Reserach 140 (2005), 21–47.

[3] Kurt M. Anstreicher and Samuel Burer, Computable representations for convex hulls of low-dimensional quadratic
forms, Mathematical Programming Ser. B (124) (2010), 33–43.

[4] P. Belotti, COUENNE: a user’s manual, Tech. report, Lehigh University, 2009.

[5] Christoph Buchheim and Giovanni Rinaldi, Efficient reduction of polynomial zero-one optimization to the
quadratic case, SIAM Journal on Optimization 18 (2007), no. 4, 1398–1413.

[6] Samuel Burer and Adam Letchford, On non-convex quadratic programming with box constraints, SIAM Journal
on Optimization 20 (2009), 1073–1089.

[7] Sonia Cafieri, Jon Lee, and Leo Liberti, On convex relaxations of quadrilinear terms, Journal on Global Opti-
mization 47 (2010), no. 4, 661–685.

[8] Peter Huggins, Bernd Sturmfels, Josephine Yu, and Debbie Yuster, The hyperdeterminant and triangulations of
the 4-cube, Mathematics of Computation 77 (2008), 1653–1679.

[9] IBM, CPLEX, http://www.ibm.com/software/integration/optimization/cplex.

[10] Monique Laurent, A comparision of the Sherali-Adams, Lovász-Schrijver and Lassere relaxations for 0-1 program-
ming, Mathematics of Operations Reserach 28 (2003), no. 3, 470–496.

[11] Carlile Lavor, On generating instances for the molecular distance geometry problem, Global Optimization. From
Theory to Implementation (Leo Liberti and Nelson Maculan, eds.), Springer, 2006, pp. 405–414.

[12] Carlile Lavor, Leo Liberti, and Nelson Maculan, Molecular distance geometry problem, Encyclopedia of Opti-
mization (Christodoulos A. Floudas and Panos M. Pardalos, eds.), Springer, 2nd ed., 2009, pp. 2304–2311.

[13] Garth P. McCormick, Computability of global solutions to factorable nonconvex programs. I: Convex underestimating
problems, Mathematical Programing 10 (1976), 147–175.

[14] Clifford A. Meyer and Christodoulos A. Floudas, Convex envelopes for edge-concave functions, Mathematical
Programming Ser. B, 103 (2005), 207–224.

[15] Manfred Padberg, The boolean quadric polytope: Some characteristics, facets and relatives, Mathematical Program-
ming 45 (1989), 139–172.

[16] Hanif D. Sherali, Convex envelopes of multilinear functions over a unit hypercube and over special sets, Acta Math-
ematica Vietnamica 22 (1997), 245–270.

[17] Fabio Tardella, On the existence of polyedral convex envelopes, Frontiers in global optimization, Kluwer Aca-
demic Publisher, 2003, pp. 563–573.

[18] , Existence and sum decomposition of vertex polyhedral convex envelopes, Optimization Letters (2008),
2:363–375.

[19] Mohit Tawarmalani, Inclusion certificates and simultaneous convexification of functions, Optimization Online
(2010), available at http://www.optimization-online.org/DB_FILE/2010/09/2722.pdf.

[20] Mohit Tawarmalani and Nikolaos V. Sahinidis, A polyhedral branch-and-cut approach to global optimization,
Mathematical Programming 103 (2004), no. 2, Ser. B, 225–249.



Proceedings of GOW 2012, pp. 39 – 42.

On lower bounds using separable terms in interval B&B
for one-dimensional problems ∗

José L. Berenguel,1 L.G. Casado, 2 I. García, 3 E.M.T. Hendrix, 3 and F. Messine1,3

1TIC 146: Supercomputing-Algorithms Research group,
University of Almería, Agrifood Campus of International Excellence (ceiA3), 04120, Spain. jlberenguel@gmail.com

2Department of Computer Architecture and Electronics,
University of Almería, Agrifood Campus of International Excellence (ceiA3), 04120, Spain. leo@ual.es

3Department of Computer Architecture,
University of Málaga, Campus de Teatinos, 29017, Spain. igarcia@ual.es, Eligius@uma.es

4University of Toulouse,
ENSEEIHT-IRIT UMR-CNRS-5505, 2 rue Camichel, 31000 Toulouse, France. Frederic.Messine@n7.fr

Abstract Interval Branch-and-Bound (B&B) algorithms are powerful methods which aim for guaranteed so-
lutions of Global Optimization problems. Lower bounds for a function in a given interval can be
obtained directly with Interval Arithmetic. The use of lower bounds based on Taylor forms show
a faster convergence to the minimum with decreasing size of the search interval. Our research fo-
cuses on one dimensional functions that can be decomposed into several terms (sub-functions). The
question is whether using this characteristic leads to sharper bounds when based on bounds of the
sub-functions. This paper deals with separable functions in two sub-functions.

The use of the separability is investigated for the so-called Baumann form and Lower Bound
Value Form (LBVF). It is proven that using the additively separability in the LBVF form may lead
to a combination of linear minorants that are sharper than the original one. Numerical experiments
confirm this improving behaviour and also show that not all separable methods do always provide
sharper additively lower bounds. Additional research is needed to obtain better lower bounds for
multiplicatively separable functions and to address higher dimensional problems.

Keywords: separable functions, Interval Arithmetic, Taylor forms, branch-and-bound lower bound

1. Introduction

Interval Branch-and-Bound methods aim for guaranteed solutions of Global Optimization
problems. Consider the one dimensional generic interval constrained global optimization
problem, which is to find

f∗ = min
x∈S

f(x) (1)

where S ∈ I is the search region and I stands for the set of all one-dimensional closed real
intervals.

Definition 1. Function f : S ⊂ R→ R is additively separable, if it can be written as

f(x) =

p∑
j=1

fj(x), x ∈ S. (2)

∗This work has been funded by grants from the Spanish Ministry of Science and Innovation (TIN2008-01117), and Junta de
Andalucía (P11-TIC-7176), in part financed by the European Regional Development Fund (ERDF). Eligius M.T. Hendrix is a
fellow of the Spanish “Ramón y Cajal” contract program, co-financed by the European Social Fund.
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We have

min
x∈S

f(x) ≥
p∑
j=1

min
S
fj(x). (3)

Let F j be a lower bound of fj over S. Then we have

min
x∈S

f(x) ≥
p∑
j=1

F j . (4)

To create a lower bound F of f over interval X in an interval B&B framework, can be done
in several ways. Sharper bounds are better, i.e. higher values of F lead to more efficient
performance of the B&B algorithm. Considering functions that have an additively separable
structure (2), our research question is: for which cases

F ≤
p∑
j=1

F j? (5)

Alternatively, the question is to find ways to combine minorants on the separable terms, such
that we get sharper bounds.

2. Taylor forms

Besides the standard IA bounding, called “natural interval extension” F = [F , F ] of f [4, 5],
one can obtain an inclusion function of f using the inclusion function F ′ of f ′. Consider the
first order Taylor expression

T (c,X) := f(c) + (X − c)F ′(X), (6)

where c ∈ X . Notice that this expression is mainly of interest if the function is not monotonous
on X , so at least 0 ∈ F ′(X). By taking for c the middle m = X+X

2 of the interval, we have
what is called a center form of the inclusion

In [1], Baumann proves that taking c = b− in the Taylor expression, leads to the best lower
bound, where:

b− =


XiF

′(X)−XF ′(X)

F ′(X)− F ′(X)
, 0 ∈ F ′(X)

X ,F ′(X) ≤ 0
X ,F ′(X) ≥ 0

So,
f(X) ≥ T (b−, X). (7)

An additively separable Baumann form bound ASB(X) can be constructed in a straight-
forward way evaluating the Taylor expression (6) for the two sub-functions in their Baumann
point and adding the resulting lower bounds,

f(X) ≥ ASB(X) = T 1(b−1 , X) + T 2(b−2 , X). (8)

Example 2. Consider function f(x) = f1(x)+f2(x) = (x+1)2+(x−1)2 on the intervalX = [−2, 2].
The minima of the sub-functions is 0, whereas the minimum of f itself is f(0) = 2. Figure 1 illustrates
this idea and also draws lower bounds of all functions based on Baumann point. T (b−, X) = −14 and
T i(b

−
i , X) = −6 such that T 1(b−1 , X) + T 2(b−2 , X) = −12, illustrating question (5).

3. Lower Bound Value Form

Another way to compose derivative based linear minorants is the so-called Lower Boundary
Value Form (LBVF), ([6] p. 60 and [2, 3]) that uses the evaluation of the end-points of the
interval. Consider the most left point of X . Function

ϕl(x) = F (X) + F ′(X)(x−X), (9)
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Figure 1. Quadratic illustration of (3) and (5)

provides an affine minorant. Similarly, the right most point of X provides

ϕr(x) = F (X)− F ′(X)(X − x) = F (X) + F ′(X)(x−X). (10)

The values ϕl(X) and ϕr(X) are lower bounds of f(X) over X . A sharper lower bound can
be obtained when 0 ∈ F ′(X) by combining (9) and (10) in lower bounding function

ϕm(x) = max{ϕl(x), ϕr(x)}. (11)

The Lower Boundary Value Form ϕm(X) follows from finding y for which (9) and (10) are
equal

ϕm(X) = ϕm(y) =
F (X)F ′(X)− F (X)F ′(X)

w(F ′(X))
+
w(X)F ′(X)F ′(X)

w(F ′(X))
. (12)

So,
f(X) ≥ ϕm(X), 0 ∈ F ′(X). (13)

An Additively Separable Lower Bound Value form can be constructed in the following way:

f(X) ≥ ASLBV (X) = ϕm
1
(X) + ϕm

2
(X), 0 ∈ F ′1(X), 0 ∈ F ′2(X). (14)

We focus further on the LBVF minorants of both sub-functions in order to obtain a sharper
lower bound than ϕm(X) without worrying about the monotonicity of the sub-functions for
a given interval. Notice that only the case where the composite function f is not monotonous,
0 ∈ F ′(X) is interesting. Consider the addition of the separate minorant terms

ϕ(x) = ϕm1(x) + ϕm2(x),

where ϕmi is defined by (11). First of all, notice that ϕ is a piecewise linear minorant function
and the maximum of four different affine terms:

ϕ(x) = max


ϕl(x) := ϕl1(x) + ϕl2(x)
ϕa(x) := ϕl1(x) + ϕr2(x)
ϕb(x) := ϕr1(x) + ϕl2(x)
ϕr(x) := ϕr1(x) + ϕr2(x)

 . (15)
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Then, one can see that ϕ(x) is a sharper minorant than ϕm(x).

Theorem 3. Let ∀x ∈ X, f(x) = f1(x) + f2(x) and ϕl, ϕr and ϕm be defined by (9), (10) and (11).
∀x ∈ X,ϕm1(x) + ϕm2(x) ≥ ϕm(x).

Proof. Given equivalence (15), we have that

ϕm(x) = max{ϕl(x), ϕr(x)} ≤ max{ϕl(x), ϕa(x), ϕb(x), ϕr(x)} = ϕ(x).

Theorem 3 provides us with a new Additively Separable Lower Bound ASLBϕ defined by

f(X) ≥ ASLBϕ(X) = ϕ(X) (16)

4. Summary

For ASLBV ϕ, it is proven that the corresponding minorant is sharper than the standard one
for LBVF. How to evaluate ASLBϕ(X) and numerical experiments will be shown in GOW
2012. Numerical results confirm this improving behaviour, although monotonicity of the sub-
function and the composite function over an interval reduces this effect. Numerical results
also show that separable variant for the Baumann lower bound is usually worse than the
original one.

Future investigation could focus on the question how to extend the ASLBV ϕ lower bound
for n-dimensional functions. Another question is the derivation of specific interval based
bounds for multiplicative terms.
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Abstract Detecting and solving aircraft conflicts, which occur when aircraft sharing the same airspace are
too close to each other according to their predicted trajectories, is a crucial problem in Air Traffic
Management. We focus on mixed-integer optimization models based on speed regulation. We first
solve the problem to global optimality by means of an exact solver. The problem being very dif-
ficult to solve, we also propose a heuristic procedure where the problem is decomposed and it is
locally solved by an exact solver. Computational results show that the proposed approach provides
satisfactory results in reasonable time.

Keywords: air traffic management, conflict avoidance, MINLP, modeling, global exact solution, heuristic

1. Introduction

The air traffic level currently attained in Europe is around tens of thousands of flights per
day and it is expected to be multiplied by a factor of two during next 20 years. Air traffic is
therefore at the core of the social and economic dynamism of our society. The European project
SESAR gives the guidelines to go towards an Air Traffic Management (ATM) characterized
by more efficiency and more safety, which should essentially result from a higher level of
automation of ATM. The need for automatical tools to integrate human work specially arises
in the context of aircraft conflicts detection and resolution.

Aircraft potential conflicts can be solved in different ways. The most commonly exploited
is based on the idea of achieving separation changing the trajectory (heading angle) or the
flight level of the aircraft involved in the conflict. Another way is based on the idea of separat-
ing aircraft by slightly changing their speeds but keeping the predicted trajectories. A speed
regulation which occurs in a reasonable small range allows a subliminal control as suggested
by the European ERASMUS project [3]. This project showed the advantage of such a control,
which is not even perceived by air traffic controllers. Conflict avoidance is expected to be per-
formed while deviating as little as possible from the original aircraft flight plan, minimizing
the impact of the separation maneuvers. Various solution strategies have been proposed. A
review is provided in [6]. Solution algorithms are currently mainly based on evolutionary
computation [4]. These methods are computationally efficient, but the global optimal solution
and even a feasible solution (with no conflicts) is not guaranteed to be achieved in a given
time. Recent advances in mixed-integer linear and nonlinear programming open new per-
spective for modeling and efficiently solving the addressed problem. The first attempt to use
mixed-integer optimization is by Pallottino et al. in [8], where, though under very stringent
hypothesis, a geometrical construction leads to a mixed-integer linear programming model.
More recently, mixed-integer programming has been proposed again for aircraft conflict reso-
lution (see e.g.[7]).

In this paper, the speed regulation strategy is modeled by mixed-integer nonlinear pro-
gramming, building on [3]. A deterministic global solution is first proposed, using a general-
purpose solver for MINLP. Then, to deal with the difficulty of the problem, another strategy is
also proposed, where the optimality guarantee is forsaken in exchange for the computational
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efficiency. This solution strategy is based on hybridizing mathematical programming and a
heuristic tailored on the problem.

The paper is organized as follows. In Sect. 2 we review mixed-integer nonlinear modeling
of the aircraft conflict avoidance problem. In Sect. 3 we present a global exact solution of a
few randomly generated instances and we propose a heuristic tailored on the problem to gain
computational efficiency. Sect. 4 concludes the paper.

2. Modeling the aircraft conflict avoidance problem

Aircraft are said to be potentially in conflict when their horizontal or altitude distances are less
than given standard separation distances (5NM and 1000 ft1). So, assuming the aircraft flying
on a horizontal plane, the separation between aircraft i and j at the instant time t is expressed
by the following condition:

||xrij(t)|| ≥ d, (1)

where d is the minimum required separation distance and xrij(t) is the vector of relative dis-
tance between i and j. We assume, as usually done, that speed changes occur instantaneously.
We can therefore consider uniform motion laws. Hence, for each t, we have:

xrij(t) = xrdij + vrijt, (2)

where xrdij is the relative initial position of aircraft i and j and vrij is their relative speed. Ob-
serving that the minimum t is given by tm = −vrijxrdij /(vrij)2 the separation condition can be
rewritten as follows:

(xrdij )2 −
(vrijx

rd
ij )2

(vrij)
2
− d2 ≥ 0. (3)

Note that condition (3) has to be checked only when the inner product vrijx
rd
ij is negative. In

this case, indeed, aircraft are converging.
In our model, conflict avoidance is achieved by performing a speed change maneuvre. Air-

craft which are in conflict accelerate or decelerate in order to cross their conflict zone at dif-
ferent instant times, solving the conflict. Let A be the set of n aircraft. Decision variables are
qk, k ∈ A, expressing the percentage of speed change of each aircraft with respect to its orig-
inal speed. As prescribed by the ERASMUS project [2], we impose bounds on these variables
in order to have speed changes ranging between −6% and +3% of the original speeds. In
this way, the so-called subliminal control is achieved. We minimize the speed change for each
aircraft together with time intervals during which it flies with a modified speed, in order to
deviate as less as possible from the original flight plan:

min
∑
k∈A

q2
k(t2k − t1k)2, (4)

where t1k and t2k are decision variables representing starting and ending instant times for
aircraft k changing its speed. The order of instant times when aircraft change speed being
unknown, 6 possible time configurations have to be considered for each pair of aircraft and,
for each of them, 5 time intervals [ts, t

′
s]. The constraints of the problem impose aircraft sep-

aration (3) for each time configuration and time interval. This needs the introduction of new
(integer) variables and constraints. See [3] for details. The described model can be relaxed,
for example imposing that aircraft speed changes occur at the instant time t = 0 and that the
new speeds are kept during the trajectories. We consider in the following this relaxed model.
First, we have to express aircraft speeds in (3) in terms of their original speed v and speed
modification q. We also have to check if tm is greater than 0. Equation for tm gives rise to a
constraint, for each pair of aircraft, defining the minimum instant time. To check if tm ≥ 0,

11 NM (nautical mile)= 1852 m, 1 ft (feet) = 0.3048 m
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a binary variable yij for each (i,j) is introduced (yij = 1 if tm ≥ 0, and 0 otherwise), and
constraints are adjoined accordingly. The separation condition is then imposed, for each pair
of aircraft, only when tm ≥ 0:

∀i, j ∈ A, i 6= j, yij

(
xrdij (vrij)

2 − (vrijx
rd
ij )2 − (d2(vrij)

2)
)
≥ 0. (5)

The obtained mathematical programming model has as many (nonlinear) separation con-
straints as pairs of aircraft.

3. Solving the conflict avoidance problem

3.1 Global exact solution

We use as a testbed n aircraft in 2-dimensional space, placed on a circle of a given radius r,
with speed v and a heading angle such that their trajectory is toward the center of the circle
(or slightly deviated with respect to such direction). The zone of conflict is around the center
of the circle where aircraft are placed, and each aircraft is in conflict with each other. It is easy
to see that the number of conflicts is n(n − 1)/2, so a large number of conflicts is generated
in the same conflict zone. We solve the problem to global optimality using COUENNE [1], which
implements a spatial Branch-and-Bound based on convex relaxations. Results are reported
in Table 1a (v=400 NM/h). They show that we are able to obtain global exact solutions up
to n = 6 (i.e. 15 conflicts). However, an exact solution turns to be high memory and time
demanding, even for a small number of aircraft, due to the high number of conflicts and the
number of variables and constraints largely increasing with n. Hence, we are not able to solve
the problem for n > 6 even with the relaxed modeling. Objective function values show that
aircraft separation is always achieved with very slight speed changes.

3.2 A heuristic based on local exact solutions

We then propose a heuristic procedure where we solve at global optimality subproblems in-
volving up to 4 aircraft at a time, based on the observation that a solution can be efficiently
computed for problems involving a small number of aircraft.

Let a cluster be the transitive closing on conflicting pairs of aircraft (see, e.g., [5]). The heuris-
tic is based on the idea of decomposing the problem in subproblems (clusters) and solve the
conflict avoidance problem on clusters. Let ncl be the number of clusters. At each step, ncl
problems are sequentially solved by using an exact solver (COUENNE). Combining together
all the results, in general the conflicts are not all solved because aircraft inside clusters are
typically in conflict with aircraft inside other clusters too. After the resolution step on sub-
problems, the number of remaining conflicts is computed. If it is greater than 0, a new step is
performed. To do so, the initial speed (which together with the initial position represents the
data of the problem) of aircraft that are still in conflict is re-initialized taking into account the
solution obtained at the last step. That is, if the (optimal) solution obtained for cluster i is such
that an aircraft in this cluster has been accelerated with respect to its original speed, then its
speed is modified by a random slight further increase. If it has been decelerated, then its speed
is modified by a random slight further decrease. In this way, the information obtained at the
previous step is preserved and the chances to keep aircraft separated inside clusters increase.
To update the speeds, a local search is performed testing a number of candidates and choosing
the one that minimizes the sum, over all conflicting aircraft, of the maximum violation of the
separation constraints for each considered aircraft, divided by the number of remaning con-
flicts. When only one conflict is to be solved, this search is intensified to increase the chances
to solve the problem. Aircraft speeds have to be bounded in the small range [−6%v,+3%v],
so when speeds are modified these bounds have to be checked and speeds adjusted to fulfill
this requirement. This may eventually lead to change the speed scenario provided by local
solutions.

Results are reported in Table 1b. Values are averaged over 10 runs. For all test problems,
all conflicts are solved. Comparing with global exact solutions (Table 1a), it appears that
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decomposing the problem does not significantly affect the quality of the result. In general,
increasing n, faster solutions are obtained using a higher number of smaller subproblems.
Solutions are obtained in reasonable time on problems involving up to 10 aircraft.

Table 1a. Results obtained with COUENNE

ID n r obj CPU time
(sec.)

pb n2 2 1 ×102 0.002531 0.15
pb n3 3 2 ×102 0.001667 1.45
pb n4 4 2 ×102 0.004009 12.87
pb n5 5 3 ×102 0.003033 841.33
pb n6 6 3 ×102 0.006033 51863.37

n= number of aircraft
r= radius of the circle (NM)
obj= objective function value
ncl= number of aircraft clusters

Table 1b. Results obtained with the proposed
heuristic

ID n r ncl obj CPU time
(sec.)

pb n4 4 2 ×102 2 0.005151 26.97
pb n5 5 3 ×102 2 0.004729 17.98
pb n6 6 3 ×102 2 0.006402 17.33
pb n6 6 3 ×102 3 0.007438 341.12
pb n7 7 3 ×102 2 0.009215 131.34
pb n7 7 3 ×102 3 0.008144 22.99
pb n8 8 4 ×102 2 0.008220 759.40
pb n8 8 4 ×102 3 0.007551 39.66
pb n8 8 4 ×102 4 0.012034 48.99
pb n9 9 4 ×102 3 0.009238 97.41
pb n10 10 4 ×102 3 0.014047 484.49

4. Conclusions

We presented an approach based on mixed-integer nonlinear optimization for the aircraft con-
flict avoidance problem. We are able to obtain global exact solutions for problems with up to
6 aircraft, while a new heuristic tailored on the problem and based on local exact solutions
allow us to obtain good quality results even on problems involving many conflicts at a time.
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Abstract Optimizing the clusterwise regression problem using a branch and bound search enhanced by heuris-
tics, observation sequencing and ending subset optimization is proposed and tested. This optimiza-
tion strategy is an extension and a generalization of Brusco’s repetitive branch and bound algorithm
(RBBA). Heuristics can improve the upper bound, observation sequencing can improve the search
path and can increase fathoming, while the ending subsets can recursively strengthen the lower
bounds of the search. Additionally, symmetry breaking and incremental regression calculations are
employed to further speed up the optimization. Experiments demonstrate that the proposed opti-
mization strategy is significantly faster than CPLEX and that the combination of all the components
is significantly faster than each one individually.

Keywords: Global optimization, Combinatorial optimization, Clusterwise regression, Branch and bound, Se-
quencing, Heuristics

1. Introduction

The clustering technique called clusterwise regression fits multiple lines or hyperplanes to
mutually exclusive subsets of a dataset such that the sum of squared errors (SSE) from each
observation to its cluster’s line is minimized [1–3]. It is a cubic optimization problem defined
by: the number of clusters (K), the number of independent dimensions (D), and the number
of observations (O). The iterators are for: a cluster (k ∈ {1, . . . ,K}), an independent dimen-
sion (d ∈ {1, . . . , D}), and an observation (o ∈ {1, . . . , O}). The model parameters are: the
independent variable for an observation and dimension (xod) and the dependent variable for
an observation (yo). The model variables are: the cluster assignment of an observation to a
cluster (zok), the regression coefficient (aka β) for a dimension of a cluster (bdk) and the error
for an observation of a cluster (eok). The cubic model is as follows:

SSE = min

K∑
k=1

O∑
o=1

(
zoke

2
ok

)
(1)

s.t.
D∑
d=1

(bdkxod) + eok = yo o = 1, . . . , O, k = 1, . . . ,K (2)

K∑
k=1

zok = 1 o = 1, . . . , O (3)

zok ∈ {0, 1} o = 1, . . . , O, k = 1, . . . ,K (4)

The objective (1) is the minimization of the sum over all clusters of the sum of squared
errors (SSE) for their observations relative to their regression line. The constraint (2) fits the
regression lines to the data by adjusting the coefficient and error terms. An observation can
only be assigned to one cluster at a time (3) and the cluster assignment is binary (4).
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2. Optimization Methods

The cubic clusterwise regression mathematical programming formulation can be re-formulated
into a quadratic problem. However the big-M mixed integer quadratic programming (MIQP)
formulation cannot guarantee globally optimal results [4]. This occurs because the slope of a
line can be arbitrarily steep, and thus the error, can be arbitrarily large. Consequently, the big-
M constant cannot be guaranteed to be large enough for any possible optimal solution nor for
any possible intermediate solution of the MIQP branch and bound procedure. In an approach
called mixed logical-linear programming (MLLP), or in this case, mixed logical-quadratic pro-
gramming (MLQP), the logical propositions remain in their natural formulation while at the
same time taking advantage of the strength of both logic processing and linear or quadratic
programming [5–8].

A branch and bound algorithm can also be used for solving the clusterwise regression
problem optimally. Although this is a difficult task, symmetry breaking, identifying stronger
bounds and controlling the path through the search space can reduce the actual size of the
search and incremental regression calculations will reduce the number of operations for each
evaluation. The upper bound can be strengthened by heuristic optimization. The lower bound
can be strengthened by exact global optimization of ending subsets as in RBBA [9]. An appro-
priate observation sequence can strengthen the bounds and enhance fathoming.

Symmetry breaking is performed in the branch and bound algorithm by only using an ad-
ditional cluster (up to K) when needed. Incremental regression calculations [10, 11] are per-
formed at every node simply by adding the current observation to the target cluster using the
calculation cache retained for the parent node. For the heuristics, since there is no known way
to determine a priori how much optimization effort should be put into heuristic optimization
before starting the exhaustive branch and bound search, an iterative heuristic optimization is
used. In the current experiments, approximately 10% of processing time is spent on heuristic
optimization in time slices of 1 second.

Next, as detailed in the repetitive branch and bound algorithm (RBBA) [9], stronger lower
bounds can be calculated using the optimal solutions of ending subsets. Additionally, when
using incrementally larger ending subsets and performing the branch and bound search in
the forward direction, the search can benefit recursively from the lower bounds. Both the se-
quence and direction of optimizing incrementally larger ending subsets are critical to achieve
the most benefits. The branch and bound algorithm for an individual ending subset must
process the observations in the forward direction, which permits the use of the lower bounds
identified by previous smaller ending subset searches. However, the incrementally larger
subsets always end at the last observation, thus the subsets are increased in size in the reverse
direction, meaning the starting observation backs up, but the ending observation is always
the last of the complete set. Additionally, only a limited number of ending subsets are opti-
mization. In this experiment, steps of 10 observations are used and planed such that last 10
largest ending subsets are skipped since they are often the longest to optimized other than the
complete set.

Finally, sequencing can greatly affect the effort required to solve an optimization problem.
Although an algorithm may be deterministic and even exact, thus always finding the global
optimum, the path taken through the search space may vary greatly simply as a result of the
sequence in which the data points are processed. Extreme variations in processing times can
occur in branch and bound algorithms (Figure 2). From these and other results, it seems that
the processing time follows a log-normal distribution.

