
Efficient and scalable open-source JPIP server
for streaming of large volumes of image data

J.P. Garcı́a-Ortiz, C. Martin, V.G. Ruiz, J.J. Sánchez-Hernández, I. Garcı́a
Comp. Architecture and Electronics Dept.

University of Almerı́a, Spain

D. Müller
European Space Agency, ESTEC

Noordwijk, Netherlands

Abstract—This paper1 presents a new efficient and highly
scalable open-source development of a JPIP server, financed
by the European Space Agency, that allows the streaming of
large volumes of JPEG 2000 imagery. Although its was mainly
designed with the aim to serve the Sun data generated by the
recently launched NASA SDO observatory, its features can be
very interesting for many other remote image/video browsing
contexts. The results show that it is currently one of the best
implementations of JPIP server, both in terms of demanded
computing resources and quality of the reconstructions in the
clients.

I. INTRODUCTION

Some of the powerful features offered by the novel JPEG
2000 multi-part standard [1] are lossless/lossy compression,
random access to the compressed streams, incremental decod-
ing and high degree of spatial and quality scalability. These
characteristics have led it to obtain the recognition as a state-
of-the-art solution among applications for remote browsing of
high-resolution images.

JPEG 2000, in combination with the JPIP protocol [2]
defined in its Part 9 [3], has already been successfully used
in many scientific areas (e.g. tele-microscopy [4] or tele-
medicine [5]), and it has a significant potential in any other
one where large volumes of image data need to be streamed,
like for example Google Earth/Maps.

A noticeable example in astronomy is the JHelioviewer
project [6], developed by the European Space Agency (ESA)
in collaboration with the National Aeronautics and Space Ad-
ministration (NASA). Its main goal is to deploy an interactive,
data browsing and analyzing platform to accommodate the
staggering data volume of 1.4 TB of images per day that will
be returned by the Solar Dynamics Observatory [7]. Among
other data products, SDO will provide full-disk images of
the Sun taken every 10 seconds in eight different ultraviolet
spectral bands with a resolution of 4096× 4096 pixels.

The client side of this project is being developed in Java,
which code is stored under a open-source license in Launch-
pad. It uses the Kakadu [8] JPEG 2000 library, developed
by D. Taubman. This library is currently one of the best and
most used JPEG 2000 implementations because it is highly
optimized. Moreover, although it is commercial software, its

1This work has been funded by grants from the Spanish Ministry of Science
and Innovation (TIN2008-01117) and Junta de Andalucı́a (P08-TIC-3518), in
part financed by the European Regional Development Fund (ERDF).

binaries can be redistributed without restrictions for open-
source solutions.

The Kakadu package also contains some demo applications,
including a completely functional JPIP server. Even though
this server has been improved significantly throughout all the
library versions, it still suffers from scalability and stability
restrictions. In the case of the JHelioviewer project, where
a high load of data transmission and client connections is
expected, the solution provided by the Kakadu library does
not offer enough performance for very large imagery systems,
as it is shown later in this paper.

Although there are other freely available implementations
of the JPIP, none of them is capable of complying with the
necessary requirements imposed by the JHelioviewer project.
One of them is the open-source OpenJPEG JPEG 2000 library
which was developed under the 2KAN project [9]. In this
library there is an implementation of a JPIP server, called
OpenJPIP [10], but unfortunately, by the time being, it only
supports tile-based streaming, which is only recommend-
able for certain specific applications, not the case of the
JHelioviewer project. Most importantly, OpenJPIP does not
implement a fully server architecture, like the Kakadu server.
It is designed as a CGI module for an existing Web server.
This implies that the development does not tackle the server
performance or scalability at all, depending these issues of the
used base system. These restrictions led it to be discarded as
well for the JHelioviewer project. Other implementation that
was taken into account was the CADI software [11] developed
by the Group on Interactive Coding of Images (GICI) at the
Universitat Autonoma de Barcelona. In this case, this solution
was discarded because it is written in Java, a programming
language that is not as efficient as C++ to control the CPU
and the memory usages of the server host.

In this context where there is an absence of JPIP server
implementations capable to comply with the project require-
ments, ESA decided to finance the development of a new effi-
cient and scalable open-source JPIP server. This paper presents
this application, which first version is currently available on
Launchpad [12].

