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como caso de estudio)

Gloria Ortega López
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Department of Informatics

Author: Gloria Ortega López
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Prefacio

Esta tesis titulada “High Performance Computing for solving large sparse

systems. Optical Diffraction Tomography as a case of study” (Computación

de altas prestaciones para la resolución de sistemas dispersos de grandes di-

mensiones. Tomograf́ıa Óptica Difraccional como caso de estudio) investiga

los aspectos computacionales asociados con la resolución de sistemas de

ecuaciones lineales procedentes de la discretización de modelos f́ısicos des-

critos mediante sistemas de Ecuaciones Diferenciales en Derivadas Parciales

(PDEs). Estos modelos f́ısicos se conciben para describir el comportamiento

espacio-temporal de algún fenómeno f́ısico f(x, y, z, t) en términos de sus

variaciones (derivadas parciales) con respecto a algunas de las variables

de las que depende el fenómeno. Existe una gran diversidad de métodos

de discretización de PDEs. Los dos más extendidos son el Método de las

Diferencias Finitas (FDM) y el Método de los Elementos Finitos (FEM).

Ambos métodos dan lugar a una descripción algebraica del modelo que se

traduce en el planteamiento de un sistema de ecuaciones lineales del tipo

(Ax = b), donde A es una matriz dispersa (porcentaje muy alto de elemen-

tos nulos) cuyo tamaño depende de la precisión con la que se desee modelar

el fenómeno.

En esta tesis partimos de la descripción algebraica del modelo asociado al

fenómeno f́ısico, y nuestras contribuciones están relacionadas con el diseño

de técnicas y modelos computacionales que permiten resolver estos sistemas

de ecuaciones. Nuestro interés se centra en modelos que requieren un nivel

de discretización muy fino y que por lo tanto generan matrices, A, que

tienen una estructura dispersa y un gran tamaño. La literatura cient́ıfica

caracteriza este tipo de problemas por una alta demanda computacional

(debido al grado de discretización) y por la dispersión de las matrices que
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los definen, planteando que únicamente se pueden abordar mediante el uso

de métodos y arquitecturas computacionales de alto rendimiento.

Actualmente, las arquitecturas de alto rendimiento más extendidas son

los sistemas heterogéneos formados por clústeres de multiprocesadores de

memoria distribuida, donde cada nodo posee una arquitectura multi-core

con distinto número de núcleos. Además, estas arquitecturas pueden dis-

poner de diversos elementos aceleradores, tales como unidades vectoriales,

FPGAs, GPUs, Coprocesadores Intel Xeon Phi y una red de interconexión

heterogénea compuesta por enlaces de distinto ancho de banda y latencia.

Uno de los principales objetivos de esta tesis es investigar las posibles al-

ternativas que permitan la implementación de rutinas capaces de resolver

sistemas lineales dispersos de grandes dimensiones y basadas en el aprove-

chamiento de las modernas plataformas de altas prestaciones. El uso de

plataformas masivamente paralelas (GPUs), permite la aceleración de estas

rutinas, ya que presentan ventajas para esquemas de computación vecto-

rial. Por otro lado, el uso de plataformas de memoria distribuida permite

la resolución de problemas que pueden ser modelados mediante matrices

de enorme tamaño. Finalmente, la combinación de ambas técnicas, com-

putación distribuida y multi-GPUs, permitirá abordar problemas de interés

donde intervienen matrices dispersas de gran tamaño, en un tiempo muy

reducido. En este sentido, una de las aportaciones de este trabajo consiste

en poner a disposición de la comunidad implementaciones optimizadas para

clústeres multi-GPU que permitan resolver sistemas de ecuaciones lineales

dispersos, que son un aspecto clave en la computación cient́ıfica.

La segunda parte de esta tesis se centra en un problema f́ısico real del

campo de la Tomograf́ıa Óptica Difraccional basado en datos holográficos.

La Tomograf́ıa Óptica Difraccional permite extraer información sobre la

forma de los objetos con una gran precisión y sin someterlos a la agresión

de intensas radiaciones, por lo que posibilita la investigación de tejidos, mi-

croorganismos, etc. en vivo, y hace posible el estudio de su dinámica. Un

modelo f́ısico preliminar basado en la reconstrucción bidimensional de la dis-

tribución de part́ıculas sembradoras en fluidos fue propuesto por J. Lobera
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y J.M. Coupland. Sin embargo, su alto coste computacional (memoria y

tiempo de cómputo) hace que su extensión a un modelo tridimensional tenga

que basarse, necesariamente, en el uso de técnicas de computación de altas

prestaciones. En la segunda parte de esta tesis se aborda la implementación

y validación de este modelo f́ısico para el caso de reconstrucciones tridimen-

sionales. En dicho desarrollo es necesaria la resolución de grandes sistemas

de ecuaciones dispersos. Por lo tanto, algunas de las rutinas algebraicas

que hemos implementado en esta tesis han sido utilizadas para la imple-

mentación de estrategias computacionales capaces de resolver el problema

de la reconstrucción 3D de Tomograf́ıa Óptica Difraccional.

Esta tesis está organizada en seis caṕıtulos. El primero de ellos es una

introducción a las áreas de investigación en las que se enmarca esta tesis.

En dicho caṕıtulo se presentan los materiales y métodos utilizados. En

primer lugar, se revisan brevemente las arquitecturas paralelas aśı como los

modelos de programación más utilizados actualmente. A continuación se

describen de forma sucinta los aspectos relacionados con los métodos para

resolver sistemas de ecuaciones lineales, una de las claves más importantes

del Álgebra Lineal. Finalmente, se indican las plataformas computacionales

que se han utilizado para evaluar las distintas implementaciones llevadas a

cabo en esta tesis.

El Caṕıtulo 2 se centra en la computación de matrices dispersas sobre

plataformas GPU. En primer lugar, se lleva a cabo una descripción de los

formatos de almacenamiento de matrices dispersas que más se utilizan en la

actualidad. A continuación, se describen los detalles de una implementación

de la operación matriz dispersa vector (SpMV) basada en el formato ELLR-

T, que será utilizada en los siguientes caṕıtulos. Finalmente, se propone una

rutina algebraica para el cálculo de la multiplicación matriz dispersa ma-

triz densa (SpMM), que se evalúa sobre plataformas GPUs. Esta rutina ha

demostrado obtener mejores resultados, en términos de rendimiento, que

otros kernels presentes en la literatura.

El Caṕıtulo 3 está dedicado al desarrollo de un método capaz de resolver

grandes sistemas de ecuaciones lineales dispersos utilizando GPUs. Concre-
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tamente nos hemos centrado en el método del Gradiente Biconjugado (BCG)

para resolver estos sistemas de ecuaciones. BCG ha sido desarrollado para

su ejecución en plataformas GPU, utilizando dos rutinas alternativas para

realizar la operación SpMV que incluye dicho método. Estas rutinas son:

una rutina incluida en la libreŕıa CUSPARSE, ya existente en la literatura,

y una rutina del SpMV basada en el formato ELLR-T. Al final del caṕıtulo

se muestra una evaluación comparativa de los dos métodos para un conjunto

de matrices de prueba, donde se observa que la resolución del método BCG

basado en el formato ELLR-T (para resolver la operación SpMV) obtiene

un mejor rendimiento que el BCG que se implementa utilizando la libreŕıa

CUSPARSE.

En el Caṕıtulo 4 se estudia la ecuación de Helmholtz como un caso particular

de sistemas de ecuaciones en derivadas parciales cuya discretización da lugar

a un gran sistema de ecuaciones lineales, que en este caso está caracterizado

por una matriz dispersa de grandes dimensiones y que exhibe un patrón

regular particular en cuanto a la localización de los elementos no nulos.

Las caracteŕısticas de la ecuación de Helmholtz se detallan al comienzo del

caṕıtulo. Posteriormente, se analizan varias implementaciones multi-GPU

que se han diseñado para acelerar la resolución de la ecuación de Helmholtz.

En el Caṕıtulo 5 se describe el desarrollo e implementación de un nuevo

método de reconstrucción tomográfica 3D basada en el procesado de datos

holográficos con técnicas de computación de altas prestaciones. Este nuevo

método requiere la resolución de la ecuación de Helmholtz cuya discretización

da lugar a un sistema de ecuaciones disperso, regular, de tipo complejo y

dimensiones elevadas, cuya solución puede obtenerse mediante el método

BCG. El desarrollo del modelo mencionado se basa en una implementación

del método BCG sobre GPUs que explota las regularidades de la matriz,

tal como se describe en el Caṕıtulo 4.

En el Caṕıtulo 6 se resumen las conclusiones y las principales aportaciones

de estas tesis. Además, se plantean algunas de las lineas de investigación

que quedan abiertas y que se abordarán en el futuro.
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Preface

This thesis, entitled “High Performance Computing for solving large sparse

systems. Optical Diffraction Tomography as a case of study” investigates

the computational issues related to the resolution of linear systems of equa-

tions which come from the discretization of physical models described by

means of Partial Differential Equations (PDEs). These physical models

are conceived for the description of the space-temporary behavior of some

physical phenomena f(x, y, z, t) in terms of their variations (partial deriva-

tive) with respect to the dependent variables of the phenomena. There is

a wide variety of discretization methods for PDEs. Two of the most well-

known methods are the Finite Difference Method (FDM) and the Finite

Element Method (FEM). Both methods result in an algebraic description

of the model that can be translated into the approach of a linear system of

equations of type (Ax = b), where A is a sparse matrix (a high percentage of

zero elements) whose size depends on the required accuracy of the modeled

phenomena.

This thesis begins with the algebraic description of the model associated

with the physical phenomena, and the work herein has been focused on the

design of techniques and computational models that allow the resolution

of these linear systems of equations. The main interest of this study is

specially focused on models which require a high level of discretization and

usually generate sparse matrices, A, which have a highly sparse structure

and large size. Literature characterizes these types of problems by their high

demanding computational requirements (because of their fine degree of dis-

cretization) and the sparsity of the matrices involved, suggesting that these

kinds of problems can only be solved using High Performance Computing

techniques and architectures.
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Nowadays, the High Performance Computing architectures that are most

widely used are the heterogeneous platforms based on distributed memory

systems, where every node has a multi-core architecture with a different

number of cores. Moreover, these architectures can also provide several

accelerators, such as vector units, FPGAs, GPUs, Intel Xeon Phi coproce-

ssors and a heterogeneous interconnection network composed of links with

different bandwidth and latency.

One of the main goals of this thesis is the research of the possible alterna-

tives which allow the implementation of routines to solve large and sparse

linear systems of equations using High Performance Computing (HPC). The

use of massively parallel platforms (GPUs) allows the acceleration of these

routines, because they have several advantages for vectorial computation

schemes. On the other hand, the use of distributed memory platforms

allows the resolution of problems defined by matrices of enormous size.

Finally, the combination of both techniques, distributed computation and

multi-GPUs, will allow faster resolution of interesting problems in which

large and sparse matrices are involved. In this line, one of the goals of this

thesis is to supply the scientific community with implementations based on

multi-GPU clusters to solve sparse linear systems of equations, which are

the key in many scientific computations.

The second part of this thesis is focused on a real physical problem of Op-

tical Diffractional Tomography (ODT) based on holographic information.

ODT is a non-damaging technique which allows the extraction of the shapes

of objects with high accuracy. Therefore, this technique is very suitable to

the in vivo study of real specimens, microorganisms, etc., and it also makes

the investigation of their dynamics possible. A preliminary physical model

based on a bidimensional reconstruction of the seeding particle distribu-

tion in fluids was proposed by J. Lobera and J.M. Coupland. However, its

high computational cost (in both memory requirements and runtime) made

compulsory the use of HPC techniques to extend the implementation to a

three dimensional model. In the second part of this thesis, the implementa-

tion and validation of this physical model for the case of three dimensional
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reconstructions is carried out. In such implementation, the resolution of

large and sparse linear systems of equations is required. Thus, some of the

algebraic routines developed in the first part of the thesis have been used to

implement computational strategies capable of solving the problem of 3D

reconstruction based on ODT.

This thesis is organized into six chapters. The first is an introduction to the

main research areas involved in this thesis and it also presents the materials

and methods that were used. Firstly, several parallel architectures and

parallel programming models are briefly described. This is followed by the

discussion of the issues related to the methods for solving linear systems of

equations, one of the keys of Linear Algebra. Finally, the platforms used to

evaluate the experiments are described.

Chapter 2 is dedicated to the computational aspects of sparse matrices on

GPU platforms. First of all, a description of the most widely used com-

pressed storage formats is made. Next, details of an implementation of the

Sparse Matrix vector product (SpMV) based on ELLR-T format is shown.

Finally, a routine for computing the Sparse Matrix Matrix product (SpMM)

is proposed and evaluated on GPUs platforms. The implementation of the

Sparse Matrix Matrix product in this study has shown to outperform other

existing approaches.

Chapter 3 deals with the development of a method to solve large and sparse

linear systems of equations on GPUs, namely, the BiConjugate Gradient

Method (BCG). This chapter discusses the implementation of the BCG

method on GPUs using two different approaches to compute the SpMV

operation. These routines are: a routine included in the CUSPARSE library

and an implementation of the SpMV based on ELLR-T format. At the

end of the chapter the experimental results are provided from an extensive

evaluation carried out using a set of test matrices. Experiments have shown

that the implementation of the BCG based on ELLR-T outperforms the

other approach.

In Chapter 4 the Helmholtz Equation is explored. It is a particular case

of Partial Differential Equation whose discretization results in a large and
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sparse linear system of equations. This linear system of equations is char-

acterized by the regularities of the large and sparse matrix involved in the

resolution. The features of the Helmholtz Equation are described at the be-

ginning of the chapter. Later, several multi-GPU implementations proposed

to accelerate the resolution of the 3D Helmholtz Equation are discussed.

In Chapter 5 the development and implementation of a new tomographic

reconstruction technique based on holography and HPC techniques and

architectures is described. This new method requires the resolution of the

3D Helmholtz Equation, whose discretization results in a complex, regular,

large and sparse linear system of equations. BCG is the proposed solver to

obtain the solution of the Helmholtz Equation. As a result, the development

of the model is based on the implementation of BCG on GPUs exploiting

the regularities of the sparse matrix as described in Chapter 4.

In Chapter 6 a summary where the main results are outlined is provided.

Moreover, future lines of research are presented.
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1
Introduction

This chapter discusses the basic foundations of the two main research areas concerning

this thesis: high performance computing and mathematical issues related to the resolu-

tion of sparse linear systems of equations. A section is devoted to each of them, where

the main issues related to the current work are described.

1.1 High Performance Computing issues

This section analyses the state of the art in High Performance Computing (HPC) and

describes the development methodology designed to create HPC approaches for a set

of real applications. This section covers aspects such as hardware and software models

from the programmer’s point of view, performance evaluation tools, description of the

considered HPC development methodologies for scientific applications, as well as a

summary of the characteristics of the set of parallel and distributed computers which

have been used in the evaluation of the parallel algorithms proposed in this work.

1.1.1 High Performance Computing platforms

The increasing computational demand of the next generation applications has driven

computer designers to adopt new approaches in designing and constructing large High

Performance Computing platforms, sparking the development and deployment of new

technologies. Those technologies include the use of multicore and/or many-core archi-

tecture such as GPUs or the modern Xeon Phi platforms and multi-GPU clusters to

speed up algorithms with high computational requirements.
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1. INTRODUCTION

Since many years Flynn’s taxonomy [65] has proven to be useful for the classi-

fication of high-performance computers. This classification is based on the different

ways of managing instructions and data streams and comprises four main architec-

tural classes: Single Instruction, Single Data (SISD); Single Instruction, Multiple Data

(SIMD); Multiple Instruction, Single Data (MISD); and Multiple Instruction, Multiple

Data (MIMD) [140].

In this subsection, the modern HPC architectures and their connections to the

Flynn’s taxonomy are described with a certain level of detail.

1.1.1.1 Shared memory multiprocessors

This architecture consists of several processors connected to the same bus, through

which, they share a common memory device. The problem to solve is mapped over

the available processors with the goal of minimizing the total execution runtime. With

this model, shared variables of a program are available for any processor at anytime.

Communications among processors are carried out by means of these shared variables,

coordinating the accesses by means of synchronization processes that allow the sys-

tem to solve data dependencies in the program. Shared memory systems can be both

SIMD or MIMD. Single-CPU vector processors can be regarded as an example of the

former, while the multi-CPU models of these machines are examples of the latter.

We will sometimes use the abbreviations SM-SIMD and SM-MIMD for the two sub-

classes [140]. Figure 1.1 shows the traditional organization of an architecture based on

shared memory.

Figure 1.1: Shared memory architecture.
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In this architecture a second classification is established depending on the way

to access to the common memory space. Uniform Memory Access systems (UMA)

provides the same latency for accessing to any memory word for any processor. On the

other hand, in Non-Uniform Memory Access systems (NUMA) the accesses to certain

memory words are much faster than the accesses to others depending on the processor

that requests them. NUMA multiprocessors are more difficult to exploit, but their

scalability is better than for UMA systems.

1.1.1.2 GPU

Graphics Processing Units (GPUs) are devices that act as coprocessors of CPUs (see

Figure 1.2). Its great calculation power comes from the enormous quantity of compu-

tational resources that GPUs include.

Figure 1.2: Example of a GPU acting as coprocessor of a CPU.

On GPU devices the area of the chip devoted to arithmetic calculations is maxi-

mized, whereas the area devoted to control is minimized. According to Flynn’s tax-

onomy they are very near to SIMD systems since GPUs follow a vector programming

model or Single Instruction, Multiple Threads (SIMT), in which thousands of threads

collaborate for the resolution of the problem. The thread of the main execution is

governed by the CPU, which makes calls to the parallel routines (kernels) that are

executed in the GPU. This model has generated a new concept of programming known

as General-Purpose computing on Graphics Processing Unit (GPGPU).
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In the last years, the use of GPUs for general purpose applications has extraordinar-

ily increased thanks to the availability of Application Programming Interfaces (APIs),

such as Compute Unified Device Architecture (CUDA) [14] and OpenCL [10], which

greatly facilitate the development of applications with GPUs. The use of GPUs for

accelerating algorithms where sparse algebraic operations are involved, has been and

is currently being studied by several research groups on the international stage [37, 43,

48, 148].

The GPU architecture consists of several processing units called Streaming Mul-

tiprocessor (SM) or multiprocessors, where every SM contains a particular number of

Scalar Processors or cores that share the control logic and instructions cache according

to the specific GPU architecture generation [98, 107]. Every SM contains:

1. A set of registers for Scalar Processors, whose size depends on the GPU architec-

ture.

2. A space of read-write memory shared among all the Scalar Processors called

shared memory.

3. Two areas of read-only memory (constant memory and texture memory) shared

among all Scalar Processors of all SMs.

In addition, all SMs of the GPU share a global memory area named device memory.

The global memory is DRAM GDDR (Graphics Double Data Rate) whose size depends

on the GPU model. Each kernel is executed by a grid of thread blocks and each thread

block contains a number of threads that are organized as SIMT groups called warps,

which are simultaneously executed on SMs (see Figure 1.3). The total size of a block

(BS) is defined by the programmer.

Theoretically, multiple grids can be available at the same time. Kernel invocations

are also asynchronous. New GPU generations offer the possibility of running several

kernels at the same time. This way, for algorithms which exhibit coarse-grained gran-

ularity, implementations on MIMD architectures are also possible. Hence, these new

GPU generations could be classified as both SIMD and MIMD systems.