The proposed sequencing strategy is to sequence the observations in descending order of
error from their cluster identified by heuristic optimization, while forcing alternating clus-
ters. Thus, the first observation in the sequence will be the one with the largest error of those
assigned to cluster 1, the next from cluster 2, etc, up to cluster K. Subsequently, the observa-
tions with the next largest error will follow. When the branch and bound algorithm processes
this sequence of observations, there will rapidly be a representative sample in each cluster
and these observations will increase the error faster than an average random sequence. In
addition, incremental ending subset optimization will also have a representative sample of
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Figure 1. Overview of incremental ending subset
optimization.

Figure 2. Cumul. distr. of proc. times for BB
optim. with ending subsets, 3 lines, 0.65 std. dev.,
300 obs.

observations, with lower error, thus their processing times will be a fraction of that of the
complete set.

Most of the main components of the presented strategy are general to any clustering prob-
lem for which an incremental calculation can be defined. Although there may exist specialized
efficient heuristics for specific problems, there also exists heuristics, such as tabu search (TS),
genetic search (GS), variable neighborhood search (VNS), simulated annealing (SA), that can
minimize any function, thus is it assumed that the heuristic parts of the presented algorithm
can also be generalized to most clustering problems. On the other hand, the incremental and
error calculations are specific to each clustering problem. These may also require problem
specific optimizations since these calculations are the innermost loop of the complete algo-
rithm, and thus can have a large impact on the algorithm’s performance. For applications to
other branch and bound problems, the change to the objective function would be considered
instead of the problem specific term error used in this article.

In this paper, the mixed logical-quadratic programming model is optimized using the IBM
ILOG OPL-CPLEX (OPL 6.3 and CPLEX 12.1.0) environment, thus the model is implemented
using the OPL programming language [12–14].

Table 1. Algorithm codes and descriptions.

Code Description

CPLEX Mixed logical-quadratic formulation optimized by CPLEX
BB. . . Branch and bound optimization
. . . h. . . Iterative heuristic optimization
. . . s1. . . Sequencing by descending error in cluster with forced alternating of clusters
. . . e Incremental ending subsets optimization with a step size of 10

3. Results and discussions

Optimization of the clusterwise regression problem is performed on a synthetic series of
datasets with two and three lines (Figure 3) and increasing perturbations.

The results presented in Table 2 indicate that both CPLEX and the simpler branch and
bound algorithms (BB and BB.h) were relatively inefficient at solving the problem compared
individual parts of the proposed algorithm (BB.e, BB.h.s) and the complete combination (BB.h.s.e).
Combining heuristic optimization with sequencing by descending within cluster error and
ending subset searches (BB.h.s.e) provided the fastest optimization times.
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Figure 3. Plots of the three lines dataset without perturbations and of one standard deviation.
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Abstract A Biased Random-Key Genetic Algorithm (BRKGA) is proposed in this paper for the NP-hard Ro-
bust Shortest Path problem (RSP). To the best of our knowledge, this is the first metaheuristic for the
RSP with interval data and with min-max regret optimization criteria. Computational experiments
show that the BRKGA found optimal solutions for instances with up to 1000 vertices.
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1. Introduction

Given a connected digraph G = (V,A) with a set V of vertices and a set A of arcs. Let cij ∈ R
be the cost associated to each arc (i, j) ∈ A. The well-known Shortest Path problem (SP)
consists in finding the shortest path from a source s ∈ V to a destination t ∈ V such that the
total cost is minimized. A solution exists if there is no negative-weight cycle reachable from s
to t . Several polynomial-time algorithms are available to solve SP. The Robust Shortest Path
problem (RSP) extends SP. The cost associated to each arc is defined as an interval [lij , uij ],
where uij , lij ∈ R and uij ≥ lij [7], or else several discrete values are associated to each arc
[11].

Let a scenario r be an assignment of arc costs crij ∈ [lij , uij ], ∀(i, j) ∈ A. RSP aims at selecting
a path from a source node s ∈ V to a destination node t ∈ V . However, since the scenario that
will occur is not known, the path computation has to be done under uncertainty. This problem
can be solved by using robust optimization methods [3]. A solution is robust whenever it is the
most adapted over all the scenarios considered. The optimization criteria strongly depends
on the application needs. For instance, it is important to avoid the worst scenario when the
decisions involve the monitoring of industrial sites and competition [1]. For such applications,
the min-max criterion can be applied and, one seeks a solution whose worst case scenario has
the best total cost.

In this paper, we tackle a more specialized optimization criterion called min-max regret. Let
r be a scenario, that is a realization of arc costs crij ∈ [lij , uij ], ∀(i, j) ∈ A, and P ⊆ A be a path
from s to t in G. The robust deviation of P in the scenario r is defined as the difference between
the cost of P in r and the cost of the shortest path Sr from s to t in r. In other words, the robust
deviation of P in r is the regret of using P instead of Sr in case scenario r occurs. The min-max
regret RSP consists in finding a path P from s to t which minimizes its worst deviation over
all possible scenarios. This problem is shown to be NP-hard in [11].

A pseudo-polynomial algorithm has been introduced in [11]. Preprocessing techniques for
RSP with interval data are proposed in [4, 7]. They remove dominated arcs on special graphs
such as acyclic and planar graphs. Instances with up to 400 nodes and arc density 0.3 were
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solved to optimality. A branch-and-bound algorithm is proposed in [8]. This algorithm solves
instances with up to 500 nodes and arc density 0.01 and two real instances. A heuristic strategy
is introduced in [5] to manage the set of critical tasks in a project under uncertainty. A RSP
survey is found in [1].

To the best of our knowledge, this is the first work to propose a metaheuristic for the min-
max regret RSP with interval data. A Mixed Integer Linear Programming formulation (MILP)
is presented in Section 2. A biased-random key genetic algorithm is proposed in Section 3.
Computational experiments and concluding remarks are drawn in Section 4.

2. MILP formulation

The MILP formulation (1)-(6) for the min-max regret RSP has been proposed in [7]. Let yij
be the decision variables on the choice of arc (i, j) in the path. If arc (i, j) belongs to the
solution yij = 1, otherwise yij = 0. Moreover, variables xi ≥ 0,∀i ∈ V define the cost of the
shortest path from the source node s to node i in the worst case scenario for the path defined
by variables y.

min z =
∑

(i,j)∈A

uij · yij − xt subject to: (1)

∑
(j,k)∈A

yjk −
∑

(i,j)∈A

yij =

 1, if j = s
−1, if j = t ∀j ∈ V

0, otherwise
(2)

xj ≤ xi + lij + (uij − lij)yij ∀(i, j) ∈ A (3)
xs = 0 (4)
yij ∈ {0, 1} ∀(i, j) ∈ A (5)
xi ≥ 0 ∀i ∈ V (6)

The objective function (1) minimizes the regret at the destination node t. Constraints (2) are
the classic flow conservation constraints and ensure the path connectivity from nodes s to t.
Inequalities (3) link variables y and x and determine a regret upper bound at node j. These
constraints together with the objective function ensure the maximum regret to be minimized.
Equation (4) sets xs to zero. The variables are defined in (5) and (6).

3. Biased random-key genetic algorithm

The Biased Random-Key Genetic Algorithm (BRKGA) [6] is based on Bean [2]. It has been
successful applied for a number of network applications which motivates this work. The
chromosomes in BRKGA are real-valued vectors in the range [0, 1]. Each element of the vector
is called a key and its value is randomly generated in the initial population. In our BRKGA-
RSP heuristic, each chromosome represents a possible scenario for the cost of the arcs in A.
In other words, a chromosome q has a key kqij ∈ [0, 1] for each arc (i, j) ∈ A, and the cost of
this arc in the scenario rq is defined as cqij = lij + (uij − lij) · kqij . This scenario induces a non
dominated path Pq, which is the shortest path from s to t in that scenario. The robust cost of
Pq is used as the fitness of the chromosome. The asymptotic worst case complexity to evaluate
the fitness of a chromosome is O(|V | · log |V |).

We use the parameterized uniform crossover scheme proposed in [9] to combine two parent
solutions and produce an offspring solution. In this scheme, each key of the offspring comes
from the best parent with probability 0.7 and from the worst parent with probability 0.3.

The proposed genetic algorithm does not use the standard mutation operator, where parts
of the chromosomes are changed with small probability. Instead, the concept of mutants is
used. In each generation, a fixed number of mutant solutions are introduced in the population.
They are randomly generated the same way as the initial population. This operation plays the
role of helping the procedure to escape from local optima.
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At each new generation, the population is partitioned into two sets: TOP and REST . Con-
sequently, the size of the population is |TOP | + |REST |. The best solutions are kept in TOP
while the others are placed in REST . The chromosomes in TOP are selected, without any
change, to be in the population of the next generation. The new mutants are placed in set
BOT . The remaining elements of the new population are obtained by crossover with one
parent randomly chosen from TOP and the other from REST . This distinguishes a biased
random-key genetic algorithm from the random-key genetic algorithm of Bean [2]. In the lat-
ter both parents are randomly selected from the entire population. Since a parent solution can
be chosen for crossover more than once in a given generation, elite solutions have a higher
probability of transmitting their keys to the next generation. This way, |REST | − |BOT | off-
spring solutions are created. The sizes of sets TOP , REST , and BOT are parameters to be
tuned.

4. Experiments and concluding remarks

The heuristic BRKGA-RSP has been implemented in C++ and compiled with the GNU GCC
compiler version 4.4.3. We use the BRKGA framework provided by [10]. In order to evaluate
the performance of the proposed heuristic, optimal solutions were computed from the MILP
formulation on CPLEX version 10.2 under default parameters, and the running time has been
limited to two hours. The experiments were performed on an Intel Core 2 quad CPU with
2.5 GHz of clock and 8 Gb of RAM memory. The size of sets TOP , REST and BOT was
respectively set to 10, 90, and 20.

Several test sets of instances have been generated and experiments are reported for a subset
of three test sets. The two first sets of instances are similar to those used in [5]. They mainly
differ on the way the graph connectivity is ensured. The vertices are randomly generated
in a square of sides 100 using a uniform low and only considering integer coordinates. The
edges are randomly generated with probabilities 0.6 and 0.8. In STAR instances, the graph
connectivity is ensured by linking one node (randomly chosen) with every other in the graph.
In CYCLE instances, the graph connectivity is ensured by linking the set of vertices by an
arbitrary Hamiltonian cycle. For STAR and CYCLE benchmarks, the lower bound lij for the
cost of each arc (i, j) ∈ A is randomly generated on the interval ]0, 200], and the respective
upper bound uij is set to lij(1+α), where α is the degree of uncertainty parameter set to 0.25. The
third test set contains GRID graphs. The interval costs associated to each arc are as follows:
lower bounds lij are randomly selected in the interval ]0, 100], and upper bounds uij are set to
(lij + 105). For GRID instances, the origin and the destination nodes are respectively located
at the lower left corner and at the upper right corner of the GRID.

Numerical results are reported in Table 1. Each line corresponds to an instance. Column 1
displays the instance name and “c”, “s”, “g” stand respectively for CYCLE, STAR, and GRID
instances. Columns 2 to 4 give, respectively, the lower bound (lb), the upper bound (ub), and
the CPU time (t(s)) in seconds spent by the branch-and-cut algorithm to solve the instances.
The last three columns display respectively the average robust cost (avg.) over 10 runs, the
average standard deviation (std. dev.), and the average CPU time (t(s)) in seconds spent by
BRKGA-RSP. Results indicate the proposed BRKGA-RSP is able to find optimal solutions for all
instances in these sets. GRID instances are more difficult to be solved. CPLEX solver is not
able to find optimal solutions for the grids of size 9 (g 9x90) and 10 (g 10x100) in two hours.
The explanation is probably that the diameter is longer in GRID graphs. Even for the largest
instances, BRKGA-RSP is able to find good solution in a small running time.

These results motivate further studies on heuristics and metaheuristics for RSP. Future
works will focus on providing a local search for RSP and on integrating them into genetic al-
gorithms, and other metaheuristics. We also intend to identify harder instances and to study
the impact of the cost interval for RSP.
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Table 1. Performance evaluation of BRKGA-RSP.

CPLEX BRKGA-RSP
Name lb ub t(s) avg. std. dev. t(s)
c v750 d0.6 3.00 3.00 23.81 3.00 0.00 5.55
c v750 d0.8 3.00 3.00 113.17 3.00 0.00 7.16
c v1000 d0.6 0.00 0.00 3.79 0.00 0.00 6.75
c v1000 d0.8 2.00 2.00 50.84 2.00 0.00 11.22
s v750 d0.6 1.00 1.00 11.06 1.00 0.00 5.12
s v750 d0.8 2.00 2.00 17.32 2.00 0.00 6.07
s v1000 d0.6 3.00 3.00 122.93 3.00 0.00 9.05
s v1000 d0.8 2.00 2.00 46.92 2.00 0.00 9.48
g 6x60 639,748.00 639,748.00 767.54 639,847.40 99.96 79.65
g 7x70 749,676.00 749,676.00 1465.89 749,874.10 196.15 132.02
g 8x80 859,803.00 859,803.00 6352.67 860,157.90 320.85 162.25
g 9x90 925,988.56 970,261.00 7200.00 970,566.60 196.92 159.29
g 10x100 1,027,501.40 1,080,339.00 7200.00 1,084,779.00 8439.80 193.00
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Abstract In this work a real-based refining planning problem is solved by MINLP techniques. The developed
model aims to maximize the refiner profity by integrating decisions on operation of processing units
and crude oil selection. An illustrative instance was solved by the global optimizer BARON 7.5.3
and by the (heuristic) AOA, both avaible in AIMMS 3.11.
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1. Introduction

The model presented in this work is an extension of the multiperiod formulation proposed by
[1]. In each period of the planning horizon there are deterministic demands for oil derivatives
(expressed as minimum and maximal volumes to be sold), and available volumes of crude
oils and other inputs. For each crude oil two quantities may be available. A quantity that
refinery must receive from supply source but not necessarily consume. And additional quan-
tities that could be ordered if necessary, but within certain limits. Stocks of all streams (crude
oils/inputs, intermediate and final products) could be carried from one period to the follow-
ing.
The objective function aims to maximize the profit defined by revenues obtained by deriva-
tive sales minus costs incurred with raw material consumption and storage in tanks. For
doing so, it requires the computation of flows among units and stock levels in each tank, its
physicochemical properties, and operational variables on conversion units. Some decisions
about flows have a discrete behaviour since it is usually required that they be bigger than a
predefined minimum values. In this sense, in each planning period, one should determine
which campaigns will be allocated to processing units and what kinds of additional crude oils
(inputs) should be ordered. Preliminare results with this formulation were published in [2].
Given the large number equations defined by sums of bilinear and tri-linear terms, the re-
sulting non-convex MINLP is highly nonlinear. Even having lot less integer variables than
continuous ones, the generated programs are hard to solve to optimality.

2. Refining Planning and Input Selection Problem

In the following the Refining Planning and Input Selection Problem (RPISP), a non-convex
MINLP, is mathetically defined.
- Sets:

U - set of units.
Cu - set of campaigns of unit u.
S
I(O)
uc - set of inlet(outlet) streams at unit u during campaign c .
F - set of flows (u, c, s, u′, c′) considered in the planning scenario.
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T - set of periods of the planning horizon.
P
V (M)I
uc - set of volumetric (mass) properties of the load of unit u during campaign c.

P
V (M)O
ucs - set of volum. (mass) properties of stream s that leaves unit u during campaign c.

- Parameters:
K
C−MIN(MAX)
uct - min. (max.) load in processing unit u during campaign c in period t.

K
U−MIN(MAX)
ut - min. (max.) load in processing unit u in period t.

QFust - flow rate of crude oil s (to be processed) available in source unit u in period t.
Q
A−MIN(MAX)
ust - min. (max.) flow rate of additional crude oil (input) s available in source

unit u in campaign (market) c in period t.
H
MIN(MAX)
ust - min. (max) stock of stream s in storage unit (tank) u in period t.

V
MIN(MAX)
ucvt - min. (max.) value of operational condition v of conversion unit u during

campaign c in period t.
- Decision variables:

qucsu′c′t = flow rate of stream s from (u, c) to (u′, c′) in period t.
huct = stock level of stream s in storage unit (tank) u during campaign c in period t.
voucvt = value of operational var. v in conversion unit u during campaign c in period t.
piucpt = value of property p of the load that fed unit u during campaign c in period t.
poucspt = value of property p of stream s that leaves unit u during campaign c in period t.
yuct =1, if campaign c is set for processing unit u in period t, 0, otherwise.
zucst =1, if additional crude oil s is bought at campaign c of unit u in period t, 0, otherwise.

- Objective function:

max z =
∑

ucst:u∈UD
SPucst

∑
u′c′

qu′c′suct −
∑

ucst:u∈UH
CHucsthucst

−
∑

ucst:∈US

[
CFIustQ

F
ucst − CAust

(∑
u′c′

qucsu′c′t −QFucst

)]
. (1)

- Separation processes constraints:∑
u′c′

qucsu′c′t = f (qu′c′s′uct) , ∀u ∈ UPS , c ∈ Cu, s ∈ SOuc, t ∈ T (2)

poucspt = f
(
qucsu′c′t, qu”c”s”uct, poucs′pt

)
, ∀u ∈ UPS , c ∈ Cu, s ∈ SOuc, p ∈ P V Oucs

⋃
PMO
ucs , t ∈ T

(3)
- Conversion processes constraints:

∑
u′c′

qucsu′c′t = f

(∑
u′c′s′

qu′c′s′uct, piucpt, vou,c,t

)
, ∀u ∈ UPC , c ∈ Cu, s ∈ SOuc, t ∈ T (4)

poucspt = f (piucpt, vouct) , ∀u ∈ UPC , c ∈ Cu, s ∈ SOuc, p ∈ P V Oucs

⋃
PMO
ucs , t ∈ T (5)

- Mixture and storage processes contraints:∑
u′c′s

qu′c′suct =
∑
u′c′s

qucsu′c′t, ∀u ∈
⋃

i=M,H,PC

U i, c ∈ Cu, t ∈ T (6)

piucpt
∑
u′c′s

qu′c′s′uct =
∑
u′c′s

pou′c′sptqu′c′suct, ∀u ∈
⋃

i=M,H,PC

U i, c ∈ Cu, p ∈ P V Iuct , t ∈ T (7)

piucptpiucp′t
∑
u′c′s′

qu′c′s′uct =
∑
u′c′s

pou′c′sptpou′c′sp′tqu′c′su′c′t,

∀u ∈
⋃

i=M,H,PC

U i, c ∈ Cu, p ∈ PMI
u,c,t, t ∈ T (8)
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huct = huct−1 +
∑
u′c′s

qu′c′suct −
∑
u′c′s

qucsu′c′t, ∀u ∈ UH , c ∈ Cu, t ∈ T (9)

poucspt

(∑
u′c′s′

qu′c′s′uct + huct−1.

)
= poucspt−1huct−1 + piucpt

∑
u′c′s′

qu′c′s′uct,

∀u ∈ UH , c ∈ Cu, s ∈ SOuc, p ∈ P V Iucpt

⋂
P V Oucspt, t ∈ T (10)

poucsptpoucsp′t

(∑
u′c′s′

qu′c′s′uct + huct−1.

)
= poucspt−1poucsp′t−1hu,c,t−1 +

piucptpiucp′t
∑
u′c′s′

qu′c′s′uct, ∀u ∈ UH , c ∈ Cu, s ∈ SOuc, p ∈ PMI
ucpt

⋂
PMO
ucspt, t ∈ T (11)

- Final products specificafion constraints:

PMIN
ucspt ≤ poucspt ≤ PMAX

ucspt , ∀u ∈ UH , c ∈ Cu, s ∈ SOuc, p ∈ P V Oucspt

⋃
PMO
ucspt, t ∈ T (12)

- Campaign allocation constraints:

QC−MIN
uct yuct ≤

∑
u′c′s

qucsu′c′t ≤ QC−MIN
u,c,t yuct ∀u ∈ UPS

⋃
UPC , c ∈ Cu, t ∈ T (13)

- Crude oil selection constraints:

QFucst +QA−MIN
ucst zucst ≤

∑
u′c′s

qucsu′c′t ≤ QFu,c,s,t +QA−MAX
ucst zucst

∀u ∈ US , c ∈ Cu, s ∈ SOuc, t ∈ T (14)

The family of functions used for modeling the transformation processes (2)-(5) are defined by
sums of linear and bilinear (or trilinear) terms.

3. A Small Example

Consider the hypothetical refinery shown in Figure 1. Few streams are produced in each pro-
cessing unit, unlike the real cases in which lots of streams are produced and then mixed in
intermediate tanks. Two crude oils are available and at least 300m3 of crude oil 2 might be
processed by 400$/m3. The refinery can still purchase up to 1500m3 of crude oil 1 by 375$/m3,
and 800m3 of crude oil 2 by 450$/m3, but the minimum volumes are 300m3 and 200m3, re-
spectively. There are no storage costs neither storage limits, but a restriction on the maximum
volume of oil the refinery is able to receive in a certain period. Table 1 complements the data.

Table 1. Demands, prices, and specifications for final products.

Product Price ($) Demand (t=1) Demand (t=2) Specifications

LPG 312 -/250 -/200 Density: [0,0.57]
Gasoline 559 50/300 50/300 Sulfur: [0,0.143] Octane: [75,100]
Diesel 487 50/300 50/300 Sulfur: [0,0.57] Cetane Number [35,100]
Fuel oil 296 -/350 -/350 Sulfur: [01]

Formulation was coded in AIMMS 3.11 and solved by BARON 7.5.3 on a server powered by
an Intel Core 2 Duo 2.26GHz, 8BG of RAM, under MS Windows Server 2003 64-bit. The gener-
ated mathematical program have 281 variables(12 binary) and 307 constraints. First solution
was found in just 33.9s within an duality gap of 34.7%, and the best incumbent one in 6min
approximately. But, after 2h there was a duality gap of almost 17.5%. This small case ilus-
trates how hard is to solve RPISP to optmality. Even being about 10 times smaller than the
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Figure 1. A hypothetical refinery specialized in the production of fuels.

real instances and having lot less nonlinear constraints (since there are few units, specially
intermediate tanks), it requires a prohibitive computation time.
In both periods the best solution found suggests the allocation of campaigns 1 and 2 to UDA,
and allocation of campaign 1 to FCC. Moreover, it suggests using extra volumes of crude oil 1
in period 1. Since the minimum demands are very low, this refining system is almost free for
choosing the most profitable production plan.The solutions is also is indicated in Figure 1.

4. Summary

Find the global optimum of RPISP it is a very hard task. Altough BARON had been able to
found sub-optimal solutions quickly for the hypothetical refinery, the same was not true in
real cases that usually have dozens of binary variables and thousands of continous variables
and constraints. BARON and AOA were also applied to a small set of real instances (not
reported here), but failed in found a feasible solution in most cases. These instances have
around 60 binary variables and 2000 continuous ones. As an alternative we have been working
in matheuristics and bounding algorithms.
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Abstract The Dial-a-Ride Problem have the objective attend all the requisitions (pickup and delivery loca-
tions) of a passengers group served by a fleet of vehicles. DARP aim to minimizes the operational
costs and garantee the Quality of Service, given by constraints imposed by users and vehicles. In
this work we presents a Iterated Local Search with Variable Neighbourhood Search metaheuristic to
solve the DARP, a set of Nighborhood Structures and the Perturbation methods. We reported new
best results for 9 out of 13 instances utilized as benchmark.

Keywords: Stochastic Methods, Metaheuristic, Dial-a-Ride Problem

1. Introduction

Dial-a-Ride Problem (DARP) is a particular instance of the Vehicle Routing Problem, whose
main difference to other approaches is its aim in reaching an appropriate balance between the
reduction of the passages dissatisfaction and operational costs [4].

DARP can be represented in different configurations. For example, it can consider dynamic
or static requests, one or multiple vehicles, homogeneous or heterogeneous set of vehicles,
and unique or diverse garages. Several works have explored such different configurations.

Jaw et al. [5] was one of the first works to propose the use of heuristics to the static mod-
elling of DARP to multiple vehicles. In this approach, the authors used time windows for
boarding and leaving, and a maximum time for trips was represented via a linear function of
the trip time, which is imposed to each user. A heuristic selects the clients in order of the most
viable boarding and gradually inserts such clients into the vehicles routes.

Toth and Vigo [10] also enables the specification of boarding and leaving requests with time
windows. However, they use a limit related to the trip time, which is proportional to the
distance of the trip. This work used a local search method, derived from the Tabu search, and
heuristics for parallel intra-routes and inter-routes insertions.

Znamensky and Cunha [11] adapted the Parallel Insertion Heuristic, proposed by Madsern
et al. [8] and applied improvements to the routes methods, similarly to Toth and Vigo [10].
This work was applied to the Transport Service for Deficient People of Sao Paulo city, via
the ATENDE system. In order, this system uses vans to attend elderly and deficient people.
Instances correspond to a day of operation, which has a total of 349 requests of clients using
84 vehicles distributed along 47 garages in several cities.

Cordeau and Laport [2] developed a multi-vehicle algorithm, to static DARP, applying three
different Tabu search heuristics. The first heuristic aims to only reduce the violations in the
time windows. The second heuristic uses this same idea and also tries to reduce the routes
duration time. The last heuristic uses the ideas of the first and second approaches and also the
time that users stay inside the vehicles.

∗Acknowledge CAPES/REUNI the financial support given to the development of this work.



62 Daniel L. V. Costa, Lucídio A. F. Cabral, and Clauirton A. Siebra

Jφrgensen et al. [6] proposed the use of Genetic Algorithm (GA) to DARP. This model is a
static version with multiple vehicles, heterogeneous set of vehicles and multiple garages. The
approach to resolve the problem was to “first group” and “after routing”. The GA arranges the
clients to vehicles and determines which clients will be attended for which vehicles. While the
routing stage determines the sequence that clients will be attended; the programming stage
independently determines the times for each vehicle via a specific heuristic.

Courdeau [1] used a Branch-and-Cut algorithm to DARP. In this work, the problem is mod-
elled as a static version, multiple vehicles, homogeneous set of vehicles and unique garage.
The problem resolution is given by an exact approach. The used instances were randomly
generated, with a maximum of 32 requests.

Mauri and Lorena [7] used the Simulated Anneling to DARP and proposed a multi-goal
version, which aims to reduce both the operational costs and client inconveniences. In this
approach, some constraint can be relaxed, so that they can compose the objective function.

Parragh et al. [9] proposed a VNS that aims to reduce the total routing cost, respecting the
maximum limits of the routes duration, time windows and time limits related to rides.

The paper is organized as follows. Section 2 presents the Proposed Method for this work,
Section 3 presents the Computational Results, and the Conclusion is shown in Section 4.

2. Proposed Method

This work uses the Iterated Local Search metaheuristic, together to the Variable Neighbour-
hood Search. As other works, the aim is to reduce the total routing cost, maintaining the client
satisfaction. For that end, we have used the proposal of Mauri and Lorena [7], which consid-
ers the time of service starting, leaving and arriving times in the nodes, delay time of service,
vehicle loading, trip time, routing time and time window in each node of the graph. This
formulation enables that constraints can be relaxed For example, the maximum duration time
of routes, maximum time of waiting in each local route, vehicles capacity and the total time
that surpasses time windows.

The developed algorithm has a pre-processing to cut the graph, according to the method
proposed by Cordeau [1]. After that, we use a heuristic to create an initial solution, which con-
siders four insertion modes, as presented by Parragh [9]. The neighbourhood structures, ap-
plied in this work, were: RouteReordering[7], PointReallocation[7], PointsChange[7], Reverse,
RouteShift(1), RouteShift(2), RouteShift(3), Swap(1,1), Swap(2,1), Shift(1,0) and
Shift(2,0).

The RouteReordering[7] consists in a randomly choice of a route that is part of the current
solution and the randomly choice of a new position to insert it, considering the precedence
restriction (a leaving cannot be executed before its boarding).