The rest of the paper is organized as follows: in Section II
the problem in question is analyzed in detail. Section III is
dedicated to explaining the proposed solution, which is later
evaluated in Section IV. The paper ends with some conclusions
and future work (Section V).



. . .

Cache

Cache

Client manager
JPEG2000

images

information
Indexing

Cache

JPIP client
WOI request

image data

JPIP client
WOI request

image data

JPIP client
WOI request

image data

Client manager

Client manager

JPIP server

Fig. 1. Common functional architecture of a JPIP communication system,
focused on the server side.

II. SERVER ARCHITECTURES

Figure 1 shows the common functional architecture of
a JPIP communication system, focused on the server side.
For each client connection, a new communication session
is established and handled by a client manager. Although
the JPIP protocol allows stateless connections, they are not
commonly used.

Within the session a client can open different channels, one
for each remote image to explore. Clients explore the desired
images by means of WOI (Window Of Interest) requests.
A WOI is usually identified by a rectangular region and a
zoom or resolution level. The client manager extracts from
the associated JPEG 2000 image those parts related to the
WOI and send them to the client.

The client usually imposes a length limit for the server
responses with the aim to control the communication flow.
The complete response of a WOI is thus completed in different
message exchanges, repeating the same request several times.
This is possible thanks to the cache model maintained by each
client manager, which records which image parts have been
already sent.

For this data extraction the server needs an indexing
information that is generated parsing the image files. The
performance of the server is directly affected by how this
information is generated. For example, it is possible, for each
WOI request, to parse always the entire image file looking
for the required parts. This does not consume memory, but
it involves a considerable processing and disk load. On a
completely contrary approach, it is possible to pre-build a
complete index file and load it completely before attending
a WOI request of an image. This reduces at the maximum the
processing and disk load, but consumes too much memory.

The hybrid approach achieves a good relation between the
memory consumption and the CPU/disk usage. It consists
of pre-building some little indexing files, which contain the
references of the main parts of the image, and then parsing
on demand the images depending on the client requests. The
index of each image is thus built on memory, on demand.

The implementation of a JPIP server must consider that
the indexing information is shared by all the client managers.
Depending on how it is generated, the sharing mechanism

becomes more or less complex. In the case of complete pre-
build index files, the access of the client managers is only for
reading. However, for the hybrid approach, the client managers
access to the index information for reading as well as for
writing.

At the moment of writing this paper there is not any
published work related to either JPIP server implementations
or architectures. This is why it has not been possible to
include any reference or comparison to previous related works.
Nevertheless, the architecture of a JPIP server is quite similar
to the one of a common Web server. For example, as it was
mentioned in the introduction, the OpenJPIP server has been
implemented as a layer for a Web server. Next some existing
works related to Web server architectures are analyzed.

There are multiple possible approaches for implementing a
web server, as it is commented in [13]. The multi-processes
(MP) and multi-threads (MT) are the most common ones.

With MP each client is handled by a different process. The
main advantage of this approach is the stability: if one process
crashes, the other ones are no affected at all. On the contrary,
this solution achieves a lower performance than MT in terms
of memory consumption, operating system load (creating and
killing processes) and inter-processes communication. The
mechanisms for sharing information between processes in the
existing platforms are usually less efficient that in the case of
threads.

The most used Web server nowadays, Apache [14], adopts
the MP approach in the Unix version 1.3 and in the version
2.0’s multiprocessing (MPM) prefork module.

The MT approach allows an easy and natural way of pro-
gramming a server, becoming simple and efficient the sharing
and communication between threads. However it suffers from
stability since if a thread crashes, the entire server process
gets down, stopping also all the other threads. The Kakadu
server [8], for example, adopts this approach.

With the aim to achieve a balance between the two previ-
ous solutions, some implementations use an hybrid approach
(MP+MT), dividing the server in several processes, and each
process in several threads. This increases the stability and
obtains a performance near the MT solution. The Apache
2.0 Worker MPM implements it. The main drawback of this
approach is inherited from the MP one, that is, the sharing and
communication between the processes, and hence between the
threads among processes.