With the launch of the Fermi GPU in 2009, NVIDIA ushered in a new era in the

HPC industry based on a hybrid computing model where CPUs and GPUs work to-

gether to solve computationally–intensive algorithms. In just a couple of years, NVIDIA
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Figure 1.3: CUDA programming model (source [130]).

Fermi GPUs powers some of the fastest supercomputers in the world as well as tens of

thousands of research clusters. The chip GT300, better known as Fermi architecture,

contains from 14 to 16 SMs (depending on the model) with 32 Scalar Processors per

SM, coming to a total from 448 to 480 Scalar Processors, obtaining peak performance

values higher than 1.3 TFLOPS. Provided that every SM is massively multithreading,

it can execute thousands of threads per application. A typical application can simul-

taneously execute between 5.000 – 12.000 threads. This Fermi architecture has been

considered for all the experiments in this thesis.

The next generation of GPUs, which appeared in 2012, was the Kepler architecture

(GK-codenamed chips). NVIDIA’s Kepler was designed to vastly increase parallelism

across the GPU. Unlike the old Fermi-class GPUs, which used Streaming Multipro-

cessors (SMs) of 32 cores each, Kepler had 192 cores in each of its next-generation

Streaming Multiprocessors (SMXs).

Next generation of GPUs, referred as Maxwell, will appear at the end of 2014.

Maxwell walks this trend back a bit, and returns to some design elements that Fermi

5
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used but with a new design for the Streaming Multiprocessor (called SMM). Compared

to any previous GPU in this price bracket, Maxwell has a much larger L2 cache. In Ke-

pler, 192 cores shared a contiguous L1 and a separate “Unified Cache”. With Maxwell,

each pair of blocks within the SMM splits a combined L1/texture cache. According

to NVIDIA, the new, larger L2 acts as a buffer for slower caches and for data sharing

across the entire core [9].

Volta generation is scheduled to arrive after Maxwell GPUs (around 2016). NVIDIA

plans to used stacked DRAM on future graphics chips in Volta GPUs. Volta GPUs will

have access to up to 1TB per second of bandwidth by stacking the DRAM on top of

the GPU itself, with a silica substrate between them (3D memory stacking) [2].

1.1.1.3 Xeon Phi

Intel Many Integrated Core Architecture or Intel MIC is a multiprocessor architecture

developed by Intel incorporating earlier work on the Larrabee many core architecture,

the Teraflops Research Chip multicore chip research project, and the Intel Single-chip

Cloud Computer multicore microprocessor. In June 18, 2012, Intel announced that

Xeon Phi will be the brand name used for all products based on their Many Integrated

Core architecture.

Intel Xeon Phi platforms are coprocessors with architecture x86 orientated to the

accomplishment of calculations in parallel processes. Every coprocessor obtains a higher

performance than 1 Teraflop in double precision floating point.

Intel Xeon Phi coprocessors are designed to extend the reach of applications that

have demonstrated the ability to fully utilize the scaling capabilities of Intel Xeon

processor-based systems and to fully exploit available processor vector capabilities or

memory bandwidth. For such applications, the Intel Xeon Phi coprocessors offer ad-

ditional power-efficient scaling, vector support, and local memory bandwidth, while

maintaining the programmability and support associated with Intel Xeon processors

[81]. Getting minimal data movement supposes an algorithmic endeavor, but it can be

eased through the higher bandwidth between memory and cores that is available on the

Intel Xeon Phi coprocessors. This leads to parallel programming using the same pro-

gramming languages and models across Intel products, which are generally also shared

across all general-purpose processors in the industry.
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The Intel Xeon Phi coprocessor is both generally programmable and tailored to

tackle highly parallel problems. As such, it is ready to deal with very demanding

parallel applications. These keys are not specifically for Intel Xeon Phi coprocessors

but for any general-purpose parallel computer. The challenges of parallel computing are

simple to enumerate: expose lots of parallelism and minimize communication. Thus,

there are several reasons to expect that nearly all algorithms that work well on current

GPGPUs can, with a minimal amount of restructuring, work equally well on the Intel

Xeon Phi coprocessor. Additionally, algorithms requiring fine-grain concurrent control

should be significantly easier to express on the coprocessor than on GPGPU. The main

task in this type of architectures is to efficiently exploit the wide vector units, which

are the most significant resources.

Here, it is important to highlight that we have explored several implementations of

BLAS operations on Xeon Phi. However, they have not been reported in this thesis

because this is part of our current research and future works.

1.1.1.4 Distributed memory cluster

The alternative to share the memory space among all the processors is the architecture

based on distributed memory. This kind of systems refers to a multiple-processor com-

puter system in which each processor has its own private memory. Computational tasks

can only operate on local data, if a processor requires data from another processor’s

memory, it must exchange messages with the other processor. This system includes

routines for the sending and receiving of messages, being implicit the coordination

among the processors in the exchange. Every processor knows when it sends a message

and the receiver knows when it receives it, however, if the sender needs confirmation

from the receiver, the receiver can send a confirmation message.

As mentioned in [140], distributed memory systems may be either SIMD or MIMD.

The first class of SIMD systems mentioned which operate in lock step, all have dis-

tributed memories associated with the processors. Distributed-memory MIMD sys-

tems exhibit a large variety in the topology of their connecting network. The details of

this topology are largely hidden from the user, which is quite helpful with respect to

portability of applications.

This architecture allows an unlimited scalability, but it has the disadvantage of

the limitations of the interconnection network used to connect the different processors.
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Few parallel applications can justify the use of an interconnection network of high

performance computing due to its high cost. For this reason, the use of a standard set

of servers interconnected by means of a local area network (clusters) has turned into

the most widespread example of a system multiprocessor based on message passing.

Figure 1.4 shows this type of architecture.

Figure 1.4: Distributed memory architecture.

Modern clusters can use some different types of computational units. A compu-

tational unit could be a general-purpose processor, a special-purpose processor (i.e.

digital signal processor (DSP) or graphics processing unit (GPU)), a co-processor, a

General Purpose GPU (GPGPU), or custom acceleration logic (application-specific in-

tegrated circuit (ASIC) or field-programmable gate array (FPGA)). So, current clusters

are characterized by their heterogeneous processing elements since they include differ-

ent kinds of processors with different instruction set architectures (ISAs). With the

increasing adoption of GPUs in HPC, GPU devices are becoming part of some of the

world’s most powerful supercomputers and clusters [20].

A heterogeneous computing architecture based on GPUs can be characterized as a

scalable cluster of shared memory nodes with multicore processors and PCI-attached

GPUs, interconnected by a high-performance network fabric for fast, high-bandwidth

inter-node communication. These heterogeneous clusters are referred as Multi-GPU

clusters. Figure 1.5 shows a scheme of a multi-GPU cluster with n multicore processors

of four cores and two GPUs per node.

8
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Figure 1.5: Multi-GPU cluster architecture.

Heterogeneous computation with this Multi-GPU clusters involves three general

types of operational interactions. First, there are the interactions among nodes that

take place through communications among processes. These involve libraries that im-

plement message passing or global address space semantics. Second, there are the

intra-node interactions among threads as part of the node’s CPU multicore parallel

execution. These involve shared memory programming and multithreaded runtime

systems. Lastly, there are interactions among the nodes of the CPUs and the attached

GPU devices. These involve DMA memory transfers to/from the GPU device over a

PCI bus, launching of GPU kernels, and other functions provided by the device and

driver libraries supporting the operations [103].

1.1.2 HPC development methodologies for scientific applications

The use of HPC is necessary when a problem demands more computational require-

ments than those supplied by a conventional laptop or workstation or it runs too slowly

(because the algorithm is complex, the dataset is large, or data access is slow). However,

to develop software for HPC is complicated and requires a good comprehension of al-

gorithms, applications, and architectures. As a result, to efficiently design applications

using HPC techniques and architectures requires to follow appropriate methodologies.

9
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Applications should be executed on HPC resources by efficiently exploiting dif-

ferent levels of parallelism, i.e., the Instruction-Level Parallelism (ILP), data-based

parallelism and/or task-based parallelism. Improvements of the performance for these

kind of systems directly depends on the ability of the programmer to optimally exploit

these three levels of parallelism. There is a wide variety of Application Programming

Interfaces (APIs) that the programmer should confidently know how to manage in order

to assemble all the parallelism levels.

Two main research directions have been taken to increase programmer’s productiv-

ity and enhance the performance of their applications. The first alternative consists of

completely relying on the compiler to automatically generate optimized codes for the

target architecture. Some relevant advances have been achieved in the last decades, but

they showed to be applicable only for very simple loops. One of the examples in this

context is the automatic parallelization of loops implemented under Intel C Compiler

(icc) [17].

The second alternative to ease the development of parallel applications consists of

using parallel libraries that efficiently implement the most frequent operations on a

wide range of target high-performance architectures, so that programmers can express

their codes in terms of a set of optimized routines without worrying about the specific

details of each architecture. In this line, the performance of a given application does

not only depend on the programmers’ skill to appropriately express his code in terms

of the available routines, but also on the quality of the design and implementation of

the set of basic operations to fully exploit the underlying architecture.

This subsection is devoted to describing different interfaces and optimization tech-

niques used for developing HPC programs. Furthermore, some well-known algebraic

libraries, that can make the development of HPC code easier, are discussed.

1.1.2.1 Parallel programming interfaces and models

One of the challenges to design efficient HPC codes is the exploitation of the different

parallelism levels supplied by complex supercomputer architectures. From the program-

mers’ point of view, HPC platforms are hierarchical systems where every level is related

to a kind of parallelism and a specific programming interface. So, the HPC programmer

10
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has to combine several interfaces since there is not a unified development interface. Ta-

ble 1.1 summarizes the platforms and the interfaces for each level of parallelism (core,

multicore and distributed system).

Table 1.1: Parallelism levels provided by HPC platforms and interfaces.

Processor Level Program level Platforms and Interfaces

CPU GPU

Core ILP
Optimization Optimization

techniques/ compiler techniques/ compiler

Multi/Many-core
Tasks/ data

OpenMP, PThreads CUDA, OpenCLparallelism

Distributed Tasks/ data
MPI

system parallelism

Two main kinds of granularity can be distinguished according to the size of the

workload for every parallel process: coarse-grained and fine-grained. In the context

of distributed systems, granularity is a qualitative measure of the ratio of computa-

tion to communication. While every processing element in a coarse-grained parallelism

model calculates relatively big chunks of data, between consecutive communications, a

fine-grained parallelism model computes very small pieces of code between consecutive

communications. Fine-grained parallelism is used when communications among pro-

cessing elements happen very frequently. Every type of parallelism of the applications

will be exploited by particular resources of the HPC platforms.

As can be observed in Table 1.1, three main levels of parallelism can be distinguished

in HPC. They are related to the computation on core, multicore and/or distributed

system.

Let’s assume that a core is the minimal processing element supplied by the HPC

platform. Modern cores, based on superescalar architecture, can simultaneously exe-

cute a reduced set of instructions [121]. This parallelism, referred as Instruction-Level

Parallelism (ILP), can be exploited to improve the performance of programs. When a

particular program is executed, the exploitation of ILP strongly depends on its trans-

lation to assembly language and its memory management. Usually, HPC programmers

11
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do not take into account this level because modern compilers add automatic optimiza-

tions. Nevertheless, to achieve an optimum ILP the programmer should facilitate the

action of compilers by means of the development of regular codes with high locality

memory access patterns.

In multicore and distributed systems, there are two perspectives, task and data

parallelism, to extract the parallelism from the codes.

From the point of view of task parallelism, the key notion is that the programmer

has to decompose the work into several tasks which can be easily mapped onto physical

threads that are scheduled by the operating system.

The task of writing parallel programs can also be faced from the point of view of data

parallelism, where tasks perform the same operation on different pieces of data [24].

The term data parallelism refers to the concurrency that is obtained when the

same operation is applied to some or all elements of a data ensemble. A data-parallel

program is a sequence of such operations. A parallel algorithm is obtained from a data-

parallel program by applying domain decomposition techniques to the data structures.

Computations are then partitioned, often according to the “owner computes” rule,

in which the processor that “owns” a value is responsible for updating that value.

Typically, the programmer is responsible for specifying the domain decomposition, but

the compiler is in charge of partitioning the computation automatically [66].

Focusing our attention on “Processor Level” column in Table 1.1, we have defined

three different elements (core, multicore and distributed system) and their correspond-

ing type of parallelism at “Program Level” (ILP, Tasks or data parallelism). Each

“Processor Level” makes use of specific interfaces which also depend on the platform

(CPU / GPU) they are based on (see column “Platforms and Interfaces”).

For the CPU architecture, at multi-core level, several optimizations techniques/compiler

can be found. They will be described in the Subsection 1.1.2.2. At multicore level, to

take advantage of the shared-memory feature of the nodes, two main parallel program-

ming interfaces are widely used: Posix threads (Pthreads) [44] and OpenMP [124].

Task-parallel API is OpenMP which is mainly based on simple compiler directives used

to guide mostly the parallelization of regular loops although the recently proposed ex-

tension [39] with a task-enqueuing mechanism extends its scope of application. Using

OpenMP, multiple threads for a process can be easily created. These threads are dis-

12
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tributed among all the cores of the CPU sharing the memory. So, there is no need to

duplicate data nor to transfer information between threads.

For the case of distributed systems, Message Passing Model (MPI) is the standard

for exchanging messages among processors which are in the same node or at different

nodes [132]. MPI is particularly suitable to distribute memory systems where each

processing unit has access only to a portion of the system memory and processes need

to exchange data by message passing.

For the GPU architecture, at core and multicore processor levels several opti-

mizations techniques/compiler can be applied. They will be described in the Sub-

section 1.1.2.2. Moreover, at the same levels, CUDA [14] and OpenCL [10] offer two

different interfaces for programming GPUs. OpenCL is an open standard that can be

used to program CPUs, GPUs, and other devices, while CUDA is specific to NVIDIA

GPUs. Although OpenCL promises a portable language for GPU programming, its gen-

erality may entail a performance penalty. Finally, for the case of distributed systems,

MPI is also the portable API for communicating data via messages (both point-to-point

& collective) between distributed processes. In this way, MPI is frequently used in HPC

to build applications that can scale on multi-GPU clusters.

1.1.2.2 Optimizing Code Performance

Bearing in mind all the considerations described in Table 1.1, Figure 1.6 shows a modern

HPC architecture (multi-GPU cluster) and interfaces used from the programmers’ point

of view. It can be seen in Figure 1.6 that a HPC application can be executed into a

multi-GPU cluster, where several parallelism levels can be exploited on core, multicore

and/or many-core and distributed systems.

Focusing on the core level, the main optimizations for improving performance rely on

compilers since it is important for programs to be independent of the specific platforms.

It is thought, in general, that optimizations for a specific architecture should be done

through the compiler. However, compilers do not always generate the most efficient

assembly language code. Therefore, optimizations of the source code by programmers

can improve the work of the compiler. Some of the optimizations to be applied to every

CPU core can be described as follows:

13
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Figure 1.6: Modern HPC architecture (multi-GPU cluster) and interfaces used by the

programmer to optimize the program performance.

1. Using SSE instructions. The current CPUs have special instruction sets (SSE,

SSE2, SEE3) of SIMD type (Single Instruction, Multiple Data) that allow per-

forming operations on data sets. A basic operation (addition, subtraction, multi-

plication, division, comparison, etc.) of four real numbers (in single precision) can

be executed simultaneously. Another advantage is the straightforward translation

to machine-code providing a higher performance.

2. Array-Bounds Checks which is a compiler optimization useful in programming

languages or runtimes that enforce bounds checking, the practice of checking every

index into an array to verify that the index is within the defined valid range of

indexes. Its goal is to detect which of these indexing operations do not need to

be validated at runtime, and eliminating those checks.

3. Induction-variable consists of identifying induction variables and relations among

them and replacing expensive operations (e.g., multiplications) by cheap opera-

tions (e.g., additions).

4. Code-block reordering consists of changing the order of the basic blocks in

a program for reducing the number of conditional branches and improving the
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locality of references.

5. Dead code elimination. Removes instructions that will not affect the behaviour

of the program, for example definitions which have no uses, called dead code. This

reduces the size of the code and eliminates unnecessary computation.

6. Loop optimizations. Loops are often the performance bottlenecks of an appli-

cation. The key to speed up the program is to make the loops run faster. Some of

the most important loop optimizations are shown in [46] and can be summarized

as follows:

• Loop fission or loop distribution. Loop fission attempts to break a loop into

multiple loops over the same index range but each taking only a part of the

loop’s body. This can improve locality of reference, both of the data being

accessed in the loop and the code in the loop’s body.

• Loop fusion is another technique which attempts to reduce loop overhead.

When two adjacent loops would iterate the same number of times (whether

or not that number is known at compile time), their bodies can be combined

as long as they make no reference to each other’s data. This technique

simplifies loops management. Although it could eventually suppose a loss of

data locality, in platforms such as GPUs could increase the performance.

• Loop unrolling. Unrolling duplicates the body of the loop multiple times,

in order to decrease the number of times the loop condition is tested and

the number of jumps, which hurt performance by impairing the instruction

pipeline. A “fewer jumps” optimization. Completely unrolling a loop elim-

inates all overhead, but requires that the number of iterations be known at

compile time.

• Loop splitting. Loop splitting attempts to simplify a loop or eliminate de-

pendencies by breaking it into multiple loops which have the same bodies

but iterate over different contiguous portions of the index range. A useful

special case is loop peeling, which can simplify a loop with a problematic

first iteration by performing that iteration separately before entering the

loop.
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• Collapsing loops. Collapsing loops combines two or more nested loops into a

single loop, producing longer vectors, less loop overhead, and better vector

load balance.

Focusing our attention on the optimizations on the GPU architecture (referred as

many-core level), several important optimizations are the following:

1. Full implementation on GPU to minimize the CPU-GPU transfers. This

means that all the code can be implemented on GPU keeping data in the GPU

memory. Therefore, the CPU-GPU communications are drastically reduced and

only some particular results will be recovered from GPU at some time steps.

2. Maximizing the occupancy of GPU. Occupancy is the ratio of active warps

to the maximum number of warps supported on a multiprocessor of the GPU

or Streaming Multiprocessor (SM). To maximize the occupancy, it is essential to

have the largest number of active warps in order to hide the latencies of memory

access and maintain the hardware as busy as possible. The number of active

warps depends on the registers required for the kernel, the GPU specifications

and the number of threads per block. Using this optimization, the size of the

block should be adjusted according to the registers of the kernel and the hardware

specifications.

3. Loop fusions. The consideration of loop optimizations could have several ad-

vantages or disadvantages depending on the volume and type of the involved

data, calculation and synchronization points. All the possible advantages can be

summarized as follows [137]:

• Reduces the number of global barriers: Merging two or more kernels that

include explicit barriers, e.g., dot kernels, allows eliminating a number of

these synchronization points.

• Reduces GPU global memory accesses: Fusing multiple kernels may reduce

data movements between on-chip and off-chip memories of the GPU. That

is, fused kernels store intermediate data in on-chip memories (i.e., registers

and shared memory) of the GPU, which can be accessed much faster than

global memory.
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• Enhances locality at GPU memories level: This benefit occurs only in the

case where one or more arrays are used by multiple fused kernels. This fact

eliminates multiple accesses to the same data.

• Improves ILP and increasing the possibilities for compiler optimizations.

Fusing multiple kernels can achieve higher utilization and much more bal-

anced demand for hardware resources which implies an increase of the work-

load volume per thread. In addition, a kernel of larger scope gives more

opportunities for optimization to the compiler.