The method PointReallocation[7] consists in a randomly selection of two routes and a re-
quest regarding the first route. This request is removed and randomly inserted into the second
route.

The PointsChange[7] consists in a randomly choice of a pair of route and one requisition in
each one, then swap the requisitions.

The Reverse neighbourhood structure enables the inversion of the route direction, so that
the boarding and leaving points are changed.

The movements RouteShift(1)/RouteShift(2)/RouteShift(3) consist in selecting one of the
routes and shifting its first element in one/two/three positions. If this process results in some
problem regarding the precedence restriction, then we remove the problematic pair of the
request and insert it in the best position according to the objective function.

Swap(1,1)/Swap(1,2) enables a randomly choice of two routes related to the current solu-
tion and permutes one/two requests from the first route for one from the second route. The
insertion of the elements are carried out in accordance with the critic node, as proposed by
Cordeau and Laporte [2].

Shift(1,0)/Shift(2,0) selects two any routes, remove one/two requests from the first route
and insert them in the second route. Again, the insertion is carried out in accordance with the
critical node.
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The perturbation method for the ILS-VNS, we utilizes “Reallocate Blocks for Departure”,
Swap(m,n) and “Several Neighbourhoods” methods. The “Reallocate Blocks for Departure”
selects a route, inverting the order of a continuous loading sequence. Swap(m,n) consists in
selecting two routes, choosing m requests of the first route, n requests of the second route and
permuting such choices. The insertion of the requests in the routes is carried out in accor-
dance with the critical node. The “Several Neighbourhoods” method chooses a sequence of
neighbourhood structures and sequentially applies such structures.

3. Computational Results

The ILS-VNS was implemented in C++ and all experiments were executed in a Core2Duo
2.26GHz processor with memory of 2GB. The instances used in our experiments were pro-
posed by Cordeau and Laporte [3] and are available in
http://www.hec.ca/chairedistributique/data/darp/.

As in other works [2],[6],[7],[9], we have sequentially executed 5 times each instance of the
problem, and computed the best results for each instance. Next table(1) shows the results of
our experiments, together with results of other approaches from the literature. The bold val-
ues represent the best values for each problem. We got nine new best results for the instances
utilized as benchmark.

Table 1. Traveled Distance result

Instance Tabu Search Simulated Anneling Genetic Algorithm VNS ILS-VNS

R1a 190, 02 252, 79 309 190, 02 160.286
R2a 302, 08 437, 45 539 301, 04 281.045
R3a 532, 08 831, 74 1047 532, 00 490.491
R5a 636, 97 1085, 45 1350 628, 11 599.677
R9a 672, 44 1064, 23 1343 658, 31 654.001
R10a 878, 76 1392, 09 1811 857,11 865.417

R1b 164, 46 251, 85 284 164, 46 155.357
R2b 296, 06 436, 69 561 295, 66 289.818
R5b 589, 74 1010, 09 1344 578,61 618.299
R6b 743, 60 1289, 31 1799 740,35 832.962
R7b 248, 21 375, 67 478 248, 21 239.158
R9b 601, 96 1041, 09 1372 597, 75 595.554
R10b 798, 63 1414, 65 1740 795,16 876.658

4. Conclusion

This paper discusses a new algorithm that uses two metaheuristics, Iterated Local Search and
Variable Neighbourhood Search, to solve DARP with multiple vehicles and static requests.
The experiments show a good performance when we compare this algorithm with other ap-
proaches from the literature. For future works, we intend to use exact local search methods to
a better exploration of the neighbourhoods.
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Abstract In this article we propose a new method in order to solve a general black-box global optimization
problem where function evaluations are expensive. Our work was motivated by many problems
in the oil industry, coming from several domains like reservoir engineering, molecular modeling,
engine calibration and inverse problems in geosciences. Even if evolutionary algorithms are often a
good tool to solve these problems, they sometimes need too many function evaluations, especially
in high-dimension cases. To overcome this difficulty, we propose here a new approach, called GOS-
Grid, using as surrogate model the Sparse Grid interpolation method with a refinement process .

Keywords: Global optimization, Expensive functions, Surrogate models, Sparse Grid interpolation.

1. Introduction

In the context of oil industry, many problems consist in a global minimization of a computa-
tionally expensive function with bound constraints ([1]):

Find x∗ = argminf(x)
xl ≤ x ≤ xu
x ∈ Rn

where f : Rd → R is the computationally expensive function and xl, xu ∈ Rn.
The values of f are in general the output of a complex simulator for which we don’t have

an explicit expression. The absence of any information on the function gradient narrows the
resolution field to algorithms using no first or second order derivatives. There exists many
different approaches in derivative free optimization, among which the most popular are direct
search methods like Nelder Mead or MADS ([2]) and evolutionary algorithms like genetic
algorithms ([3]), evolution strategies or particle swarm optimization (see [4] for a review of
DFO methods). Unfortunately, all these approaches may exhibit a slow convergence behavior
and thus be very expensive.

The use of a surrogate model is well suited for the type of optimization considered here.
A surrogate model is a framework used to minimize a function by sequentially building and
minimizing a simpler model (surrogate) of the original function. A widely used form of sur-
rogate models consists of linear combinations of basis functions, for instance Radial Basis
Functions ([5]) or Kriging. In general, the more points used when creating an interpolation
model, the more accurate is the approximation.

In this work, we construct a new surrogate model by using the Sparse Grid interpolation
method. Basically, the Sparse Grid approach is a hierarchical Lagrange approximation method
which neglects the basis functions with the smallest supports. This approach was introduced
in 1963 by Smolyak ([6]) in order to approximate integrals in high dimensions. It was applied
for PDE approximations and more recently for sensitivity analysis ([7]) and optimization ([8]).
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Compared to the approach in [8], a local refinement is constructed here in order to explore the
more promising regions. The Sparse Grid interpolation method is recalled in section 2 whereas
the new global optimization method is presented and applied for analytical test functions in
section 3.

2. The Sparse Grid interpolation method

The Sparse Grid interpolation method uses Lagrange polynomials on the Chebyshev points
as basis functions in dimension one. The extension to dimension d is done by simply ten-
soring the formulas obtained in dimension one. The hierarchical approach and the sparsity
principle are respectively presented in the first two subsections. The refinement process is
then described in subsection 2.3.

2.1 The 1-D case

For i ∈ N, we call Xi the set of the Chebyshev points in the interval [0, 1] of level i. These sets
have the property that Xi ⊂ Xi+1. If we denote by aij the Lagrange polynomial associated to
each xij ∈ Xi, the interpolation model of level i of f , called mi(f), is equal to

mi(f) =
∑
xij∈Xi

f(xij)a
i
j . (1)

Define ∆k as the difference between two consecutive models, then:

∆k = mk(f)−mk−1(f) =
∑

xkj∈Xk(f(xkj )−mk−1(f)(xkj )) . akj .

If we set Xk
∆ = Xk\Xk−1, as Xk−1 ⊂ Xk we get

∆k =
∑

xkj∈Xk
∆

(f(xkj )−mk−1(f)(xkj ))︸ ︷︷ ︸
wkj

. akj .

It means that for computing ∆k we only evaluate the function on the points that don’t belong
to the previous level sets. The telescopic sum principle and m0(f) = 0 give us:

mi(f) =
i∑

k=1

∆k.

Thus, in order to get the approximation of level i + 1 we only need to compute the function
values at the new interpolation points Xi+1

∆ .

2.2 The general case

For k = 1, . . . , d let Xik be a set of Chebyshev points of some level ik. By simply tensoring (1)
we get the Lagrange interpolation formula on the set

∏d
k=1X

ik as:

m(i1,i2,...id)(f) =
∑

x
i1
j1
∈Xi1

. . .
∑

x
id
jd
∈Xid

f(xi1j1 , . . . , x
id
jd

)(ai1j1 ⊗ . . .⊗ a
id
jd

).

With the same hierarchical approach done in dimension 1, we get

m(i1,i2,...id)(f) =

i1∑
k1=1

. . .

id∑
kd=1

(∆k1 ⊗ . . .⊗∆kd).

If we only apply the sum on the indexes k = (k1, . . . , kn) such that |k|1 ≤ d+N − 1 we get the
Sparse Grid interpolation formula of levelN , which neglects the smallest support basis functions:

SGN (f) =
∑

|k|1≤d+N

(∆k1 ⊗ . . .⊗∆kd).
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Figure 1. Sparse grid in 2-D for N=4. Number of
points: 29

Figure 2. Sparse grid in 2-D for N=4 and a refine-
ment process of order 3. Number of points: 42

The interpolation points of a Sparse Grid of level N = 4 in dimension 2 is depicted on
Figure 1. Compared to a full grid of the same level which would contain 81 points, it is only
made of 29 points. More generally, it can be proven that for a sufficently smooth function
f , the approximation of f by a Sparse Grid model is of order O(N−2(logN)d−1) with only
O(N(logN)d−1) points.

2.3 The refinement process

In a global optimization problem, we need to explore the whole domain but we also need
sometimes to focus our attention to special promising zones (the exploitation phase). To do
so, a refinement process of the Sparse Grid interpolation model is used to construct a new
and more precise model around a promising point. A local Sparse Grid model interpolates
the error function in this area (see Figure 2) and can thus locally improve the current global
model.

3. Global Optimization with a Sparse Grid model (GOSGrid)

Given a maximal number of function evaluations and bound constraints, the new optimiza-
tion method, called GOSGrid, sequentially minimizes Sparse Grid models of the objective
function f . In particular, during the process, it refines some zones in order to get a better
solution. The hierarchical principle allows us to improve the global model without throwing
away the previous one whereas the sparsity greatly reduces the number of exact evaluations,
especially in high dimensions.

Starting from a given hierarchical level, the algorithm constructs a global model in the area
described by the bound constraints. As the evaluation of the model is computationally inex-
pensive, a local multistart algorithm is run in order to find a global minimizer of the model.
We then compare the function value at this point with the lowest value of the function at the
grid and we keep the best of them. Then, we iteratively refine the global model in a hypercube
centered at this point, and minimize with the same multistart algorithm the improved model.
The construction of the next Sparse Grid level is done when a criteria based on the number of
evaluations needed to perform the refinement or a relative rate of decrease is fulfilled.

Figure 3 gives a comparison between the GOSGrid method (continuous line) and a evolu-
tionary algorithm, namely an evolution strategy with a cumulative step length adaptation, for
the Michalewicz function in dimension d = 5.

The refinement process corresponds to the small decreasing branches starting from the con-
tinuous line (here for the levels N = 3 to N = 5). For a given number of evaluations, the cost
function value for the evolutionary algorithm is higher than the corresponding one for the
GOSGrid approach. The figure shows the importance of the refinement step as the best points
are found after the refinement process. Other tests in higher dimension, which couldn’t be
included in the text due to space limitation, lead to the same conclusion.
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Figure 3. Comparison between GOSGrid (cont.) and an evolutionary algorithm (mean and standard deviation)
for the Michalewicz function.

4. Conclusions and perspectives

We present here a new global optimization tool for expensive functions, called GOSGrid. It
is based on the Sparse Grid interpolation method with a Sparse Grid refinement process. The
hierarchical construction of the surrogate model and its sparsity allows to reach a faster de-
crease, in terms of cost function evaluations, compared to a classical evolutionary algorithm.
The next step will consist to improve the refinement strategy by making it more adaptive and
efficient (taking into account more promising points at the same time, for example) and to
apply GOSGrid on real reservoir engineering cases.
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Abstract We present a sequential linear approximation method to heuristically solve the Turning Restriction
Design Problem (TRDP). Experiments with a standard network example show favourable results
compared to an existing nonlinear method.
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Recently, there has been significant interest in improving the performance of congested
urban-traffic networks through global optimization. In general, a common objective of the
Network Design Problem (NDP) [10] is to ease congestion and exhaust emissions by reducing
the total travel cost of all users. The relatively inexpensive and easily implemented “non-
intervention” family of improvement strategies for the NDP involves making non-physical
adjustments to characteristics of the network such as flow direction, signal settings and tolls
[2, 4–7].

Here we examine a particular low-cost, effective, non-intervention strategy, namely, that
of deciding which turning restrictions at intersections should be imposed on the users of the
network. That is, certain travel directions (left turn, right turn or drive straight ahead) may
be prohibited at each particular intersection in order to prevent certain streams of users that
arrive at the intersection from joining particular outgoing streams. The question is how to
select which turns (if any) to restrict in order to enhance a given system performance measure.
The advantages of introducing turning restrictions have been discussed in [3].

Long et al. [9] have introduced and defined the Turning Restriction Design Problem (TRDP) as
that of determining the optimal set of turning restrictions to be imposed in order to minimize
user equilibrium-based total cost, developing a bi-level model of the TRDP. A shortest path
algorithm is used to establish user-equilibrium flows at the lower level and the resulting flows
are used within a sensitivity algorithm to solve a relaxed version of the TRDP model. Finally,
at the upper level, branch and bound strategies are used to solve the TRDP model to identify
a promising set of turning restrictions at each iteration.

The method of Long et al. [9] begins with a network without any turning restrictions and
progressively builds up a set of restrictions that are selected from a relatively limited subset of
all possibilities, until some termination criterion is met. Only some so-called “crucial” inter-
sections can be considered for restrictions and only left-turn restrictions are allowed. Also, the
method is based on a highly nonlinear mixed integer programming model. For these reasons
we have constructed a Sequential Linear Approximation (SLA) method that starts with a given
set of turning restrictions, corresponding to the present situation in a given network, and
aims to identify which additions or subtractions (allowing all practical possibilities) should
be made in order to create the restriction regime that minimises user equilibrium-based total
cost.

∗Hugo do Nascimento is partially sponsored by a Scholarship of Research Productivity from CNPq (309463/2009-2).
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The TRDP method we propose is based on a model to be solved using SLA. LetG′ = (N ′, A′)
be the underlying digraph that models a given traffic network with node setN ′ and arc setA′.
Each node in N ′ represents either the beginning or the end of a street, that is, an entrance or
departure point of an intersection, and each arc inA′ represents either a street travel direction.
Multiple arcs connecting the same pair of nodes are not permitted.

We model all turning possibilities at each intersection by replacing its representative node
with a particular digraph due to Potts and Oliver [11]. This creates a modification of G′ =
(N ′, A′) that includes arcs representing all turning possibilities at the intersections. Arcs rep-
resenting infeasible turns are permanently removed from A′ and play no further part in the
discussion. Next, we establish which further turning restrictions already exist in the given
network, but that could possibly be rescinded, and denote the corresponding arc set by AR.
Finally, we define the set of remaining arcs that were created within the original nodes of G′

as the class of turning restrictions that could possibly be introduced. We denote this arc set
by AI . Therefore, whenever flow is allowed in any arc β ∈ AR, an existing turning restric-
tion is rescinded. Whenever flow is prohibited in any arc β ∈ AI , a new turning restriction
is imposed. The original arcs A′ representing the streets of the given network have remained
untouched and none of them are subject to removal. We denote the final graph as G = (N,A).

Let OD denote the set of origin-destination node pairs that make up the matrix T = (tij),
where tij is the demand of private transportation from node i to node j. Let nij be the number
of (i, j) routes and pkij denote the kth (i, j) route, for k = 1, . . . , nij . The route pkij can be
represented by a binary vector of elements (pkij)α, corresponding to the arcs α ∈ A, where
(pkij)α is unity if α belongs to pkij and is zero otherwise. Also, let xkij be the number of users of
pkij and let the unit traversal cost of arc α, ∀α ∈ A, be denoted by tα(·). The following popular
arc cost function for any arc α ∈ A has been provided by the USA Bureau of Public Roads [1]:

tα(fα) = tFα [1 + 0.15(fα/uα)4], (1)

where fα is the flow, tFα is the congestion-free travel cost and uα is the effective capacity. From
(1) it can be seen that uα has an inverse effect on tα. This fact has lead us to adopt an arc
capacity-based approach to the TRDP. Towards this end, for all arcs α ∈ A and β ∈ AR ∪ AI ,
let sβα be a real number that denotes the change in uα when the status of β is changed. That
is, uα becomes uα + sβα whenever either (i) β ∈ AR and flow is allowed in β (rescinding
an existing turning restriction) or (ii) β ∈ AI and flow is prohibited in β (creating a new
turning restriction). Note that sβα may be positive of negative. Furthermore, ∀ α ∈ AR ∪ AI ,
let ERα = {β | β ∈ AR, sβα 6= 0}, EIα = {β | β ∈ AI , sβα 6= 0}, let cα denote the cost of changing
the status of arc α and let B denote the available budget for the total cost of all changes in arc
status. Finally, the decision variables of the proposed model are: yα, ∀ α ∈ AR ∪ AI , where yα
is set to unity if α ∈ AR∪AI and flow is allowed in α; otherwise yα is set to zero. It is assumed
that the flow pattern is in user equilibrium. That is, according to Wardrop’s First Principle
[12], all the routes actually used between any origin-destination pair of nodes should have
close to equal travel costs and this cost must not exceed the cost of any unused route between
this pair. To model this, let ckij denote the unit cost of pkij , c

∗
ij = min{ckij | k = 1, . . . , nij},

Kij = {k | k ∈ {1, . . . , nij}, ckij = c∗ij} and K ′ij = {1, . . . , nij}\Kij .
We now introduce an SLA scheme where the arc flows fα are held constant at each iteration

in order to calculate the tα(fα)’s using (1). With these costs, we can identify least-cost routes
for every (i, j) ∈ OD. These route costs are modified to provide the objective function coef-
ficients of a mixed binary ILP that is used with the aim of identifying a promising regime of
turning restrictions according to a user equilibrium flow assignment. Consider the following
model, termed (LIPSTUD)r, for the rth SLA iteration that has as input the current flows f rα,
∀α ∈ A, together with arc cost flows tα(f rα) found by substituting f rα in (1). This model is new
and is one of the main contributions of the present paper.

Minimise z =
∑

(i,j)∈OD

∑nij

k=1
(Ckij)

r.xkij , (2)
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subject to ∑nij

k=1
xkij = Tij , ∀ (i, j) ∈ OD, (3)∑

(i,j)∈OD

∑nij

k=1
(pkij)α.x

k
ij ≤ uα +

∑
β∈ERα

sβα.yβ +
∑

β∈EIα
sβα.(1− yβ), ∀ α ∈ A,

(4)∑
(i,j)∈OD

∑nij

k=1
(pkij)α.x

k
ij ≤M.yα, ∀ α ∈ AR ∪AI , (5)∑

α∈AR
cα.yα +

∑
α∈AI

cα.(1− yα) ≤ B, (6)

xkij ≥ 0, ∀ (i, j) ∈ OD, k = 1, . . . , nij , (7)

yα ∈ {0, 1}, ∀ α ∈ AR ∪AI , (8)

where (Ckij)
r =

∑
α∈A

(pkij)α.tα(f rα), ∀ k ∈ (Kij)
r, (9)

= M1.
∑

α∈A
(pkij)α.tα(f rα), ∀ k ∈ (K ′ij)

r, (10)

and where (Kij)
r and (K ′ij)

r are the versions of Kij and K ′ij at the rth iteration and M and
M1 are suitably chosen positive real numbers. The elements of the model are now explained.
The function (2) is based on (9) and (10) and represents the objective of identifying a user
equilibrium assignment. (3) is a conservation of flow constraint for all travel demand. (4)
allows for arc capacity to be adjusted as a result of changes to the turning restriction regime.
Next, (5) prevents travel in any arc that has a turning restriction. (6) introduces a budgetary
constraint that enables control over the total cost of alterations that can be made to the original
restriction regime. In the example discussed later the cα’s are set to unity and the budget B is
set to various levels, controlling the total number of regime changes that can be made. B can
be set to a relatively high number, allowing any possible combination of changes to be made.
(8) and (9) are the usual non-negativity and binary conditions.

The LIPSTUD model is not designed to solve the nonlinear model of the TRDP obtained by
substituting the nonlinear functions (1) into (9) and (10) and thus creating a nonlinear objective
function in (2). Instead, LIPSTUD has been constructed to identify at each iteration a collection
of O-D routes that can be substituted into (9) and (10) to compute a set of temporarily constant
objective function coefficients. These coefficients are inserted into (2) to create a linear model.
The optimal solution to this model is not necessarily optimal for the nonlinear model and thus
LIPSTUD, like many NDP approaches, is an approximating, iterative, heuristic procedure.
However, consider the special case where a user equilibrium assignment can be found that is
a feasible solution to (3)–(8). Next, consider the problem (LIPSTUD)r whose objective function
coefficients have been calculated by substituting the arc flows of this assignment into (9) and
(10). Then an optimal solution to (LIPSTUD)r can be found that is a user equilibrium solution.
In general, the procedure solves the linear problem (LIPSTUD)r at the rth iteration and then
revises the arc flows fα and the arc cost functions tα(fα). These updates are used to revise the
route costs to (Ckij)

r+1. From this, the next problem (LIPSTUD)r+1 is formulated and solved.
The process is repeated until some termination criterion is met.

We now discuss some preliminary computational experience with LIPSTUD on a standard
network from the literature in comparison with the nonlinear method of Long et al. [9]. The
numerical example is known as the Sioux Falls network and was first introduced in [8]. It has
24 nodes, 76 arcs, 528 O-D pairs and 178 possible turns at intersections (any of which can be
restricted). The numerical results about to be reported are summarized in Table 1.

We first establish a user equilibrium assignment for the original network with no turning
restrictions present, meaning that any user can make any turn. The total user cost of this
assignment is zo = 15,585,566.05 according to our calibrations and we use this cost as the
basis for comparison. Long et al. [9] selected 22 “crucial” possible turnings restrictions about
which to make decisions. Their method resulted in a turning regime with 15 of the 22 possible
turns being restricted (T1). For the same situation, LIPSTUD identified 12 restrictions, with an
improved total user equilibrium cost (T2). LIPSTUD was also run on the original network with
a budget of B = 22 with each restriction introduction costing unity, that is, any combination
of up to 22 restrictions can be imposed out of the possible 178. This resulted in a regime with
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the full limit of 22 restrictions imposed, with a slightly better total cost again (T3). When B
is increased to 178, allowing any combination of restrictions to be imposed, the best regime
identified by LIPSTUD has 108 restrictions, leading to a significantly reduced total cost.

Table 1. The results of applying LIPSTUD to the Sioux Falls network.

Test Method Total UE Cost (z) % Reduction in zo No. of Restrictions

T1 Long et al. 15,087,557.74 3.20 15
T2 LIPSTUD 14,794,305.21 5.08 12
T3 LIPSTUD 14,679,976.38 5.81 22
T4 LIPSTUD 14,338,358.57 8.00 108

We have presented a successive linear approximation method for identifying a heuristic
solution to a nonlinear model of the TRDP. The method aims to adjust the current turning
restriction regime in a given network in order to minimise the total cost when user route choice
is driven by user equilibrium principles. The method has been compared with an existing
nonlinear TRDP method using a standard network example from the literature. Preliminary
computational experience with LIPSTUD compares favourably with that of the non-linear
method. The authors are in the process of refining the LIPSTUD model, conducting further
numerical experiments and investigating the convergence properties of the method.
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Abstract Non-convex quadratic programs with non-convex quadratic constraints can be solved by the exact
method based on the branch and cut algorithm of Audet et al.[2]. The algorithm, however, may lead
to solutions not necessarily strictly feasible. We present a new branching strategy improving the
control on constraint feasibility.

Keywords: Global Optimization, Non convex quadratic programming, Branch and cut, Interval arithmetics

1. Introduction

We consider the general nonconvex quadratically constrained quadratic programming prob-
lem (QQP ) that can be stated as follows:

min
X∈Ω

Q0(X) =
∑

(i,j)∈N2

C0
ijxixj +

∑
i∈N

c0
ix

2
i +

∑
i∈N

d0
ixi

s.t.

Qp(X) =
∑

(i,j)∈N2

Cpijxixj +
∑
i∈N

cpi x
2
i +

∑
i∈N

dpi xi = bp ∀p ∈ {0 . . . P} (1)

Qk(X) =
∑

(i,j)∈N2

Ckijxixj +
∑
i∈N

cki x
2
i +

∑
i∈N

dki xi ≤ bk ∀k ∈ {0 . . .K}

Where Ω ⊆ Rn, X is a vector with coordinates xi, and all the Cij , ci, di and b are real value
parameters.

Such model encompasses many others problems including linear mixed 0 − 1, fractional,
bilinear, bilevel, generalized linear complementarity, and many more programming problems.

Different approaches have been developped to find the global optimum of such problems
[1–3, 5–8, 11, 12]. However, Tuy and Hoai-Phuong[13] emphasize that numerical errors occur
in such processes, which could lead to incorrect solutions.

Audet et al. [2] propose to solve the problem with an algorithm based on approximation
of quadratic terms by means of Reformulation-Linearization Techniques (RLT). Our approach
extends their method based on the use of a Branch & Cut enumeration tree.
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2. New branching scheme

We propose a new hybrid method that combines Interval Branch & Bound Algorithm (IBBA)
[9] and Reformulation and Linearization Techniques (RLT) [2]. The method also contains a
new stopping condition for the RLT process that results in a better accuracy of the solution
and avoids the unexpected behavior highlighted by Tuy and Hoai-Phuong[13].

2.1 Node preprocessing in the enumeration tree

Perron [10] proved that bounds tightening can lead to a significant improvement in terms of
convergence for RLT. However, the preprocessing method described in [10] is time consuming
and is not applied at every node of the enumeration tree.

We use the constraint propagation techniques based on interval arithmetics presented in
[4, 9] to improve the bounds on the variables. It provides a very efficient way to compute
good bounds in a reasonable amount of time. Moreover, it provides a lower bound on the
optimal solution of problem (1) that can be used to prune the enumeration tree if a feasible
solution has been encountered prior to the processing of the current node. The technique can
also determine whether a node potentially contains a feasible solution for the initial problem.
If it is not the case, no further processing is performed on the node.

The resolution of the linear relaxation also provides a lower bound to the solution of (1).
Such value can be used to apply the constraint propagation to the objective function and
improve the quality of the bound tightening.

2.2 Evaluation of the stopping condition

In the rest of the paper, we denote by V the vector of vi and W the matrix of wij .
To solve the problem with the RLT method, the following problem, equivalent to (1), is

used.

min
X,V,W

[Q0]l(X,V,W ) =
∑

(i,j)∈N2

C0
ijwij +

∑
i∈N

c0
i vi +

∑
i∈N

d0
ixi

s.t.

[Qp]l(X,V,W ) =
∑

(i,j)∈N2

Cpijwij +
∑
i∈N

cpi vi +
∑
i∈N

dpi xi = bp ∀p ∈ {0 . . . P} (2)

[Qk]l(X,V,W ) =
∑

(i,j)∈N2

Ckijwij +
∑
i∈N

cki vi +
∑
i∈N

dki xi ≤ bk ∀k ∈ {0 . . .K} (3)

vi = x2
i ∀i ∈ {1 . . . n} (4)

wij = xixj ∀(i, j) ∈ {1 . . . n}2 (5)
vi ≥ 0, (6)

A linear relaxation is obtained by relaxing the constraints (4) and (5).
Typically, branching methods stopping conditions are reached when the optimal solution

(X̂, V̂ , Ŵ ) of the linear relaxation does not violate the relaxed constraints (within a certain
tolerance).

However, the relaxed problem described above, usually does not have a unique optimal
solution and finding one of them that satisfies the constraints (4) and (5) can require the gen-
eration of many cuts and branches in the enumeration tree.

Our approach consists in inferring a point (Ẋ, V̇ , Ẇ ) from (X̂, V̂ , Ŵ ) that satisfies the re-
laxed constraints of the initial problem. The following rule is used to generate such a point:

ẋi = x̂i ∀i ∈ {1 . . . n}
v̇i = x̂i

2 ∀i ∈ {1 . . . n}
ẇij = x̂ix̂j ∀(i, j) ∈ {1 . . . n}2

A feasibility condition for the new point (Ẋ, V̇ , Ẇ ) consists in verifying that constraints (2)
and (3) are satisfied within a certain tolerance (to handle numerical precision errors). If such
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a condition is satisfied, then the evaluation of the objective function at the point (Ẋ, V̇ , Ẇ )
gives an upper bound for the solution of (1).