Apart from the MP, MT or MP+MT, there are many other
different proposals studied by the research community, some
of them compared in terms of performance in the work of D.
Pariag et al. [15]. A particular and very referenced proposal
is the Flash server of V.S. Pai et al. [16]. It implements
an AMPED (Asynchronous Multi-Process Event Driven) ar-
chitecture that avoids the use of blocking I/O operations,
and hence reducing the associated idle times. Although it
showed promising results, the work of Gyu Sang Choi et
al. [17] demostrated that it suffers from scalable performance,
in relation to a MT solution, on multi-processor machines.



(Client manager)
Worker thread

(Client manager)
Worker thread

(Client manager)
Worker thread

UNIX
socket

...
Connections

. . .

Scheduler
thread

Thread poolChild process

thread
Main

co
nn

ec
tio

ns
N

ew

Father process

Fig. 2. Schematic representation of the ESA JPIP server architecture.

III. PROPOSAL DESCRIPTION

The open source project here presented was carried out with
the aim to implement, using the C++ programming language,
an efficient and very stable/scalable solution of a JPIP server.
It has been specifically designed for Unix systems in order
to fully profit from its characteristics, discarding a portable
design which might compromise the efficiency.

The ESA JPIP server is capable to handle the following
JPEG 2000 image files: raw J2C, JP2 and JPX with or without
hyperlinks. The main requirement for the image files is that
they must contain PLT markers, defined in the standard, with
the information about the length of all the packets. These
markers allow the server to build the indexing information of
the different parts of the image without decoding. It simplifies
the code and avoids to use any JPEG 2000 engine.

Almost any packet progression is allowed for compressing
the images, but the RPCL progression is strongly recom-
mended to be used for achieving an efficient performance,
because of the organization of the packets in the file. Others
implementations, like Kakadu, recommend this progression as
well.

Fig. 2 shows a schematic representation of the server archi-
tecture. It consists of a hybrid model combining both process
and thread approaches. Nevertheless, it is not a classical hybrid
MP+MT model, as it is implemented in Apache for example,
but it is more a pure MT approach with the minimum MP
support for achieving a good robustness. There are only two
processes, hereinafter called father and child. The second one
is who maintains all the working threads.

The father process creates the child process by forking
and watches it. It also has the listening socket of the server
to accept new incoming connections. When a new client
connection is established by the father process, it sends this
connection to the child process through a UNIX-domain socket
and records it in a vector where all the opened connections
are recorded as well. If the father detects that the child has
finished (e.g. due to a crash) it creates a new child process
forking itself. Taking into account that it inherits the vector of
the current opened connections, it can continue handling them
without interruptions for the clients.

The child process provides all the functionality to handle the
client connections. It contains a scheduler thread for reading

the new connections sent by the father through the UNIX-
domain socket. The scheduler thread assigns each connection
to a working thread available in the maintained thread pool.

Each working thread implements the necessary functions,
explained in Section II, associated to the client manager mod-
ule shown in Fig. 1. The indexing information can be easily
shared in memory by all the threads, without the efficiency
restrictions when dealing with processes.

In order to generate the indexing information of the images
a hybrid approach has been adopted. When an image is going
to be served for its first time, a little associated cache file is
created with the index of the main parts of the image, mainly
the position of the header and the PLT markers. This cache
file is loaded the next times the same image is served again.

With the help of this cache file, the indexing information
is generated by the server in memory on demand depending
on which regions are explored by the clients. Actually, the
more resolution levels the user explores of an image, the larger
becomes the related index data. The space required for this
data has been reduced considerably, requiring the minimum
possible number of bytes for each index item.

The index of each opened image for being served is stored
as a node in a double-linked list shared by all the threads.
Each node may also have references to other nodes of the list.
For instance, in the case of a JPX file with hyperlinks, it is
represented by a node which points to a set of other nodes,
each one associated to each hyperlink of the file.

The access control of the threads to this shared informa-
tion has been implemented using two different mechanisms.
A general mutex locking mechanism has been adopted for
reading/modifying the list. These operations are fast and only
performed when opening/closing images. For each node a
reader/writer locking mechanism has been used, in order to
control the access to the indexing information of each image.
This mechanism gives a priority to the readers higher than to
the writers. This corresponds to the server behaviour because
the read operation is the most common, while the write
operation is performed just when incrementing the indexing
information for a new resolution level. All these locking
mechanisms are available by means of the POSIX pthread
library.