• Reduces the number of data movements between CPU and GPU memories:

Fusing multiple kernels may reduce the number of movements of intermediate

data through the Peripheral Component Interconnect express (PCIe). For

example, merging multiple dot operations allows copying the final partial

sums from GPU to CPU memories in one movement whereas non-fused dot

kernels make as many movements as the number of dot kernels.

• Increases concurrency: Increasing the number of independent instructions

by threads increases the workload volume per thread and consequently im-

proves the overall management of the threads by the scheduler which can be

translated into an enhancement of the concurrency, i.e., a higher number of

active threads per active cycle.

• Reduction of kernel launch overhead. Fusing multiple kernels implies that a

lower number of kernels are launched.

4. Configuration of L1 cache. From Fermi generations, the L1 cache size can

be configured by the programmer. This flexibility of the architecture allows the

programmer to set different configurations according to the particularities of the

applications (higher use of L1 cache or shared memory). In the case of Fermi

architectures, two configurations are possible: 48 KB of shared memory and 16

KB of L1 cache (the default option), or 16 KB of shared memory and 48 KB of L1

cache memory are possible [139]. However, the newest GPU Kepler architecture

offers a reconfigurable L1 cache per Streaming Multiprocessor with different cache

size and cache associativity [125].
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1.1.2.3 Algebraic libraries

Apart from the development of efficient codes based on the ability of the programmer

to optimally exploit the aforementioned three levels of parallelism by means of the use

of optimizations in the HPC platforms, libraries are presented as another alternative

to enhance the performance and make easier the development of HPC applications.

The methodology of developing HPC applications supported by libraries is based on

the concept of abstraction. This methodology is useful in abstracting the complexity

of the computation by means of several calls to well known libraries described in the

literature. Although, there is a wide variety of libraries, our interest in this thesis is

focused on algebraic libraries.

The last decades have known a rapid development of algebraic libraries for the

efficient parallel solution of a wide variety of mathematical problems. These libraries

provide subprograms that have been implemented and tested on a number of parallel

computers and, very often, they are very high quality both from the point of view of

numerical properties as well as the parallel performance. Thus, the use of these libraries

is essential in the context of scientific parallel implementations. This approach can be

called libraries–based parallelization.

In other words, libraries–based parallelization consists of integrating optimized

blocks in the code, where optimized blocks are subprograms or routines that can vary

from a simple product vector–vector to a solver that implements an iterative or a di-

rect method, preconditioners, etc. There exists a vast number of algebraic software

(see reference [53]).

Currently, Basic Linear Algebra Subprograms (BLAS) and Linear Algebra PACK-

age (LAPACK) are the most extended libraries. They are used as baseline for the

development of high level libraries in this field. Table 1.2 gives a brief description of

the most important low–level algebraic software. Furthermore, it is possible to find

specific libraries BLAS and LAPACK which are optimized for certain processor types

such as Math Kernel Library (MKL) of Intel [1].

In the last years, the number of new libraries which can efficiently exploit differ-

ent levels of parallelism has considerably increased. This is the consequence of the

appearance of new heterogeneous systems and the inclusion of accelerators such as
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Table 1.2: Brief description of some algebraic software, classified from the most basic to

the most advanced one (from BLAS1 to ScaLapack).

Library Functionalities Based on For architectures

PBLAS Parallel vec x vec, mat x vec

& mat x mat operations

BLACS distributed memory

BLACS Dense linear algebraic prob-

lems

BLAS, MPI & PVM machine-

independent

LAPACK Dense linear algebraic prob-

lems

BLAS, LINPACK &

EISPACK

shared memory

EISPACK Dense linear eigenproblem BLAS 1 shared memory

LINPACK Dense linear eigenproblem BLAS 1 shared memory

BLAS 3 mat x mat operations BLAS 2 shared memory

BLAS 2 mat x vec operations BLAS 1 shared memory

BLAS 1 vec x vec operations - shared memory

GPUs. Focusing our attention on the algebraic software where GPU devices are in-

volved, Table 1.3 shows some of the most commonly used libraries supplied by CUDA

(CUSP [16], CUBLAS [4], CUSPARSE [5], CULA [15] and MAGMA [18]) for solving

algebraic operations on GPUs and multi-GPUs clusters.

Table 1.3: Brief description of some algebraic software using GPU devices.

Library Functionalities Based on For architectures

MAGMA Dense linear algebraic prob-

lems

BLAS, LINPACK &

EISPACK

heterogeneous/hybrid

architectures

CULA Dense and Sparse linear al-

gebraic problems

BLAS, LINPACK &

EISPACK

GPU architectures

CUBLAS

(CUSPARSE)

Dense (Sparse) linear alge-

braic problems

BLAS GPU architectures

CUSP Sparse linear algebraic prob-

lems

BLAS GPU

The basic libraries provide subprograms for the most frequent operations and solvers

that exploit the parallelism at processor level on single processor high-performance

computers, in addition they are usually provided with the compiler. However, most

advanced libraries like MUMPS [22], SuperLU [97] and PETSc [12] offer an high level of

abstraction by providing their own environment, i.e., data structures, solvers, storage

formats, etc.
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Besides the basic and the advanced algebraic libraries aforementioned, interactive

mathematical tools can be understood as stand-alone applications that can be used

for numerical analysis, data analysis, and display. These tools have both a GUI and

a command-line interface. Among the most important interactive math tools we can

highlight: Mathematica [19], Octave [58] and MATLAB [6]. MATLAB is one of most

important software used in this thesis, so a deeply description of CUDA integration

within MATLAB is carried out in the next subsection.

1.1.2.4 MATLAB

MATLAB is a high-level language and interactive environment for numerical computa-

tion, visualization, and programming. MATLAB can be used for the development of a

wide range of applications, including signal processing and communications, image and

video processing, control systems, test and measurement, computational finance, and

computational biology. More than a million engineers and scientists in industry and

academia use MATLAB, the language of technical computing. Although MATLAB is

a complete, self-contained environment for programming and manipulating data, it is

often useful to interact with data and programs external to the MATLAB environment.

MATLAB provides an API to support these external interfaces using user defined C or

Fortran subroutines from MATLAB as if they were built-in functions [6].

MATLAB interface can be used to perform behind-the-scenes parallel computations

on the GPU. The combination of high arithmetic and memory bandwidth with the

programmability provided by Compute Unified Device Architecture (CUDA), makes it

very suitable for High Performance Computing.

There are several toolboxes/libraries capable of taking advantage of the sheer power

of GPUs for Algebra from MATLAB interface, such as Jacket [13] from AccelerEyes

and GPUmat [21] from GPYou. These toolboxes are independent resources that can

be easily integrated by the user into MATLAB. Jacket supplies a library for developers

called ArrayFire for the exploitation of the GPU in a transparent way with high level

programming languages, such as C, C++ or Fortran. Jacket has two versions: the

basic one (computation with only one GPU) and the professional one (multi-GPUs).

Nevertheless, nowadays in both toolboxes, Jacket and GPUmat, there is a lack of

algebraic routines in which sparse and complex matrices are involved. Moreover, there
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are strategies to call specific C, C++ or Fortran routines or even CUDA kernels from

MATLAB interface. The most widespread strategy are MEX-files.

A MEX-file (also written as MEX file) provides an interface between MATLAB and

subroutines written in C, C++ or Fortran. When compiled, MEX files are dynamically

loaded allowing non-MATLAB code to be invoked from within MATLAB as if it were

a built-in function. To support the development of MEX files, MATLAB offers exter-

nal interface functions that facilitate the transfer of data between MEX files and the

workspace [11]. These MEX files could be used within CUDA by using tools provided

by NVIDIA. Figure 1.7 shows an example of the simulation of a physical model using

MATLAB and two calls to MEX files to compute the most computationally demanding

task of the model.

Figure 1.7: Example of the simulation of a physical model using MATLAB interface and

two calls to MEX files to compute the most computationally demanding task of the model.

The source code for a MEX file consists of two different parts: the computational

routine and the gateway routine. The computational routine contains the code for

performing the computations. In the CUDA MEX scenario this would most likely be

the computation kernel that is executed on the device. The gateway routine, which

interfaces the computational routine with MATLAB by the entry point mexFunction

and its parameters prhs, nrhs, plhs, nlhs. Where, prhs is an array of right-hand input

arguments, nrhs is the number of right-hand input arguments, plhs is an array of left-

hand output arguments, and nlhs is the number of left-hand output arguments. The

gateway calls the computational routine as a subroutine.
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The name of the gateway routine must always be mexFunction. In the gateway

routine, the data access is through the mxArray structure and then this data is modified

in the C computational subroutine. For MATLAB to recognize output from the MEX

file, a pointer of type mxArray is to be set to the data returned by the computational

routine or computational kernel, in the case of CUDA.

Figure 1.8 shows the C/C++ MEX Cycle where three main steps can be observed:

(1) How inputs enter a MEX file; (2) What functions the gateway routine performs;

and (3) How outputs return to MATLAB.

Figure 1.8: C/C++ MEX cycle (source [11]).

In Chapter 5, the integration of MATLAB and GPU computing has been used to

accelerate a model based on Optical Diffraction Tomography. MEX files are used to

invoke code on the GPU and to handle the data transfer between the host and GPU.
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1.1.3 Performance metrics

The exploitation of the parallelism is an increasingly common approach for improv-

ing the performance of computer systems. In terms of hardware, this typically means

providing multiple, simultaneously active architectures. In terms of software, this typ-

ically means structuring a program as a set of largely independent subtasks that can

be executed at the same time [57].

1.1.3.1 Speed up and efficiency

For evaluating a parallel system running a parallel program, two performance measures

of particular interest are speed up and efficiency. Speed up is defined for each number

of processors P as the ratio of the elapsed time when executing a program on a single

processor (the single processor execution time) to the execution time when P processors

are available. In the notation that we shall use throughout this thesis:

Sp(P ) =
T1

TP

. (1.1)

In 1967, Amdahl gave a simple bound on the speed up that could be obtained by

parallel processing as a function of the fraction of sequential code in a computation.

This bound has proven usefulness in shaping our understanding of parallel systems

because it strikes a useful balance between simplicity and precision.

Efficiency is defined as the average utilization of the p allocated processors. In

general, the relationship between efficiency and speed up is given by the following

equation:

Ef(P ) =
Sp(P )

P
. (1.2)

Ignoring I/O, the efficiency of a single processor system is 1. If efficiency remains

at 1 as processors are added, a linear speed up is reached.

1.1.3.2 Performance bounds: Roofline model

The Roofline model, proposed in [157], provides a visual estimation of the performance

bounds for processors according to their resources and the characteristics of the pro-

grams which are being executed. The hypothesis of this model points to the main bot-

tleneck for the architectures is either the connection between processor and memory or
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the Peak floating point performance. To quantify the performance bounds the param-

eter “operational intensity” is introduced. The Roofline model proposes “operational

intensity” instead of “arithmetic intensity” related to the algorithms or applications to

be programmed. It is defined as operations per byte of DRAM traffic, where this traffic

is related to the caches and memory rather than between the processor and the caches.

Thus, operational intensity predicts the DRAM bandwidth needed by a routine on a

particular computer, and programmers can modify the operational intensity by chang-

ing the memory access pattern in their programs. So, the Roofline sets an upper bound

on performance of a routine depending on the kernel’s operational intensity according

to the following expression:

Attainable
GFlops

sec
= min

{
Peak Floating Point Performance,
Peak Memory Bandwidth×Operational Intensity

(1.3)

The proposed Roofline model ties together floating-point performance, operational

intensity, and memory performance in a 2D graph. So, two regions in this graph can

be distinguish: the first region is defined by the operational intensity values which

have a performance bounded by the peak memory bandwidth; the second region is

related to the operational intensity values whose performance is bounded by the peak

floating-point performance of the computer. Consequently, if the operational intensity

of a program is in the first region it means its performance is memory bound and if it

is in the second region it is compute bound.

Figure 1.9 outlines the model for a 2.2 GHz AMD Opteron X2 model 2214 in a dual-

socket system. The graph is on a log-log scale. The y-axis is attainable floating-point

performance. The x-axis is operational intensity, varying from 0.25 Flops/DRAM byte-

accessed to 16 Flops/DRAM byte-accessed. The slope of the linear function is related

to the peak memory bandwidth where this parameter is the steady-state bandwidth

potential of the memory in a computer, not the pin bandwidth of the DRAM chips.

Note that in such figure, a routine with operational intensity higher than 1.0 Flops/Byte

is compute-bound and a routine with operational intensity lower than 1.0 Flops/Byte

is memory-bound.

Roofline model proposes a simple approach to estimate the performance limits for

a particular combination of routine/processor. Recently, it has been widely used in
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Figure 1.9: Roofline model for AMD Opteron X2 (source [157]).

the literature, however it is necessary to underline that it provides an estimation of

performance bound, not a performance prediction.

1.2 Mathematical issues

A wide variety of mathematical models of physical phenomena is described by systems

of Partial Differential Equations (PDEs). In most cases, it is impossible to obtain

analytical solutions of these PDEs, and researchers have to resort to numerical methods,

i.e., finite difference methods, finite element techniques, finite volume schemes, moment

method etc., using computational techniques, where both the space and time variables

are ultimately discretized, thus transforming a continuum problem into a discrete one

at selected time levels and grid locations. The result of such a discretization is a linear

system of algebraic equations which is the one solved numerically on computers [136].

One of the most important applications of numerical linear algebra is the resolu-

tion of these linear system of equations Ax = b [104, 135]. When the linear system in

question arises due to the discretisation of a partial differential equation (PDE) or a

coupled system of PDEs, then the system matrix inherits many features from the under-

lying PDE operator and the chosen discretisation scheme. Solving such linear systems

25

Introduction/figures/roofline.eps


1. INTRODUCTION

usually require significant computational resources and the use of High Performance

Computing techniques is necessary.

This section reviews the most important issues with relation to the resolution of

sparse linear systems of equations used in this thesis.

1.2.1 Solution of sparse linear systems of equations

A sparse linear system can be expressed as Ax = b, where A is the sparse matrix of

the known coefficients of dimension n× n, b is a column vector of n values and x is a

column vector of n unknown variables, where A ǫ Rn×n(Cn×n) and x, b ǫ Rn(Cn).

When the linear system of equations comes from the discretization of PDEs, they

usually are sparse. If the matrix involved in the linear system of equation is sparse,

there is only a relatively small number of non-zero entries. Unlike general methods,

algorithms solving sparse systems are designed to handle the outweighing amount of

zero elements effectively. Each method suits different types of sparse matrices. The

precise pattern of sparsity is determined according to the position of the non-zero

elements in the matrix. Special subclass of algorithms are those concentrating on band

diagonal matrices, i.e. those with non-zero elements around the diagonal [83].

Methods for solving linear systems of equations can be divided in two groups:

1. Direct methods. Direct methods are based on the factorization of the sparse ma-

trix A to translate the linear system in another with a resolution format much

simpler. During the factorization, an element of the matrix with an initial null

value could have a different value from zero; it suffers then a process of filling

(fill). The more elements suffer a process of filling, the more operations the algo-

rithm executes, therefore the computational load considerably increases. For this

reason, direct methods need more memory requirements (because of the filling,

apart from the original system, every new non zero entry has also to be stored).

It supposes an important drawback for using direct methods in a wide variety

of applications when the size of A is very high. Despite this difficulty, there are

different factorization methods of a matrix, being one of the most commonly used

the LU factorization [55, 97, 159], which have been adapted to the factorization

of sparse matrices decreasing the filling process as far as possible. Presuming
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all operations being performed exact, the gained result would be absolutely ex-

act. Of course, because the performed computations are performed with rounding

intermediate results, the final result is of limited exactness [51].

2. Iterative Methods. The iterative methods for solving general, large sparse linear

systems have been gaining popularity in many areas of scientific computing. In

the past, direct solution methods were often preferred to iterative methods in

real applications because of their robustness and predictable behavior. However,

a number of efficient iterative solvers were discovered and the increased need for

solving very large linear systems triggered a noticeable and rapid shift toward

iterative techniques in many applications. Currently, three-dimensional models

are commonplace and iterative methods are almost mandatory. The memory and

the computational requirements for solving three-dimensional Partial Differential

Equations, or two-dimensional ones involving many degrees of freedom per point,

may seriously challenge the most efficient direct solvers available today. Also,

iterative methods are becoming more popular because they are easier to imple-

ment efficiently on high-performance computers than direct methods [127]. An

inherent strategy to reduce the number of iterations of these methods is the use of

preconditioners. These preconditioners are matrices that transform the original

system and are specially relevant for ill-conditioned problems. An extensive set

of literature about preconditioners can be found in [127].

Iterative methods can be classified as:

• Stationary methods. They are the simplest and the easiest to implement,

but in general less efficient than the non stationary methods [85]. They are

based on a relaxation of coordinates approach, beginning with an approxi-

mate solution and modifying the components of the approximation until the

convergence is reached.

Some stationary iterative methods are the following [144, 160]:

– Jacobi. The Jacobi method is a method of solving a matrix equation

on a matrix that has non-zero elements along its main diagonal [42].

Each diagonal element is solved for, and an approximate value plugged

in. The process is then iterated until it converges. This algorithm is a
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stripped-down version of the Jacobi transformation method of matrix

diagonalization.

– Gauss Seidel. Method similar to the previous one excepting that it

uses the updated values of the solution as soon as they are available. In

general, it converges faster that Jacobi method [127].

– SOR (Successive Over-Relaxation). It comes from the method Gauss-

Seidel method adding an extrapolation parameter w. With a correct

choice of w, the method converges faster than Gauss-Seidel in one order

of magnitude [127].

– SSOR (Symmetric Successive Over-Relaxation). This method does not

have advantages as iterative method with regard to the SOR method.

However, it is very useful as preconditioner for non-stationary methods

[31].

• Non stationary methods. These methods are more complex than the station-

ary ones but highly efficient [126]. They differ from the stationary methods

in which the computations involve information that changes at every itera-

tion. Nowadays, the most popular belong to the set of the Krylov’s subspace.

Krylov’s subspace Ki(A, ro) of i dimension, associated with a linear system

Ax = b, for an initial solution vector x0 and a residue vector r0 = b − Ax0

is defined as the subspace covered by the vectors r0, Ar0, A
2r0, . . . , A

i−1r0.

Depending on the characteristics of the matrix that defines the system of

equations, we can classify these methods under several groups:

– For symmetric positive definite matrices, the Conjugate Gradient (CG)

is the most suitable [76, 91]. CG uses a sequence of orthogonal vectors

xi for which (xi − x)TA(xi − x) is minimized for all the vectors of the

current Krylov space Ki(A, r0).

– If the matrix is symmetric but is not positive definite, the Lanczos or

MINRES methods can be considered [120]. In the MINRES methods,

the elements xi ǫ K
i(A, r0) are determined by minimizing the quadratic

norm of the residues ||b − Axi||
2, whereas in Lanczos’s methods the

elements xi are determined by the residues b − Axi perpendicular to
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the Krylov’s subspace. In these cases, it is necessary to store the whole

sequence, which carries a high consumption of memory.

– If the matrix is non symmetric, in general, it is not possible to determine

an ideal set of solutions xi ǫ Ki(A, r0) with few sequences of vectors.