Moreover, the point (Ẋ, V̇ , Ẇ ) is said to verify the optimality condition, within a tolerance
of εz , if it satisfies:

[Q0]l(Ẋ, V̇ , Ẇ )− [Q0]l(X̂, V̂ , Ŵ ) ≤ εz . (7)

As [Q0]l(X̂, V̂ , Ŵ ) is a lower bound on the optimal solution of the initial problem, the value
[Q0]l(Ẋ, V̇ , Ẇ ) − [Q0]l(X̂, V̂ , Ŵ ) represents the optimality gap of the point (Ẋ, V̇ , Ẇ ). If it
is sufficiently close to zero, one can consider that both (X̂, V̂ , Ŵ ) and (Ẋ, V̇ , Ẇ ) lie on the
optimal face of the linear relaxation and (Ẋ, V̇ , Ẇ ) is one representative of the set of optimal
solutions that satisfies the contraints of (1).

2.3 Variable selection for branching

In [2] the selection of the variable for branching is based on the worst violation of (2) and (3)
at point (X̂, V̂ , Ŵ ).

However, given our new stopping condition, we propose a selection of the variables among
those involved in constraints that (Ẋ, V̇ , Ẇ ) does not satisfy. Hence, at every nodes in the sub-
tree a better evaluation of one of the variable implied in a violated constraint is improved. This
tends to decrease the infeasibility of the next incumbent solutions.

2.4 Value selection for branching

In [2], the authors propose to branch on a value α based on the minimization of a certain error
on the approximation of vi and wij . However, those evaluations imply a division by factors
that are very close to 0 when the bounds on the variable xi are tight. Hence, the more accurate
the bounds on a variable are, the less stable is the evaluation of α.

In order to improve accuracy, more stable values for α are proposed. For example, using
the value of xi in the solution of the linear relaxation is shown to be as efficient on instances
with few variables and limits the errors due to numerical instability.

3. Preliminary numerical results

A set of problems, taken from [10] is used to emphasize the performance of the new branching
scheme in terms of CPU time and solution accuracy.

Table 1. Numerical results

Perron [10] New branching scheme
Ex z CPU(s) max violation z CPU(s) max violation

ex 5 20 -400 0.01 < 10−10 -400 0.02 < 10−10

ex 5 21 10126.60 0.04 < 10−10 10126.60 0.03 < 10−10

ex 5 22 17.014 4.89 5 10−6 17.014 1.06 < 10−10

ex 5 23 -5450.75 1.69 7 10−6 -5450.75 0.09 < 10−10

ex 5 26 156.22 144.98 1 10−5 156.22 1.24 < 10−10

The new branching scheme leads to solution that do not violate the constraints (within a
tolerance beyond the machine precision). Moreover, the propagation techniques based on
interval arithmetics enables significant gains in terms of CPU time.
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Abstract Dynamic programming (DP) is a conceptual way to look at optimization problems that can be writ-
ten in a step-wise separable form. Several textbooks exist that introduce us to theory and show it can
solve nonlinear programming problems obtaining global optimal solutions. On the application side,
no standard way nor software exists to convert optimization problems to DP problems. This makes
application for practical engineering and economic problems a challenge. We use several cases to
illustrate the process of modelling, implementing and solving practical problems.

Keywords: Dynamic Programming, application, Value function

1. Introduction

Dynamic Programming is the name for a specific framework and a class solution methods
for solving optimization problems that can be decomposed into subproblems that are to be
solved step-by-step, or in DP terms stage-by-stage. The concepts like stage, state, and Bellman
equation can be obtained from classical books like [2], and [6].The ground idea is to split the
optimization problem into stages t ∈ {1, 2, . . . , T} and to define per stage a (vector of ) state(s)
Xt and decision variable(s) Qt. A decision Qt is to be found for every possible state in stage t
that minimizes or maximizes some objective function.

Although the DP framework as sketched above is more general, we will focus in this paper
on problems with a time component. The length of a stage can be arbitrary small and is not
necessarily the same for all stages. Any uncertainty involved, e.g. in events that may happen
during a stage, can be modeled through a random variable ξt, yielding Stochastic DP (SDP).
The dynamics of a system from stateXt toXt+1 is given by transformation function Ft(Q,X, ξ)
and the contribution to the objective function in stage t is function gt(Q,X, ξ).

As well the state space as decision space can be discrete or continuous. The horizon T

in the objective
∑T

0 E[gt(Qt, Xt−1, ξ)] can be finite or infinite. In the first case, one wants to
determine the optimal strategy Q∗t (X) that specifies what to do in step t at a state X . In a
stationary system situation, an optimal strategy Q∗(X) tells the decision maker what to do
in which situation. In both cases, the optimum strategy should fulfil the so-called Bellman
equation; there exists a so-called value function Vt(X), such that the Bellman equation [2]
applies

Vt(X) = min
Q

(E[g(X,Q, ξt)] + E[Vt+1(F (X,Q, ξt))]) . (1)

Usually Equation (1) is determined backwards from an end valuation VT or by so-called
value iteration in a stationary system. Each step requires the solution of optimization problem

∗This work has been funded by grants from the Spanish Ministry of Science and Innovation (TIN2008-01117), Junta de Andalucía
(P11-TIC-7176), in part financed by the European Regional Development Fund (ERDF). Eligius Hendrix is a fellow of the Spanish
"Ramón y Cajal" contract program, co-financed by the European Social Fund.
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(1) for each grid point ofX . That problem may be a global optimization problem as illustrated
in Figure 1. It shows the optimization with an increasing variance of random variable ξt.
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Figure 2. Simulated inventory level, SDP strategy

The theoretical result of optimality can be found in aforementioned handbooks. However,
when studying this approach for a practical problem, one learns that function V and corre-
sponding strategy Q∗ can only be derived analytically for very specific cases, mostly in op-
timal control. Despite state space and decision space may be continuous, discretisation and
truncation is commonly used for both spaces.

Moreover, the outcome space of the random variable ξ has to be dealt with and also inter-
polation is used to valuate the second term in (1). In the literature this technicality is either
avoided by presenting a state-to-state transition matrix for each possible action, or, if used at
all, it is not reported and certainly not well explained in the literature. The way to get the
DP concept at work for practical problems enhances many questions. No standard software
is available. Choices have to be made on the discretisation of states, truncating the state and
decision space, on interpolation methods, on optimisation methods etc.

In the presentation, we show how strategies for many interesting problems can be derived:
When and how much to order of perishable inventory products? [7, 5], When to release water
in reservoir or lake management? [1], How should the European Union revise fish quota?
[10], When to switch a traffic lights from colour? [4], Which actions to take consecutively
in an agro-logistics supply chain? [3], Does price variation influence deforestation in Latin
America? [8], and Will pollution of several industries in Australia lead to closure of some? [9]

In this paper, we share the experiences for the first three cases in Sections 2 to 4. We conclude
in Section 5.

2. Inventory control for perishable products

In the management of inventory of fresh food one uses fixed expiry or use-by dates, after
which the product cannot be sold anymore. Traditional inventory control balances inven-
tory holding and ordering cost. Dealing with perishable products requires also keeping track
of items of various ages to account for the waste due to outdating. In [7], a finite horizon
stochastic programming model with a service level constraint has been described for a prac-
tical planning problem of a Dutch food producer. Chance constraints are known to lead to
challenging (global) optimization problems. In that paper two static-dynamic approaches are
evaluated: the static (discrete) order moments are determined as well as the continuous fixed
order-up-to levels that dynamically set an order quantity.

Such strategy is not completely optimal, as it fixes the order moments whereas in an optimal
strategy found by SDP this decision depends on the actual inventory levels. [5] provides
a description of all challenges to approximate Q∗t (X): the dimension of the state space is
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the number of ages to keep track of, in principle the boundaries of the space depend on the
demand functions, discretisation and interpolation has to be chosen to solve (1) and as shown
in Figure 1, (1) is a global optimization problem that could be handled by a combination of
grid search and local search. Notice that the number of optima is limited by the maximum
age of the product. Figure 2 shows the resulting simulated inventory levels of the most fresh
items when the optimum strategy is followed. One can notice that negative levels are reached
in part of the samples due to the service level constraint.

3. Reservoir management

For the derivation of release operating tables in reservoir management, SDP can be used.
We got involved in a study of an engineering office to design a two pump system for lake
Amstelveense Poel. Their idea was to establish levels βj under which one or two pumps are
started to bring diphosphated water into the lake, see Figure 3. The idea was to determine
the levels by black-box global optimization using simulated and real weather data over the
past 25 years. However, this would imply a kind of stationary strategy Q(X), whereas it

Figure 3. Varying water level during the year in lake de Amstelveense Poel

is known that rainfall varies over the year and actually a non-stationary strategy Q∗t (X) is
required. In our study based on weather data, periods of 10 days (decades) were chosen and
an operating table derived by SDP in [1]. Notice that one challenge is that we are not dealing
with a finite horizon concept; the valuation of the water level in the lake at the end of the year
is starting point in following (1) for the 36 decades of which the outcome has to be repeated
again. This process is called value iteration. The discretisation of the water level is easy and
the optimization can be done in a simple spreadsheet.

4. Determination of fish quota

A team of economists was asked to evaluate what is the consequence for the fishery sector
if the EU is not revising their quota on a yearly basis with all costs involved to do so. In
our co-operation, we acknowledged that in fact we are dealing with a bi-level problem that
potentially can be hard to solve, also called two-stage game in economics. On the first level,
the EU sets quota and on the second level, fishermen react on that by deciding on harvest
intensity and investment in their equipment. The resulting dynamic model has stochastic
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fish stock and capital (fishery equipment) as state variables and the quota is a continuous
variable. The optimal value can be found by using nonlinear optimization for fish levels that
are high enough to make harvesting profitable. The whole process is extremely sensitive for
deriving the right bounds and discretisation of state and random outcome space. Moreover,



80 Eligius M.T. Hendrix, Rene Haijema and Inmaculada García,

we require value iteration repeating (1) many times to find the optimal stationary ruleQ∗(x, k)
as depicted in Figure 4. The fish stock dynamics seem to be stable leading to convergence to a
steady state with small random effects as sketched in Figure 5.

5. Summary

Stochastic Dynamic Programming is a concept to obtain global optimal strategies for many
practical planning problems. The choice of state space and its bounding and discretisation is a
big challenge in a tailor made environment, as there is no general purpose optimization tool.
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A Linear Program with Linear Complementarity Constraints (LPLCC) can be stated as fol-
lows

Minimize cTx+ dT y (1)
subject to Ew = q +Mx+Ny

x ≥ 0, w ≥ 0 (2)
xTw = 0

Ay = b, y ≥ 0

where E ∈ Rm×n, M ∈ Rn×n, N ∈ Rm×p, A ∈ Rt×p, with rank(A) = t < p, c ∈ Rn, d ∈ Rp,
q ∈ Rm and b ∈ Rt are given. Note that xTw = 0 and x ≥ 0 and w ≥ 0 implies xi = 0 or wi = 0
for each i = 1, · · · , n. Such variables xi and wi are named complementary.
The constraint set of an LPLCC is known as a General Linear Complementarity Problem
(GLCP) and can even take a more general form allowing some xi variables to be unrestricted
in sign and their complementary wi to be zero [1].
The LPLCC has found many applications in science, engineering, economics and finance [2].
The problem has also been shown useful as a tool for computing global minima of some im-
portant nonconvex programming problems, such as bilevel, bilinear, quadratic and absolute
value programs [1]. Furthermore the well-known Linear Complementarity Problem (LCP)
and the estimation of condition number of a nonsigular matrix in the l1−norm can also be
formulated as LPLCCs.
A (feasible) solution for the constraint set of an LPLCC, that is, a solution of a GLCP (2), can
be found by solving the quadratic program

Minimize xTw (3)
subject to linear constraints of GLCP (2)

Then one of the following cases should occur:
(i) QP is infeasible (linear constraints are inconsistent) and GLCP is infeasible and has no
solution.
(ii) QP is feasible and has a global minimum with a positive function value and GLCP is
feasible and not solvable.
(iii) QP is feasible and has a global minimum with a zero function value and GLCP is solvable.
If E = In and M is a PSD matrix, then case (ii) cannot occur, that is, GLCP is either infeasible
or solvable. Furthermore if M is also an S-matrix (i.e, there exists x ≥ 0 such that Mx > 0),
then GLCP is solvable for each vector q and Ω = {y ∈ Rp : Ay = b, y ≥ 0} 6= ∅. This special
type of LPLCC occurs quite often in applications namely on the solution of bilevel and bilinear
programs by exploiting their LPLCC formulations [1].
In this talk we discuss the problem of finding a global minimum of an LPLCC when E = In
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and M ∈ PSD. In this case, any stationary point of QP (3) is a solution of the GLCP (2). We
show that if M ∈ S and c = 0, then a global minimum for LPLCC can be found by solving a
linear program and an LCP with M ∈ PSD ∩ S, which should be considered as easy tasks.
For a general PSD matrix M and c 6= 0, LPLCC reduces to the Parametric GLCP (PGLCP),
which consists of finding the smallest value of λ such that

GLCP, cTx+ dT y ≤ λ (4)

is solvable. A possible way of solving such a PGLCP consists of reducing the parameter λ ac-
cording to some rule and finding the corresponding solutions of GLCP(λ) (4). This is the idea
of the
so-called Sequential Linear Complementarity Problem (SLCP) algorithm [1]. Unfortunately,
each GLCP(λ) is NP-hard and, in general, only an enumerative method can solve it [1]. Alter-
natively, GLCP(λ) can be stated as the following Linear Integer Programming (LIP)

Maximize (λ+ θ)α− cTu− cT v
subject to γ = Mu+Nv + qα

0 = Av − bα
cTu+ dT v ≤ λα
γ ≥ 0, u ≥ 0, v ≥ 0, 0 ≤ α ≤ 1 (5)
γ ≤ z
u ≤ e− z
z ∈ {0, 1}n

where θ ≥ 1 is a fixed real number.
Consider the Linear Program (LP):

Minimize dT y

subject to Ay = b,Ny = −q (6)
y ≥ 0

Then either LP (6) is unbounded and LPLCC is unbounded or LP (6) is infeasible or it has an
optimal solution ȳ. Let

λ̄ =

{
dT ȳ if LP is feasible
+∞ if LP is infeasible

Then we show that for λ < λ̄, (γ̄, ū, v̄, ᾱ) is a mixed-integer feasible solution of LIP (5) with
ᾱ > 0 if and only if (w̄ = γ̄

ᾱ , x̄ = ū
ᾱ , ȳ = v̄

ᾱ ) is a solution of GLCP(λ) (4). Hence this GLCP(λ)
has no solution if and only if the optimal value of LIP (5) is equal to zero.
A Strongly Stationary Point (SSP) (x̄, ȳ, w̄) of LPLCC is a solution of GLCP (2) such that there
exists (α, λ, β, θ, γ) satisfying the following conditions

0 = ETλ+ α

c = −MTλ+ β

d = −NTλ+AT θ + γ

γ ≥ 0, γT ȳ = 0

βix̄i = αiw̄ = 0, i = 1, · · · , n
βi ≥ 0, αi ≥ 0 for all i ∈ Ix ∩ Iw

where Ix = {i : x̄i = 0} and Iw = {i : w̄i = 0}. It is possible to show that any global mini-
mum (x̄, ȳ, w̄) of LPLCC is an SSP if strictly complementarity holds, i.e., x̄i + w̄i > 0 for all
i = 1, · · · , n. Furthermore an SSP can be found by a Complementarity Active-Set (CASET)
algorithm, which maintains complementarity (solutions of GLCP (2)) in each iteration. Fur-
thermore, an algorithm that finds strongly stationary points in a systematic way and in a finite
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number of iterations has been designed to compute a strongly stationary point (SSP) which is
a global minimum for the LPLCC or close to one.
The incorporation of CASET, the finite SSP algorithm and the 0-1 integer program (5) in the se-
quential algorithm is discussed. Some comments about the benefits of using these techniques
in practice and some topics for future research are presented in the last part of the talk.
Keywords: Global Optimization, Complementarity Problems, Nonlinear Programming.
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Abstract We present a Mixed Integer Linear Programming (MILP) formulation for the Software Clustering
Problem (SCP), where we divide the modules of a software system into groups or clusters, to facil-
itate tha work of the software maintainers. We discuss a preprocessing that reduces the size of the
instances of the SCP and introduce some valid inequalities that have been shown to be very effective
in tightening the MILP formulation. Numerical results presented compare the results obtained with
the formulation proposed with the solutions obtained by the exhaustive algorithm supported by the
freely available Bunch clustering tool, for benchmark problems.

Keywords: MILP formulation, module dependency graph, software clustering problem

1. Introduction

The clustering problem has an important application in Software Engineering, which usually
deals with large software systems with complex structures. A procedure used to facilitate
the work of the software maintainers, is to group classes of the software, to help them make
the correct identification of the snippets of code that need alteration. To separate the soft-
ware components into groups, the Software Engineering has created a representation of the
software system as a directed graph where the modules are represented by nodes and the re-
lationships between the modules are represented by weighted directed edges that connect the
nodes. This graph is referred in the literature as the Modular Dependent Graph (MDG).

The problem of finding a good partition of an MDG is called the Software Clustering Prob-
lem (SCP). The SCP consists in clustering the nodes of the MDG in such a way that the groups
or clusters formed contain highly-interdependent modules and the independent modules are
placed in different groups. The measure that has been used recently in the literature to ana-
lyze the quality of the partition is called Turbo Modularization Quality (TurboMQ), which is
the objective function of the SCP [1, 3, 4].

Formally, the TurboMQ measurement for an MDG partitioned into K clusters is calculated
by summing the Cluster Factor (CFk) for each cluster k of the partitioned MDG, as it follows:

TurboMQ =
K∑

k=1:k 6=∅

CFk, where CFk =
µk

µk + 1
2εk

. (1)

In (1) µk is the sum of the weights of intra-edges, i.e., edges for which the source and target
nodes lie inside cluster k, and εk is the sum of the weighs of inter-edges, i.e., all edges that
originate or terminate in cluster k.

The SCP considered in this paper consists in finding the partition of a given MDG that
maximizes the objective function TurboMQ.
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2. MILP formulation for the SCP

Consider as input for the SCP, a given MDG=Ḡ(V̄ , Ē) and the edge weight c̄uv, for each
(u, v) ∈ Ē. Now, define the undirected graph G = (V,E) such that V = V̄ and E = {(u, v) ∈
Ē|u < v) and let cuv = c̄uv + c̄vu, for each (u, v) ∈ E (if (v, u) /∈ Ē, consider c̄vu = 0.)
Let K̄ = |V | be the maximum number of clusters in the optimal solution of the SCP and
K = {1, . . . , K̄}.

Define for u ∈ V, k ∈ K, the variable xuk, which is equal to 1 if node u is assigned to the
cluster k, and 0 otherwise. Also define for (u, v) ∈ E, k ∈ K, the variable xuvk, which is equal
to 1, if nodes u and v are assigned to the cluster k, and 0 otherwise.

The Cluster Factor of cluster k (CFk), defined in (1), can then be represented by the variable
rk, defined for all k ∈ K, as

rk =
2
∑

(u,v)∈E cuvxuvk∑
(u,v)∈E cuv(xuk + xvk)

,

if k 6= ∅, and 0, otherwise, and the objective function TurboMQ can be expressed as
∑

k∈K rk.
Note that the definition of rk can be modeled by the constraints

rk ≤
∑
u∈V

xuk, and rk

 ∑
(u,v)∈E

cuv(xuk + xvk)

 = 2
∑

(u,v)∈E

cuvxuvk, for k ∈ K.

Considering suk = rkxuk, we finally formulate the SCP as the following MILP problem:
(MILP ) Maximize

∑
k∈K

rk (2)

subject to ∑
k∈K

xuk = 1, ∀u ∈ V (3)

rk ≤
∑
u∈V

xuk, ∀k ∈ K (4)∑
(u,v)∈E

cuv(suk + svk) = 2
∑

(u,v)∈E

cuvxuvk, ∀k ∈ K (5)

xuvk ≤ xuk, ∀(u, v) ∈ E,∀k ∈ K (6)
xuvk ≤ xvk, ∀(u, v) ∈ E,∀k ∈ K (7)
xuvk ≥ xuk + xvk − 1, ∀(u, v) ∈ E,∀k ∈ K (8)
suk ≤ rk, ∀u ∈ V,∀k ∈ K (9)
suk ≤ xuk, ∀u ∈ V,∀k ∈ K (10)
suk ≥ rk + xuk − 1, ∀u ∈ V,∀k ∈ K (11)
0 ≤ rk ≤ 1, ∀k ∈ K (12)
0 ≤ suk ≤ 1, ∀u ∈ V,∀k ∈ K (13)
0 ≤ xuvk ≤ 1, ∀(u, v) ∈ E,∀k ∈ K (14)
xuk ∈ {0, 1}, ∀u ∈ V,∀k ∈ K (15)

Constraint (3) assures that each node is assigned to exactly one cluster. Constraints (4-5) de-
fine rk. Constraints (6-8) imply the definition of xuvk. Constraints (9-11) assure the identity
between suk and the product rkxuk.Constraints (12-15), together with the other constraints in
the model, assure that rk ∈ [0, 1] and all other variables assume only values 0 and 1.

3. Preprocessing and Valid Inequalities

The following theorem supports a preprocessing for the SCP, which reduces the size of the
MDG.
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Theorem 1. LetG = (V,E) be the undirected weighted graph given as input for the SCP, as discussed
in Section 2. Let u ∈ V be a node with degree equal to one and v ∈ V be adjacent to u. Then in the
optimal solution of the SCP, u and v are assigned to the same cluster.

We now discuss valid inequalities that were added toMILP to tight its relaxation. The first
set of valid inequalities are the symmetry cuts that force each node to be assigned to a cluster
whose index is not greater than the index of the node, which is formulated as

∑u
k=1 xuk = 1,

for u ∈ V .
In the second set of symetry cuts, the inequalities force the lowest indexed node in each

cluster to be equal to the cluster index, which are formulated as xuk ≤ xkk, for u ∈ {3, . . . , |V |},
k ∈ {2, . . . , u− 1}.

Our next set of valid inequalities places an upper bound for the variable rk in formulation
MILP . The upper bound for rk can be obtained by solving a problem Pk, where we search
for a partition of the MDG into at most two clusters (indexed by 1 and k) that maximizes the
value of rk.

Theorem 2. Let the optimal solution value of Pk be represented as z∗(Pk). Then

rk ≤ z∗(Pk), ∀k ∈ K,

are valid inequalities for formulation MILP2.

4. Numerical results

We present computational results for the MILP formulation proposed for the SCP and com-
pare them with the results of the exhaustive search procedure supported by the Bunch cluster-
ization tool. The exhaustive procedure of Bunch explicitly enumerates all possible partitions
of the MDG and was the only algorithm that we found in the literature to obtain the optimal
solution of the SCP. Our code was implemented in C++ and all runs were conducted on a
24GB Ram, 2.67GHz Intel Xeon processor running under Linux. The solver CPLEX, v12.2 [2],
was used to solve the MILP problems. In all tests we limited in 11000 seconds the CPU time to
solve the problems. The set of 15 test problems considered on the computational experiments
is a subset of the instances from [5]. In the first five columns of Table 1 we present, for each
instance, the name of the instance (Inst), and the number of nodes (n = |V |) and number of
edges (m = |E|) on the MDG, before and after the transformation of the original directed MDG
(MDG1) into the undirected and preprocessed MDG (MDG2). In the other columns of the ta-
ble we present results that show the performance of formulationMILP+ and Bunch. MILP+

was obtained by the addition of some symmetry cuts and valid inequalities to MILP . The
statistics presented in the table are the objective function value at the solution obtained (z),
the duality gap (Gap (%)) and the CPU seconds (Time) for solving the problems. When the
gap is greater than zero or when Bunch doesn’t converge to the optimal solution, we report
the best solution found. In this case the symbol “-" represents that the CPU time is the lim-
ited 11000 seconds and the symbol “*" represents that memory overflow has interrupted the
running before the time limit.

5. Summary

In this work, we present a new MILP formulation for the Software Clustering Problem (SCP).
We also discuss a preprocessing that reduces the size of the instances of the problem and
introduce some valid inequalities that have been shown to be very effective in tightening the
MILP formulation. Using the solver CPLEX, we obtain the optimal solution of instances from
the literature with up to 26 modules in the Module Dependency Graph (MDG). This is the
first time to our knowledge that mathematical programming is applied to the SCP and that
optimal solutions are reported for instances with more than 15 modules.
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Table 1. Numerical Results

MDG1 MDG2 MILP+ Exhaustive
Inst n m n m z Gap Time z Time
small 6 5 3 5 1.8333 0.0 0.01 1.8333 0.17
compiler 13 32 13 32 1.5065 0.0 1.00 1.5065 14.00
lab4 15 18 10 14 3.4000 0.0 0.30 3.4000 556.84
nos 16 52 15 50 1.6775 0.0 4.01 1.6775 4029.02
lslayout 17 43 17 43 1.8613 0.0 1.15 1.7417 -
boxer 18 29 12 29 3.1011 0.0 0.25 2.7083 -
mtunis 20 57 20 57 2.3145 0.0 32.93 2.0821 -
SPDB 21 33 7 8 5.5897 0.0 0.02 3.4566 -
bunch 23 62 15 45 2.4060 0.0 1.28 1.8867 -
ispell 24 103 23 97 2.3639 0.0 352.36 1.3964 -
ciald 26 64 22 62 2.8513 0.0 12.56 1.8111 -
Modulizer 26 66 18 57 2.7579 0.0 5.68 1.5708 -
rcs 29 163 28 155 2.2775 24.3 - 1.2600 -
star 36 89 36 89 3.8321 3.0 - 1.8606 -
bison 37 179 36 167 2.7002 97.5 * 1.2620 -
Tot. time 411.55 4600.03
Av. Gap 8.3
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Abstract Grover’s algorithm can be employed in global optimization methods providing, in some cases, a
quadratic speedup over classical algorithms. This paper describes a hybrid algorithm for continu-
ous global optimization problems that uses a classical algorithm for finding a local minimum and
Grover’s algorithm to escape from this local minimum. Simulations and comparisons with algo-
rithms from the literature are presented.
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1. Introduction

Global optimization algorithms play an important role in many practical problems, such as
protein structure prediction and molecular dynamics simulations [8]. The goal of this work
is to present a new hybrid method that uses an efficient classical algorithm for finding a local
minimum and a quantum algorithm to escape from that, in order to reach the global mini-
mum.

Recently, some papers addressed the problem of finding the global minimum of discrete [2,
6, 7] and continuous functions [9, 10], using quantum algorithms where the method used in
the discrete case is an extension of Dürr and Høyer’s (DH) algorithm [3], which in turn is
based on the quantum search algorithm developed by Boyer et. al. (BBHT) [1]. This was
made possible after Lov Grover has discovered the seminal algorithm for searching one item
in an unsorted database with N distinct elements [4]. Grover’s algorithm finds the position of
the desired element querying the database O(

√
N) times, which is a quadratic improvement

with respect to the number of times classical algorithms query the database.
The article is organized as follows. In Sec. 2, we describe the relationship between quan-

tum algorithms and global optimization problems. In Sec. 3, we review DH and Baritompa
et. al (BBW) algorithms, and describe the new method. In Sec. 4, we present the simulations
and discuss the results of this work. Finally, in Sec. 5, we present our conclusions.

2. Global Optimization Problems and Quantum Search

We consider the global optimization problem of minimizing a real continuous function f :
[a, b]→ R, where a, b ∈ R.