This architecture provides a fault-tolerant and robust ap-
proach for the server, as well as it offers a good performance.
The multi-threading solution implemented in the child process
is efficient in terms of memory consumption and fast shar-
ing/locking mechanisms. Having separated the client handling
code from the father process provides robustness and security.
If the child process crashes, the father process will be able
to launch a new child process, keeping all the opened client
connections (clients do not notice anything).

The image data is transmitted efficiently. The precincts that
geometrically overlap by the requested WOI are sent always
first, following the LRCP progression. This is the optimal one
in terms of rate/distortion, as it was analyzed in [18]. As it is
later shown in the evaluation, this achieves a significant gain
in rate/distortion.



IV. EVALUATION

The development has been evaluated being compared to the
JPIP server provided by the commercial Kakadu package [8],
currently the most referenced JPEG 2000 solution due to its
good performance.

The aim of the first test carried out was to compare the
both solutions in terms of memory consumption and CPU
usage. 20 linked JPX files were created with 1000 different
frames each one corresponding to 4096 × 4096 SDO Sun
images. Every 5 seconds a flash crowd of 100 connections
was established. Each connection is related to a JPX image
from the available set (20), and it simulates a client that plays
the video during 30 seconds, requesting 15 sequential images
in each query, exploring all the 1000 images. After 30 seconds,
all the connections are closed, releasing the related channels as
well. The used WOI was 1024× 1024 in the same resolution
level. This scenario was running during a week.

Although there are not many simultaneous clients in this
experimental scenario, the server load is quite high, due to
the large amount of image data that needs to be handled,
distributed in many different files. Moreover, this scenario is
a common situation within the context of the JHelioviewer
application.

When generating the JPEG 2000 images used in this exper-
iment the PLT markers have been included and the following
compression parameters have been used: 8 quality layers, 8
resolution levels and RPCL as progression order. Precincts
have been used with a size of 128× 128.

Table I shows the average and standard deviation of the
results of this test. As it can be seen, the Kakadu server needs
around 2 GB of RAM, while the ESA server only needs
30 MB. Moreover, the std. deviation says that the memory
consumption Kakadu server is quite more variable than the
ESA server, which on the contrary maintains the same memory
consumption almost all the time.

The CPU usage is similar in the two solutions, although the
Kakadu server seems to need less. Nevertheless, the logs have
shown many records with 0 usage, which, considering that
the logs have been recorded every 5 seconds, only means that
the Kakadu server generates delays attending the connections.
This would be coherent with the differences in the standard
deviation.

The average throughput, in terms of responses by second,
has been also recorded in this scenario, when all the 100
clients are communicating. The Kakadu server achieves a
value around of 232, while the ESA server raises up to 1068.

Memory (MB) CPU (%)
Ave. Dev. Ave. Dev.

ESA server 30.17 1.77 213.25 76.05
Kakadu server 1871.46 345.56 176.54 128.04

TABLE I
RESULTS OF THE BENCHMARKING.

ESA server
Kakadu server

0

10

20

30

40

50

0 20 40 60 80 100

PS
N

R
[d

B
]

Received data (KBytes)

WOI: (0, 0, 512, 512, 3)

ESA server
Kakadu server

0

10

20

30

40

50

0 50 100 150 200

PS
N

R
[d

B
]

Received data (KBytes)

WOI: (512, 512, 512, 512, 2)

ESA server
Kakadu server

0

10

20

30

40

50

0 50 100 150 200

PS
N

R
[d

B
]

Received data (KBytes)

WOI: (1024, 1024, 512, 512, 1)

Fig. 3. Comparison in terms of PSNR vs. data received between the Kakadu
server and the ESA server for a sequence of three WOIs.

In the context of the remote browsing systems, where a
JPIP server is located, it is also very interesting to evaluate
the quality of the reconstruction of the served WOI, measured
by means of the PSNR [dB] versus the data received in the
client side. This measurement is related to the user experience
because the user always wants to see the best quality as soon
as possible.