Nevertheless, we can calculate the set of vectors xi ǫ K
i(A, r0) for those

in which the condition b − Axi ⊥ Ki(AT , r0) was reached. This way,

two sequences of vectors are generated, one for the coefficients matrix

A and another for AT , and instead of the orthogonalization of every

sequence, they do it mutually. This method is called BiConjugate Gra-

dient (BCG). It requires a limited storage although the convergence

could be irregular. In the BCG method, operations with AT can be

replaced by operations with A bearing in mind that 〈ATx, y〉 = 〈x,Ay〉,

where the operator 〈, 〉 represents the dot of two vectors. In some cases

AT can be replaced by A allowing to expand Krylov’s subspace and to

find better approximations to the solution with the same computational

cost per iteration. This idea leads to iterative methods known as hybrid

methods: the Quadratic Conjugate Gradient (QCG), the BiConjugate

Gradient Stabilized (BCGSTAB) [141], transpose-free QMR (TFQMR)

[67], etc. A variant of the BCG method is the Quasi-minimal Residue

(QMR), which uses a least squares solver and an updated solution of

the BCG, smoothing the behavior of the convergence and doing these

methods more robust.

– If A is non-symmetric, we can also calculate the sequence of vectors xi ǫ

Ki(A, r0) for obtaining minimal residues using an Euclidean norm (least

squares). This method is called Generalized Minimal Residual method

(GMRES) [128, 154]. This implementation needs to store the whole

sequence, which leads to high memory requirements. Another version

of the GMRES is the Flexible Generalized Minimal Residual method

(FGMRES) which allows the preconditioning to vary at every step.

There are several applications in which direct methods have been commonly used

against the iterative methods, because of the robustness and accuracy of the solutions.

However, when the linear systems of equations come from PDEs, the discretization used
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has a wide variety of points, therefore solving linear systems of equations turns out time

and memory consuming approaches, and direct solvers often become ineffective. On the

other hand, iterative methods have proven to be more effective with the appearance of

methods such as the Conjugate Gradient, which combined with iterations over Krylov

Subspace can supply easy and efficient general purpose procedures, achieving the quality

of direct methods. Furthermore, iterative methods have also been characterized as

being simpler to implement over high performance computing processors than direct

methods [127].

1.2.1.1 Computational study of Krylov methods

Due to the advantages of the Krylov methods, among them their simplicity for be-

ing implemented on parallel computers, they are being widely used in HPC environ-

ments during the last few years. In this thesis we have focused our attention on the

study of methods based on the Krylov subspace. To get an approximate solution at

every step of the iterative process, these methods use projection processes onto Krylov-

subspaces [127]. Krylov subspace methods form an orthogonal base of the sequence of

powers of the matrix for the initial residue (Krylov’s sequence). The approximations

to the solution are formed by minimizing the residual value in the formed subspace.

Usually, when developing or porting iterative solvers, programmers use basic li-

braries such as the aforementioned in Section 1.1.2.3. Indeed, programmers implement

iterative methods for the multicore/GPU using these libraries as baseline but in most

cases the achieved performance is far from the optimum.

Based on our experience, the use of several isolated routines or kernels of different

complexities degrades the performance on CPU and GPU architectures [113]. This

degradation can be very important for iterative methods that solve linear systems of

equations since they include several vector−vector operations (level 1 BLAS) and a

small number of sparse matrix−vector products (level 2 BLAS). This is mainly due to

the fact that these operations are memory bound and have a very low operational inten-

sity which reduce their opportunities to obtain a balanced overlapping between memory

accesses and computation [70]. Consequently, level 1 BLAS become the operations that

dominate the overall runtime of Krylov methods.

Our approach to this problem is to design new routines by combining or fusing

multiple BLAS operations to alleviate the memory bottleneck and to increase the op-
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erational intensity. So that they can benefit from the optimization based on fusion as

explained in Section 1.1.2.2.

After an extended analysis of a large set of sparse solvers based on Krylov subspace

methods and all their variants, several operations which are fully independent can be

identified and they can be merged together into one single routine. In particular, mul-

tiple saxpy operations, multiple dot operations and multiple matrix vector operations

are usually performed in a specific order and can be merged together into one larger

procedure [137].

Next, a methodology to identify elemental routines that could be fused is illustrated.

So, three Krylov methods have been analyzed: the Conjugate Gradient Method, the

BiConjugate Gradient Method and the Stabilized BiConjugate Gradient Method; they

can be considered as representative Krylov methods to evaluate the benefits of kernel

fusion optimizations on HPC platforms.

The Conjugate Gradient (CG) method is a nonstationary iterative method to

solve linear systems of equations Ax = b, where A is a sparse symmetric positive definite

matrix; b indicates the independent term and x is the unknown vector (A ∈ Rn×n and

x, b ∈ Rn) [76, 91].

As can be observed in Figure 1.10, in each iteration of the method, seven vector−vector

operations (four dot operations and three saxpy operations) and one SpMV are com-

puted. The computational cost associated with the SpMV product increases with

respect to the set of vector−vector operations as the ratio nz/n increases, where nz

and n denote the number of non-zero elements and the number of rows and columns of

A, respectively.

Figure 1.10 shows CG algorithm and the potential candidate vector−vector opera-

tions that can benefit from the optimization based on fusion. This figure also represents

the data dependence graph of the main iteration of CG after a reordering process, where

the candidate BLAS operations for fusion are shown in rectangles. The BLAS opera-

tions that can be fused in CG are:

• two dot operations,

• two saxpy operations,

• one saxpy operation and one dot operation.
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Figure 1.10: Candidate BLAS operations for fusion in the CG method. Applying the

fusion optimization to CG consists of performing Fusion 1−3 that correspond to fusing two

dot operations, two saxpy operations and one saxpy and dot operations, respectively.

Each iteration of CG is expressed using a set of three fused operations. The main

benefits of expressing each iteration of CG with less routines thanks to the fusion of

more elemental kernels are: the reduction of the number of global barriers, the reduc-

tion of GPU global memory accesses, improvement of locality at GPU memory levels,

improvement of ILP and increases possibilities for compiler optimizations, reduction of

the number of data movements between CPU and GPU memories and an increase of

the concurrency.

Another method where this methodology can be applied is the BiConjugate Gra-

dient Method (BCG). It is a nonstationary iterative method to solve linear systems

of equations Ax = b, where the matrix A ∈ Cn×n can be non-symmetric [91]. Fig-

ure 1.11 shows the BCG method in a schematic way, where at every iteration eight

vector−vector operations (three dot operations and five saxpy operations) and two Sp-

MVs are computed. The computational cost associated with SpMV products increases

with respect to the set of vector−vector operations as the ratio nz/n increases.

Figure 1.11 shows BCG algorithm and the potential candidate vector−vector opera-
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Figure 1.11: Candidate BLAS kernels for fusion in the BCG method. Applying the

kernel fusion optimization to BCG consists of performing Fusion 1−4 that correspond to

fusing two saxpy operations, two matrix vector products, three saxpy operations and two

dot operations, respectively.

tions that can benefit from the optimization based on fusion. This figure also represents

the data dependence graph of the main iteration of BCG after a reordering process,

where the candidate BLAS kernels for fusion are shown in rectangles. Each iteration

of BCG is expressed using a set of four fused operations. The BLAS operations that

can be fused in BCG are:

• two saxpy operations,

• two matrix products,

• three saxpy operations,

• two dot operations.

Experimentally, using several matrices from Matrix Market for the fusion of two

matrix products, we found that this fusion does not provide noticeable improvement
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on the performance specially when there is no shared vector between the SpMV kernels.

Let us remark that, according to the experimental analysis developed in [137] the fusion

of the remaining operations allows to improve the performance of the BCG.

The Stabilized BiConjugate Gradient Method (BCGSTAB) is an iterative

method developed by H. A. van der Vorst for the numerical solution of nonsymmetric

linear systems. It is a variant of the BiConjugate Gradient Method (BCG) and has

faster and smoother convergence than the original BCG as well as other variants such

as the Conjugate Gradient Squared method (CGS) [141].

Figure 1.12: Candidate BLAS kernels for fusion in the BCG stabilized method. Applying

the kernel fusion optimization to BCG stabilized consists of performing Fusion 1−3 that

correspond to fusing two dot operations, two saxpy operations and two dot operations,

respectively.

Figure 1.12 shows BCG algorithm and the potential candidate vector−vector oper-

ations that can benefit from the optimization based on fusion. This figure also repre-

sents the data dependence graph of the main iteration of BCGSTAB after a reordering
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process, where the candidate BLAS kernels for fusion are shown in rectangles. Each

iteration of BCGSTAB is expressed using a set of four fused operations. The BLAS

operations that can be fused in BCGSTAB are:

• two dot operations,

• two saxpy products,

• two dot operations.

This way, each iteration of BCGSTAB is expressed using a set of three fused oper-

ations.

The experimental evaluation of this methodology using Krylov methods on GPU

devices has demonstrated that fusion optimization enhances the overall performance

(up to 1.27×) using reasonable large size problems. Therefore this methodology is

particularly interesting for this type of methods. Moreover, these results underline the

interest of extending the CUBLAS library with new versions of multiple fused vector

operations for the GPU.

1.3 Platforms used in this thesis

All performance results shown later in Chapters 2, 3, 4 and 5 have been obtained

from evaluations on several parallel platforms. Details of the two shared memory mul-

tiprocessors and the distributed memory cluster used in this thesis are explained in this

subsection. All of these platforms have GPU devices whose main characteristics are

shown in Table 1.4.

• Shared memory multiprocessors:

– DaVinci:

∗ CPU: 2×Intel Xeon Quad-core E5640 (2.67 GHz, 16 GB RAM)

∗ GPU: 1×NVIDIA GeForce GTX 480 (Fermi). 2×NVIDIA Tesla C2050

(Fermi)

∗ Linux distribution x64

– Hermes:
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∗ CPU: Intel Xeon E5620 (16 cores, 2.40 GHz, 47 GB RAM)

∗ GPU: 1× NVIDIA Tesla M2090 (Fermi)

∗ Linux distribution x64

• Distributed memory cluster:

– Bullx. Figure 1.13 depicts the structure of the Bullx cluster.

∗ CPU: 18× Bullx R424-E3. Intel Xeon E5 2650 (16 cores), 64 GB RAM

and 128 GB SSD

∗ GPU: 2× 4 NVIDIA Tesla M2070 (Fermi)

∗ Linux distribution x64

∗ InfiniBand interconnect and Ethernet

Table 1.4: Characteristics of the GPU platforms considered for the evaluation. (Sorted

by peak performance in double precision).

Hermes Bullx DaVinci

Tesla Tesla Tesla Geforce GeForce

M2090 M2070 C2050 GTX 680 GTX 480

Peak performance 665 515 515 168 129

(double precision) (GFlops)

Peak performance 1331 1030 1030 1350 3090.4

(simple precision) (GFlops)

Device memory (GB) 6 5.2 2.6 1.5 2

Clock rate (GHz) 1.3 1.2 1.2 1.4 3

Memory bandwidth 177 150 144 177.4 192.2

(GBytes/sec )

Multiprocessors 16 14 14 15 8

CUDA cores 512 448 480 448 1536

Compute Capability 2 2 2 2 3

Year architecture 2011 2010 2010 2010 2012

DRAM TYPE GDDR5 GDDR5 GDDR5 GDDR5 GDDR5
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Figure 1.13: Structure of the Bullx cluster, which is comprised of four compute nodes

(16 cores) and eight Tesla M2075 GPU devices.
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Sparse matrix computation on GPUS

As shown in Chapter 1, sparse matrix operations are a key point in the resolution of

sparse linear systems of equations, which are the main issues in this thesis.

The Matrix-Vector product is a key operation for a wide variety of scientific appli-

cations, such as image processing, simulation, control engineering and so on. For many

applications based on Matrix-Vector product, matrices are large and sparse. Sparse

matrices are involved in linear systems, eigensystems and partial differential equations

from a wide spectrum of scientific and engineering disciplines [38].

For these problems the optimization of the Sparse Matrix Vector product (SpMV) is

a challenge because of the irregular computation of large sparse operations. GPUs have

emerged as platforms that yield outstanding acceleration factors. SpMV implementa-

tions for GPUs have already appeared on the scene, however they need some additional

efforts to accelerate/optimize their performance. This effort is focused on the design of

appropriate data formats to store the sparse matrices, since the performance of SpMV

is directly related to the used format as shown in [105, 108, 138].

This chapter is devoted to investigate the optimization of some sparse matrix com-

putations on GPUs. The discussion of this issue has been organized as follows. In

Section 2.1, the main compressed storage formats which have been devised to manage

multidimensional sparse arrays are introduced. Section 2.2 describes an implementa-

tion of SpMV for NVIDIA GPUs based on a new format, ELLPACK-R, that allows

the storage of sparse matrices in a regular manner. The main findings in the chapter

are highlighted in Section 2.3, where we propose a strategy (FastSpMM) to compute

the Sparse matrix matrix product (SpMM). The performance of FastSpMM has been
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evaluated and compared to the CUSPARSE library (supplied by NVIDIA), which also

includes routines to compute SpMM on GPUs. Experimental evaluations based on a

representative set of test matrices have shown that, in terms of performance, Fast-

SpMM outperforms the CUSPARSE routine. Finally, Section 2.4 summarizes the main

conclusions and future works of this chapter.

2.1 Compressed storage formats

Several formats have been proposed in the literature to optimize the computation with

sparse matrices for a specific architecture. These formats define the locality or the

coalescence of memory access for the SpMV. The pattern of memory access to read the

elements of the sparse matrix has a strong impact in the performance of SpMV. Thus,

every specific SpMV algorithm designed to exploit the computational resources of a

particular architecture is related to a specific storage format of the sparse matrix. Then,

an important key to increase the performance of SpMV on GPUs is the development

of an appropriate algorithm with its corresponding storage format. Next, the main

formats to compress sparse matrices and their corresponding algorithms are described.

Our attention is focused on the formats specifically designed for SIMD architectures,

such as vector architectures and GPUs [145]. Hereinafter, we assume that in the SpMV

operation (u = A v), A is a sparse matrix with n rows, n columns and nz non-zero

entries, and u and v are vectors with n elements.

The COOrdinate storage scheme (COO) to compress a sparse matrix is a

direct transformation from the dense format. A typical implementation of COO uses

three one-dimensional arrays of size nz. One array, A[] of floating point numbers

(hereafter referred to as floats), contains the non-zero entries. The other two arrays

of integer numbers, I[] and J [], contain the corresponding row and column indices for

each non-zero entry. The performance of SpMV may be penalized by COO because it

does not implicitly include the information about the ordering of the coordinates, and,

additionally, for multi-threaded implementations of SpMV atomic data access must be

included when the elements of the output vector are written.

Compressed Row Storage (CRS) is the most commonly known format to store

sparse matrices on superscalar processors [38]. The data structure consists of the

following one dimensional arrays: (1) A[], an array of floats of dimension nz which stores
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the non-zero entries; (2) J [], an array of integers of size nz, which stores their column

index; and (3) start[], an array of integers of size n+1 which stores the pointers to the

first element of every row in A[] and J [], both sorted out by row index (by convention,

start[n + 1] = nz + 1) [71, 90]. It is the most widely used storage format. Based

on CRS, several libraries reported in the literature have improved the performance

of sparse computation on current processors [1, 156]. In particular, the Intel Math

Kernel Library (MKL) has improved the performance of sparse BLAS operations by

optimizing the memory management and exploiting the fine grained parallelism on Intel

processors. According to our experience, MKL can accelerate the SpMV up to 3× with

respect to the standard implementation (and gcc compiler).

ELLPACK or ITPACK [86] was introduced as a format to compress a sparse

matrix with the purpose of solving large sparse linear systems with ITPACKV subrou-

tines on vector computers. This format stores the sparse matrix on two two-dimensional

arrays, one float (A[]), to save the entries, and one integer (J []), to save the column

index of every entry. Both arrays are, at least, of dimension n × Mnzr, where n is

the number of rows and Mnzr is the maximum number of non-zeroes per row in the

matrix, with the maximum taken over all rows. Note that the size of all rows in these

compressed arrays A[] and J [] is the same, because every row is padded with zeros.

Therefore, ELLPACK can be considered as an approach to fit a sparse matrix in a reg-

ular data structure similar to a dense matrix. Consequently, this format is appropriate

to compute operations with sparse matrices on vector architectures.

ELLPACK-R format, a variant of ELLPACK, has demonstrated to improve

the performance reached by ELLPACK on GPUs. ELLPACK-R consists of two two-

dimensional arrays, A[] (float) and J [] (integer) of dimension n × Mnzr and an ad-

ditional one-dimensional integer array (rl[]) of dimension n (i.e. the number of rows)

specifying the actual length of every row, regardless of the number of the zero elements

padded. This ELLPACK-R format has demonstrated better performance than other

formats in the literature to compute SpMV.

2.2 Sparse matrix vector product

The sparse matrix vector product (SpMV) is a key operation in engineering and sci-

entific computing and, hence, it has been subjected to intense research for a long
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time. The irregular computations involved in SpMV make its optimization challenging.

Therefore, enormous effort has been devoted to devise data formats to store the sparse

matrix with the ultimate aim of maximizing the performance.

Several implementations of SpMV for GPUs developed with CUDA have already

been described in the literature [33, 37, 43, 48, 106]. This section is focused on some

of these implementations; specifically on the ELLR-T algorithm which is based on the

compressed storage format for the sparse matrix, ELLPACK-R [149, 152], described in

the previous section.

Several formats have been proposed to optimize the computation with sparse ma-

trices for a specific architecture. These formats define the locality or the coalescence

of memory access for the SpMV, which are essential to optimize the performance on

CPU or GPU architectures.

Let u = Av be a sparse matrix vector product where A is the sparse matrix, v and u

are the input and output vectors, respectively. According to the mapping of threads in

the computation of every row, several implementations of SpMV based on ELLPACK-

R can be developed. Thus, when T threads compute the element u[i] accessing to

the i − th row, the implementation of SpMV is referred to as ELLR-T. In ELLR-T,

the i − th row of A is split in sets of T elements. Then, in order to compute the

element u[i], T threads compute ⌈rl[i]/T ⌉ iterations of the inner loop of SpMV. Every

thread stores its partial computation in the shared memory of the GPU. Finally, to

generate the value of u[i], one reduction of the T values computed and stored in shared

memory has to be included. The value of parameter T can be explored in order to

obtain the best performance with every kind of sparse matrices. Figure 2.1 illustrates

the characteristics of the code of ELLR-T (T = 2), showing the specific storage for

the sparse matrix which ensures that the device memory accesses are coalescent and

aligned. This characteristic is very relevant for ELLR-T due to the large number of

memory accesses related to the SpMV computation.

Algorithm 1 shows the pseudoce for ELLR-T in order to compute SpMV on GPUs.

Note that in this algorithm lines 9 and 10, the parameter nalign is used to redefine the

dimension of A[] and J [] such that they fulfill the memory alignment requirements.

ELLR-T algorithm takes advantage of:

1. Coalesced and aligned global memory access. The access to read the elements of

A[],J [] and rl[] are coalesced and aligned thanks to the column-major ordering
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Figure 2.1: The ELLR-T memory storage of the sparse matrix fulfilling the coalescence

and alignment conditions for T = 2.

Algorithm 1 Pseudocode of ELLR-T algorithm for computing SpMV on GPUs for

T = 32

1: idx=global thread index

2: idb= local thread index into its block

3: i = ⌊idx/T ⌋ #Row index of matrix A

4: idp = idb mod T #Thread index into Si (set of T Threads for row i)

5: if i < n then

6: svalue = 0.0

7: max = ⌈rl[i]/T ⌉

8: for k = 0 → k < max do

9: value = A[k · nalign · T + i · T + idp]

10: col = J [k · nalign · T + i · T + idp]

11: svalue+ = value · v[col]

12: end for

13: shared[idb] = svalue

14: if idp < 16 then

15: shared[idb]+ = shared[idb+ 16]

16: if idp < 8 then shared[idb]+ = shared[idb + 8]

17: if idp < 4 then shared[idb]+ = shared[idb + 4]

18: if idp < 2 then shared[idb]+ = shared[idb + 2]

19: if idp == 0 then u[i] = shared[idb] + shared[idb + 1]

20: end if

21: end if

used to store the matrix elements and the zeros-padding to complete the length

of every row as multiple of 16 (alignement). Consequently, the highest possible

memory bandwidth of GPU is exploited.
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2. Homogeneous computing within the warps. The threads belonging to one warp

do not diverge when executing the kernel to compute SpMV. The code does not

include flow instructions that cause serialization in warps since every thread exe-

cutes the same loop, but with different number of iterations. Every thread stops

as soon as its loop finishes, and the remaining threads continue the execution.