First, we describe the results of Grover and Boyer et. al. (BBHT) algorithms without giv-
ing details on the quantum part. The algorithms address the following problem: find x0 ∈
{0, · · · , N − 1} by querying f : {0, · · · , N − 1} → {0, 1}, where N = 2n and n is some positive
integer, such that

f(x) =

{
1, if x ∈M ;
0, otherwise, (1)
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whereM ⊂ {0, · · · , N−1}. Grover’s algorithm finds x0 with probability greater than or equal
to 1 − 1/N by querying f around π

√
N/4 times. Internally, the algorithm uses a vector in a

Hilbert space that undergoes π
√
N/4 rotations of small angles θ, such sin(θ/2) = 1/

√
N . In

each rotation, function f is queried one time.
BBHT algorithm generalizes Grover’s algorithm in two directions. Firstly, it is considered

the case |M | > 1 and showed that the number of rotations required to find one element in M
with probability greater than or equal to 1− 1/N is

π

4

√
N

|M |
.

Secondly, it is addressed the problem of finding one element in M without knowing a priori
the number of elements of M . The main problem in this case is to know what is the best num-
ber of rotations. If the algorithm performs too few or too many rotations, the probability to
find the correct results becomes small. The algorithm can be generalized to a global optimiza-
tion algorithm and can be put in the following form using pseudo code language (see [6]):

Global Optimization Algorithm (GOA)
1. Generate x0 uniformly in {0, · · · , N − 1} and set c = 1, y0 = f(x0), and Mc = {x|f(x) < yc−1}.
2. For i = 1, 2, · · · , do

(a) Choose an integer r by some method
(b) Apply Grover’s search with r rotations, and output an x ∈ {0, · · · , N − 1}.
(c) If x ∈Mc then

Set xc = x, yc = f(xc), and increment c.

GOA is the basis for the quantum algorithm used in this work.

3. DH, BBW, and the New Method

The first quantum algorithm for finding the minimum value of a finite set of numbers is the
Dürr-Høyer (DH) algorithm [3]. This algorithm can be seen as finding the minimum value
of a function f : {0, · · · , N − 1} 7→ R, where N = 2n and n is a positive integer. The goal of
the algorithm is to find the point in the domain corresponding to the minimum value of f by
querying f the least number of times. This algorithm was improved in Ref. [5] by decreasing
the number of intermediate measurements from log2N to logN .

DH algorithm is an example of a global optimization algorithm (GOA), described in the last
section. The integer r which specifies the rotation number is selected randomly in the range
{0, · · · , dm− 1e}, where m is a parameter that increases as m = λm (λ = 1.34 as suggested in
the BBH algorithm) at each round that had improved the best minimum current value. The
details can be found in Refs. [3, 2]. BBH algorithm improved the DH algorithm by carefully
choosing a sequence of rotation numbers using a deterministic approach. The details can be
found in Refs. [2, 6].

The new method is a hybrid algorithm that employs a classical algorithm to descend to a
local minimum and DH algorithm to escape from that towards another better candidate. The
classical algorithm uses initially neighboring points at distance ∆x0 = 1 which increases as
∆xk = γ∆xk−1. We tune parameter γ for the kind of functions that we are using.

New Method
1. Generate x′ uniformly in {0, · · · , N − 1} and set y′ = f(x′).
2. Use the classical descent method using x′ with ∆x0 = 1, output x0 and set y0 = f(x0).

Define Mi = {x|f(x) < yi−1}
3. For i = 1, 2, · · · , do

(a) Choose a random rotation number ri uniformly distributed on {0, · · · , dm− 1e}.
(b) Apply Grover’s search with ri rotations and output an x′ ∈ {0, · · · , N − 1}.
(c) If x′ ∈Mi then

Use the classical descent method using x′ with ∆xi = γ∆xi−1, output x′.
Set xi = x′, yi = f(xi), and m = 1

else
Set xi = xi−1, yi = f(xi), and m = λm.



Quantum Optimization 91

4. Computational Results

We have implemented DH, BBW, and the new method in the C language. For the simulations,
we use a variation of the Shekel’s objective function suggested in Ref. [11], given by

f(x) =
8∑
i=1

ri · g(x− i · 128), where g(x) = −
16∑
i=1

1

ki
(
x
16 − ai

)2
+ ci

,

and r is a vector in R8 with entries uniformly distributed in the range (0, 10). Vectors k, a,
and c are described in Ref. [11]. This class of functions has many local minima and maxima.
Figure 1 shows an example of a function in this class.
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Figure 1. An example of the behavior of the objective function f(x).

To compare the algorithms, we have tuned parameter γ for the classical algorithm and have
set γ = 1.2. We first create a sample with 1024 function values taking {0, 1, . . . , 1023} as the
domain set. With this sample, we apply each of the three global optimization algorithms. In
each algorithm and in each round, we compute the success probability and the total effort
(number of times that the function f is evaluated plus the increment). We average out this
process 100,000 times for each method. In each round, we generate a new vector r, creating
a new objective function f . We analyze two case studies in order to compare with the results
of Baritompa et. al. [2]. The first case explores 1% of the best of all elements and the second
explores 0.2% (Figure 2).

The new method is better than the previous methods in both tests. Using the search rate
0.2%, the new method has required approximately 10 units of effort less than BBW algorithm
and 35 units of effort less than DH algorithm, with 90% of success probability.
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Figure 2. Performance graphs comparing the new method with Baritompa et. al. (BBW) and Dürr-Hoyer (DH)
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5. Summary

This paper has proposed a new hybrid algorithm for global optimization of continuous func-
tions using DH algorithm (quantum part) and a classical method that finds efficiently a local
minimum. Our numerical simulations show that the DH, BBW, and the new method have
very similar asymptotic behavior. However, the new method is more efficient than the other
algorithms in the cases presented.

The new method can be generalized considering functions of many variables. This gener-
alization and the application of the new method in other problems are in progress.
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Abstract In this work, we present a new hybrid algorithm for convex Mixed Integer Nonlinear Programming
combining branch-and-bound and outer approximation algorithms in an effective and efficient way.
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1. Introduction

Mixed Integer Nonlinear Programming (MINLP) problems are characterized by the presence
of nonlinear functions of continuous and discrete variables. The MINLP problem addressed
in this work can be algebraically represented in the following way:

(P ) minimizex,y f(x, y)
s. t.: g(x, y) ≤ 0

x ∈ X, y ∈ Y ∩Zny
(1)

where X and Y are polyhedral subsets of Rnx and Rny , respectively, and Y is bounded. The
functions f : X × Y → R and g : X × Y → Rm are convex and twice continuously differen-
tiable. We call problem (1) by P and its continuous relaxation by P̃ .

Algorithms in two distinct methodological classes have been employed to solve P : outer
approximation algorithms [2] and branch-and-bound algorithms (the reader interested in MINLP
algorithms can see [3, 4]). In [1], a hybrid approach combining algorithms in these two classes
was introduced. In this work, we propose a new hybrid algorithm combining also the two
cited methodologies in a more effective way than [1]. Our main goal is to potentialize the
particular advantages of each class and remediate theirs drawbacks. In Section 2, we present
an outer approximation algorithm and in Section 3, we show the proposed hybrid approach.

2. Outer Approximation

Proposed by Duran and Grossmann in [2], the Outer Approximation (OA) algorithm alter-
nates between solving a Mixed Integer Linear Programming problem (MILP) and one or two
NonLinear Programming problems (NLP). Its main idea is to approximate P by the following
MILP problem that is built using linearization of functions in P on a set T of t linearization
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points, i.e., T = {(x0, y0), (x1, y1), . . . , (xt, yt)}:(
POA(T )

)
minα,x,y α

s. t.: ∇f(xk, yk)T
(
x− xk
y − yk

)
+ f(xk, yk) ≤ α, ∀(xk, yk) ∈ T

∇g(xk, yk)T
(
x− xk
y − yk

)
+ g(xk, yk) ≤ 0, ∀(xk, yk) ∈ T

x ∈ X, y ∈ Y ∩Zny .

(2)

As P is convex, we notice that problem (2) is a relaxation of P , which provides valid lower
bounds to P . The baseline of OA algorithm is showed in Algorithm 1. New linearization
points are added to set T , as the algorithm evolves. This strengthens the relaxation given by
(2) and generates a non-decreasing sequence of lower bounds to P .

Let (x̂, ŷ) be an optimal solution of an instance of problem (2). The integer variable values
ŷ are used to build the following NLP problem from P :

(Pŷ) minimizex f(x, ŷ)
s. t.: g(x, ŷ) ≤ 0

x ∈ X.
(3)

Suppose problem (3) is feasible and let x̄ be an optimal solution. So, the point (x̄, ŷ) provides
an upper bound to P . Thus, OA algorithm adds this point to the set of linearization points T
and starts a new iteration using as stopping rule the annulment of the optimality gap.

In the case problem (3) is infeasible, OA algorithm solves the following feasibility problem:

(P Vŷ ) minimizeu,x
∑m

i=1 ui
s. t.: g(x, ŷ) ≤ u

x ∈ X, u ∈ (R+)m
(4)

Let (ǔ, x̌) be an optimal solution of (4) in the described context. Then, the point (x̌, ŷ) is added
to the set T . Conforming demonstrated in [2], if the KKT conditions are satisfied at the optimal
solutions of (3) and (4), OA algorithm converges in a finite number of iterations.

ALGORITHM 1: Outer approximation ;
INPUT: P : Problem (1), T0: initial set of linearization points (it can be empty) ;
OUTPUT: (x∗, y∗): optimal solution of P ;

zU = +∞ ; zL = −∞ ;
Let (x0, y0) be an optimal solution of P̃ ;
T = {T0 ∪ (x0, y0)} ; k = 1 ;
WHILE zU − zL > 0 AND POA(T ) is feasible
{

Let (α̂, x̂, ŷ) be an optimal solution of POA(T ) ;
zL = α̂ ; yk = ŷ ;
IF Pŷ is feasible
{

Let xk be an optimal solution of Pŷ ;
IF f(xk, yk) < zU

{
zU = f(xk, yk) ;
(x∗, y∗) = (xk, yk) ;
}
}
ELSE
{

Let xk be an optimal solution of PVŷ ;
}
T = T ∪ (xk, yk) ;
k = k + 1 ;
}
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3. Our hybrid algorithm

ALGORITHM 2: Our hybrid algorithm ;
INPUT: P : Problem (1), OA(P̄ , T I , zU , time): OA procedure that address P̄ , with initial linearization points set T I ,

upper bound zU with time limited to time seconds. OA procedure returns: status: status of OA application, (x̄, ȳ): best
obtained solution of P̄ , TF : final set of linearization points, z̄L: lower bound to P̄ ;
OUTPUT: (x∗, y∗): optimal solution of P ;

zU =∞ ; Let (x0, y0) be an optimal solution of P̃ ;
TP = (x0, y0) \\ Initial linearization points to P ;
[status, (x̄, ȳ), TF , z̄L] = OA(P̃ , TP , zU , OA time) ;
IF status = “optimal solution” OR status = “feasible solution”
{

(x∗, y∗) = (x̄, ȳ) ; zU = f(x̄, ȳ) ;
}
IF status = “optimal solution”, THEN RETURN ;
Choose a variable yj with fractional value y0

j ;
Y 1 = Y ∩ {y ∈ Rny : yj ≤ byjc} ; Y 2 = Y ∩ {y ∈ Rny : yj ≥ dyje} ;
Let Li be a lower bound to node i ; L1 = L2 = max{f(x0, y0), z̄L} ;
Let N = {1, 2} be the initial list of open nodes ;
i = 2 ; iter = 0 ; TP = TP ∪ TF ;

BBLOOP:
WHILE N 6= ∅
{

Choose a node k of N ; N = N \ {k} ; iter = iter + 1 ;
Let (xk, yk) be an optimal solution of P̃Y k ;
IF f(xk, yk) < zU

{
IF yk is integer
{
zU = f(xk, yk) ; (x∗, y∗) = (xk, yk) ; TP = TP ∪ {(xk, yk)} ;
N = N \ {j : Lj ≥ zU}); \\ Pruning
}
ELSE
{
L̄ = f(xk, yk) ;
IF iter ≡ 0 (mod freq OA subprob) \\ Applying OA to subproblem
{
TS = {(xk, yk)} ;
[status, (x̄, ȳ), TF , z̄L] = OA(PY k , TS , zU , OA time) ;
IF status = “optimal solution” OR status = “feasible solution”
{
zU = f(x̄, ȳ) ; (x∗, y∗) = (x̄, ȳ) ; N = N \ {j : Lj ≥ zU} \\ Pruning
TP = TP ∪ {(x̄, ȳ)} ;
}
IF status = “optimal solution” OR status = “infeasible problem”
{

GO TO BBLOOP;
}
L̄ = max{L̄, z̄L} ;
}
Choose a variable yj with fractional value ykj ; \\ Branching
Y i+1 = Y k ∩ {y ∈ Rny : yj ≤ byjc} ; Y i+2 = Y k ∩ {y ∈ Rny : yj ≥ dyje} ;
Li+1 = Li+2 = L̄ ; N = N ∪ {i+ 1, i+ 2} ; i = i+ 2 ;
}
}
IF iter ≡ 0 (mod freq OA prob)
{

[status, (x̄, ȳ), TF , z̄L] = OA(P, TP , zU , OA time) ; \\Applying OA to P
IF status = “optimal solution”
{

(x∗, y∗) = (x̄, ȳ) ; RETURN ;
}
IF status = “feasible solution”
{
zU = f(x̄, ȳ) ; (x∗, y∗) = (x̄, ȳ) ; N = N \ {j : Lj ≥ zU} ; \\ Pruning
}
TP = TP ∪ TF ; \\ Accumulating linearization points
}
}

Here, we propose a new hybrid algorithm combining branch-and-bound and outer approx-
imation algorithms, showed in Algorithm 2. The inspiration to develop this algorithm comes
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from the hybrid algorithm proposed by Bonami et al. in [1]. Let us first define the subproblem
addressed at each node of branch-and-bound tree in a given partition Ȳ ⊂ Y as:

(PȲ ) minimizex,y f(x, y)
s. t.: g(x, y) ≤ 0

x ∈ X, y ∈ Ȳ ∩Zny .
(5)

The general idea behind the proposed approach is very simple: it makes space partitioning in
the NLP branch-and-bound tree, and, then, applies outer approximation algorithm to some
of the partitions Y k, i.e., applies OA to some subproblems PY k , with a time limit to spend.
Bonami et al. adopt this strategy only once in their algorithm before beginning the space
partitioning, i.e., OA is applied to solve the original MINLP problem in the root node, as they
use the OA based branch-and-cut [5]. Here, we adopt this strategy in the root node and also
in some generated subproblems along the evolution of the algorithm, resulting in several calls
to OA procedure. During enumeration, the proposed algorithm comes back to the original
MINLP problem considered in the root node to make new OA iterations with limited time.
Integer solutions found in the branch-and-bound tree are used as linearization points when
we apply again OA algorithm to solve P . On the other hand, OA algorithm collaborates with
enumeration scheme providing stronger lower bounds to the addressed subtrees and integer
solutions that improve the upper bound to P .

At every freq OA subprob branch-and-bound iterations (e.g. 50), OA algorithm is applied
to the current subproblem PY k and at every freq OA prob iterations (e.g. 200), OA algorithm
is applied to the original problem P . We observe that if we interrupt the OA algorithm at
the end of a given iteration, saving the set of linearization points, and later restart it by us-
ing this same set as input, OA algorithm continues as the same way as if it has never been
interrupted, i.e., when we save the set of the current linearization points at the end of an
iteration, we are saving the current state of algorithm as a whole. In this way, considering
the calls to OA procedure at every freq OA prob branch-and-bound iterations, this would be,
in principle, like solving P using OA algorithm by making “pauses" in its execution. During
these “pauses", the proposed algorithm performs freq OA prob branch-and-bound iterations.
Actually, it does not happen precisely in this way because during these “pauses", we can add
new linearization points from integer solutions found by branch-and-bound algorithm. In this
sense, we hope to speed up the performance of OA algorithm, i.e., saving some of its regular
iterations.

The results of preliminary computational tests show that the proposed hybrid algorithm has
better performance in comparison to pure outer approximation, pure branch-and-bound and
hybrid from [1] algorithms on several instances of MINLP. The proposed hybrid algorithm
will be available in the new open MINLP solver under development called Muriqui.
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Abstract A focus of research in derivative-free algorithms for computationally expensive global optimization
problems is on the use of surrogate models with the goal to reduce the computational effort for
finding (near) optimal solutions by using computationally inexpensive approximations of the objec-
tive function. Various algorithms employing different surrogate model types have been developed,
but in practice it is unclear which algorithm should be applied to a certain problem. This paper
examines the influence of the surrogate model type, and the strategy of selecting decision variable
points at which the computationally expensive objective function is to be evaluated. Within this
scope a stochastic mixture surrogate model algorithm (SO-MMS) is introduced that converges to the
global optimum in probability. The efficiency of SO-MMS is compared to other widely used surro-
gate model algorithms on 19 global optimization test problems from the literature, an application
problem dealing with groundwater bioremediation, and an application problem arising from en-
ergy generation using kites. The results show that random sampling strategies are more successful
than ’more sophisticated’ sampling strategies that are based on the optimization of some auxiliary
function. As a result of this study, a modularized surrogate model algorithm toolbox for Matlab has
been developed that allows the user to choose between mixture surrogate models.

Keywords: mixture surrogate model, global optimization, radial basis function, Kriging, derivative-free

1. Surrogate Model Algorithms

Application problems arising in engineering and management often require solving optimiza-
tion problems with computationally expensive objective functions [2, 3, 5, 9, 15]. For example,
finding the optimal shape of a structure may require a nonlinear finite element analysis, or
determining a strategy for cleaning up contaminated groundwater at minimal cost may re-
quire the solution of a system of partial differential equations. To keep the computation times
low, finding (near) optimal solutions should therefore require as few objective function eval-
uations as possible. Algorithms using surrogate models have been developed to achieve this
goal [6–8, 10, 12, 13].

Surrogate models are approximations of the true objective function [1], and during the op-
timization process the information from the surrogate model is used to guide the search for
the global optimum. Surrogate model algorithms consist in general of four major steps. At
first, an initial experimental design is generated, and the computationally expensive objective
function is evaluated at these points. Secondly, the parameters of the chosen surrogate model
are computed using the data from the initial experimental design. Third, some criterion is
used to determine the next point in the variable domain where the true objective function is
evaluated, and fourth, given the new data point, the parameters of the surrogate model are
updated. The algorithm iterates through steps three and four until a given stopping criterion
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is met.

Several options can be used in each of these steps. The initial experimental design can be
created, for example, by Latin hypercube sampling or orthogonal arrays. The surrogate model
may be chosen to be interpolating (e.g. Kriging [8] or radial basis functions (RBF) [6, 12, 13]) or
non-interpolating (e.g. multivariate adaptive regression splines (MARS) [4] or polynomial re-
gression models [11]), whereas mixtures of surrogate models [10] may either be interpolating
or non-interpolating depending on the individual models in the mixture. For determining the
next sample site in the third step of the algorithm an auxiliary (global) optimization problem
may be solved [6, 8] or a random sampling strategy [12] may be applied. Further differences
such as the optimization strategy used to find the optimum of the auxiliary problem exist.
Stopping criteria for the algorithm may be, for example, a given maximal number of allowed
function evaluations, or the algorithm may be stopped if no improvements have been found
within several consecutive function evaluations. In general, it is a priori unclear which of
these various options should be used to obtain the best result for a given problem, and trying
different algorithm implementations is in practice computationally infeasible.

The goal of this paper is, on the one hand, to study the influence of the surrogate model
and the strategy of determining the next sample point for doing the expensive function eval-
uation on the results. On the other hand, an improvement of the mixture surrogate model
algorithm [10] by using a random sampling strategy is presented, and numerical experiments
show how crucial the choice of the sampling strategy is. The improved algorithm, SO-MMS
(Surrogate Optimization - Mixture Model Stochastic), converges to the global optimum in
probability. Within the scope of this study, a Matlab toolbox has been developed that allows
the user to choose between different (mixture) surrogate model algorithms, initial experimen-
tal design strategies, and methods for determining the sample points.

2. Numerical Experiments

In the numerical experiments mixtures of different surrogate models have been used to exam-
ine how the performance of ’bad’ individual models (models that deliver significantly worse
results than the best model) can be improved by building a mixture with a ’good’ model. The
improved mixture surrogate model algorithm SO-MMS, has been compared to the efficient
global optimization algorithm (EGO [8], implementation from [3]), Gutmann’s algorithm [6],
and an improved version of the G-MSRBF algorithm by Regis and Shoemaker [12] on 19 litera-
ture test problems with two to 30 dimensions, a 12-dimensional groundwater bioremediation
application problem, and a 13-dimensional application problem arising from energy genera-
tion using kites. The problems are unconstrained and of the general form

min f(x), s.t. xl ≤ x ≤ xu, (1)

where xl and xu are the lower and upper variable bounds, respectively, and x ∈ Rd, where d is
the problem dimension. 30 trials have been made for every test problem and every algorithm.
All algorithms start from the same initial experimental design, and the maximum number of
allowed function evaluations was limited to 400. The algorithms are compared with respect
to the best average function value found over 30 trials after an equal number of function eval-
uations.

Figures 1(a) and 1(b) show the average objective function value versus the number of func-
tion evaluations for a subset of the examined algorithms for the ten-dimensional Schoen [14]
test function. Figure 1(a) shows the results of SO-MMS when the minimum point of the re-
sponse surface is used as criterion for determining the next sample site in every iteration.
Clearly, EGO performs best, whereas SO-MMS and Gutmann’s method perform in compari-
son about equally bad.
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Figure 1(b) illustrates the results of the same SO-MMS algorithms when using a random
sampling strategy. The figure shows that when a random sampling strategy is used, Gut-
mann’s method is clearly outperformed by EGO and all SO-MMS algorithms. EGO performs
better than SO-MMS up to about 100 function evaluations, but is then outperformed by al-
most all SO-MMS algorithms (except when only MARS is used as surrogate model). It can
be seen that for this test problem using MARS as individual surrogate model would be the
worst choice, and using Kriging or RBF would be the best choice. However, if it is a priori
unknown which surrogate model will perform best, then clearly a mixture model should be
favored. The figure shows that building a mixture model of MARS and RBF and/or Kriging
(RM, KM, RKM) significantly improves the performance than if only MARS is used. This ex-
ample clearly shows how much influence the strategy of choosing the next sample site has
on the performance of the algorithms, and how using a mixture surrogate model can prevent
choosing the worst individual surrogate model if the performance of individual models is a
priori unknown.
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(a) SO-MMS with sampling at minimum of response surface
(solid graphs), EGO and Gutmann’s method
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(b) SO-MMS with random sampling strategy (solid graphs),
EGO and Gutmann’s method

Figure 1. Average objective function value vs. number of function evaluations for ten-dimensional Schoen
function. Illustrated are SO-MMS algorithms using RBF (R), Kriging (K), MARS (M), a mixture of RBF and MARS
(RM), a mixture of Kriging and MARS (KM), and a mixture of RBF, Kriging and MARS (RKM).
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An Algorithm for Signomial
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Informatics Department, Federal University of Paraiba, Paraiba,Brazil, quirino@de.ufpb.br

Abstract In this paper an interior point methodology for solving geometric programming signomial is pro-
posed, the classical methodology used to solve this problem is condensation, this technique approx-
imates an sum of positive terms by a product of such terms associated with a set of weights whose
sum is 1, here this condition is relaxed and used as stop criterion for the algorithm, the method is
an adaptation of the primal-dual posinomial, it is then used to solve this new problem, whose set
of feasible solutions contains the set of feasible solutions of the original problem and it is a convex
set, the algorithm is implemented in matlab, where we present the computational results in solving
obtained some problems existing in the literature.

Keywords: Global Optimization, Signomial Geometric Programming, Interior Point.

1. Introduction

Geometric Programming is a mathematical programming technique often applied to mini-
mize a class of generalized polynomial functions called signomial functions. The technique
was deve-loped in 60’s by R.J. Duffin and E. L. Peterson focusing on posynomial geometric
programming problems, i.e, strictly positive signomial functions. Nevertheless, nowadays
the technique is still strongly applied as a method for solving Signomial Geometric Problems
(SGP), Quadratic Problems with quadratic constraints, Allocation and Financial Problems,
and many others. To these kind of problems, the original approach by [3] did not seem to be
totally useful and an alternative technique, named condensation, was proposed. To condense
posynomial functions means to approximate them using the inequality between arithmetic
mean and geometric mean or harmonic mean. This approach can give a solution which is
just either a stationary point or a local minimum [5]. Other techniques applied to the same
purpose are the global optimization techniques based on cutting planes and linearization [9,
6, 7].

1.1 Signomial Geometric Programming

A Signomial Geometric Programming Problem (SGP) also known in the literature as Genera-
lized Geometric Programmig is an optimization problem stated as follows:

Minimize g0(t) (1)
SGP Subject to gk(t) ≤ 1 k = 1, . . . , q, (2)

gk(t) ≥ 1 k = q + 1, . . . , p, (3)
tj > 0 j = 1, . . . ,m. (4)
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so that

gk(t) =
∑
i∈J [k]

ci

m∏
j=1

t
aij
j k = 0, 1, . . . , p, (5)

J [k] = {mk,mk+1, . . . , nk} k = 0, 1, . . . , p, (6)
m0 = 1, m1 = n0 + 1,m2 = n1 + 1, . . . ,mp = np−1 + 1, np = n.

Exponents aij are arbitrary constants, coefficients ci are positive, functions gk are called
posy-nomials, terms ci

∏m
j=1 t

aij
j are called existing posynomials terms of the problem and

variables tj are primal variables. Signomial geometric programs where constraints gk, k =
q+1, . . . , p are ausents, are called posinomial programs, such problems have the property that
every locally optimal solution is global, while for signomial problems we obtain only local
solutions when using traditional methodologies.

The aim of this paper is to present an approach to solve the signomial geometric program-
ming problem a little different from the classical approach that uses condensation (see [1, 5]
)and the more recent approaches that use global optimization techniques based on cutting
planes and branch and bound methods (see [6, 7, 9]),). The idea is to look solutions in a convex
set greater than the feasible region of the problem (SGP) and generate a sequence of solutions
that converges to a solution viable nearest the global solution of the problem obtained in the
initial convex set.

Consider the following extended version of the problem SGP:

Minimize g0(t)

Subject to gk(t) ≤ 1 k = 1, . . . , q, (7)

wi
ci

m∏
j=1

t
−aij
j ≤ 1 i ∈ J [k], k = q + 1, . . . , p, (8)

PGP
∏
i∈J [k]

(
wi
pi

)−pi
≤ βl l = 1, . . . , p− q − 1, (9)

∑
i∈J [k]

wi ≤ 1 k = q + 1, . . . , p, (10)

tj > 0, wi > 0 j = 1, . . . ,m. (11)

Where pi are weights such that: ∑
i∈J [k]

pi = 1 (12)

βl ≥ 1, l = 1, . . . , p − q − 1 problem PGP is a posinomial geometric programming problem,
therefore, any local solution, if exists is also a global solution.

Are
SSGP = {t ∈ Rm : constraints (2)− (4) are satisfied} and

SPGP =
{

(t, w) ∈ Rm ×Rp−q−1 : constraints (7)− (10) are satisfied
}

Hypothesis:

SSGP 6= ∅;

PGP Problem has optimal solution.