The sequence of WOIs (x, y, width, height, res.level)
that has been used is as follows: (0, 0, 512, 512, 3),
(512, 512, 512, 512, 2), (1024, 1024, 512, 512, 1). It corre-
sponds to a common user sequence using the JHelioviewer
application and making zoom in a corner. Fig. IV shows the
rate-distortion curve generated by ESA server and Kakadu
server.



As it can be observed, the ESA server gives better results.
This is consequence of the way it transmits the image data,
explained in the previous section. The Kakadu server seems
to use a different packet progression.

In the hardest scenario where the ESA server was tested
1500 simultaneous connections were attended, serving a total
of 1500000 image files (generated with the compression
parameters commented before) in parallel. The Kakadu server
is not able to support this load.

V. CONCLUSIONS

The evaluation results show that the ESA JPIP server is
better than the server provided by the Kakadu package, in
terms of scalability (memory consumption and CPU usage)
as well as in terms of rate-distortion. Its open-source license
allows to be used, maintained and improved freely by the
Internet community. Therefore, this development is currently
one of the best options in those contexts where a JPIP server
is required.

REFERENCES

[1] International Organization for Standardization, “Information Technology
- JPEG 2000 Image Coding System - Core Coding System,” ISO/IEC
15444-1:2004, September 2004.

[2] D. S. Taubman and R. Prandolim, “Architecture, Philosophy and
Perfomance of JPIP: Internet Protocol Standard for JPEG2000,” in Inter-
national Symposium on Visual Communications and Image Processing,
Julio 2003, vol. 5150, pp. 649–663.

[3] International Organization for Standardization, “Information Technology
- JPEG 2000 Image Coding System - Interactivity Tools, APIs and
Protocols,” ISO/IEC 15444-9:2005, November 2005.

[4] V. Tuominen and J. Isola, “The application of JPEG 2000 in virtual
microscopy,” Journal of Digital Imaging, 2007.

[5] K. Krishnan, M.W. Marcellin, A. Bilgin, and M.S. Nadar, “Efficient
transmission of compressed data for remote volume visualization,” IEEE
Transactions on Medical Imaging, vol. 25, pp. 1189–1199, September
2006.

[6] D. Müeller, B. Fleck, G. Dimitoglou, B. W. Caplins, D. E. Amadigwe,
J. P. Garcia Ortiz, A. Alexanderian B. Wamsler, V. Keith Hughitt, and
J. Ireland, “JHelioviewer: Visualizing large sets of solar images using
JPEG 2000,” Computing in Science and Engineering, vol. 11, no. 5, pp.
38–47, September 2009.

[7] W. Pesnell, “The Solar Dynamics Observatory: Your eye on the Sun,” in
37th COSPAR Scientific Assembly, 2008, vol. 37 of COSPAR, Plenary
Meeting, pp. 2412–+.

[8] “Kakadu JPEG 2000 SDK,” http://www.kakadusoftware.com.
[9] “The 2kan project,” http://www.2kan.org.

[10] “OpenJPIP - Open-source C-Library for JPEG 2000,” http://code.google.
com/p/openjpeg/wiki/JPIP.

[11] “Cadi software,” http://gici.uab.es/CADI.
[12] “ESA JPIP Server,” https://launchpad.net/esajpip.
[13] D. Carrera, V. Beltran, J. Torres, and E. Ayguade, “A hybrid web server

architecture for e-commerce applications,” in Parallel and Distributed
Systems, 2005. Proceedings. 11th International Conference on, july
2005, vol. 1, pp. 182–188.

[14] “Apache HTTP server project,” http://httpd.apache.org.
[15] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, Amol Shukla,

and David R. Cheriton, “Comparing the performance of web server
architectures,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 231–243, March
2007.

[16] V.S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An efficient and
portable Web server,” in USENIX 1999 Annual Technical Conference,
June 1999.

[17] Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, and Chita R. Das, “A multi-
threaded pipelined web server architecture for smp/soc machines,” in
Proceedings of the 14th international conference on World Wide Web,
New York, NY, USA, 2005, pp. 730–739, ACM.

[18] J.P.G. Ortiz, V.G. Ruiz, M.F. Lopez, and I. Garcia, “Interactive
transmission of JPEG2000 images using web proxy caching,” IEEE
Transactions on Multimedia, vol. 10, June 2008.