3. Reduction of useless computation and unbalance of the threads of one warp. Let

Si be the set of T threads which are collaborating on the computation of u[i]. The

k − loop reaches the maximum value of k = ⌈rl[i]/T ⌉ ≤ ⌈Mnzr/T ⌉ for specific

sets, Si, into the warp. Then, the runtime of every warp is proportional to the

maximum element of the subvector ⌈rl[i]/T ⌉ related to every warp, and it is not

necessary for the k − loop reaches k = ⌈Mnzr/T ⌉ for all threads, then, there are

not useless iterations and the control of loops of this implementation is reduced

comparing with SpMV based on ELLPACK. However, if the value of T increases

too much, relevant number of threads are unloaded, the unbalance increases and

the kernel achieves a poor performance.

Consequently, ELLR-T is able to exploit the GPU architecture for computing the

SpMV operation. However, in order to reach the best performance it is very relevant

to select the optimum values of two parameters: (1) T , the number of threads which

collaborate to compute one element of the output vector, which is related to every

matrix row, then, T is a specific parameter of ELLR-T; and (2) BS, the block size of

the CUDA code, which is a general parameter to optimize the CUDA programs.

In [152] an extensive performance evaluation of ELLR-T using a representative set

of test matrices has been reported. The comparative study has drawn the conclusion

that ELLR-T outperforms the most common routines for SpMV on GPUs used so

far. An additional advantage of ELLR-T is related to the model which allows to opti-

mally configure it according to the particular combination of input sparse matrix/GPU

architecture [146].

2.3 Sparse Matrix Matrix product. FastSpMM

Sparse matrix matrix multiplication is involved in a wide range of scientific and tech-

nical applications. Some libraries to compute this matricial operation can be found
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in the literature [5]. The computational requirements for this kind of operation are

enormous, specially for large matrices. This section analyzes and evaluates a method

(FastSpMM) to efficiently compute the Sparse Matrix Matrix product (SpMM) in a

computing environment which includes Graphics Processing Units (GPUs). We exper-

imentally show that FastSpMM outperforms the existing CUSPARSE routine as well

as the implementation of the SpMM as a set of SpMVs.

The contribution of our work in this area has been focused on a different and

more complex matrix operation which includes sparse and dense matrices: the sparse

matrix matrix product (SpMM). Our goal is intended to the optimization of the SpMM

code and its implementation on GPUs. This kind of matricial operation is involved in

very relevant applications. For example, in area of tomography, the reconstruction

methods Weighted Back Projection (WBP) and Simultaneous Iterative Reconstruction

Technique (SIRT) can be expressed in terms of this kind of matrix product [147, 148].

SpMM computes the matrix C = A ·B, where A is a sparse matrix, B is a dense matrix

and consequently C is also dense. This operation is classified as level 3 routine for

sparse matrix computation [5]. This kind of routines are able to efficiently exploit the

Instruction Level Parallelism (ILP) on modern architectures [23]. The computational

advantages of this kind of routines in terms of performance are well known [70]. The

level 3 BLAS has been implemented on different target architectures for dense matrices

[1, 4]. However, few references of SpMM implementations on GPUs can be found.

For example, CUSPARSE library supplies one sparse level 3 function which computes

C = α ·A ·B+ β ·C, where α, β are scalars, it is available for real or complex matrices

[5] but its performance on GPUs is poor.

The goal of this work is to analyze strategies intended to improve the performance

of SpMM on GPUs. Our proposal supplies an approach, FastSpMM, which efficiently

combines the computational advantages of a level 3 matrix computation and the ex-

ploitation of several GPU computing resources: (1) the thread level parallelism [150]

and (2) the streaming computation that allows the overlapping of CPU-GPU commu-

nication/computation.

Details of the implementation of FastSpMM and its performance evaluation are

given in the following subsections. Section 2.3.1 is devoted to analyzing the FastSpMM

implementation. Finally, in Section 2.3.2, a comparative performance evaluation of
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FastSpMM and other routines for computing SpMM is carried out, showing that Fast-

SpMM clearly outperforms the corresponding CUSPARSE routine in terms of perfor-

mance on GPUs.

2.3.1 SPMM product on GPUs

Let us assume that in the matrix matrix product (C = A · B), A is sparse with n

rows and m columns, while B and C are dense matrices with sizes m× L and n × L,

respectively. Special attention should be paid to the storage of sparse matrix A. To

optimize the computation of operations which involve sparse matrices, several storage

formats have been devised for specific architectures. These formats define the locality or

the coalescence of memory access of the sparse matrix, which are essential to optimize

the performance on CPU or GPU architectures.

Our interest is focused on the format ELLPACK-R [86] because it allows the storage

of sparse matrices in a regular manner as aforementioned.

The kernel ELLR-T has already been used to compute SpMV on GPU. It is based

on ELLPACK-R and it outperforms other approaches in terms of performance [56, 146].

In this section, our efforts are oriented to optimize the performance of SpMM opera-

tions on GPUs. For this goal we have created a SpMM routine based on an extension of

ELLR-T, called FastSpMM. In our description of the GPU computation of FastSpMM

we have assumed that matrices B and C have LGPU ≤ L columns, where the value of

LGPU is chosen such that the memory requirements to store the matrices (A, B and C)

are available on the device memory of the GPU architecture. Later on we will explain

how to deal with larger matrices.

In FastSpMM, every set of T threads carries out LGPU reduction operations, those

involved in the computation of every row of the output matrix, C. In order to accelerate

them, every thread stores its partial results in the shared memory of the GPU [14].

Bearing in mind the small size of the shared memory of GPU architectures, every set

of T threads can only compute a very limited number of reductions. Therefore, a

new parameter is introduced, Lc (Lc ≤ LGPU ≤ L), as the number of columns of C

which are computed by a set of T threads, as described by Algorithm 2 (Single Step of

FastSpMM denoted by SSFastSpMM).

FastSpMM will iteratively compute CLc

l = ABLc

l (0 ≤ l ≤ ⌈LGPU/Lc⌉), where CLc

l

and BLc

l denote submatrices of C and B with Lc columns. Note that in Algorithm
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2 line 8, the parameter nalign (nalign ≥ Mnzr, where Mnzr is the maximum number

of non-zeroes per row in the matrix, with the maximum taken over all rows) is used

to redefine the dimension of A[] and J [] such that they fulfill the memory alignment

requirements. So, rows of zeroes are padded up to the number of elements of T columns

of A[] (and J []) is a multiple of 16 [14]. Consequently, accesses to the matrix A from

the device memory satisfy coalescence and alignment requirements. More details about

this approach to optimize the reading of matrix A from the device memory of GPU can

be found in [146]. Figure 2.2 illustrates the organization of threads for SSFastSpMM

with T = 2 and Lc = 4, where a row has been added for memory alignment in the data

structure of matrix A (grey color).

Algorithm 2 Pseudocode of SSFastSpMM, a Single Step of FastSpMM, to compute

SpMM on GPUs. It computes the product CLc = ABLc where A is sparse matrix of

dimensions n×m, BLc and CLc are dense matrices of dimensions m× Lc and n× Lc,

respectively

1: idx=global thread index

2: idb= local thread index into its block

3: i = ⌊idx/T ⌋ #Row index of matrix A

4: idp = idb mod T #Thread index into the set of T threads for row i of A

5: if i < n then

6: sv0 = sv1 = . . . = svLc−1 = 0

7: for j = 0 → j < ⌈rl[i]/T ⌉ do

8: index=T · (j · nalign+i)+idp

9: v=A[index]

10: col=J [index]

11: sv0+=v ·B[col, 0]

12: sv1+=v ·B[col, 1]

13: · · ·

14: svLc−1+=v · B[col, Lc − 1]

15: end for

16: Reduction of sv0, sv1, . . . , svLc−1 on shared memory to compute

C[i, 0], C[i, 1], . . . , C[i, Lc − 1] for the specific value of T

17: end if

Algorithm 2 describes the pseudocode for a single step of FastSpMM, where several

sets of T threads are defined and every set computes Lc elements of the i-th output row
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Figure 2.2: Storage format of the sparse and dense matrices and threads mapping of

SSFastSpMM (Algorithm 2) for the SpMM operation on GPUs.

(i.e. C[i, 0], . . . , C[i, Lc − 1]). So, the i-th row of A is split in sets of T elements. Each

thread computes ⌈rl[i]/T ⌉ iterations of the inner loop of SSFastSpMM (lines 8-17),

they compute their partial reductions which are stored in shared memory (lines 12-16).

Finally, to generate the values of C[i, 0], . . . , C[i, Lc − 1], Lc reductions of the T values

computed and stored in shared memory by every thread are carried out.

It is remarkable that the data structure to store the sparse matrix and the mapping
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of threads of SSFastSpMM provides the following advantages: (i) It optimally exploits

the memory bandwidth of GPU for the reading of the sparse matrix (A[], J [] and rl[])

since the storage format allows the coalesced and aligned global memory access and

the reduction of threads load unbalance [146]; (ii) SSFastSpMM is able to take advan-

tage of the high ratio computation/memory access of the SpMM operation compared

to the SpMV operation. Note that the SpMM operation (C = A · B) could be com-

puted by a set of SpMV operations (ci = A · bi with 0 ≤ i ≤ LGPU). However, in

this case, the sparse matrix is read LGPU times from the device memory to compute

C. In contrast, FastSpMM reads the sparse matrix once and computes Lc columns of

C, so the ratio computation/memory access for FastSpMM is Lc times higher than for

SpMM computed as a set of SpMV. Furthermore, FastSpMM has another computa-

tional advantage since the temporal locality for reading B is increased and the indirect

addressing to read the elements of B is evaluated just once to compute Lc elements of

C, thus the ILP is better exploited by FastSpMM. Consequently, FastSpMM combines

the computational advantages above described, with the advantages of ELLR-T format

to exploit the GPU architecture.

It is relevant to emphasize that the performance of FastSpMM on GPUs is high only

for very large sparse matrices [152]. So, the size of the corresponding dense matrices is

also very large, with huge memory requirements not provided by the device memory of

the GPU. Consequently, the number of columns of B involved in one step of FastSpMM

cannot be increased excessively and should be tuned to the size of the device memory

of the GPU.

Bearing in mind these GPU limitations, FastSpMM has finally been designed as a

routine which computes CLGPU = A · BLGPU (the value of LGPU is chosen such that

the memory requirements to store the matrices, A, BLGPU and CLGPU , are available on

the device memory of the GPU architecture). Thus, to compute C = A · B on GPU,

it is necessary to include ⌈L/LGPU⌉ successive communications between CPU-GPU

with sets of LGPU columns of B and C. It is noteworthy that the above mentioned

limitations to compute SpMM on GPUs are associated to all the implementations of

the SpMM on GPUs. Consequently, for the CUSPARSE routine it is also necessary to

include the same communications between GPU and CPU. This library is taken as a

reference to evaluate our proposal.
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A basic algorithm called FastSpMM∗ is considered as the starting point to compute

C = A ·B with a basic CPU-GPU communication scheme. The CPU-GPU communica-

tion scheme to compute C = A ·B on GPU is described in Algorithm 3 (FastSpMM∗),

where the parameter LGPU is an upper bound of Lc for FastSpMM∗ and a multiple of

Lc. This scheme is also valid for the approach based on the SpMV operation (Lc = 1).

From the description of Algorithm 3 it is clear that the cost of the CPU-GPU com-

munications is very high because every iteration requires the exchange of LGPU columns

of B and C between the CPU and the GPU memory. Therefore, the streaming compu-

tation for overlapping CPU-GPU communication and computation is also considered

in the optimized version of the SpMM operation as described in the next subsection.

Algorithm 3 FastSpMM∗, general scheme to compute C = A · B based on SSFast-

SpMM

1: Copy the sparse matrix A to the GPU memory

2: for i = 0 → ⌈L/LGPU⌉ − 1 do

3: Copy LGPU columns of B from CPU to GPU memory

4: for j = 0 → ⌈LGPU/Lc⌉ − 1 do

5: SSFastSpMM (CLc

j = ABLc

j on GPU) #Algorithm 2

6: end for

7: Copy LGPU columns of C from GPU to CPU memory

8: end for

9: output C matrix is stored on CPU memory

2.3.1.1 Streaming computation for FastSpMM

The CPU-GPU communications play an important role in FastSpMM∗ (Algorithm 3)

and have a strong impact on the performance of this routine. However, the scheme of

FastSpMM∗ includes iterative steps of communications and computations which could

be overlapped at runtime. The idea of the overlapping communication/computation

consists of doing the computational work while the communication infrastructure si-

multaneously performs data transfers, with the goal of hiding the latency and transfer

costs of the inter-process communication [155].

The strategy for overlapping communication/computation between the host and

the GPU platform is based on the stream processing supplied by CUDA [130, 155].
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In this context, a stream represents a queue of GPU operations that are executed in

a specific order. Operations in different streams can be interleaved and in some cases

overlapped, a property that can be used to hide data transfers between the host and

the device. Therefore, the scheme described in Algorithm 3 can be expressed by two

streams which interleave their execution as shown in Algorithm 4.

Algorithm 4 FastSpMM: code with streaming computation CPU-GPU to compute

the SpMM operation

1: Streams creations 0 and 1

2: Stream 1: Asynchronous copy of B0 (column chunk of B) to the GPU memory

3: for i = 0 → ⌈L/LGPU⌉ − 1 do

4: p = i mod 2; q = (p+ 1) mod 2

5: Stream p: ⌈LGPU/Lc⌉ executions of SSFastSpMM to compute Ci = A · Bi

6: Stream q: Asynchronous copy of Bi to the GPU memory

7: Stream p: Asynchronous copy of Ci to the CPU memory

8: end for

9: Streams delete

Our approach relies on two points: the “chunked” computation (for overcoming

the GPU memory limitation and executing SpMM for large matrices) and overlapping

the memory read/write operations (memcpy) with the kernel executions (for decreasing

the communication penalization CPU-GPU and viceversa). Assuming that our memory

read/write operations and kernel executions take roughly the same amount of time, in

Figure 2.3 we have schematically represented the execution timeline of FastSpMM,

where: stream 0 sends its input buffers to the GPU; later, stream 1 executes the same

operation while stream 0 is executing its kernel; then, stream 1 will execute its kernel

while stream 0 copies its results to the host; and, finally, a new input buffer is copied

to the GPU and the obtained results are sent to the host memory. This process will be

repeated for the next chunks of data.

From the interleaved execution of both streams (0 and 1), in Figure 2.3 we can iden-

tify an iterative sequence of four time steps with six operations (enclosed in brackets).

These six operations would consume only four time steps instead of six. Therefore, if

we define the Acceleration Factor (AF ) as the ratio between sequential and overlapped

runtimes, then AF can achieve the maximum value of 1.5.
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Figure 2.3: Timeline of FastSpMM execution using two independent streams (Stream 0

and 1).

It is necessary to underline that the previous analysis has been simplified, since

it assumes that SpMM kernel (A, Bi, Ci) in Figure 2.3 spends the same time that

every communication GPU-CPU and CPU-GPU (memcpy in the same figure), i.e. the

computation steps waste the same time than the communication steps. However, on

the current GPU platforms the bandwidth is higher for the CPU-GPU communication

than in the GPU-CPU direction. Moreover, the time of SpMM kernel (A, Bi, Ci)

increases as nz · LGPU increases and the communication time increases as n and/or m

increase. Therefore, the impact of the streaming included in FastSpMM in terms of

performance depends on the characteristics of the matrices involved in the SpMM.

2.3.2 Evaluation

This section is devoted to evaluating several approaches for computing the SpMM op-

eration using a wide set of test sparse matrices. These matrices come from a broad

spectrum of disciplines of science and engineering and exhibit different characteristics,

from those that are well-structured and regular to highly irregular matrices with large

unbalances in the distribution of non-zeroes per matrix row. Table 2.1 shows the set of

test matrices and the characteristic parameters related to their specific patterns: num-
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ber of rows (n), total number of non-zero elements (nz), average (Av) and maximum

(Mnzr) number of entries per row and the estimated giga floating point operations for

the SpMM computation (NFLOP = 2n · nz/230). In this table, some special matri-

ces are considered: three dense matrices (dense2, dense5000 and dense10000) and two

tridiagonal matrices (tridiagonal1 and tridiagonal2). It is relevant to underline that

these special matrices do not represent the prototype of unstructured sparse matrices,

so FastSpMM has not been specifically designed to accelerate the SpMM for these types

of matrices. However, they are included in our evaluation because they help to analyze

computational characteristics of our library for matrices with extreme values of Av.

Note that all matrices are ordered according to the value of the Av parameter and all

of them verify n = m.

The evaluation has been carried out on two GPUs platforms with the Fermi archi-

tecture of NVIDIA [7]: a Tesla C2050 and a GeForce GTX480. The main characteristics

of both GPUs are shown in Chapter 1, Table 1.4.

Four routines to compute the SpMM on GPUs have been evaluated:

1. SpMM CUSPARSE, based on the level 3 function of this library, computes

C = α · A · B + β · C with α = 1 and β = 0. This routine prevents the useless

computation of βC when β = 0.

2. SetSpMVs (ELLR-T) computes the SpMM as a set of n SpMV operations based

on the kernel ELLR-T [146].

3. FastSpMM∗ is based on the ELLR-T format without overlapping communica-

tion/computation (Algorithm 3).

4. FastSpMM is based on ELLR-T format and takes advantage of overlapping

communication/computation (Algorithm 4).

The CUSPARSE library provides a set of basic linear algebra subroutines used for

handling sparse matrices based on the CRS format to compress the sparse matrix [5, 38].

The paradigm of CUSPARSE is to define multiple blocks where each block is in charge

of processing a group of rows. Each row is assigned to a set of threads. Moreover, a few

additional approaches for improving performance are considered: (1) adjust the number

of threads per row to minimize the unbalance among threads; (2) align threads per row
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Table 2.1: Characteristics of test sparse matrices (denoted as A in our definition of

SpMM), where n is the number of rows, nz is the total number of non-zero elements, Av

and Mnzr are the average and the maximum number of entries per row, respectively, and

NFLOP = 2n · nz/230 is the estimated GFlops.

Matrix n[103] nz[106] Av Mnzr NFLOP

tridiagonal1 200 0.6 3 3 223.5

tridiagonal2 500 1.5 3 3 1396.9

cop20k A 121 2.6 22 81 592.4

qcd5 4 49 1.9 39 40 175.5

Si87H76 240 10.6 45 361 4773.4

msdoor 416 19.1 47 77 14851.6

pwtk 218 11.6 53 181 4722.5

shipsec1 141 7.8 55 102 2050.2

cant 62 4.0 64 78 466.2

Ga41As41H72 268 18.4 69 702 9232.5

consph 83 6.0 72 81 933.0

x104 108 8.7 81 324 1759.1

RM07R 382 37.4 99 295 26635.8

pdb1HYS 36 4.3 119 204 294.7

wbp128 16 3.9 240 256 120.0

nd3k 9 3.2 365 515 55.0

wbp256 66 31.4 480 512 3834.7

dense2 2 4.0 2000 2000 14.9

dense5000 5 25.0 5000 5000 232.8

dense10000 10 100.0 10000 10000 1862.6

for coalescing and (3) use shared and texture memory [5]. However, CUSPARSE does

not allow the user to select values of configuration parameters such as threads block

size (BS) or the number of threads (T ), to achieve the optimal performance.