Clearly we have SSGP ⊆ SPGP , in addition:

If βl = 1, for all l = 1, . . . , p− q − 1, e (t̄, w̄) ∈ SPGP then t̄ ∈ SSGP

min {g0(t) : (t, w) ∈ SPGP } ≤ min {g0(t) : t ∈ SSGP }
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Let (t∗, w∗) ∈ SPGP an optimal solution of the PGP problem, and ft∗ : Rm++ → R defined
by:

ft∗(t) =
1

m

m∑
i=1

2

3

(
1

2

(
ti
t∗i

)2

+

(
ti
t∗i

)−1
)

(13)

ft∗ is a convex function and t∗ is the unique unconstrained minimum of this function

ft∗ is a posinomial function.

Consider the parametes β0
l > 1, l = 1, . . . , p−q−1 and the weights pi such that

∑
i∈J [k] pi =

1 as problem data, PGP can be solved using several methods we will use primal-dual interior
point methods ( see [4, 5]),solved this problem, let (t∗, w∗) ∈ SPGP a optimal solution, we can
determine from w∗ new weights p0 satisfying

∑
i∈J [k] p

0
i = 1, to generate sequences βs andps

so that 1 ≤ βs+1
l < βsl < β0

l ,
∑

i∈J [k] p
s
i = 1 and formulate now the following problem:

Minimize g0(t) + P sft∗(t) (14)
Subject to gk(t) ≤ 1 k = 1, . . . , q, (15)

wi
ci

m∏
j=1

t
−aij
j ≤ 1 i ∈ J [k], k = q + 1, . . . , p, (16)

PGP-s
∏
i∈J [k]

(
wi
psi

)−psi
≤ βsl l = 1, . . . , p− q − 1, (17)

∑
i∈J [k]

wi ≤ 1 k = q + 1, . . . , p, (18)

tj > 0, wi > 0 j = 1, . . . ,m.

where P > 0 is a penalty, s ∈ N , the objective function given in (??) will be minimized by
giving preference to solutions close to t∗, furthermore the constraints that will be modified at
the s-th iteration will not affect the original problem.

2. Algorithm and Computational Results

Given a SGP problem, and a weight vector satisfying (12), βinil > 1 l = 1, . . . , p − q − 1 e
ε > 0, our algorithm will be formulated as:

Algorithm 1

SGP Algorithm {% Step 0
Solve PGP problem and call t0, w0 the solution
β0
l :=

∏p−q−1
l=1 max(1, βinil )

1
p−q ; p0

i =
w0
i∑

i∈J[k] w
0
i

i ∈ J [k];

% Step 1
Use weights p0, parameters β0

l , the solution t0 and build the PGP-s problem ; s := 0;
% Step 2
{ While βsl > 1 + ε

ps+1
i =

wsi∑
i∈J[k] w

s
i

i ∈ J [k]; βs+1
l =

∏p−q−1
l=1 max(1, βsl )

1
p−q

p0 = ps+1, β0
l = βs+1

l , s = s+ 1 .
Solve problem PGP-s } }

This algorithm was implemented in Matlab, PGP and PGP-s problems were solved using
the code GGPLAB. (see [2]).

Example This is a classical case, where a SGP solution obtained with condensation tech-
nique is a local solution only (see [1] pag. 358), the optimal solution obtained is:
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t̄1 = 3.822875662810514 t̄2 = 4.822875645827997 when we set tini = (4, 4.5) as initial point,
see [1] pg. 358.

Minimize t1

Subject to .25t1 + 0.5t2 − 1
16 t

2
1 − 1

16 t
2
2 ≤ 1;

1

16
t21t
−1
2 +

1

16
t2 +

7

3
t−1
2 − t1t

−1
2 ≤ 1

1 ≤ t1 ≤ 100; 1 ≤ t2 ≤ 100

The solution obtained in the presente work is t∗1 = 1.177124318528388 t∗2 = 2.177124308566496
was obtained without initial point, in relationship with originals variables.

3. Summary

In this work, we solved signomial geometric programming problems, relaxing the feasible
region to obtain a larger convex set , where the objective function has global solution, then we
approach the original feasible region iteratively, penalizing the distance between the viable
solutions and the optimal solution of the initial problem, the algorithm was implemented and
tests using examples of the literature were carried out and they confirmed the effectiveness of
our algorithm.
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Abstract SATyrus is a MaxSAT based environment to model binary optimization problems, having SATish
as modeling language. SATish uses propositional logic to declaratively specify the constraints that
define viable solutions to a target problem; the objective function is specified in the same way. This
allows one to describe larger problems by modeling and combining their subproblems. XOR and 2-
dimensional XOR are very common subproblems of larger ones, such as N-Queens and TSP. We in-
vestigate four approaches for modeling 2-XOR using binary variables: CrossWTA, LogWTA, Cross-
LogWTA and TreeWTA. Also, a comparison of the four approaches concerning number of variables
and number of constraints is offered.

Keywords: binary integer programming, exclusive-Or constraints, SATyrus, weighted MaxSAT

1. Introduction

The classic exclusive-or (XOR) problem may be described as choosing exactly one out of n
variables. The two-dimensional exclusive-Or (2-XOR) consists in choosing exactly n out of
(n× n) variables, in such a way that no two variables share the same value for n dimensions.
Another way to see it is placing n pieces on a (n×n) grid, so that they dont́ share any rows or
columns. There are n! distinct viable solutions for this problem, since there are n possibilities
for the first choice, n − 1 for the second, n − 2 for the third and so on, among the 2(n×n)

unrestricted possibilities. XOR and 2-XOR are very common subproblems of larger ones. The
N-Queens problem, for instance, can be based on 2-XOR by adding diagonals’ constraints to
it. The TSP problem may also be considered a variant of 2-XOR that associate costs to paths
between two neighboring cities. A viable solution is defined by an association of a position to
each and every (distinct) city in the tour.

In this work, we investigate four 2-XOR modeling alternatives: CrossWTA [4] [8], LogWTA
[7], TreeWTA [8] and CrossLogWTA, the first herein named and the latter introduced here.
The four models are expressed as propositional constraints in SATish, the input language of
the SATyrus compiler [6], which produces an algebraic expression that can be solved by a
MILP solver.

2. SATyrus

SATyrus is a satisfiability-based environment to model optimization problems, having SATish
as modeling language. The process begins by fully specifying the set of viable candidate
solutions to a problem and its cost function using well-formed formulae in propositional logic.
Then, the SATyrus environment reads the SATish model and acts as a compiler.

The compilation step maps logical operators into algebraic expressions, and propositional
variables into 0–1 variables of a single energy function [8] [5]. The energy function combines
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all constraints and the cost function; solving it means finding its minimum. SATyrus generates
either AMPL [1] or Mosel [9] as output to be fed to solvers. SATyrus2 [3] and BonMin solver
[2] have been used. The following rules, that map logical formulae into algebraic function H ,
constitute the basis of the composition of the Energy function to be minimized [5] [6] [8]:

H(true) = 1

H(false) = 0

H(¬p) = 1−H(p) (when p is an atomic proposition)

H(p ∧ q) = H(p) ∗H(q)

H(p ∨ q) = H(p) +H(q)−H(p ∧ q)

A SATish model has three elements: structures, constraints and penalty levels. Structures
allow identifiers to be indexed. Constraints are well-formed formulas in propositional logic
that use the elements of structures as their propositional variables. Each constraint is asso-
ciated to a penalty level in order to guarantee that smaller energy values represent better
solutions to the problem.

The language has two operators that allow concise modeling for similar constraints: forall
and exists. Both of them make use of indeces intervals in order to express which constraints
should be valid. Forall indicates that constraints must be generated by varying all indexes
specified in the interval(s). Exists indicates that at least one constraint is valid among the ones
resulting by the varying the indeces in the specified interval(s).

3. XOR models

Conventional WTA (Winner-Takes-All) constraints are modeled as Fi → ¬Fj , where i 6= j,
and F is any disjunction of propositional literals. It means that, we need n(n − 1)/2 WTA
constraints for a n-variable XOR problem, and n3 − n2 constraints for a n-variable 2-XOR
problem. The idea is to reduce that by introducing new kinds of constraints, other than WTA.
This may benefit large instances of problems that have XOR and 2-XOR as a subproblem,
including TSP.

3.1 CrossWTA

Let Nn×n be a matrix of possible solutions, where rows represent each city and columns rep-
resent each position. The chosen element is valued 1 and the not-chosen are valued 0. Our
goal is to find a solution where each row and each column have only one 1-valued element.

The constraints are: (i) avoid null solutions, which is, 0 in all positions of the solution ma-
trix (n2 constraints); (ii) each city must have only one position associated to it (n3); (iii) each
position must have one city associated to it (n3). Contrainst of type (iii) are written in SATish
as:

intgroup wta:

forall{i,j,k} where i in (1,n), j in (1,n), k in (1,n) and i < k:

pos[i][j] -> not pos[k][j];

CrossWTA has space complexity of O(n2), and O(n3) constraints. This is the most intuitive
approach to solving this problem.

3.2 LogWTA

In this approach, each position is associated to a binary number. This way, the structure of
propositional variables is N(n×logn). In case n < 2logn, the unused binary representations
must be set to non-viable solutions. The possibility of the second index, which is binarily
represented, be 0, must also be set as non-viable solution since 0 is not a possible position in
the path.

The constraints are: (i) if one city is associated to one binary representation, no other city
must be associated to it (n2 ∗ n); (ii) unused binary representations must not be associated to
any city (n ∗ (2b(logn)+1c − n)). Contraints of types (i) and (ii) are written in SATish as:
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intgroup int1:

forall {i,j} where i in (1,n), j in (1,n) and i!=j:

(not logpos[i][3] and not logpos[i][2] and logpos[i][1]) ->

not (not logpos[j][3] and not logpos[j][2] and logpos[j][1]);

intgroup int1:

forall {i} where i in (1,num):

not (not logpos[i][3] and not logpos[i][2] and not logpos[i][1]);

Note that, in the example above, we assume that n ≤ 23. We only presented the constraints
associated to the binary representation values of 0 and 1 to the second index. The full model
must include all unused binary representations (0 and n+ 1 to 2b(logn)+1c ) and all used binary
representations (1 to n). LogWTA has space complexity of n log n and n3 +n ∗ (2b(logn)+1c−n)
constraints.

3.3 CrossLogWTA

CrossLogWTA associates both positions and cities to binary representations. The structure of
possible solutions is N(2×n×logn). The first index distinguishes cities (1) from positions (2).

The constraints are: (i) when the first index value is 1 (referring to city), and the second is
fixed to, say, z, the value composed by varying the third index consists of the binary represen-
tation of the position of city z in the tour; likewise, when the first index value is 2 (referring
to position), and the second is fixed to, say, w, the value composed by varying the third index
consists of the binary representation of the city that occupies position w in the tour (2n2); (ii)
unused binary representations must not be associated to any city (2n ∗ (2b(logn)+1c − n)).

Contraints of type (i), for n < 23, and only the ones associated to the pair (city 1, position
2), are written in SATish as:

intgroup int1:

not logpos[1][2][3] and not logpos[1][2][2] and logpos[1][2][1] ->

(not logpos[2][1][3] and logpos[2][1][2] and not logpos[2][1][1]);

The full model must include all the other combinations. Unused binary representations are
the same as in the LogWTA approach. CrossLogWTA has space complexity of 2n log n and
n2 + n ∗ (2b(logn)+1c − n) constraints.

3.4 TreeWTA

This approach models 1-XOR, associating the possible choices to a binary tree. The root rep-
resents all possible positions, from 1 to n. The second level splits the choices in two groups:
from 1 to n/2, and from n/2 + 1 to n. The third level splits the choices in four groups, and
so on, until the leaves level, where every node represents a single choice. WTA constraints
ensure that just one node is activated at each level.

For 2-XOR, one must use n trees and associated WTA constraints. Let Nn,n∗2−1 be the struc-
ture of possible solutions. The first index represents cities and the second index represents the
binary tree, which will make sure that only one position is selected for each city.

The constraints are: (i) each activated (1 valued) parent has to have one activated child
(n2); (ii) the parent of an activated child has also to be activated (n2); (iii) only one child of an
activated parent is allowed to be activated (siblings WTA, 2n2); (iv) each city must have only
one position associated to it (WTA, n3).

Constraints of types (i) and (ii) are written in SATish as:
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intgroup int1:

forall {i,j} where i in (1,num), j in (1,num-1):

p[i][j] -> p[i][j*2] or p[i][(j*2)+1];

intgroup int1:

forall {i,j} where i in (1,num), j in (1,num-1):

p[i][j*2] or p[i][(j*2)+1] -> p[i][j];

TreeWTA has a structure size of n ∗ (2n− 1) and (3n3 + 5n2 − 6n)/2 associated constraints.

4. Discussion

Table 1 summarizes the space costs of the four 2-XOR approaches. CrossLogWTA is the ap-
proach with the smallest number of constraints and it’s structure size is still smaller than
CrossWTA, though twice the size of LogWTA. TreeWTA needs more space than the other ap-
proaches, but the number of constraints is still competitive with CrossWTA.

Ongoing work uses BonMin to evaluate the influence of each approach in the search space.
At the present moment, only small instances were tested. Quantitative results on solving time
are expected to follow the costs shown in Table 1.

Table 1. Comparing 2-XOR modeling approaches

Approach Number of variables Number of constraints

CrossWTA n2 n3 − n2

LogWTA n logn n3 + n ∗ (2b(logn)+1c − n)

CrossLogWTA 2n logn n2 + 2n ∗ (2b(logn)+1c − n)
TreeWTA 2n2 − n (3n3 + 5n2 − 6n)/2
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Abstract A bi-objective competitive facility location and design problem is considered. It has been previously
tackled through exact general methods, but they require high computational effort. In this work,
we propose a new multi-objetive optimization heuristic algorithm, which deals with the problem
at hand in a fast and efficient way. It combines ideas from different multi-objective and single-
objective optimization evolutionary algorithms, although it also incorporates new devices which
help to reduce the computational requirements, and also to improve the quality of the provided
solutions. A comprehensive computational study shows that the heuristic method is competitive,
being able to reduce, in average, the computing time of the exact method by approximately 99%,
and offering good quality in the final solutions.

Keywords: Bi-objective location problem, multi-objective optimization algorithm, Pareto front, Efficient set.

1. Dealing with inner and outer competition: a planar
bi-objective location problem

Competitive location deals with the problem of locating facilities to provide a service (or
goods) to the customers (or consumers) of a given geographical area where other compet-
ing facilities offering the same service are already present or will enter the market in the near
future. Many competitive location models are available in literature. However, the litera-
ture on multi-objective competitive location models is rather scarce. This is in part due to the
fact that single-objective competitive location problems are difficult to solve, and considering
more than one objective makes the problem nearly intractable.

In this paper, we revisit the bi-objective problem described in [2]. A franchise wants to
increase its presence in a given geographical region by opening one new facility. Both the
franchisor (the owner of the franchise) and the franchisee (the actual owner of the new facility

∗This work has been funded by grants from the Spanish Ministry of Science and Innovation (TIN2008-01117, ECO2011-24927),
Junta de Andalucía (P08-TIC-3518 and P10-TIC-6002) and Fundación Séneca (The Agency of Science and Technology of the
Region of Murcia, 00003/CS/10 and 15254/PI/10), in part financed by the European Regional Development Fund (ERDF).
Juana López Redondo is a fellow of the Spanish ‘Juan de la Cierva’ contract program.
Corresponding author: P.M. Ortigosa.
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to be opened) have the same objective: maximizing their own profit. However, the maximiza-
tion of the profit obtained by the franchisor is in conflict with the maximization of the profit
obtained by the franchisee.

In that paper, an interval branch-and-bound method was proposed to solve the correspond-
ing bi-objetive problem, but it was time consuming and had large memory requirements.
(Meta)heuristic algorithms have proved to be good tools to overcome those drawbacks, while
obtaining good approximations of the final solutions. In this paper, we present a new Fast
and Efficienct Multi-Objective Evolutionary Algorithm (FEMOEA) whose aim is to obtain a
good approximation of the Pareto front as fast as possible. In the computational studies we
compare it with the inteval branch-and-bound method iB&B (see [2]).

2. A new method for approximating the Pareto-front

FEMOEA is an evolutionary algorithm initially devised to solve any multi-objective optimiza-
tion problem. Its main aim is to provide a set of well-distributed and non-dominated solutions
as fast as possible.

The most important concept in FEMOEA is that of subpopulation. A subpopulation is de-
fined by a center and a radius. The center is a solution and the radius is a positive number,
which determines the subregion of the search space covered by that subpopulation. The ra-
dius of a subpopulation is given by a decreasing exponential function, varying from R1 to RL
(input parameters), which are the given largest and smallest radii, respectively. For a detailed
description on how to compute the radius see [4].

Apart from the center and the radius, a subpopulation has two attributes which are related
to the objective space: the non-domination rank (drank) and the crowding distance (cdist) (see
[1] for an in-detail description of these values). The former indicates the number of subpopu-
lations which dominates that particular subpopulation, whereas the latter is an estimation of
the density of solutions surrounding a particular solution in a population.

During the process, two lists of subpopulations are kept by FEMOEA, each with a max-
imum size M , (another input parameter). M refers to the desired number of solutions in
the final Pareto front. The first list, named population list, is composed of M diverse sub-
populations with different attributes, i.e. various radii, non-domination ranks and crowding
distances. FEMOEA is in fact a method for managing this list (i.e. creating, deleting and
improving subpopulations). The second list, called external list, can be understood as a de-
posit to keep non-dominated solutions. This external archive is also used in other algorithms
described in literature [3].

Initially, a set of diverse subpopulations is created in the initialization phase. After this pro-
cedure, the FEMOEA main loop starts, which basically consists of three procedures: creating,
improving and selecting subpopulations. This loop is executed until a stopping condition is
fulfilled. For the problem at hand, the algorithm stops if either a considerable improvement
has not been obtained among consecutive Pareto fronts (placed in external list) or a maximum
number of levels (cycles or generations) L (an input paramter) is achieved.

3. Computational studies

All the computational studies in this paper have been run in the supercomputer Ben Arabi of
the Supercomputing Center of Murcia, Spain, in particular, in Arabi, which is a Blade Cluster
with 816 cores, organized in 32 nodes with 16GB of memory each, and 70 nodes with 8GB (102
nodes altogether). Each node has 8 cores, divided into 2 Intel Xeon Quad Core (E5450) to 3.0
GHz.

In order to have an overall view of the performance of the algorithms, different types of
problems have been generated, varying the number n of demand points, the number m of
existing facilities and the number k of those facilities belonging to the chain. For n = 25, 50
demand points the settings used were (m = 2, k = 1), (m = 5, k = 1, 2) and (m = 10, k = 2, 4).
For every setting, 10 instances were generated by randomly choosing the parameters of the
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Table 1. Hypervolume and computing time for problems with setting 25-5-2.

T eps Av(T )200 Av(T )400 [lowH, uppH] Av(Hyper)200 Av(Hyper)400

209 262 537 [146.317,146.532] 146.320 146.332
489197 (.05) 347 1144 [1.326,1.328] 1.323 1.326
508028 273 596 [3.157,3.159] 3.146 3.158

97404 310 730 [112.931,113.380] 112.728 112.956
551537 (.05) 308 910 [1.751,1.764] 1.754 1.759

4536 274 562 [553.147,554.340] 553.151 553.163
569547 309 756 [2.282,2.283] 2.278 2.282

81687 266 596 [428.519,429.229] 427.964 428.800
389738 (.04) 338 1072 [1.342,1.344] 1.340 1.343
281464 (.04) 339 989 [1.762,1.763] 1.758 1.761
297340 302.6 789.2 [125.253,125.512] 125.176 125.288

problems uniformly within pre-defined intervals (see [5]). The searching space proposed in
[5] has also been considered here for every problem.

As a general rule, the algorithm iB&B has been executed considering a tolerance of eps =
0.03 (the maximum width of a box in the solution list), which is not a negligible value. Even so,
the algorithm ran out of memory when trying to solve several instances. In each of those cases,
the value of eps was progressively increased until the algorithm was able to solve that partic-
ular problem. Regarding FEMOEA, and after extensive experiments, we found that a good
parameter setting to deal with the current multi-objetive optimization problem is: L = 30 and
RL = 5e − 03. The parameter R1 coincides with the diameter of search space. Furthermore,
FEMOEA has been executed twice varying the number of points in the Pareto front, M = 200
or 400.

To measure the performance of FEMOEA, two main aspects are under consideration, that
of effectiveness and that of efficiency. We start by saying that for stochastic algorithms, per-
formance indicator values are also stochastic. For each random indicator, we approximate the
expected value by taking the average over 5 runs.

As an effectiveness metric, we check whether the heuristic algorithm has successfully found
an approximation of the Pareto front. We say so when both the objective function values of
the points in the external list are included in the corresponding intervals provided by the iB&B
method, and the points themselves are included in the corresponding solution boxes offered
by iB&B. Additionally, for measuring the goodness of an approximation to the Pareto front,
the so-called hypervolume measure Hyper has also been computed [6].

To measure the efficiency of the algorithms, one tries to compute the effort used to obtain
the final result. Here, we measure the computing time to reach the result for iB&B (T ), and
the average computing time in the five runs Av(T ) for the algorithm FEMOEA.

Table 1 summarizes the obtained results for a set of 10 instances with settings 25-5-2. At
the end of the table, average values for the 10 problems have been computed. In that table,
the computing time and the hypervolume metric are shown for both iB&B and FEMOEA. The
results for the rest of settings are not shown due to the lack of space, but similar conclusions
can be inferred.

As can be observed in Table 1, the iB&B algorithm is very erratic regarding computing time.
Additionally, it is difficult for a given problem to determine the tolerance that, a priori, will be
suitable to execute the algorithm. Of course, a large value of eps can be considered, but it will
affect the quality of the obtained solution (the larger the value of eps, the greater the intervals
containing the exact Pareto front). For the cases where a different value of eps = 0.03 has been
considered, this has been noted on the table, including the new value after the computing
time spent by iB&B in brackets (see column eps). On the contrary, the evolutive algorithm
seems to be more regular, it always spends similar computing times for instances with the
same settings. In average, FEMOEA has reduced the computing time by more than 99% for
problems with settings 25-5-2, and this considering a number M = 400 points in the Pareto
front.
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It is worth mentioning that FEMOEA approximates the Pareto front with 100% success for
all the problems (for both M = 200 and M = 400), i.e. its solutions are always included in the
intervals provided by the iB&B algorithm. Notice that FEMOEA increases its Hyper value as
the number of points in the Pareto front increases. In this sense, we should keep track of the
number of generated points M in the set approximating the Pareto front, since theoretically
speaking, higher values of Hyper represent better approximations. As can be observed in
Table 1, the hypervolume covered by the heuristic with 400 points is always included in the
interval [lowH, uppH], obtained from the lower-left and upper-right hand corners of the boxes
provided by iB&B. On the other hand, with 200 points in the Pareto front, the hypervolume is
smaller than the lower limit for 3 out of 10, but notice the number of points used to compute
the hypervolume with iB&B (i.e., the number of boxes on the solution list) is usually much
larger than M .

4. Conclusions and lines for future research

In this work, a new multi-objective optimization algorithm, FEMOEA, has been proposed.
Addtionally, it has been compared to an exact iB&B method when solving a particular prob-
lem. More precisely, a bi-objective competitive location and design problem has been selected
as a way to link both methods. Results have shown that FEMOEA use of the computing re-
sources is more efficient. Moreover, the provided solutions by FEMOEA are competitive with
respect to the ones given by iB&B: on the one hand, the solutions obtained by the heuristic al-
gorithm are always included in the iB&B intervals and, on the other hand, with M = 400 they
can cover practically all the area of the optimum Pareto front (the hypervolumes obtained by
FEMOEA are always included in the hypervolume intervals of iB&B).

In the future, we plan to compare the FEMOEA algorithm with other heuristic algorithms
devised to cope with multi-objective problems. In particular, we will compare it with two
standards widely referenced in literature, i.e. NSGA-II and SPEA2.
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Abstract A fish swarm intelligence algorithm based on the filter set concept to accept, at each iteration, a
population of trial solutions whenever they improve constraint violation or objective function, rela-
tive to the current solutions, is proposed for constrained global continuous optimization problems.
Preliminary numerical results are provided.
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1. Introduction

The problem to be addressed in this paper has the form

min
x∈Ω

f(x) , subject to gj(x) ≤ 0 , j = 1, . . . ,m (1)

where at least one of the functions f, gj : Rn → R, is nonlinear and Ω = {x ∈ Rn : lk ≤
xk ≤ uk, k = 1, . . . , n}. Problems with equality constraints can be reformulated in the above
form using a small tolerance. When convexity is not assumed, problem (1) may have mul-
tiple optimal solutions in Ω. This paper aims at proposing a stochastic method to compute
a global solution of (1). From the class of stochastic methods, swarm intelligence algorithms
have shown to be effective in reaching a global solution. Recent studies involving the arti-
ficial fish swarm (AFS) algorithm show that highly accurate solutions may be obtained with
reduced computational costs [6, 7]. Although penalty function methods are probably the most
known constraint handling techniques, a penalty function depends, in general, on a penalty
parameter. Unfortunately, the performance of these algorithms depends strongly on the val-
ues set to the penalty parameter throughout the iterative procedure. Adaptive penalties [9]
and augmented Lagrangian methodologies [2, 8] are just recent strategies to overcome par-
tially this issue. The separate use of objective function and constraint violation with the non-
dominance concept from multiobjective programming, for example in [1], avoids the use of
penalty parameters. Fletcher and Leyffer [4] proposed a filter method as an alternative to
penalty functions to guarantee convergence to optimizers in nonlinear constrained optimiza-
tion. This technique incorporates the concept of nondominance to build a filter set that is able
to accept solutions if they improve either the objective function or the constraint violation,
instead of a linear combination of those two measures.

In this paper, an artificial fish swarm filter-based algorithm, hereafter denoted by AFSFilter,
for nonlinear constrained global optimization problems is proposed. Results from preliminary
numerical experiments are provided.

∗The financial support from FEDER COMPETE (Programa Operacional Fatores de Competitividade / Operational Programme
Thematic Factors of Competitiveness) and FCT (Fundação para a Ciência e a Tecnologia / Portuguese Foundation for Science
and Technology) Project FCOMP-01-0124-FEDER-022674 is gratefully acknowledged.
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2. Artificial Fish Swarm Algorithm

Here is some notation used in the paper. Constraint violation of a point x is measured by the
function

θ(x) =

m∑
j=1

max {0, gj(x)}+

n∑
k=1

(max {0, xk − uk}+ max {0, lk − xk}) , (2)

xi ∈ Rn represents the ith point of a population of size p, and xbest is the best point in the
population. Pairwise comparisons in the population use the following concept: between two
points xi and xj , xi is better than xj if the following condition holds:

θ(xi) < θ(xj) or
(
θ(xi) = θ(xj) and f(xi) < f(xj)

)
. (3)

In the AFS algorithm, the initial population of p points is randomly generated inside the
set Ω. A crucial quantity of the algorithm is the ‘visual scope’ of a point, say xi. This is
defined as the closed neighborhood with center xi and radius equal to a positive quantity
v = ς maxk∈{1,...,n}(uk − lk), where ς is a positive visual parameter. Let ni be the number of
points in its ‘visual scope’ (ni < p). If the condition ni/p ≤ κ holds, where κ ∈ (0, 1] is the
crowd parameter, the ‘visual scope’ of xi is said to be not crowded. Depending on the relative
position of the points in the population, one of the following three situations occurs.

1. When ni = 0, the ‘visual scope’ is empty, and the point xi, with no other points in its
neighborhood to follow, has a random behavior. Here, a point is randomly generated in
the search space, xr, and a movement is tried along the direction defined by d = xr − xi.

2. When the ‘visual scope’ is crowded, the point has some difficulty in following any par-
ticular point, and starts by following a searching behavior. A point inside the ‘visual
scope’ is randomly generated, xs, and a movement towards it is carried out if xs is bet-
ter than xi (see condition (3)); otherwise, xi moves according to a random behavior.

3. When the ‘visual scope’ is not crowded, the point firstly tries the chasing behavior mov-
ing towards the best point inside the ‘visual scope’, denoted by xmin, if this is better than
xi, thus being the direction of movement d = xmin − xi. Otherwise, the point tries to
follow the swarming behavior moving towards the central point, c, of the ‘visual scope’.
However, if c is not better than xi, the point tries to follow a searching behavior; and
if that randomly generated point xs is not better than xi, the point follows a random
behavior.

The algorithm also implements an elitism procedure in the sense that the best point of the
population is not moved and is maintained throughout the iterative process. For each current
point xi of the population, the trial point yi is generated according to a direction d and a step
size α ∈ (0, 1]

yi = xi + αd , i = 1, . . . , p and i 6= best. (4)

The procedure that decides if the trial solution is to be accepted and replaces the current point
is a filter method combined with a backtracking line search, as described in the next section.
The algorithm terminates with a successful run if the stopping conditions∣∣∣f(xbest)− f∗

∣∣∣ ≤ ε1 |f∗|+ ε2 and θ(xbest) ≤ ε2

are satisfied, for small positive tolerances ε1, ε2; otherwise xi ← yi for all i 6= best and the
procedure is repeated until a maximum number of iterations is reached, where f∗ is the best
global solution of the problem available in the literature.

3. The Implemented Filter Methodology

This section briefly describes the filter methodology that aims at deciding which trial solution
is to be accepted in the sequence of Eq. (4). The herein proposed AFSFilter method uses the
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filter set concept, as outlined in [3, 4], with the ability of exploring both feasible and infeasible
regions, and building a filter set that is able to accept a trial point if it improves either the
objective function or the constraint violation, relative to the current point. Filter-based algo-
rithms treat the optimization problem as a biobjective problem aiming to minimize both the
objective function and the nonnegative constraint violation function (2).

After a search direction d has been computed, A decreasing sequence of step sizes {αj}
with limj αj = 0 is tried, until a set of acceptance conditions are satisfied. This j denotes the
iteration counter for the inner loop. A trial step size αj might be accepted if the corresponding
trial point yi = xi + αj d is acceptable by the filter. We only require an improvement in θ or in
f , relative to the current point xi, to consider the trial point yi, in Eq. (4), to be acceptable, as
shown:

θ(yi) < θ(xi) or f(yi) < f(xi). (5)

However, when xi is (almost) feasible, the trial point yi has to satisfy only the condition of
simple reduction on f :

f(yi) < f(xi) (6)

to be acceptable. To prevent cycling between points that improve either θ or f , at each itera-
tion, the algorithm maintains a filter F which is defined as a finite set of entries (θ(xj), f(xj))
that correspond to a collection of infeasible solutions xj such that no filter entry is dominated
by any of the others in the filter. During the backtracking line search procedure, the yi is ac-
ceptable only if (θ(yi), f(yi)) /∈ F . (Only solutions that are not dominated by any entry in the
filter might be accepted.)

The filter is initialized with entries (θ, f) that satisfy θ ≥ θmax, where θmax > 0 is the upper
bound on θ. Furthermore, the filter is augmented whenever yi is accepted because condition
(5) is satisfied. When it is not possible to find a point yi with a step size αj > αmin > 0
that satisfies one of the conditions (5) or (6), a restoration phase is invoked. In this phase,
the algorithm performs a coordinate random local search around the best point, with length
10−3 maxk{uk − lk}, to find a point inside [l, u] that is acceptable to the filter. If no such point
is found, the algorithm maintains the current point to the next iteration.

4. Preliminary Results

Table 1 contains the numerical results of our preliminary experiments with the AFSFilter
method. Three well-known engineering design problems are used in the comparison with the
results obtained by the Filter Simulated Annealing (SA) method proposed in [5]. The welded
‘beam’ design problem has four design variables and seven inequality constraints, the ten-
sion/compression ‘spring’ design problem has three continuous variables and four inequality
constraints and the cylindrical ‘vessel’ design problem has four design variables (two of them
are multiples of 0.0625) and four inequality constraints [5]. The size of the population is set to
p = 5n and the algorithm was allowed to run for a maximum of 200 iterations. A comparison
with the pattern search hybrid GA from MatLabTM (with the tournament selection option to
handle constraints) is also provided. A set of four small but difficult problems, with n = 2,
selected from [2] and a technical report from the same authors1, is also tested and the results
are reported in the table for comparison with GA. The size of the population is set to p = 20
and a maximum of 50 iterations is allowed.

Each problem was run 30 times and the results reported in the table are: ‘f best’, the best
solution obtained during all the runs and ‘avg.n.f.e.’, the average number of function eval-
uations (from the 30 runs). Other parameter values are set as follows: ε1 = 10−6, ε2 = 10−8,
θmax = 104, αmin = 10−3 and ς is set to one and is reduced every p iterations until it reaches 0.1.
We may conclude that the proposed AFSFilter method is effective in reaching a global optimal
solution with reasonable computational costs. New developments with further experimenta-
tion will follow.

1Technical report MCDO-051015 (2005) in http://www.ime.usp.br/∼egbirgin/.
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Table 1. Comparison of AFSFilter with Filter SA in [5] and Hybrid GA in MatLab.

Prob. AFSFilter Filter SA in [5] Hybrid GA from MatLab
f∗ fbest avg.n.f.e. fbest avg.n.f.e. fbest avg.n.f.e.

beam 2.38081 2.3866641 65 687 2.381065 56 243 2.5526753 168 119
spring 0.012664 0.0126653 35 929 0.0126653 49 531 0.0126663 3 480
vessel 5854.738 5868.974 45 283 5868.765 108 883 5859.977 21 289

Example 1 in [2] -1.0000000 -0.9983634 7 906 n.a. n.a. -0.9999910 4 027
Example 3 in [2] 1.0000000 1.0000013 10 849 n.a. n.a. 0.9999987 5 366
Example 5 in [2] -2.0000000 -2.0000330 8 180 n.a. n.a. -2.0000043 51 067
Problem 6† -9.4772944 -9.4772842 9 458 n.a. n.a. -3.2883714‡ 5 108

† Technical report MCDO-051015 (2005) in http://www.ime.usp.br/∼egbirgin/, pre-print to [2]
‡ This is a local optimal solution
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Abstract This paper presents a correlation between channel assignment in wireless networks and coloring
problems in graphs and scheduling problems in parallel machines, resulting in more representa-
tive models. Integer linear programming formulations, and algorithmic strategies based on global
and local optimization are applied, such as a branch-and-cut method and heuristics involving lo-
cal search. Benchmark instances from the literature are used to validate the models and methods
proposed, as well as generated instances simulating specific scenarios.
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1. Introduction

The fact that wireless communication is growing at exponential scale, makes necessary rig-
orous planning of how to increase the capacity of existing networks, since the availability of
channels for use by operators is regulated by government agencies that conduct auctions of
frequency bands for private use. Optimize the use according to the current scenario, propose
new scenarios for distribution and manipulation of frequency bands, as well as adopt new
technologies and models, are part of the process of research and development in this area.
In the current scenario of cellular wireless networks, broadcast frequencies are grouped into
bands and are usually discretized into a set of channels. Thus, each base station receives a
share of the total number of channels available to the entire system. Therefore, it is important
to establish a strategy to reduce the total use of the available frequencies (for example, to be
able to further expand in the future). Unfortunately, when it comes to wireless communica-
tion, there is the problem of interference, a problem that represents the superposition of two or
more electromagnetic waves at one point. And this happens when the transmitters are close
to each other, causing failures in the communications established by them [1] [4] [3].

This paper presents a correlation between such problems and problems in graphs and
scheduling, resulting in more robust integer linear programming models, and so, algorith-
mic strategies to global and local optimization are applied, such as a branch-and-cut method
by CPLEX tool and heuristics involving local search.

∗Partially supported by "Conselho Nacional de Desenvolvimento Científico e Tecnológico" (CNPq), "Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior" (CAPES), and "Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do
Rio de Janeiro" (FAPERJ), brazilian agencies.
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2. A MinMax Channel Assignment Problem

Given a set of n antennas (base stations) receiving channels, where each base station i has a
demand of ci channels. The k-th channel assignment to the i-th base station is denoted by fki.
With this, it follows that for all pairs (i, j) of base stations, there is a value of dij (the distance
between channels quoted above) where the following condition must be respected: |fki −
fmj | ≥ dij . We want to minimize the largest channel used (to minimize the span of channels),
a MinMax CAP (Channel Assignment Problem) [4]. This variant of channel allocation problem
can be modeled as an IP model in bi-index binary variables xif , where xif = 1 if the channel
f ∈ Fv is assigned to the station i, and xif = 0 otherwise. Moreover, binary variables yf ,
where yf = 1 if the channel f ∈ F is allocated to a station, and yf = 0 otherwise. And finally,
zmax and zmin, represent the biggest and the lowest channels used in the frequency spectrum
available. So, the formulation will be:

Minimizar zmax − zmin
Sujeito a:∑
f∈Fi

xif = ci (∀i = 1, 2, ..., n) (1)

xif + xjg = 1 (∀i, j = 1, 2, ..., n; f ∈ Fi; g ∈ Fj : |f − g| < dij) (2)
xif ≤ yf (∀i = 1, 2, ..., n; f ∈ Fi) (3)
zmax ≥ yf (∀f ∈ F ) (4)
zmin ≤ fmax − (fmax − f)yf (∀f ∈ F ) (5)
xif ∈ {0, 1} (∀i = 1, 2, ..., n; f ∈ Fi) (6)
yf ∈ {0, 1} (∀f ∈ F ) (7)

An example is showed in Figure 1. In this case, the 6 base stations need only one channel
each. The link between two base stations indicates that a base station may cause interference
with each other if use close channels. The value of dij in each range indicates the distance that
should exist between the channels of i and j stations. If is considered the distance dij = 1
for all values of i and j, only the stations that may interfere with each other should be differ-
ent allocations of channels without need for an specific amount of distance. In this example,
assuming then dij = 1, as previously mentioned, there is an optimal solution as shown in
figure 1, where the number above the antenna indicates the channel allocated to it. It is ob-
served that, even with 6 base stations, three channels are sufficient for the proposed network
can run without noise. For each ERB i, there exists a set fi ⊆ N called the domain frequency
of i containing the list of possible channels that can take i. For example, if F1 = {1, 3, 4, 7}, is
that the channels allocated for base station 1 may be 1, 3, 4 or 7. Is denoted by F , then the set
F1 ∪ F2 ∪ ... ∪ Fn.

Figure 1. Example for a MinMax CAP with 6 base stations where 3 channels are sufficient.

In the next sections, the general problem of channel allocation is correlated with a special
coloring graph problems in graphs, and a job scheduling problem with time window.

2.1 MinMax CAP as a special vertex coloring problem

We present the minmax channel assignment problem as a special coloring problem in graphs,
as a mixed list coloring, multicoloring, and weighted coloring problems, that is special varia-
tions of the classical coloring problem in graphs ([2], [7]). A cellular network is model as an



Global and local optimization approaches for channel assignment in wireless networks 119

undirected graph whose edges indicate the proximity between base stations and the weight of
the edge, the distance to be respected. Each channel that can be assigned to a base station cor-
responds to a color that can be assigned to a vertex (which, in turn, will have a natural number
representing the same). There are a list of colors for each vertex (channels for a station), and
each one can receive one or more colors (channels), been multicolored.

An example is given below. Figure 2 shows a cellular network comprising 7 base stations
(vertices), each one with a frequency domain. The distance between the channels of base
stations, when there is interference potential (ie an edge) is 2 if such a need and 0 otherwise.
All stations have demand for only one channel. For each edge (i, j) this graph, there is the
set {0, 1, ..., dij}. As all distances are equal to 2, for all edges of the graph, {0, 1, 2}. Figure 2
shows an optimal solution to the minimization of span of frequencies for this example, which
can be seen as minimizing the number of colors used in a weighted list coloring problem.

Figure 2. Optimal solution for minmax CAP instance as a weighted list coloring graph coloring.

2.2 MinMax CAP as a job scheduling problem in parallel machines

In general, scheduling problems involving allocation of a set of tasks (jobs) in a particular
set of machines in order to satisfy certain conditions, in function of time [8] [5]. Some of
the scheduling models for CAP proposed in this work include the situation in which each
station needs only one channel, all channel distances are equals for all pairs of base stations
and it is desired to minimize the maximum channel used, and the frequency domain of all
antennas is the set of natural numbers. This is equivalent to the problem of job scheduling that
minimizes the makespan, P |pj = p|Cmax, where pj = 1 indicates that the processing times of
the corresponding jobs are equal. This model can also be extended to other situations, such as
when the frequency domain is defined for all base stations (P |pj = p, rjdi|Cmax).

Returning to the example of Figure 2, where the CAP is modeled as a special coloring in
graphs, can be solved also using the scheduling model above. First, processing times are used
to representing possible channels in a station, ie, pj = 2 for all jobs. Each set fj is treated as
the number of possible starting time of jobs. Finally, the objective function is the minimization
of makespan. The scheduling problem is then: P |pj = 2|Cmax. One can see graphically the
solution to the model of scheduling by Gantt chart (Figure 3) [5].

Figure 3. Gantt chart showing the job scheduling solution for Figure 2.

2.3 Algorithmic Strategy and Computational Experiments

The minmax channel assignment problem was solved by an algorithmic strategy adapting
IP mathematical models for CAP, to minimize the maximum number of channels by CPLEX
tool, which has an implementation of the branch-and-cut exact method and functions of code
optimization, among others. We use Concert Technology (for C) library, running on a machine
with AMD Turion X2 II of 2.30 GHz and 4GB of DDR3 memory, and operating system Ubuntu
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Linux 64-bit 11.10. As instances, we show in this paper only results based on job scheduling
model on CALM/CELAR benchmark. For comparison, in Table 1, the instance CELAR05
was modified to make all distances equal to 1 and all operators as >, which is to say that for
any edge (i, j) of the graph, we have that |fi − fj | = 1. This artificial instance was called
CELAR05 UNIT. All computational experiments realized are available and they are presented
in a full version of this paper.

Table 1. Important results applying our local and global algorithmic strategy.

Instância Min ObjF MaxChannel Bench Time
CELAR04 #Channels 46 - 46 9,98 seg.
CELAR05 Span 776 792 792 87,69 seg.

CELAR05 Unit Span 160 512 - 5135,86 seg.

3. Summary

This paper addressed a minmax channel allocation problem in cellular wireless networks, cor-
relating the variations of problems as special vertex coloring in graphs, as well as job schedul-
ing problems with time windows.

Mathematical models of Integer Programming were adapted from literature and global/local
search algorithms have been developed, with a primal heuristic based on a local search heuris-
tic for scheduling problems ([6]) and a exact method of branch-and-cut. Computational ex-
periments were conducted using benchmark instances from the literature. It was found that
an interesting point search is to apply other kinds of special coloring problems in graphs, and
job scheduling problems, that better represent the features specified channel allocation prob-
lem. Also, the proposition of new mathematical models and the development of exact and
approximate methods of solution, are a focus of interest for future research. Finally, we want
to explore, as well as issues related to mobile telephone networks, other scenarios involved in
mobile wireless networks such as high-demand multimedia application and non-conventional
as well as the new model research focus recently, which is the model based on cognitive radio
networks.
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Abstract The biggest challenge when disclosing private data is to share information contained in databases
while protecting people from being individually identified. Microaggregation is a family of methods
for statistical disclosure control. The principle of microaggregation is that confidentiality rules per-
mit the publication of individual records if they are partitioned into groups of g or more data, where
none is more representative than the others in the same group. The application of such rules leads
to replacing individual values by those computed from small groups (microaggregates), before data
publication. This work proposes a column generation heuristic for numerical microdata. Compu-
tational experiments show that the proposed method finds the best results for a set of benchmark
instances in the literature.
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1. Introduction

The objective in the discipline of Statistical Disclosure Control (SDC) is to allow data to be
mined while securing private information [6]. Indeed the best form for data protection is
through its encryption. However, encrypted data has no utility for data mining techniques.
SDC acts in the tradeoff between the maximum utility of using raw data and the maximum
protection provided by encryption. SDC techniques often results in data being modified be-
fore made publicly available.

Microaggregation is a class of perturbative SDC methods for microdata (individual records)
which has been extensively studied recently. The principle of microaggregation is that indi-
vidual records can be replaced by those computed from small homogeneous groups (microag-
gregates), before data publication. Since the protected dataset contains only the masked data,
its disclosure is less likely to violate individual privacy.

Domingo-Ferrer and Mateo-Sanz defined in [2] a mathematical programming model for
microaggregation over numerical microdata. In their model, microdata is clustered with the
minimum sum-of-squares criterion into groups of size larger or equal to a parameter g using
as many clusters k as needed. It is expressed as follows:



122 Éverton Santi, Daniel Aloise, Pierre Hansen, and Caroline Rocha

SSE = min
x,y,k

n∑
i=1

k∑
j=1

xij‖pi − yj‖2 (1)

subject to
k∑
j=1

xij = 1, ∀i = 1, . . . , n (2)

n∑
i=1

xij ≥ g, ∀j = 1, . . . , k (3)

xij ∈ {0, 1}, ∀i = 1, . . . , n;∀j = 1, . . . , k (4)
yj ∈ Rs ∀j = 1, . . . , k. (5)

The numerical microdata of n individual records are represented by points pi = (pri , r =
1, . . . , s) in Rs for i = 1, . . . , n; k cluster centers must be located at unknown points yj ∈ Rs
for j = 1, . . . , k; the norm ‖ · ‖ denotes the Euclidean distance between the two points in its
argument in the s-dimensional space under consideration. The binary decision variables xij
express the assignment of the point pi to the cluster j. The set of constraints (2) assure that
every point pi, i = 1, . . . , n, is assigned to a cluster. Constraints (3) define that the size of
each cluster is greater or equal to g. Othewise, the trivial optimal solution would consist of
singleton clusters.

2. A column generation formulation

Problem (1)-(5) correspond to a partitioning problem where the number of parts is to be de-
termined. Let us consider any cluster Ct, with |Ct| ≥ g, for which

ait =

{
1 if entity oi belongs to cluster Ct
0 otherwise,

and let us denote by yt the centroid of points pi such that ait = 1. Thus, the cost ct of cluster
Ct can be written as ct =

∑n
i=1 ‖pi − yt‖2ait.

An alternative formulation for the microaggrgation problem (1)-(5) is then given by

min
z

∑
t∈T

ctzt

subject to∑
t∈T

aitzt = 1, ∀i = 1, . . . , n

zt ∈ {0, 1} ∀t ∈ T,

(6)

where T = {1, . . . , 2n−1}. The zt variables are equal to 1 if clusterCt is in the optimal partition,
and to 0 otherwise. The constraints state that each entity belongs to one cluster.

3. Pricing problem

The dual of the formulation (6) is expressed by

max
n∑
i=1

λi

subject to
n∑
i=1

aitλi ≤ ct ∀t ∈ T

λi free i = 1, . . . , n

(7)

where the λi for i = 1, . . . , n are dual variables associated with the covering constraints.
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Problem (7) is solved using a cutting plane method, starting with a relaxation and adding
constraints as necessary. Given dual values λ, σ, a violated cut is searched to be added to the
relaxed dual problem. The slack, or when negative, the violation πt of a constraint is given
by πt = ct −

∑n
i=1 λiait. Since we are interested in finding violated constraints πt < 0, the

auxiliary problem is given by π∗ = mint πt. Although the enumeration of πt for all t ∈ T is too
expensive, the value of π∗ can be found by solving

min
n∑
i=1

(‖pi − yv‖2 − λi)vi
n∑
i=1

vi ≥ g

vi ∈ {0, 1}, ∀i = 1, . . . , n
yv ∈ Rs

(8)

with yv denoting the centroid of points pi for which vi = 1. If π∗ < 0, then the optimal solution
v∗ to (8) is added as a cut to the relaxed dual problem (in the primal, this is equivalent to
adding a column to the restricted master problem together with its associated primal variable).
Otherwise, problem (7) (or equivalently, problem (6)) is solved optimally.

The objective function of the pricing problem (8) can be viewed as minimizing the sum
of functions equal to squared distances from the cluster center yv to each of the entities, but
with a limit on each of the distances, after which the corresponding function does not increase
anymore. Clearly, for a given location yv, vi is equal to 1 if ‖pi − yv‖2 ≤ λi, and to 0 otherwise.
Geometrically, in the plane, this is equivalent to the condition that vi = 1 if yv belongs to a
disc Di = {y | ‖pi − y‖2 ≤ λi} (i.e., a disc with radius

√
λi centered at pi), and 0 otherwise.

However, due to constraint
∑n

i=1 vi ≥ g, a variable vi may be forced to 1, in order to compose
a valid cluster/column with g or more elements. Consequently, decomposition approaches as
that developed in [1] cannot be used here to solve the pricing problem.

Indeed, we need to find just one negative cost solution (v, yv) for (8) in order to add the
corresponding column to the restricted master problem. Proposition 1 shows that, if it exists,
such solution (v, yv) can be searched among those with

∑n
i=1 vi = g.

Proposition 1. If a negative cost solution (v′, y′) such that
∑n

i=1 v
′
i ≥ g + 1 exists for (8) then a

negative cost solution (v′′, y′′) with
∑n

i=1 v
′′
i = g also exists.

Proof. Without loss of generality, let us suppose that (v′, y′) is a negative cost solution for (8)
with

∑n
i=1 v

′
i = g + 1. Define S as the set of v′ components for which v′i = 1. Let us suppose

now that there is no solution (v′′, y′′) for (8) with
∑n

i=1 v
′′
i = g. I.e., it is impossible to find a

y′′ for which
∑n

i=1(‖pi − y′′‖2 − λi)v′′i is negative using only g components of v′′ equal to 1.
Consequently, there exists at least one element vi∗ in S for which ‖pi∗ − y′‖2− λi∗ > 0. Hence,
if v′i∗ is made equal to 0, a solution (v∗, y′) with only three components equal to 1 is produced,
having negative cost smaller than that of (v′, y′), which is a contradiction.

Corollary 2. The optimal solution of the linear relaxation of problem (6) uses only variables whose
columns have g non-zero elements.

Proof. From Proposition 1, negative reduced cost variables associated to columns with k > g
non-zero elements only exist if at least one negative reduced cost variable associated to a
column with g non-zero elements also exists. Consequently, a column algorithm for solving
(6) is convergent if it adds at each iteration only variables associated to columns with exactly
g non-zero elements.

Our column generation algorithm uses the previous propositions to restrict the search in the
pricing problem. In particular, microaggregation problems have been always benchmarked in
the literature using instances with g = 3, 5 and 10, which is advantageous for our approach
due to two main reasons: (i) column generation has usually good performance when columns
are small (i.e., with few entries equal to 1) [4], and (ii) by using Proposition 1, the enumeration
of pricing solutions for g small is not an expensive task for moderate n.
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4. Preliminary computational results

We tested our algorithm in the following benchmark data sets from [2]: (i) TARRAGONA
with n = 834 and s = 13, (ii) CENSUS with n = 1080 and s = 13, and (iii) EIA with n = 4092
and s = 11, for g = 3. The tests were performed in a AMD Phenom II with a 800 Mhz clock
and 8 Gb of RAM memory. The restricted master problem was iteratively solved by CPLEX 12.
Pricing problems (8) are solved by a specialized branch-and-bound based on Proposition 1.
Finally, our column generation heuristic solves a MIP with all generated columns in order
to obtain an approximate solution for the microaggregation problem. Table 1 presents the
computational results for each one of the tested instances. First column shows the number of
column generation iterations. Second and third columns report lower bounds (LB) and upper
bounds (UB), while the fourth column (gap) presents their relative difference calculated as
(UB-LB)/LB. Finally, the last column reports the total CPU time of our column generaton
heuristic (CG), stabilized [3] with a solution provided by MDAV [2].

Table 1. Bounds and CPU times obtained by the column generation heuristic

CGData set
iter. LB UB gap(%) CPU time(s)

TARRAGONA 4034 1502.42 1569.56 4.46 233.43
CENSUS 5226 652.30 655.60 0.50 338.02
EIA 11564 1.2533e+13 1.3301e+13 6.12 7026.7

Lower bounds for problem (6) were obtained for all instances. Moreover, the heuristic
solutions obtained (column UB) are the best known in the literature for g = 3. In particular,
the best upper bound solution for EIA with g = 3 was improved in more than 50%.
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Abstract In this work, we propose formulations for the bi-objective Diameter Minimum Spanning Tree prob-
lem which consists in finding a spanning tree with minimum total cost and minimum diameter.
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1. Introduction

The bi-objective Diameter Minimum Spanning Tree problem (bi-DMST) extends the Bounded
Diameter Minimum Spanning Tree problem (BDMST) [4, 8] and the Minimum Diameter Span-
ning Tree problem (MDST) [1, 6]. The bi-DMST is also referred in the literature as the Mini-
mum Diameter Minimum Cost Spanning Tree problem [7]. The diameter of a spanning tree is
the number of edges in the longest path between any pair of nodes. The BDMST consists in
finding a spanning tree with minimum total cost where the diameter does not exceed a given
positive integer value. The MDST looks for a spanning tree (not necessarily with minimum
total cost) where the diameter is minimized. The bi-DMST consists in finding a spanning tree
with minimum total cost and minimum diameter. We propose mathematical formulations for
the bi-DMST using different strategies to deal with the two objectives.

Formally, the bi-DMST is defined as follows. Let G = (V,E) be a connected and undirected
graph with a set V of vertices and a set E of edges. A cost cij ≥ 0 is associated to each
edge [i, j] ∈ E, with i < j. Let T be a spanning tree of G. Thus, there is a unique path
Pij in T linking any pair of node i, j ∈ V . Let dij be the number of edges in Pij . Then, the
diameter D of T is defined as D = max{dij : i, j ∈ V }. A Minimum Spanning Tree (MST)
of G is a spanning tree T with minimum total cost. The bi-DMST consists in defining a MST
with minimum diameter. The bi-DMST addresses network design and transportation logistic
applications. In network design, the diameter refers to quality of service (QoS) requirements
where small diameters reduce delays and improve reliability. Another application appears on
high speed trains where one looks for a MST backbone and minimum diameters reduce the
transportation time between any pairs of cities and improves QoS [5].

The BDMST is NP-hard [2] when 4 ≤ D < |V |−1, and several formulations [3, 9], exact and
heuristics methods [4, 8] are found in the literature. The MDST has received less attention, dis-
tributed and efficient algorithms are presented in [1, 6]. The bi-DMST is NP-hard [7] and as far
as we know, this is the first work dedicated to propose formulations for the bi-DMST. A mul-
ticommodity flow formulation and an optimization in two phases are respectively presented
in Sections 2 and 3. Preliminary results and conclusions are given in Section 4.
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2. A general multicommodity flow formulation

The formulation (1)-(10) is inspired on the work of Gouveia and Magnanti for the BDMST [3].
It makes use of an undirected graph G = (V,E) and the diameter D = max{dpq : p, q ∈ V }.
Let xij be the decision variables on the choice of edge [i, j]. If edge [i, j] belongs to the solution
xij = 1, otherwise xij = 0. The directed flow variables ypqij specify if the path from p ∈ V to
q ∈ V , with i 6= q and j 6= p, passes through edge [i, j], i.e. ypqij = 1, otherwise ypqij = 0. Let
variables dpq be the number of edges in the path from p to q.

z1(x) = min
∑

[i,j]∈E

cij · xij (1)

z2 = min D st (2)∑
[i,j]∈E

xij = |V | − 1 (3)

∑
j:[i,j]∈E

ypqij −
∑

j:[j,i]∈E

ypqji =

 1, if i = p
0, i 6= p and i 6= q ∀i ∈ V,∀p, q ∈ V
−1, if i = q

(4)

ypqij + ypqji ≤ xij ∀[i, j] ∈ E,∀p, q ∈ V (5)∑
[i,j]∈E

(
ypqij + ypqji

)
≤ dpq ∀p, q ∈ V (6)

D ≥ dpq ∀p, q ∈ V (7)
ypqij ∈ {0, 1} ∀[i, j] ∈ E,∀p, q ∈ V, i 6= q, j 6= p (8)

xij ∈ {0, 1} ∀[i, j] ∈ E (9)
dpq ≥ 1 ∀p, q ∈ V (10)

The two objectives are given in equations (1) and (2) and they aim respectively at minimiz-
ing the total cost and the diameter. Restriction (3) ensures the spanning tree has at most |V |−1
edges. Restrictions (4) are the classic multiflow conservation constraints. Inequalities (5) state
no flow passes through edge [i, j] whenever edge [i, j] does not belong to the solution, i.e.
xij = 0. Constraints (6) compute the number of edges in a path from p to q. Restrictions (7)
together with the objective (2) minimize the diameter. Variables are defined from (8) to (10).