A comparative evaluation of the performance achieved by the four versions of the

SpMM operation has been carried out. In order to fairly compare the performance

values of both FastSpMM versions with the CUSPARSE routine, all of them compute

the operation C = α ·A ·B with α = 1. It is relevant to note that SpMM CUSPARSE,

SetSpMVs and FastSpMM∗ versions include the same communications scheme (as de-
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scribed in Algorithm 3). In our evaluation the size of B and C is n× n (L = m = n).

Let us remark that the values of Lc (number of columns of C computed in the

execution of SSFastSpMM) and LGPU (number of columns of B and C involved in a

single CPU-GPU transfer) are strongly related to the performance of the SpMM for

all the approaches. So, Lc = 1 for SetSpMVs and Lc can be considered as a variable

parameter for FastSpMM∗ and FastSpMM, with Lc ≤ LGPU . Experiments to explore

the best results in terms of performance according to the values of Lc have been carried

out and we have concluded that the highest performance is achieved when Lc = LGPU .

A preliminary evaluation of the performance of FastSpMM for several values of

L∗ (L∗ = LGPU = Lc) has been carried out. The result of this evaluation will help

us to determine the value of L∗ (for each platform, Tesla C2050 and GTX480) which

will be later used in our comparative evaluation of the performance of FastSpMM and

FastSpMM∗ with respect to CUSPARSE and SetSpMVs. Figure 2.4 shows the experi-

mental results of our evaluation (performance of FastSpMM as a function of L∗). The

values of the performance have been optimized with respect to the configuration param-

eters BS and T , taking also into account the memory limitations of both platforms.

It is remarkable that for the Ga41As41H72 matrix and the GTX480 platform, only

the configurations with L∗ ≤ 4 have been possible because of the high device memory

requirements of this matrix. The complete set of test matrices has been evaluated,

however for the sake of clarity dense and tridiagonal matrices have not been included

in Figure 2.4. For tridiagonal matrices the performance of FastSpMM is very low and

decreases as L∗ increases. For dense matrices the performance is very high and the

larger the value of L∗, the better the performance. From this study we can conclude

that for most of the test matrices, appropriate values of L∗ for the Tesla C2050 and

GTX480 platforms are 8 and 4, respectively. For larger values of this parameter the

performance does not improve significantly. Note that the less the value of L∗ the

less memory resources are required, facilitating the portability of FastSpMM to GPU

platforms with limited resources or the allocation of additional data structures required

when FastSpMM is assembled with other kernels on the GPU. Bearing in mind all the

previous considerations, in the rest of our experiments the value of the parameter L∗

has been set to 4.

An additional evaluation of the impact of the configurable cache on our SpMM

approach has been carried out. The purpose of this evaluation is to optimize our
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Figure 2.4: Performance of FastSpMM as function of L∗ ( L∗ = Lc = LGPU ) for test

sparse matrices on Tesla C2050 (left) and GTX480 (right).

SpMM kernel in terms of performance. Note that for CUDA devices with compute

capability of 2.0 or greater such as the Fermi GPUs used in this section, the memory

for each multiprocessor is 64 KB. This per-multiprocessor on-chip memory is split and

used for both shared memory and L1 cache [7]. Thus, we have tuned the scratchpad-

cache for making a better use of on-chip memory. The tested configurations have been:

(1) 48 KB of shared memory with 16 KB of L1 cache (default configuration); and (2)

16 KB of shared memory with 48 KB of L1 cache.

Note that both configurations applied to FastSpMM can achieve different processing

times but the GPU-CPU communication times do not depend on the cache configu-

ration. So, the analysis of the impact of both configurations in the performance of

FastSpMM has been done in terms of the values of the processing time. Table 2.2

shows the processing times of FastSpMM for the set of test matrices and both configu-

rations. As can be observed in this table, the configuration using a higher capacity of

the L1 obtains the best results. Bearing in mind that FastSpMM requires a maximum

of 16 KB for shared memory for all test matrices (for Lc = 4 and float data type), both

configurations provide these share memory requirements. FastSpMM is dominated

by device memory accesses to read and write the matrices involved in the operation

A · B = C. The access pattern to read the matrix B is related to the location of the

entries of the sparse matrix A, therefore, the management of the device memory can be

improved with a larger cache memory [139]. According to these considerations, results

in Table 2.2 show that the configuration with a larger L1 achieves better performance.

This is the configuration used in the remaining evaluations.
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Table 2.2: Processing Time (seconds) of the SpMM operation using two configurations of

the shared and L1 memory over the FastSpMM approach. Columns PTs and PTL1 refers to

the configuration with 48 KB of shared memory and with 48 KB of L1 cache, respectively.

Column AFL1 identifies the Acceleration Factor (AFL1 = TPs/TPL1). Special matrices

(dense and tridiagonal matrices) are typed in italics.

Tesla C2050 GTX480

Matrix PTs PTL1 AFL1 PTs PTL1 AFL1

tridiagonal1 19.3 19.3 1.0 14.0 13.7 1.0

tridiagonal2 76.9 76.2 1.0 46.3 45.4 1.0

cop20k A 37.1 29.0 1.3 28.3 20.2 1.4

qcd5 4 5.6 5.0 1.1 4.2 3.7 1.1

Si87H76 173.4 157.8 1.1 123.5 113.2 1.1

msdoor 361.4 325.1 1.1 251.2 210.0 1.2

pwtk 87.4 81.9 1.1 69.0 56.5 1.2

shipsec1 42.0 40.9 1.0 32.8 28.5 1.2

cant 12.2 10.9 1.1 9.3 8.3 1.1

Ga41As41H72 336.4 320.0 1.1 243.4 240.8 1.0

consph 20.9 19.0 1.1 16.2 13.6 1.2

x104 40.8 39.9 1.0 36.0 27.0 1.3

RM07R 678.5 623.2 1.1 557.3 413.1 1.3

pdb1HYS 6.8 6.0 1.1 5.1 4.5 1.1

wbp128 3.3 3.1 1.1 2.5 2.2 1.1

nd3k 1.3 0.9 1.4 1.0 0.7 1.4

wbp256 108.0 82.0 1.3 80.2 65.5 1.2

dense2 0.3 0.2 1.3 0.2 0.1 1.3

dense5000 3.7 3.0 1.2 2.6 2.0 1.3

dense10000 24.2 22.9 1.1 16.6 15.2 1.1

We have also carried out a comparative analysis of FastSpMM∗ and FastSpMM

to assess the improvement of the performance due to the overlapping communica-

tion/computation in the SpMM. Tables 2.3 and 2.4 show the values for the Com-

munication Time (CT), Processing Time (PT), total Runtime (Runt), percentage of

the Communication Time in the total runtime (% Com) and Acceleration Factor of

the FastSpMM versus FastSpMM∗ (AF ) for every test matrix on both GPUs. It is
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necessary to highlight that the values of runtime related to the FastSpMM∗ algorithm

include the computation and communication time. Communications represent a rele-

vant percentage of runtime, according to the scheme of Algorithm 3.

Experimental results from Tables 2.3 and 2.4 show that the values of communication

time are very relevant in this kind of operation and depend on the matrix dimension (n).

From Tables 2.3 and 2.4, we can conclude that FastSpMM outperforms FastSpMM∗ in

terms of runtime for all test matrices due to the exploitation of overlapping commu-

nication/computation. This advantage is less relevant if the communication time with

respect to the total runtime (see % Com column of Tables 2.3 and 2.4) achieves extreme

values. So, for tridiagonal matrices (with %Com > 84) and for dense matrices (with

%Com < 13) the Acceleration Factor, AF , is nearly one. Therefore, these experimental

results confirm that the approach to overlap communication/computation considerably

improves the performance of SpMM on GPU.

A comparative analysis of the performance achieved by the CUSPARSE, SetSpMVs

(ELLR-T), FastSpMM∗ and FastSpMM versions of SpMM has been carried out. Ex-

perimental results for all the sparse matrices and both the Tesla C2050 and GTX480

platforms have been depicted in Figure 2.5. These results clearly show that the perfor-

mance strongly depends on:

1. The characteristics of the sparse matrices. For instance, wbp256, nd3k and

wbp128 matrices achieve the best performance for all approaches due to their

high average number of elements per row (see Av column in Tables 2.3 and 2.4).

However, the product of the Ga41As41H72 matrix achieves a poor performance

due to the irregular filling of its rows which produces a high value of Mnzr (spe-

cific parameter of the ELLPACK-R format described in Section 2.3.1.1). So,

the memory requirements to store the matrix A are enlarged with ELLPACK-R

and the memory management is also penalized. The regular pattern of the pwtk

matrix allows to achieve a better performance despite its low value of Av.

2. The approach for computing the SpMM on GPU. We can observe that, for most

of the test matrices, the CUSPARSE library achieves the poorest performance,

on both GPUs. This is mainly due to the fact that this library does not allow

the user to set up the parameters according to the pattern of the matrix. The

SetSpMVs version achieves slightly better performance since suitable parameters
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Table 2.3: Profiling of SpMM based on FastSpMM∗ and FastSpMM on Tesla C2050. The

following notation is used, Av and Mnzr: average and the maximum number of entries per

row, respectively; PT: Processing Time; CT: Communication Time; Runt: total Runtime

(all in seconds); % Com: percentage of Communication Time with respect to the total

runtime for the FastSpMM∗ approach; AF : Acceleration Factor of the FastSpMM with

respect to FastSpMM∗. Special matrices (dense and tridiagonal matrices) are typed in

italics.

FastSpMM∗ FastSpMM

Matrix Av Mnzr PT CT % Com Runt Runt AF

tridiagonal1 3 3 19.3 108.8 84.9 128.1 109.9 1.17

tridiagonal2 3 3 76.2 619.8 89.1 695.9 623.5 1.12

cop20k A 22 81 29.0 41.9 59.1 70.9 51.5 1.38

qcd5 4 39 40 5.0 8.1 62.0 13.0 9.0 1.44

Si87H76 45 361 157.8 158.6 50.1 316.4 244.9 1.29

msdoor 47 77 325.1 431.5 57.0 756.6 610.5 1.24

pwtk 53 181 81.9 125.2 60.4 207.1 164.2 1.26

shipsec1 55 102 40.9 56.8 58.1 97.7 73.2 1.33

cant 64 78 10.9 13.1 54.5 23.9 17.7 1.35

Ga41As41H72 69 702 320.0 188.9 37.1 508.9 457.1 1.11

consph 72 81 19.0 21.2 52.8 40.2 30.2 1.33

x104 81 324 39.9 32.5 44.9 72.3 56.8 1.27

RM07R 99 295 623.2 379.1 37.8 1002.3 855.1 1.17

pdb1HYS 119 204 6.0 4.6 43.4 10.5 8.3 1.27

wbp128 240 256 3.1 1.0 24.0 4.1 3.4 1.20

nd3k 365 515 0.9 0.3 26.5 1.3 1.1 1.15

wbp256 480 512 82.0 14.5 15.0 96.5 90.5 1.07

dense2 2000 2000 0.2 0.0 10.3 0.2 0.2 1.06

dense5000 5000 5000 3.0 0.1 3.5 3.2 3.0 1.05

dense10000 10000 10000 22.9 0.4 1.9 23.3 23.0 1.01

to obtain the best performance of SetSpMVs have been selected according to

the GPU platform and the characteristic of the sparse matrices. However, its

performance is very poor compared to FastSpMM∗ and FastSpMM. Focusing our

attention on the performance improvements of FastSpMM∗ versus CUSPARSE
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Table 2.4: Profiling of SpMM based on FastSpMM∗ and FastSpMM on GTX 480. The

following notation is used, Av and Mnzr: average and the maximum number of entries per

row, respectively; PT: Processing Time; CT: Communication Time; Runt: total Runtime

(all in seconds); % Com: percentage of Communication Time with respect to the total

runtime for the FastSpMM∗ approach; AF : Acceleration Factor of the FastSpMM with

respect to FastSpMM∗. Special matrices (dense and tridiagonal matrices) are typed in

italics.

FastSpMM∗ FastSpMM

Matrix Av Mnzr PT CT % Com Runt Runt AF

tridiagonal1 3 3 13.7 89.4 86.7 103.0 99.2 1.04

tridiagonal2 3 3 45.4 519.6 92.0 565.0 533.5 1.06

cop20k A 22 81 20.2 36.0 64.0 56.2 40.0 1.40

qcd5 4 39 40 3.7 7.0 65.3 10.7 8.4 1.27

Si87H76 45 361 113.2 145.1 56.2 258.3 210.7 1.23

msdoor 47 77 210.0 356.6 62.9 566.5 404.2 1.40

pwtk 53 181 56.5 103.2 64.6 159.6 113.5 1.41

shipsec1 55 102 28.5 47.1 62.3 75.6 52.5 1.44

cant 64 78 8.3 11.1 57.1 19.4 13.6 1.43

Ga41As41H72 69 702 240.8 152.4 38.8 393.2 326.2 1.21

consph 72 81 13.6 18.9 58.2 32.5 22.5 1.45

x104 81 324 27.0 28.7 51.5 55.7 45.9 1.21

RM07R 99 295 413.1 357.5 46.4 770.6 577.2 1.34

pdb1HYS 119 204 4.5 3.9 46.5 8.4 6.1 1.37

wbp128 240 256 2.2 0.8 26.8 3.0 2.6 1.16

nd3k 365 515 0.7 0.3 27.8 1.0 0.9 1.15

wbp256 480 512 65.5 12.5 16.0 78.0 65.6 1.19

dense2 2000 2000 0.1 0.0 12.2 0.2 0.2 1.05

dense5000 5000 5000 2.0 0.1 4.5 2.0 2.0 1.04

dense10000 10000 10000 15.2 0.4 2.5 15.6 15.2 1.03

and SetSpMVs, we can remark that they are related to the suitable exploitation

of the high ratio computation/memory access in combination with the advantages

of ELLPACK-R format to exploit the GPU architecture. Finally, we can conclude

that FastSpMM achieves the best performance thanks to the use of the schema
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2.3 Sparse Matrix Matrix product. FastSpMM

Figure 2.5: Performance evaluation of the sparse matrices using the approaches: CUS-

PARSE, SetSpMVs, FastSpMM∗ and FastSpMM to compute SpMM on Tesla C2050 (top)

and GTX480 (bottom).
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2. SPARSE MATRIX COMPUTATION ON GPUS

for overlapping communication/computation based on CUDA streaming and the

advantages of FastSpMM∗.

Table 2.5: Runtime executions in seconds of the SpMM multicore version using MKL

with 1, 2, 4 and 8 cores (1C, 2C, 4C and 8C) and Acceleration Factors (AF ) of FastSpMM

on Tesla and GTX480 (AF Tesla and AF GTX480, respectively) over the MKL version

with 8 cores

1C 2C 4C 8C AF Tesla AF GTX480

cop20k A 721.8 444.0 211.6 112.0 2.2 2.8

qcd5 4 148.8 72.2 38.0 19.6 2.2 2.3

Si87H76 4112.9 2191.3 1219.8 639.6 2.6 3.0

msdoor 14049.4 7191.6 3936.9 2282.7 3.7 5.6

pwtk 3781.4 1975.1 1043.7 566.3 3.4 5.0

shipsec1 1651.1 865.5 469.3 251.0 3.4 4.8

cant 381.0 244.6 103.8 55.8 3.1 4.1

Ga41As41H72 7629.0 4022.5 2298.3 1211.7 2.7 3.7

consph 734.6 385.1 218.6 109.6 3.6 4.9

x104 1563.6 866.8 447.1 258.3 4.5 5.6

RM07R 21263.3 11166.8 5900.3 3390.4 4.0 5.9

pdb1HYS 242.6 121.2 68.4 36.8 4.4 6.0

wbp128 106.4 52.4 27.6 14.4 4.3 5.5

nd3k 42.9 22.0 12.8 7.3 6.6 8.5

wbp256 4145.6 2208.1 1033.9 518.5 5.7 7.9

In order to estimate the net gain provided by GPUs over modern processors in

the SpMM, we have chosen the optimized versions of SpMM routines for both kind of

architectures. In our experiments a computer based on a state-of-the-art multicore pro-

cessor, Intel Xeon E5640 with 8 cores, has been used to compute the SpMM operation

based on the MKL library [1]. It is remarkable that for very large matrices, the mem-

ory requirements of SpMM are not supplied by the CPU architecture. In these cases

the “chunked” computation has been also applied for overcoming the CPU memory

limitation. Table 3.4 shows the experimental results in terms of runtime (in seconds)

of the SpMM multicore version using MKL with 1, 2, 4 and 8 cores (1C, 2C, 4C and

8C) and the acceleration factors of FastSpMM on Tesla and GTX480 (AF Tesla and

AF GTX480, respectively) with respect to the MKL version with 8 cores. As can be
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observed, the increase of the number of cores means a considerable reduction in the

total runtime of the MKL version. The results obtained using MKL and 8 cores have

been compared to the runtimes of the FastSpMM algorithm, showing the acceleration

factors for every matrix and GPU considered. These acceleration factors range from

2.2× (2.3×) to 6.6× (8.5×) on Tesla C2050 (GTX480) for the set of test matrices. So,

we can conclude that the GPU turns out to be an excellent accelerator of SpMM.

2.4 Conclusions

In this section the FastSpMM approach to accelerate the SpMM operation on GPUs

has been analyzed. FastSpMM combines two considerations: (1) a high ratio computa-

tion/memory access with the advantages of ELLPACK-R format to exploit the GPU ar-

chitecture and (2) streaming computation for overlapping communication/computation.

The comparative evaluation with other proposals (CUSPARSE, SpMM as a set of

SpMV operations based on ELLR-T and FastSpMM∗) has proved that FastSpMM

is the best approach in term of performance. A comparison of FastSpMM on two

GPUs (Tesla C2050 and GeForce GTX480) has revealed that acceleration factors of

up to 6.6× and 8.5× can be achieved in comparison to an optimized implementation

of SpMM which exploits 8 cores of a state-of-the-art multicore processor. However,

for very large and extremely sparse matrices, the SpMM achieves poor performance on

the GPU, mainly due to the relevance of the CPU-GPU communications of the dense

matrices (B and C).

According to the previous results, several aspects of the FastSpMM can be improved

so, our future work will be focused on them. Concretely, our next work will consist

of extending FastSpMM to matrices with complex elements instead of real ones and

broadening the kinds of platforms which can be exploited by FastSpMM. Moreover, we

are particularly interested in the reduction of the Processing Time through improving

the memory management. In order to achieve this goal, FastSpMM will be re-written

according to the GPU programming tool CudaDMA [35] which allows to efficiently

managing data transfers between the on-chip and off-chip memories of GPU platforms.

Finally, due to the importance of the L∗ parameter in the performance of the SpMM

product, it will be interesting to develop a model to optimize the value of this parameter

according to the specific matrix characteristics and the GPU platform.
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2. SPARSE MATRIX COMPUTATION ON GPUS

FastSpMM for computing SpMM on GPU platforms is freely available through the

following web site: https://sites.google.com/site/mcfastsparse/

64



3
BiConjugate Gradient for complex matrices on GPUs

In a wide variety of applications from different scientific and engineering fields, the

solution of complex and/or nonsymmetric linear systems of equations is required. To

solve this kind of linear systems the BiConjugate Gradient method (BCG) is specially

relevant. Nevertheless, BCG has a enormous computational cost. GPU computing is

useful for accelerating this kind of algorithms but it is necessary to develop suitable

implementations to optimally exploit the GPU architecture. In this chapter, we show

how BCG can be effectively accelerated when all operations are computed on a GPU.

The BiConjugate Gradient method has been implemented with two alternative routines

of the Sparse Matrix Vector product(SpMV): the CUSPARSE library and the ELLR-T

routine. Although our interest is mainly focused on complex matrices, our implemen-

tations have been evaluated on a GPU for two sets of test matrices: complex and real,

in single and double precision data. Experimental results show that BCG based on

ELLR-T routine achieves the best performance, particularly for the set of complex test

matrices. Consequently, this method can be useful as a tool to efficiently solve large

linear system of equations (complex and/or nonsymmetric) involved in a broad range

of applications.

3.1 Introduction

It is widely accepted that the BiConjugate Gradient algorithm (BCG) is one of the best

known iterative algorithms for solving nonsymmetric and/or complex systems with high

accuracy [70, 127]. It can be used in a wide variety of applications such as electromag-
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netism or tomography [100, 148]. However, each iteration of the BCG method involves

a set of high computational cost operations. Therefore, High Performance Computing

(HPC) can be a suitable way to accelerate this method. Currently, Graphics Processing

Units (GPUs) are considered to be HPC platforms that offer massive parallelism, which

are also useful for accelerating this kind of algorithms.

In the literature, several developments of the BCG method over GPUs have been

implemented and evaluated for solving systems of equations which involve real matrices

[68, 69]. In contrast, this chapter is focused on the acceleration of BCG based on

complex arithmetic by means of GPU computing. Recently, De Donno et al. [54]

have described a GPU implementation of the complex BCG algorithm based on the

HYB kernel to compute the SpMVs included in the BCG method (the HYB kernel has

been proposed by Bell et al. [37]). Nevertheless, more efficient kernels to compute the

SpMV on GPUs have been designed; among them, ELLR-T has proved to outperform

the aforementioned approaches [152].

GPU computing is suitable for accelerating the two kinds of vector operations in-

volved in BCG: (1) inner products and (2) Sparse Matrix Vector products (SpMVs);

where the SpMV is the operation with the highest computational cost in the BCG

algorithm. Thus, it could be considered as the key in the development of this method

on GPUs. In our implementation of BCG, both operations are computed on the GPU

to reduce data transfer overheads. In this way, only an initial and final communication

is necessary to transfer the input and output data, respectively.

In order to accelerate the SpMV on GPUs there are several CUDA libraries such as

ELLR-T or HYB among others, but most of them deal with real arithmetic [34, 48, 152].

In contrast, CUSPARSE [5] is an example of a library which can compute SpMV with

complex numbers. Our work has been focused on accelerating the SpMVs included

in the BCG method using two alternative kernels: (a) the SpMV kernel from the

library CUSPARSE [5], and (b) the ELLR-T kernel which is based on the ELLPACK-

R format [145, 152], which has been adapted for complex numbers. In this chapter both

alternatives are evaluated in depth and a quantitative analysis of the BCG profiling is

carried out. Additionally, runtime performance gains are measured by executing our

implementation on the GPU versus an analogous implementation in a current multicore

architecture.
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3.2 BiConjugate Gradient Method

The remainder of this chapter is structured as follows: Section 3.2 briefly reviews

the BCG method. Sections 3.3 and 3.4 are devoted to describing and evaluating our

implementation of the BCG method on GPU. Comparisons to a multicore CPU imple-

mentation are also shown. Finally, Section 3.5 summarizes the main conclusions.

3.2 BiConjugate Gradient Method

The BCG method (proposed by Lanczos [91]) is a nonstationary iterative method to

solve systems of linear equations Ax = b, where the matrix A ∈ Cn×n is a sparse matrix

which can be nonsymmetric, b indicates the independent term and x is the unknown

vector.

The Conjugate Gradient method is not suitable for nonsymmetric systems because

the residual vectors cannot be made orthogonal with short recurrences (for proof of

this see Voevodin [153] or Faber and Manteuffel [64]). The GMRES method retains

orthogonality of the residuals by using long recurrences, at the cost of a larger storage

demand. The BiConjugate Gradient method takes another approach, replacing the

orthogonal sequence of residuals by two mutually orthogonal sequences, at the price of

no longer providing a minimization [53].

The update relations for residuals in the Conjugate Gradient method are augmented

in the BiConjugate Gradient method by relations that are similar but based on AT

instead of A. Thus, two sequences of residuals

ri = ri−1 − αiApi, r′i = r′i−1
− αiA

T p′i, (3.1)

and two sequences of search directions have to be updated:

pi = ri−1 + βi−1pi−1, p′i = r′i−1 + βi−1p
′

i−1. (3.2)

The choices

αi =
r′Ti−1

ri−1

p′Ti Api
, βi =

r′Ti ri

r′Ti−1
ri−1

(3.3)

ensure the bi-orthogonality relations

r′
T
i rj = p′

T
i Apj = 0, if i 6= j. (3.4)

Algorithm 5 describes a pseudocode for the BCG method. At every iteration,

several inner products operations and two SpMVs are computed. Estimations of the
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computational complexity (floating point operations) of the most expensive operations

are provided in the right-hand columns (for real and complex numbers), where nz and

n denote the number of non-zero elements and the number of rows and columns of A,

respectively. At each BCG iteration, two SpMV operations are computed with matrices

A and AT (lines 9 and 17 of Algorithm 5). The computational cost of the SpMV

operation is related to the value of nz, so it is higher than the remaining operations

which mainly consist of inner products. Moreover, the SpMV for the transpose matrix

(AT ) consumes more runtime due to the penalties related to the locality loss in the

access to the elements of AT . To overcome these penalties and to take advantage of the

large amount of available memory resources on current computational platforms, our

CPU and GPU implementations store both A and AT as two different sparse matrices.

Algorithm 5 BiConjugate Gradient Method

Require: Define ǫ = Accuracy Threshold Real data Complex data

Ensure: The value of xi

1: Compute r0 = b−Ax0 for some initial guess x0

2: Choose r′
0
= r0; p

′

0
= 0; p0 = p′

0
ρ′
0
= 1

3: Calculate ∆0 = ‖r0‖)

4: for i = 1, 2, ... until convergence do

5: ρi = (r′i−1
, ri−1) O(2n) O(8n)

6: βi = ρi/ρ
′

i−1

7: pi = ri−1 + βipi−1 O(2n) O(8n)

8: p′i = r′i−1
+ βip

′

i−1
O(2n) O(8n)

9: vi = Api O(2nz) O(8nz)

10: αi = ρi/(p
′

i, vi) O(2n) O(8n)

11: xi = xi−1 + piαi O(2n) O(8n)

12: ri = ri−1 − viαi O(2n) O(8n)

13: r′i = r′i−1
− αi(A

T p′i) O(2nz + 2n) O(8nz + 8n)

14: ∆i = ‖ri‖ O(2n) O(4n)

15: if ∆i < ǫ∆0 then

16: return xi

17: else

18: ρ′i = ρi

19: end if

20: end for
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3.2.1 Preconditioning BCG

The BCG method, similarly to other Krylov methods, could suffer from nasty side-

effects such as stagnation or breakdown therefore, in some cases, it could not guarantee

to lead to acceptable approximate solutions within modest computing time and storage.

The trick is then to try to find some nearby operator K such that K−1A has

better (but still unknown) spectral properties. This is based on the observation that

for K = A, we would have the ideal system K−1Ax = Ix = K−1b and all subspace

methods would deliver the true solution in one single step. The hope is that for a K

in some sense close to A, a properly selected Krylov method applied to, for instance,

K−1Ax = K−1b, would need only a few iterations to yield a good enough approximation

for the solution of the given system Ax = b. An operator that is used for this purpose

is called a preconditioner for the matrix A [142].

The general problem of finding an efficient preconditioner, is to identify a linear op-

erator K (the preconditioner) with the properties that: (1) K is a good approximation

to A in some sense; (2) the cost of the construction of K is not prohibitive; and (3) the

new system of equations is much easier to solve than the original system.

There is no a general theory on which we can safely base an efficient selection.

Except for some trivial situations, the matrix K−1A is never formed explicitly. In

many cases this would lead to a dense matrix and destroy all efficiency that could be

obtained for sparse matrices.

There are different ways of implementing preconditioning (Left, Right and Two-

sided preconditioning); for the same preconditioner these different implementations

lead to the same eigenvalues for the preconditioned matrices [142]. In Chapter 4 an

algorithmic expression of a preconditioning BCG is shown.

3.3 GPU Implementation of the BCG Method

Our efforts have been focused on improving the performance of the BCG method by

accelerating both: inner products and SpMV operations using GPU computing and

CUDA. According to this model, each kernel is executed as a batch of threads organized

as a grid of thread blocks whose configuration is defined by the programmer [7].

As previously mentioned, in the BCG method the SpMVs represent the operations

with the highest computational cost, although inner products consume a significant
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percentage of runtime. So, devoting some effort towards accelerating both kinds of

operations on GPUs is a worthwhile undertaking. For this purpose, NVIDIA supplies a

set of basic routines or libraries intended to speed up a wide variety of matrix operations

on GPUs. Among them, several implementations of the SpMV based on CUDA have

been reported in the literature [5, 16, 34, 48, 146].

Two CUDA implementations of the SpMV have been selected to develop the BCG

method on GPUs: (1) the kernel included in the library CUSPARSE [5] and (2) the

ELLR-T kernel, which is based on the format ELLPACK-R [145, 152]. We have used

these kernels because the comparative evaluation described in [146] shows that ELLR-T

achieves better performance than other approaches for the SpMV operation on GPUs

for real arithmetic. However, the routine to compute SpMV of the CUSPARSE library

is not included in the mentioned comparative evaluation, despite this library is currently

the main tool provided by NVIDIA for the SpMV on GPUs.

The CUSPARSE library provides a set of basic linear algebra subroutines used for

handling sparse matrices. Compress Row Storage (CRS) is the format to compress

the sparse matrix [38]. The paradigm of CUSPARSE is to define multiple blocks where

each block is in charge of processing a group of rows. Each row is assigned to a group of

threads. Moreover, a few additional tweaks for improving performance are considered:

(1) adjust the number of threads per row to minimize the imbalance among threads,

(2) align threads per row for coalescing, and (3) use shared and texture memory [5].

However, CUSPARSE does not allow the user to select the value of the configuration

parameter such as threads block size (BS) to achieve the optimal performance.

The ELLR-T routine with the format ELLPACK-R allows us to store the sparse

matrix in a regular manner. In ELLR-T, every set of T threads computes one element

of the output vector. The global memory access to the matrix is coalesced and aligned.

According to the mapping of threads in the computation related to every row, several

configurations of ELLR-T can be executed. To optimize the performance, the values

of two parameters, number of threads (T ) and threads block size (BS), have to be ad-

justed for each sparse matrix. These can be automatically determined by the specific

configuration routine associated with ELLR-T [146, 152]. The central question to be

examined in this chapter is the development and evaluation of a BCG implementation

based on both kernels. The main features of our implementation are: (1) it is based on
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Table 3.1: Characteristics of real and complex test matrices.

Real Mat S n nz Av

wbp128 no 16384 3933097 240

cant yes 62451 4007384 64

pdb1HYS yes 36417 4344766 119

consph yes 83334 6010481 72

shipsec1 yes 140874 7813404 55

pwtk yes 217918 11634425 53

wbp256 no 65536 31413931 479

Complex Mat S n nz Av

kim1 no 38415 933195 24

fem filter no 74062 1731206 23

NN70 yes 729000 5086618 7

NN80 yes 1000000 6979798 7

NN90 yes 1331000 9292578 7

kim2 no 456976 11330020 24

fem hifreq no 491100 20239237 41

CUBLAS library for accelerating inner products, and (2) two different kernels for Sp-

MVs are tested (CUSPARSE and ELLR-T). Hereinafter, when CUSPARSE or ELLR-T

routines are used, they will be referred to as CuBCGCS or CuBCGET , respectively.

The next section is devoted to evaluating our BCG implementation using both

kernels: CUSPARSE and ELLR-T.

3.4 Evaluation

Two sets of sparse matrices (real and complex) have been considered for the evaluation.

These matrices exhibit different characteristics, from those that are well-structured and

regular to highly irregular matrices with large imbalances in the distribution of non-

zeros per matrix row. Table 3.1 illustrates the set of real and complex test matrices

considered with the characteristic parameters related to their specific patterns: sym-

metry of the matrix (S), number of rows (n), total number of non-zeros elements (nz)

and average number of entries per row (Av). Notice that the dimension for all matrices

is n× n.

Our analysis is based on runtimes measured on a Tesla C2050 (see Chapter 1 Ta-

ble 1.4). Reported results based on Tesla C2050 can be extrapolated to other Fermi

platforms. This conclusion is based on similar results obtained from an additional study

on a GTX 480 card (Fermi GPU with a higher peak performance), not reported here.

In our experiments for evaluating the performance of CUSPARSE and ELLR-T kernels,

we have used the optimal configuration of parameters T and BS for each test matrix. In

the case of CUSPARSE, these parameters are determined by the CUSPARSE routine.

Table 3.2 shows the performance (GFlops) achieved for 1000 iterations of both im-

plementations of BCG (columns CuBCGCS and CuBCGET ). Table 3.2 also provides
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values of the performance for the most computationally expensive procedures of BCG:

(i) the performance of two SpMV operations (lines 9 and 17 of Algorithm 5) is shown

in columns ApCS, A
T p′CS, ApET and AT p′ET , where the subindexes CS and ET are

related to CUSPARSE and ELLR-T libraries, respectively; and (ii) the performance of

inner products is shown in column IP . The IP column also shows, in parentheses, the

percentage of inner products workload with respect to the total floating point opera-

tions of BCG. Moreover, for each matrix, results for executions using single and double

floating point precision are provided (data in bold refers to double precision).

Experimental results show that performance of the SpMV operations for nonsym-

metric matrices is quite different despite that both matrices, A and AT , contain the

same number of non-zeros elements. In fact, the performance is different because the

row patterns of A and AT are different. Experimental results have shown that data

transfer overheads are negligible compared to the total GFlops (≤ 1%), so they have

not been included in Table 3.2. Results in Table 3.2 show that:

1. CuBCGET outperforms CuBCGCS in terms of GFlops, specially for complex

matrices where the computational burden of arithmetic operations is higher com-

pared to real matrices.

2. The performance of SpMVs based on ELLR-T is better than the performance of

CUSPARSE due to the fact that ELLR-T is tuned to the pattern of the sparse

matrix through the parameters T and BS. It can be underlined that the ad-

vantages of ELLR-T over CUSPARSE are specially relevant for the SpMV with

complex matrices (columns ApCS , A
T p′CS, ApET and AT p′ET ).

3. Performance reached by all SpMV kernels is significantly higher than those of

the inner products. This poor performance of inner products penalizes the per-

formance of the BCG method (columns CuBCGCS and CuBCGET ). It can be

concluded that the low arithmetic intensity of inner products considerably reduces

the performance of BCG despite the high performance of ELLR-T kernels.

4. The performance of inner products increases as n rises because the arithmetic

intensity of inner products is proportional to the dimension of n. Therefore, the

highest performance for the inner product is achieved for the largest values of n,
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Table 3.2: GFlops of 1000 iterations of both implementations of BCG (columns

CuBCGCS and CuBCGET ) using the two sets of matrices in single and double preci-

sion (typed in bold). IP column shows the GFlops achieved by inner products and ApCS,

AT p′CS, ApET and AT p′ET columns show the GFlops measured for both kinds of SpMV

using CUSPARSE and ELLR-T libraries, respectively.

Real matrices

IP ApCS AT p′CS CuBCGCS ApET AT p′ET CuBCGET

wbp128
0.3 (2%) 13.4 13.3 8.1 18.8 16.2 9.9

0.3 10.8 10.8 7.1 12.0 10.5 7.4

cant
1.3 (6%) 8.8 8.8 6.6 17.9 17.9 10.2

1.0 7.9 7.9 5.7 10.7 10.7 7.4

pdb1HYS
0.8 (3%) 11.6 11.6 8.0 16.8 16.8 10.4

0.7 10.0 10.0 7.2 11.1 11.1 8.0

consph
1.6 (5%) 9.4 9.4 7.5 16.5 16.5 11.5

1.4 8.4 8.4 6.7 9.7 9.7 8.0

shipsec1
2.4 (7%) 8.5 8.5 7.3 16.3 16.3 12.2

2.0 7.6 7.6 6.4 9.8 9.8 8.5

pwtk
3.3 (7%) 8.5 8.5 7.7 18.8 18.8 14.1

2.2 7.6 7.6 6.7 11.6 11.6 9.9

wbp256
1.3 (1%) 13.5 12.9 12.3 18.0 14.9 14.8

1.2 9.3 8.7 8.5 11.1 9.9 9.9

Complex matrices

IP ApCS AT p′CS CuBCGCS ApET AT p′ET CuBCGET

kim1
2.8 (14%) 14.5 14.5 9.3 45.4 45.8 15.5

1.4 8.4 8.3 4.9 26.3 26.5 8.1

fem filter
4.5 (14%) 13.4 13.5 10.6 28.9 28.9 16.7

2.5 8.1 8.1 6.2 15.9 15.9 8.9

NN70
15.7 (35%) 17.4 17.4 16.9 44.1 44.1 27.5

7.7 12.4 12.4 10.2 24.9 24.9 14.7

NN80
16.9 (35%) 17.8 17.8 17.5 44.4 44.4 28.8

8.3 12.5 12.5 10.6 25.1 25.1 15.4

NN90
17.8 (35%) 18.3 18.3 18.2 43.5 43.5 29.3

8.7 12.8 12.8 11.0 23.8 23.8 15.4

kim2
13.6 (13%) 18.3 18.3 17.5 51.6 51.6 37.7

6.8 9.9 9.9 9.3 29.0 29.1 20.2

fem hifreq
14.0 (8%) 26.0 26.0 24.3 42.2 42.2 35.6

6.9 14.8 14.8 13.5 25.3 25.3 20.8
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Figure 3.1: Performance of BCG approaches (CuBCGCS and CuBCGET ) on GPU Tesla

C2050 using real (left)/complex (right) matrices and single/double precision (SP/DP).

as is the case of shipsec1 and pwtk (for real matrices) and NN70 and NN80 (for

complex matrices).

5. Bearing in mind the Amdahl’s Law, the performance of BCG is dominated by in-

ner products or SpMVs according to the values of n and nz; e.g., for the complex

matrices NN70, NN80 and NN90, the percentage of workload of inner prod-

ucts is nearly 35% (see percentage in IP column), consequently penalties on the

performances of inner products are more relevant for these matrices. However,

for kim2 and fem hifreq, the SpMV is the dominant computation due to the

high values of nz. For real matrices, the impact of inner products performance is

less due to their low percentage of workload, so the BCG performance is strongly

determined by nz.

Figure 3.1 graphically shows the performance (GFlops) reached by CuBCGCS and

CuBCGET for real and complex data using single and double precision. It clearly

shows that CuBCGET outperforms CuBCGCS. Hereinafter, our analysis is focused

on the CuBCGET because it achieves better performance.