3. Optimization in two phases for the bi-DMST

Using an optimization in two phases, the objectives are optimized in a priority order. The
diameter is considered as the priority objective. The second optimization phase seeks a MST
where the diameter is bounded to the value found in the first optimization phase. Such a
strategy is interesting for applications where small diameters are needed. Moreover, one can
use well-known formulation for the BDMST in the second optimization phase.

We use the formulation (2) to (10) for the first optimization phase. As pointed out in [3, 9],
once the diameter is fixed, single multiflow formulation can be applied for the BDMST. Then,
in the second optimization phase, we considered the formulations introduced in [9]. These
formulations rely on the property that whenever D is even, the MST has a central vertex i
(resp. a central edge e = [i, j] when D is odd) such that no other vertex is more than D/2
edges away from i (resp. for odd D values, no more than (D − 1)/2 edges away from one
extremity of e). A digraph G′ = (V ′, A′) is obtained from G = (V,E) as follows: an artificial
vertex r is introduced in V . Thus, V ′ = V ∪ {r} and A′ = A ∪ {(r, 1), . . . , (r, |V |)}, and for
every edge [i, j] ∈ E, with i < j, arcs (i, j) and (j, i) ∈ A′ are added with costs cij = cji.

Both odd and evenD formulations use the decision variables xij on the choice of arc (i, j) ∈
A′, and non-negative variables ui which specify the number of arcs in a path from r to i ∈ V ′.
When D is odd, the formulation also uses binaries variables zij that define whenever edge
[i, j] ∈ E is selected as the central spanning tree edge zij = 1, or not zij = 0. Let D∗ be the
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optimal diameter found in the first optimization phase. Thus, L = D∗/2 when D∗ is even and
L = (D∗ − 1)/2 when D∗ is odd. For D∗ even, the second optimization phase is given as :

min
∑

(i,j)∈A

cij · xij st (11)

∑
j∈V

xrj = 1 (12)

∑
(i,j)∈A′

xij = 1 ∀j ∈ V (13)

ui − uj + (L+ 1)xij + (L− 1)xji ≤ L ∀(i, j) ∈ A′ (14)
ui ≤ L+ 1 ∀i ∈ V ′ (15)
xij ∈ {0, 1} ∀(i, j) ∈ A′ (16)
ui ≥ 0 ∀i ∈ V ′ (17)

The objective (11) minimizes the total cost. Restriction (12) states the artificial vertex r is
connected to only one vertex in V . Constraints (13) ensure that only one arc must be incident
to each vertex of V . Inequalities (14) and (15) establish that paths from the artificial vertex r
to each vertex i ∈ V have at most L+ 1 arcs. Variables are defined in (16) and (17). When D is
odd, the formulation takes into account the MST center is an edge as follows:

min
∑

(i,j)∈A

cij · xij +
∑

[i,j]∈E

cij · zij st (18)

∑
j∈V

xrj = 2 (19)

∑
[i,j]∈E

zij = 1 (20)

zij = xri · xrj ∀[i, j] ∈ E (21)
zij ∈ {0, 1} ∀[i, j] ∈ E (22)
Constraints (13) to (17)

The objective function (18) computes the total cost including the center edge cost. Restriction
(19) ensures the artificial central vertex r is connected to exactly two vertices of V . Constraints
(20) and (21) guarantee only one central edge is selected. Restrictions (21) are non-linear, but
they can be easily linearized as shown in [9]. Variables zij are defined in (22). Constraints (13)
to (17) have already being defined. Readers are referred to [9] for further details.

4. Preliminary results and concluding remarks

The experiments were performed on an Intel Core i7 with 2.7 GHz clock and 8Gb of RAM
memory, using CPLEX 12 under default parameters. Preliminary results are reported for the
optimization in two phases given in Section 3. We have developed two sets of sparse instances.
In the first test set, an arbitrary Hamiltonien cycle is built to ensure the graph connectivity.
The remaining edges are randomly added accordingly to the graph density set to {0.2, 0.3,
0.4}. In the second test set, graph connectivity is ensured by an arbitrary Hamiltonien path.
The remaining edges are randomly added and the graphs have density {0.1, 0.09, 0.08}. Table 1
presents a subset of results. “c” and “p” stand respectively for the first and the second test sets.
The number |V | of vertices, the graph density d are given, followed by the results for the first
and the second optimization phases. The optimal diameter and optimal cost are respectively
depicted in columns D∗ and C∗. “RL”, “time” and “nodes” columns contain respectively the
linear relaxation, the running time in seconds and the number of nodes visited in the branch
and bound tree for the corresponding optimization phases.
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Table 1. Results for the optimization in two phases.

Instances data First optimization phase Second optimization phase
test sets |V | d D∗ RL time nodes C∗ RL time nodes

c

15 0.2 7 4.12 76.9 2,375 497 398.3 0.16 171
15 0.3 4 4.00 74.6 83 635 392.3 1.37 10,659
15 0.4 4 3.00 30,862.2 20,250 465 341.0 0.81 2,972
20 0.2 5 4.00 29,123.0 14,215 980 748.2 0.97 3,072
20 0.3 5 3.02 326,655.7 72,378 618 436.7 1.67 4,412

p
30 0.08 12 9.00 312.5 920 1,858 1,822.3 0.16 550
30 0.09 9 7.00 49,340.0 32,321 1,407 1,161.1 2.10 10,127
30 0.1 9 7.00 271,062.5 43,341 1,315 1,088.0 3.90 23,736

Results indicate the proposed test sets are difficult to be solved. They show an expected be-
havior : the tree diameter reduces when the graph density increases, and the problem becomes
harder to be solved. In this work, the multiflow formulation presented in [3] has been adapted
for the bi-DMST. Optimal values and lower bounds have been computed for sparse instances.
The preliminary results motivate further investigation on heuristics and metaheuristics for
the bi-DMST. We are currently working on heuristics and metaheuristics (NSGAII) that make
use of Pareto function and Lorenz dominance for the general multiflow formulation given in
Section 2.
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Abstract We evaluated the parallel performance of the Coupled Simulated Annealing (CSA) for unconstrained
optimization. The CSA is characterized by a set of SA processes coupled via their acceptance prob-
abilities in order to exploit information from each SA process. This paper seeks to identify the par-
ticularities of the CSA to determine its parallel scalability. We evaluate the scalability of the CSA
using performance metrics for parallel systems. Experiments were performed fixing the problem
dimension and fixing the number of processing cores. In a synthesized data set, the results show
that the CSA behaves as a scalable algorithm, allowing a significant improvement in efficiency when
the dimension of the problem increases.

Keywords: coupled simulated annealing, heuristics, parallel performance, parallel scalability

1. Introduction

In recent years, we have seen an increasing number of computing devices that use processors
with many cores. The emergence of multicore processors became a necessity because it is more
difficult to cool singlecore processors with increasing speed. Moreover, the recent increase
in the availability of computers with multicore processor and powerful graphics processing
units (GPU), as well as the demand for high performance and low energy [5], motivated new
research in parallel computing. Its consequence is the tendency to manufacture multicore
processors with lower frequency, in addition to finding that parallel processing has emerged
as the main motivator for contemporary computing. This trend has been called "The Multicore
Era" [1, 2].

Owing to the larger computing power, several algorithms can be reformulated in an at-
tempt to exploit its parallel potential. However, a more refined analysis of multicore chips is
necessary to verify the leverage of the parallel performance and its scalability.

To improve the solution quality and reduce processing time, Xavier-de-Souza et. al [3] de-
fined a class of optimization methods based on Simulated Annealing (SA) that can be used to
solve unconstrained nonconvex problems. Coupled Simulated Annealing (CSA) is a parallel
algorithm that couples the acceptance probabilities of the various SA processes. The coupling
term is a function of the current energy of all SA processes. Through this term, performance
indicators can be controlled, allowing the extract of more information when deciding to accept
less favourable solutions and to improving the final quality of the solutions [3]. Despite being
effective in improving solutions, no analyses was made to demonstrate its parallel scalability.

In this paper, we present an analysis of the parallel potential of the CSA applying the per-
formance metrics for parallel systems to demonstrate its scalability.

2. Coupled Simulated Annealing

The CSA is a stochastic algorithm. Consist of several SA processes jointly minimizing a cost-
function. Each SA process is composed of two stochastic processes: one is responsible for
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generation and the other for the acceptance. These processes are controlled by a generation
temperature T and a acceptance temperature T ac.

The CSA considers all current solutions in a set Θ and accept a probe solution yi based not
only on the current solution xi, but also on the coupling term γ, which depends on the energy
of all elements of Θ.

The acceptance probability function AΘ : Θ→ R defined in [3] was used in this work:

AΘ (γ, xi → yi) =

exp

(
E(xi)−max(E(xi))xi∈Θ

Tac

)
γ

(1)

γ =
∑
∀x∈Θ

exp

(
E(x)−max (E (xi))xi∈Θ

T ac

)
(2)

High values of T ac implies large γ, hence a lower acceptance probability. Processes with
low acceptance probability are more likely to accept less favorable solutions. The opposite
happens for low values of T ac.

It is possible to control the variance of the acceptance probabilities to follow a desired value
specified, acting directly on the T ac schedule, eliminating the necessity of fixing a scheduling
and the initial value of T ac. The acceptance temperature affects the probabilities and thus its
control alter the program flow in the search for optimal solutions.

In [3], it is shown that the variance of the acceptance probabilities is within the limits 0 ≤
σ2 ≤ m−1

m2 , where m is the number of processes. Experiments showed that the performance
increases with the variance around 99% of its maximum value. A simple control rule, such
that if σ2 < σ2

D then T ac = T ac (1− α), otherwise T ac = T ac (1 + α) is used, where σ2
D is the

desired variance and α the depreciation rate of temperature, usually a value between (0, 0.1]
[3]. The variance for AΘ assumes the form σ2 = 1

m

∑
∀xi∈ΘA

2
Θ −

1
m

In Figure 1, the implementation of the algorithm is given. A parallel region is created, each
corresponding to a SA process. Each SA process generates and analyses probing solutions,
accepting them or not. Then, each SA process will try to enter a critical region at each itera-
tion, otherwise it will increase an internal variable Ki, which counts the number of iterations
of process i, and evaluate the stopping criterion. To enter a critical parallel region, the process
must perform a test lock. The test lock works similarly to a lock, but it does not force the call-
ing process to wait until the specified lock is available. If a process manage to enter a critical
region, it performs the control of global iterationKglobal, the control of temperature T and T ac;
after that it leaves the critical region, increase Ki and evaluate the stopping criterion. If the
criterion of any SA processes is met, the respective SA process ends; if not, a new iteration
cycle starts, continuing until all SA processes are finished.
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Figure 1. A Parallel Coupled Simulated Annealing Implementation

3. Parallel Performance Metrics

Although simplistic, Amdahl’s Law [4] states that the sequential fraction of code severely
limits the scalability of the algorithm when increasing the number of available processors.
Its involvement will be felt in the analysis of speedup S, defined as the division of the serial
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processing time Ts by the parallel processing time Tp, and the efficiency E, defined as the
division of the speedup by the number of processors p.

S =
Ts
Tp

(3) E =
S

p
(4)

The efficiency expresses the percentage of the speedup achieved by the algorithm in relation
to a linear speedup. Values above 1 indicate super-linear speedups; below, express infra-
linearity, and equal to 1 show linear speedup. The goal of parallel algorithms is to achieve
the linear speedup. For a scalable algorithm, it is expected that this linearity is achieved when
the problem increases in size. This occurs because increasing the size of the problem in a
scalable algorithm increases more the parallel fraction of code than the serial fraction. Thus,
an indicative of good scalability is an increasing efficiency with a growing problem size.

4. Results

We conducted two performance analyses for our Coupled Simulated Annealing implementa-
tion. The first is the analysis of the speedup of the problem when the its dimension is constant,
varying the number of processing cores. The second is the examination of the efficiency of the
CSA when we fix the number of processing cores and vary the dimension of the problem.

The objective function used in our tests was
∑Dim

i=1 C(xi), where C(xi) = sen(xi) for i even,
C(xi) = cos(xi) for i odd and Dim is the dimension of the problem.

We wrote the code in C with OpenMP. We used 1,000,000 iterations as stopping criterion.
We measured the runtime for the serial version of the CSA algorithm and for the parallel code
using p cores, with 2 ≤ p ≤ 24. We repeated the tests increasing the problem dimension for a
fixed p.

We calculated the speedup and efficiency for each test situation, according to (3) and (4).
The tests were performed on a computer with two AMD Opteron 6172 processors, each one
with 12 cores.

4.1 Fixing the Dimension of Problem

For this analysis, the problem dimension was fixed and experiments were performed by in-
creasing the number of cores.

In this case, for a given dimension, the parallel portion is fractionated and then executed
by different cores. As the serial fraction is not drastically reduced, it was expected that the
speedup diverges from the ideal speedup when the number of cores increases, as shown in
Figure 2. This experiment demonstrates the typical behavior of parallel systems.
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4.2 Fixing the Number of Cores

We fixed the number of cores and increased the dimension of problem. For scalable parallel
systems, it is expected that the efficiency approaches the unity. Thus, with the improvement
in efficiency, shown in Figure 3, showing the typical characteristic of scalable algorithms, we
can confirm that the scalability of our implementation for higher problem dimensions.

5. Summary

We have presented a scalability analysis of a parallel Coupled Simulated Annealing imple-
mentation. To study the performance of the CSA, two analyses were made in which the CSA
is thoroughly tested. First, we analysed the algorithm and its behavior as a common paral-
lel algorithm. In this analysis, for a fixed dimension problem, we increased the number of
processing cores. The result showed that our implementation has a typical characteristic of
parallel systems, i.e., the speedup diverges from the ideal speedup when the number of the
cores increases. In the second analysis, to demonstrate its scalability, we fixed the number of
processing cores and increased the problem dimension. There was an upward trend in the
efficiency, confirming its good scalability. The results for the scalability analysis, therefore,
confirm that our parallel Coupled Simulated Annealing implementation has good scalability.
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Abstract Global optimization seeks a minimum or maximum of a multimodal function over a discrete or
continuous domain. In this paper, we propose a biased random-key genetic algorithm for finding
approximate solutions for continuous global optimization problems subject to box constraints. Ex-
perimental results illustrate its effectiveness on the robot kinematics problem, a challenging problem
according to [7].
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1. Introduction

Global minimization optimization seeks a solution x∗ ∈ S ⊆ Rn such that f(x∗) ≤ f(x), ∀ x ∈
S, where S is some region of Rn and the objective function f is defined by f : S → R. In this
paper, we present the BRKGA heuristic for solving continuous global optimization problems
subject to box constraints. Without loss of generality, we take the domain S as the hyper-
rectangle S = {x = (x1, . . . , xn) ∈ Rn : ` ≤ x ≤ u}, where ` ∈ Rn and u ∈ Rn such that
ui ≥ li, for i = 1, . . . , n. Therefore, the minimization problem considered in this paper consists
in finding x∗ = argmin{f(x) | ` ≤ x ≤ u}, where f : Rn → R, and `, x, u ∈ Rn.

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), were first
introduced by [1] for solving combinatorial optimization problems involving sequencing. In
a RKGA, chromosomes are represented as vectors of randomly generated real numbers in the
interval [0, 1]. A deterministic algorithm, called a decoder, takes as input a solution vector and
associates with it a solution of the combinatorial optimization problem for which an objective
value or fitness can be computed.

A RKGA evolves a population of random-key vectors over a number of iterations, called
generations. The initial population is made up of p vectors of random-keys. Each component
of the solution vector is generated independently at random in the real interval [0, 1]. After
the fitness of each individual is computed by the decoder in generation k, the population is
partitioned into two groups of individuals: a small group of pe elite individuals, i.e. those
with the best fitness values, and the remaining set of p − pe non-elite individuals. To evolve
the population, a new generation of individuals must be produced. All elite individual of the
population of generation k are copied without modification to the population of generation
k + 1. RKGAs implement mutation by introducing mutants into the population. A mutant
is simply a vector of random keys generated in the same way that an element of the initial
population is generated. At each generation, a small number pm of mutants is introduced into
the population. With the pe elite individuals and the pm mutants accounted for in population
k + 1, p − pe − pm additional individuals need to be produced to complete the p individuals
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that make up the new population. This is done by producing p − pe − pm offspring through
the process of mating or crossover.

A biased random-key genetic algorithm, or BRKGA [4], differs from a RKGA in the way par-
ents are selected for mating. While in a RKGA, [1] selects two parents at random from the
entire population; in a BRKGA, each element is generated combining one element selected at
random from the elite individuals set in the current population and one from the non-elite
individuals set. In some cases, the second parent is selected from the entire population. Rep-
etition in the selection of a mate is allowed and therefore an individual can produce more
than one offspring. Since we require that pe < p − pe, the probability that an elite individual
is selected for mating is greater than that of a non-elite individual and therefore the elite in-
dividual has a higher likelihood to pass on its characteristics to future generations. Another
factor contributing to this end is parameterized uniform crossover [5], the mechanism used to
implement mating in BRKGAs. Let ρe > 0.5 be the probability that an offspring inherits the
vector component of its elite parent. Let n denote the number of components in the solution
vector of an individual. For i = 1, . . . , n, the i-th component c(i) of the offspring c takes on
the value of the i-th component e(i) of the elite parent e with probability ρe and the value of
the i-th component ē(i) of the non-elite parent ē with probability 1− ρe.

When the next population is complete, i.e. when it has p individuals, fitness values are
computed for all of the newly created random-key vectors and the population is partitioned
into elite and non-elite individuals to start a new generation.

To describe a BRKGA for continuous global optimization problems subject to box con-
straints, one needs only to show how solutions are encoded as vectors of random keys and
how these vectors are decoded to feasible solutions of the problem:

Encoding a solution to a vector of random keys. A solution is encoded as a vector χ =
(χ1, ..., χn) of size n, where χi is a random number in the interval [0, 1], for i = 1, . . . , n.
The i-th component of χ corresponds to the i-th dimension of hyper-rectangle S.

Decoding a solution from a vector of random keys. A decoder takes as input the vector of
random keys χ and returns a solution x ∈ S with xi = li + χi · (ui − li), for i = 1, . . . , n.
During all decoder process, the solutions fitness are calculated by the objective function
f : S → R of global optimization problem.

2. Experimental results

All experiments with BRKGA were done on a quad core Intel Core i7 processor (1.60 GHz)
with Turbo Boost up to (2.80 GHz) and 16 Gb of memory, running Ubuntu 10.04 LTS released
in April 2010. BRKGA heuristic was implemented in C++ and compiled with gcc version 4.4.3.
The algorithm used for random-number generation is an implementation of the Mersenne
Twister algorithm introduced by [6].

In this paper, we consider a problem from robot kinematics ([7–9]). We are given a 6-
revolute manipulator (rigid-bodies, or links, connected together by joints, with each link con-
nected to no more than two others), with the first link designated the base, and the last link
designated the hand of the robot. The problem is to determine the possible positions of the
hand, given that the joints are movable. In [9], this problem is reduced to solving a system of
eight nonlinear equations f1(x), . . . , f8(x) in eight unknowns x = {x1, . . . , x8} ∈ [−1, 1]8:

f1(x) = 4.731 · 10−3x1x3 − 0.3578x2x3 − 0.1238x1 + x7 − 1.637 · 10−3x2 − 0.9338x4 − 0.3571 = 0

f2(x) = 0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − x7 − 0.07745x2 − 0.6734x4 − 0.6022 = 0

f3(x) = x6x8 + 0.3578x1 + 4.731 · 10−3x2 = 0

f4(x) = −0.7623x1 + 0.2238x2 + 0.3461 = 0

f5(x) = x2
1 + x2

2 − 1 = 0

f6(x) = x2
3 + x2

4 − 1 = 0

f7(x) = x2
5 + x2

6 − 1 = 0
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Table 1. Roots of system in [−1, 1]8 found by running BRKGA with seed=270001. For each root, the time in sec-
onds and the value of objetive functionF (·) are shown in the first collumn, as so as the components (in parenthesis)
of known roots described in [7, 8].

time(sec.) x1 x2 x3 x4 x5 x6 x7 x8

F (x)(10−5)

4.95 0.1658 −0.9851 0.7153 −0.6950 −0.9975 0.0638 −0.5251 −0.8557
9.79321 (0.1644) (−0.9864) (0.7185) (−0.6956) (−0.9980) (0.0638) (−0.5278) (−0.8494)
7.5 0.1619 −0.9851 0.7182 −0.6946 −0.9979 −0.0616 −0.5232 0.8503
7.19678 (0.1644) (−0.9864) (0.7185) (−0.6956) (−0.9980) (−0.0638) (−0.5278) (0.8494)
13.19 0.1731 −0.9827 0.7181 −0.6946 0.9973 −0.0686 −0.5195 0.8544
9.54526 (0.1644) (−0.9864) (0.7185) (−0.6956) (0.9980) (−0.0638) (−0.5278) (0.8494)
5.95 0.6729 0.7394 −0.6480 −0.7641 −0.9623 −0.2706 −0.4333 0.9027
9.76283 (0.6716) (0.7410) (−0.6516) (−0.7586) (−0.9625) (−0.2711) (−0.4376) (0.8992)
6.86 0.6736 0.7383 −0.6505 −0.7553 0.9634 0.2696 −0.4333 −0.9010
6.49664 (0.6716) (0.7410) (−0.6516) (−0.7586) (0.9625) (0.2711) (−0.4376) (−0.8992)
6.53 0.6792 0.7328 −0.6555 −0.7553 0.9612 −0.27613 −0.4343 0.9027
9.23596 (0.6716) (0.7410) (−0.6516) (−0.7586) (0.9625) (−0.2711) (−0.4376) (0.8992)
11.05 0.6768 0.7358 0.9502 −0.3132 −0.9623 0.2708 0.4002 −0.9162
9.68334 (0.6716) (0.7410) (0.9519) (−0.3064) (−0.9638) (0.2666) (0.4046) (−0.9145)
15.24 0.6674 0.7427 0.9508 −0.3132 0.9661 −0.2620 0.4002 0.9156
9.81702 (0.6716) (0.7410) (0.9519) (−0.3064) (0.9638) (−0.2666) (0.4046) (0.9145)
9.16 0.6792 0.7362 −0.6564 −0.7553 −0.9617 0.2745 −0.4343 −0.9008
9.1171 (0.6716) (0.7410) (−0.6516) (−0.7586) (−0.9625) (0.2711) (−0.4376) (−0.8992)
98.98 0.6707 0.7462 0.9530 −0.3041 0.9644 0.2631 0.4079 −0.9107
8.55693 (0.6716) (0.7410) (0.9519) (−0.3064) (0.9638) (0.2666) (0.4046) (−0.9145)
135.02 0.6646 0.7490 0.9551 −0.3015 −0.9652 −0.2625 0.4101 0.9114
9.82556 (0.6716) (0.7410) (0.9519) (−0.3064) (−0.9638) (−0.2666) (0.4046) (0.9145)
354.76 0.1604 −0.9891 −0.9505 −0.3167 −0.9979 −0.0581 0.4111 0.9090
9.32723 (0.1644) (−0.9864) (−0.9471) (−0.3210) (−0.9982) (−0.0594) (0.4110) (0.9116)
360.76 0.1680 −0.9844 −0.9514 −0.3167 0.9998 −0.0602 0.4098 0.9124
9.70348 (0.1644) (−0.9864) (−0.9471) (−0.3210) (0.9982) (−0.0594) (0.4110) (0.9116)
409.27 0.1606 −0.9855 −0.9481 −0.3183 −0.9976 0.0554 0.4138 −0.9076
7.28536 (0.1644) (−0.9864) (−0.9471) (−0.3210) (−0.9982) (0.0594) (0.4110) (−0.9116)
1204.24 0.1712 −0.9850 −0.9427 −0.3275 0.9976 0.0621 0.4052 −0.9143
8.21721 (0.1644) (−0.9864) (−0.9471) (−0.3210) (0.9982) (0.0594) (0.4110) (−0.9116)
1369.81 0.1718 −0.9837 0.7178 −0.6947 0.9943 0.0687 −0.5246 −0.8519
8.63659 (0.1644) (−0.9864) (0.7185) (−0.6956) (0.9980) (0.0638) (−0.5278) (−0.8494)

f8(x) = x2
7 + x2

8 − 1 = 0

With this system, we form the optimization problem

Find x∗ = argmin{F (x) =
∑8

i=1 f
2
i (x) | x ∈ [−1, 1]8}. (1)

Since F (x) ≥ 0 for all x ∈ [−1, 1]8, it is easy to see that F (x) = 0 ⇐⇒ fi(x) = 0 for all
i ∈ {1, . . . , 8}. Hence, we have the following: ∃ x∗ ∈ [−1, 1]8 3 F (x∗) = 0 =⇒ x∗ is a
global minimizer of problem (1) and x∗ is a root of the system of equations f1(x), . . . , f8(x).
From [7, 8], in the given domain, there are 16 known roots to this system. However, solving
problem (1) 16 times using BRKGA (or any heuristic) with different starting solutions gives no
guarantee of finding all 16 roots. It is entirely possible that some of the roots would be found
multiple times, while others would not be found at all.

To avoid this, we modified the objective function F (x), such as proposed by [3]. Suppose
that heuristic has just found the k-th root (roots are denoted x1, . . . , xk). Then BRKGA will
restart, with the modified objective function given by

F (x) =
8∑
i=1

f2
i (x) + β

k∑
j=1

e−‖x−x
j‖χρ(‖x− xj‖), (2)

where
χρ(δ) = 1, ifδ ≤ ρ; 0, otherwise,
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β is a large constant, and ρ is a small constant. This has the effect of creating an area of
repulsion near solutions that have already been found by the heuristic.

For this problem, we ran BRKGA five times (a different starting random number seed for
each run from 270001 to 270005) with n = 8, p = 10, pe = 0.2p, pm = 0.1p, ρe = 0.7, ρ = 1,
and β = 1010. At any time during a run, we define the optimality gap by GAP = |F (x) −
F (x∗)|, where x is the current best solution found by the heuristic and x∗ is the known global
minimum solution. We then say that the heuristic has solved the problem ifGAP ≤ εwith ε =
0.0001. In each case, the heuristic was able to find all 16 known roots. The average CPU time
needed to find the 16 roots was 3623.27 seconds. The Table 1 illustrates one of these solutions:
the 16 roots found in 4013.27 seconds by running BRKGA heuristic with seed=270001.

3. Concluding remarks

In this paper, we present the BRKGA heuristic for finding approximate solutions for continu-
ous global optimization problems subject to box constraints. We illustrate the approach using
a challenging problem with real-world applications, the robot kinematics, which nonlinear
system was solved through a corresponding adaptively modified global optimization prob-
lem multiple times, each time using BRKGA with areas of repulsion around roots that have
already been found. The promising results shown here illustrate the potential of BRKGA for
global optimization problems.
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