Table 3.3 shows total runtimes of 1000 iterations of the BCG method based on

ELLR-T on a GPU card Tesla C2050. Due to the high impact of the inner products in

the total runtime of the BCG method, the percentage of the total runtime spent in the

calculation of the inner products is also provided (in parentheses). Let notice that it

is significantly higher than the percentage of inner products workload (see Table 3.2).
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3.4 Evaluation

Results in Table 3.3 clearly shows that runtimes range from 1 to 10 seconds for single

precision and from 1 to 16 seconds for double. These results are considered as reference

in the following analysis which is devoted to evaluating the performance of BCG on

multicore and GPU platforms.

Table 3.3: Runtimes (s) of 1000 iterations of the BCG method based on ELLR-T on a

GPU card Tesla C2050, in single (SP) and double precision (DP). Values in parentheses

show the percentage of the total runtime which is spent in the calculation of the inner

products.

Real matrix

SP DP

wbp128 1.50 (43.8%) 2.00 (34.7%)

cant 1.55 (46.1%) 2.13 (34.2%)

pdb1HYS 1.61 (40.4%) 2.08 (29.9%)

consph 2.04 (33.5%) 2.95 (21.7%)

shipsec1 2.56 (30.4%) 3.64 (18.3%)

pwtk 3.30 (30.1%) 4.71 (20.9%)

wbp256 7.96 (9.9%) 11.96 (6.6%)

Complex matrix

SP DP

kim1 1.03 (70.5%) 1.98 (73.4%)

fem filter 1.79 (50.1%) 3.36 (51.6%)

NN70 4.24 (59.4%) 7.91 (61.6%)

NN80 5.55 (57.9%) 10.39 (60.1%)

NN90 7.27 (56.2%) 13.78 (57.7%)

kim2 5.16 (36.6%) 9.60 (39.5%)

fem hifreq 9.25 (22.8%) 15.82 (24.8%)

In order to obtain the net gain provided by GPUs versus multicore architectures,

a state-of-the-art processor [95] and a GPU platform based on Fermi architecture of

NVIDIA [7] have been used in our experiments. The CPU architecture is an Intel Xeon

E5640 (8 cores, 2.66 GHz, 12 GB RAM and under Linux) which uses the multithreaded

Intel MKL library [1]. For the GPU implementation we have considered the above-

mentioned GPU card (Tesla C2050) and the BCG implementation based on ELLR-T

and CUBLAS.

Table 3.4 shows the acceleration factors obtained for CuBCGET against the BCG

executed on 1, 2, 4, and 8 cores. Results in Table 3.4 show that for 1 core, the

acceleration factor ranges from 4.8× to 16.8× and from 4× to 15.7× for single and

double precision, respectively; and for 8 cores, the acceleration factor ranges from 1.2×

to 5.3× and from 1.8× to 6.8× for single and double precision, respectively.

Experimental results show that, for the test matrices used in the study (real/complex,

single/double precision), our BCG method on GPUs clearly outperforms the optimized

multicore implementation for up to 8 cores. These results constitute proof of the ad-

vances in double precision arithmetic in modern GPUs of NVIDIA based on Fermi
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Table 3.4: Acceleration factor for the CuBCGET method against the BCG multicore

version using MKL with 1, 2, 4 and 8 cores (1C, 2C, 4C and 8C). The two sets of matrices

have been considered in single and double precision (typed in bold).

Real matrix

1C 2C 4C 8C

wbp128
8.4 6.3 3.9 2.8

11.1 7.4 4.6 3.2

cant
8.6 6.3 3.8 2.6

7.2 6.4 4.9 3.0

pdb1HYS
7.9 4.7 3.9 2.9

8.3 6.8 5.3 3.1

consph
9.1 7.1 4.3 3.0

7.6 4.6 3.8 3.2

shipsec1
10.2 7.6 4.6 3.2

9.2 7.4 4.2 3.6

pwtk
11.8 8.7 6.2 3.3

10.6 8.5 6.7 4.0

wbp256
16.8 10.3 7.0 3.4

15.7 9.7 6.4 3.3

Complex matrix

1C 2C 4C 8C

kim1
4.8 3.4 2.6 1.2

4.0 3.1 2.5 1.8

fem filter
6.5 4.3 3.2 2.0

4.8 4.0 3.0 2.2

NN70
12.2 8.5 5.8 4.6

9.0 6.2 5.6 5.4

NN80
11.9 7.1 7.2 5.0

10.7 6.6 6.0 5.7

NN90
13.4 9.4 7.4 5.3

9.6 9.0 6.7 6.8

kim2
11.5 9.0 7.0 4.5

9.0 8.4 6.9 5.0

fem hifreq
14.7 10.6 7.0 4.6

11.7 7.3 5.1 4.7

architecture.

3.5 Conclusions

We have analyzed and experimentally evaluated a BCG implementation to solve com-

plex and/or nonsymmetric linear systems of equations on GPUs. This work compares

two different versions of the BCG method (CuBCGCS and CuBCGET ), which are

based on CUSPARSE and ELLR-T libraries to accelerate the SpMV, since it is the key

operation in the BCG. Moreover, all inner products have been accelerated by means of

the CUBLAS library.

After an extensive study with two sets of representative test matrices, it can be

concluded that CuBCGET clearly achieves better performance due to the fact that the

kernel ELLR-T can be better adapted to the different patterns of the sparse matrices.
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This advantage is more relevant for complex matrices since the consideration of com-

plex arithmetic involves more floating point operations. Furthermore, a comparison of

CuBCGET on a Tesla C2050 has revealed that acceleration factors range from 1.2×

to 5.3× for single precision and from 1.8× to 6.8× for double precision, in comparison

to an optimized implementation of the BCG which exploits a state-of-the-art processor

with eight cores. Finally, we can conclude that CuBCGET exploits the GPU platform

better than other approaches described in the literature.

The analysis has shown that despite the small percentage of workload related to

inner products, their poor performance has a strong impact on the performance of

the BCG. Therefore, in our future work, we plan to follow the methodology described

in Chapter 1 (Section 1.2.1.1) with the objective of expressing every iteration of the

BCG with the fusion of kernels. Several advances have been already carried out in this

research line [137].
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4
The 3D Helmholtz equation on multi-GPU clusters

The resolution of the 3D Helmholtz equation is required in the development of models

related to a wide range of scientific and technological applications. The Helmholtz

equation, named for the German physicist Hermann von Helmholtz, is a partial diffe-

rential equation that governs the scattering of plane wave in acoustics and electromag-

netism [73].

This chapter is focused on the study of this Helmholtz equation. In Section 4.1

Mathematical and Physical aspects of the 3D Helmholtz equation are introduced. Sec-

tion 4.2 summarizes our contributions to the computational aspects of the BCG method

for solving the 3D Helmholtz equation (BCG-3DH). This section also gives an overview

of the state of the art with respect to this issue, reviewing previous implementations

of iterative solvers for the Helmholtz equation. Section 4.3 describes the BCG-3DH

algorithm which has been implemented for the resolution of the Helmholtz equation.

Section 4.4 presents a new compressed storage format, called “Compressed Regular

Format (CRF)”, specially designed to take advantage of the regularities appearing in

the sparse matrix associated to the Helmholtz equation. Section 4.5 describes the im-

plementation details of three different strategies: CPU and GPU versions and a Hybrid

CPU-GPU version (called Fast-Helmholtz), where several optimizations (fusion and re-

ordering) have been considered for increasing performance. In Section 4.6 performance

evaluations of the Fast-Helmholtz approach against the CPU and GPU versions are

provided. Section 4.7 ends this chapter with some conclusions and future lines to work

on.
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4.1 Mathematical and Physical view of the 3D Helmholtz

equation

Many mechanical, acoustical, thermal and electromagnetic wave problems can be mo-

deled by means of the Helmholtz equation, and it is specifically relevant in problems

of wave scattering and fluid-solid-interaction [50, 74, 82]. It represents time-harmonic

wave propagation in the frequency domain. The 3D Helmholtz equation in the scalar

approximation is defined by the following linear elliptic Partial Differential Equation

(PDE):

(∇2(r) + k(r)2)E(r) = 0, (4.1)

where ∇2 is the Laplace operator; E is a complex scalar function defined at a spatial

point r = (x, y, z) ∈ R3 and k(r) is some real or complex constant. This equation

naturally appears in general conservation laws of physics and can be interpreted as

a wave equation for monochromatic waves (wave equation in the frequency domain),

where k(r) is related to the wave-number [129]. This equation can be numerically

solved by means of an appropriated transformation based on Green’s functions and

a spatial discretization [73, 129]. Both Finite Difference Method (FDM) and Finite

Elements Method (FEM) are suitable for the discretization of this kind of differential

operator [78]. In this thesis FEM is used.

Finite Element Methods (FEM) are based on the variational formulation of the

problem which is obtained when the equation is multiplied by test functions and inte-

grated over the domain using integration by parts [41, 61]. For discrete approximation

of the problem, the function space S on which the variational formulation is defined is

replaced by a finite dimensional subspace Sh. The approximation uh of the solution u

is expressed as a linear combination of the finite number of basis functions φj(x) which

are defined to be continuous and non-zero only on small subdomains. In that way, this

type of problems are transformed into a sparse system of equations. A great advantage

of FEM is that it is mathematically well motivated with rigorous error estimates. FEM

is thus also very well suited for the problems with complex geometries [123].

Finite element method leads to sparse systems of equations with the number of

unknowns n that depends on the frequency/wavelenght, n ∽ ω. For high frequencies,
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those systems are large and direct methods like Gaussian elimination become compu-

tationally too expensive. The alternative is to use iterative methods. However, there

is a difficulty in this approach, as well. Since the system of equations is indefinite and

ill-conditioned, iterative methods have slow convergence rate. The convergence rate

can be improved by preconditioning, but finding a good preconditioner for Helmholtz

equation is still a challenge [62]. The indefiniteness makes it difficult to use multigrid

and the conjugate gradient method. Typically Krylov subspace methods, like GMRES,

BCG and BCGSTAB are used instead. Preconditioners can for instance be based on

incomplete LU-factorization [101] or on fast transform methods [59, 63, 92, 119].

Figure 4.1: Illustration of discretization stencil and the linear system (source [52]).

4.2 BCG-3D Helmholtz on multi-GPU clusters

For solving this equation in complex arithmetic, the BiConjugate Gradient method is

one of the most relevant solvers. However, this iterative method has a high computa-

tional cost because of the large sparse matrix and the vector operations involved. In

this section, a specific BiConjugate Gradient Method (BCG), adapted to the regulari-

ties of the Helmholtz equation (BCG-3DH algorithm) is presented. This BCG method

is based on the implementation of a novel format (named “Compressed Regular Format

(CRF)”) that allows the storage of the large sparse matrix involved in the SpMV in a

compact form. The contribution of this chapter is twofold: (i) decreasing the memory
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requirements of the 3D Helmholtz equation using the CRF and (ii) speeding up the

resolution of the equation using High Performance Computing (HPC) resources.

To do a fair comparison between the benefit of accelerating the 3D Helmholtz equa-

tion using a heterogeneous multi-GPU cluster, this chapter describes three different

parallelization schemes and also includes an evaluation of their performance. The three

parallel schemes consist of using:

1. Multicore processors (CPU version).

2. GPU devices (GPU version);

3. The combination of CPU cores and GPU devices (Hybrid version). Experimental

results show that this hybrid implementation (called Fast-Helmholtz) outperforms

the other approaches. Fast-Helmholtz combines optimizations at MPI and GPU

levels to reduce communications cost and to improve the exploitation of the GPU

architecture. This strategy makes possible to increase the discretization level of

the Helmholtz problem, thanks to the relevant reduction of memory requirements

and runtime.

Our goal is to develop a parallel solution for the BCG-3DH which combines the

exploitation of the high regularity of the matrices involved in the numerical methods

and the massive parallelism supplied by heterogeneous architecture of modern multi-

GPU clusters [20].

For programming heterogeneous multi-GPU clusters two parallel interfaces are used,

MPI and CUDA [80]. Our hybrid version launches two MPI processes which exploit

the CPU cores and the GPU devices of the multi-GPU cluster, respectively.

This way, both types of MPI processes can collaborate to exploit all the resources

of the heterogeneous architecture. The main advantages of the hybrid implementation

are related to two issues. On one hand, a hybrid version is capable of exploiting the

different kinds of resources in multi-GPU clusters. This is due to the fact that CPU

cores, despite being slower than the GPU devices, will be able to collaborate to the

GPU device and accelerate the global process by the overlapping the computation on

CPUs and GPUs. Note that the workload of CPU processes will be significantly less

than the workload of the GPU processes. On the other hand, our hybrid approach will

overcome the memory limitation of the GPU devices because it can exploit the large
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memory resources of multicore nodes. GPUs are able to accelerate computations but

the GPU workload is limited due to the small size of its memory. CPU processes can

collaborate with the GPU processes to exploit the large memory of multicore nodes.

In this chapter, BCG-3DH, a parallel solver of the 3D Helmholtz equation based on

BCG method, is proposed and evaluated on multi-GPU clusters. The main contribu-

tions of this implementation are:

• It translates the regularities of the 3D Helmholtz problem into computational reg-

ularities that allow a better exploitation of the memory resources of the platforms.

That is, considering the regularities of the involved matrices, we have defined spe-

cific data structures to reduce (1) the number of floating point operations; (2)

the memory requirements; and (3) the communication penalties.

• A hybrid multi-GPU cluster is exploited. This heterogeneous platform allows

to extract the parallelism of the CPU and GPU devices available in the cluster.

This implementation is based on the combination of two parallel interfaces: MPI

and CUDA. MPI paradigm is used for distributing the linear system among the

different nodes. In addition, the computation on every node is accelerated using

CPUs and GPUs. Furthermore, fusion and reordering techniques specifically

designed for the BCG method have been used in both CPUs and GPUs. As a

result, local Sparse Matrix Vector products (SpMVs) and local vector operations

included at every iteration of the BCG method have been accelerated by means

of the massive parallelism of multi-GPU platforms.

Our parallel solution of the 3D Helmholtz equation considerably reduces memory

requirements and runtime, extending the resolution of problems of practical interest

to several different fields of Physics, such as the new Non-Linear Optical Diffraction

Tomography model (NLODT-P) that will be described in Chapter 5.

4.2.1 Related works

The solution of large sparse linear systems has been widely studied as shown in the

literature on the iterative methods [31, 72, 127, 142]. The resulting systems from the

Helmholtz equation are complex and symmetric. In general, the Krylov subspace meth-

ods based on Lanczos biorthogonalization are effective for solving complex systems in
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terms of convergence properties and memory requirements [27]. Examples of this are

the BiConjugate Gradient method (BCG) and the BiConjugate Gradient Stabilized

method (BCGSTAB), which are variants of the Conjugate Gradient (CG) for unsym-

metric systems [127]. The Conjugate Orthogonal Conjugate Gradients method (COCG)

is an adaptation of CG for solving symmetric complex systems [143]. BCG, BCGSTAB

and COCG are suitable for solving the resulting systems from the Helmholtz equation.

They are based on one-term recurrence which combines vector operations (dot, saxpy)

and Sparse Matrix Vector products (SpMV).

In this context, the computational resources needed to solve the Helmholtz PDEs

are enormous and require the use of High Performance Computing techniques (HPC).

Literature describes a variety of parallel implementations for solving PDEs which ex-

ploit several different kinds of parallel platforms. For example, PETSc is a well-known

parallel library for solving PDEs. It contains a few parallel versions supporting MPI,

Pthreads, and NVIDIA GPUs, as well as hybrid parallelism [12]. However, currently,

some PETSc routines based on CUDA are still being tested. There are no bench-

marking results published for the multi-GPU implementation using complex numbers.

Consequently, the solution of Helmholtz PDEs has not been still implemented to exploit

multi-GPU clusters.

In [96], an efficient solution of the 3D Helmholtz equations based on the conju-

gate residual (GCR) algorithm is proposed to be included in a prediction model in

Global/Regional Assimilation and Prediction System (GRAPES). The paper proposes

improvements for the GCR iteration by the refactorization of the GCR algorithm, which

decreases communication overhead on multicore clusters. The performance evaluation

provided in [96] records speed-ups of 10 using 2048 cores with respect to 256 cores.

In [87], the authors describe a multi-GPU implementation of the BCGSTAB solver

preconditioned by a shifted Laplace multigrid method for the 3D Helmholtz equation.

In the implementation, the sparse matrix is stored in a CRS matrix format which does

not take any advantage of the regularities of the Helmholtz equation. Moreover, in

the considered multi-GPU architecture all the GPUs are located in the same node

using Pthreads for the parallelization, which results in a strong limitation on the num-

ber of GPUs available since it is not possible to use GPUs located in different nodes.

In [40], the parallelization of the Fast Multipole Method (FMM), as applied to scatter-

ing problems, has been analyzed using the Helmholtz equation. This paper studies the
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performance on shared memory architectures and makes some preliminary tests using

a GPU device. The results obtained are promising, and as future works they propose

the inclusion of MPI programming to use distributed memory. In [89], a specific MPI

parallel approach for solving 2D Helmholtz equations is described. However, they do

not take advantage of the regularity of the sparse matrices involved in the Helmholtz

PDEs.

The solution of Helmholtz PDEs based on an iterative solver is expressed as a recur-

rence relation which includes several kinds of vector operations and sparse matrix-vector

products (SpMV) that consume a relevant percentage of runtime. SpMV computation

implies a challenge to exploit the architectures, and their performance strongly depends

on the specific compressed storage format of the sparse matrix. Literature describes a

wide variety of formats for optimizing the computation with sparse matrices on spe-

cific architectures (see Chapter 2, Section 2.1). These formats define the locality or the

coalescence of memory access for the SpMV, which are essential in order to optimize per-

formance on CPU or GPU architectures. Several optimizations have been proposed to

improve the performance of sparse computation on current multicore platforms [1, 156]

and on short-vector SIMD architectures [90]. Also, several implementations of SpMV

have been developed with CUDA on GPUs [5, 37, 43, 106, 145, 152]. However, when

the pattern of the sparse matrix exhibits any kind of regularity, the corresponding

SpMV can improve its performance taking this regularity into account (Section 1.2

of [70] analyzes usual structured matrices involved in applications and [147] describes

the advantages in terms of performance of the tomographic reconstruction when the

regularity of the sparse matrix is considered). Focusing on the 3D Helmholtz equation,

the pattern of the matrices consists of a main diagonal and six sub-diagonals with the

same entries, so it is extremely regular. The exploitation of this regularity can strongly

reduce the memory requirements and improve the performance of their computations.

4.3 BCG-3DH algorithm

Many numerical solvers of Equation 4.1 based on the Finite Differences Method (FDM)

or the Finite Element Method (FEM) have been developed [29, 79]. FEM discretizes the

region of interest in small elements, assuming the function E(r) can be approximated

to a constant value in each of these elements.
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A similar system of equations can be obtained by a FDM approach assuming the

spatial derivatives of the Laplace operator can be discretized with a seven-point stencil

in 3D (see Figure 4.1). As a consequence, for a three-dimensional mesh, the linear

system of equations resulting from Equation 4.1 is also described by a matrix with only

seven non-zero diagonals.

Therefore, FDM and FEM transform the 3D Helmholtz equation into a linear system

of equations Ax = b, where b indicates the independent term, x is the unknown vector,

and matrix A ∈ Cn×n is sparse, symmetric, very large (depending on the number of

spatial discretization points, n) and only contains seven non-zero diagonals.

As mentioned above, there are several Krylov subspace methods which are suitable

for solving the systems resulting from the Helmholtz equation. We have focused our

attention on the BCG method and developed an approach to accelerate the resolution

of the Helmholtz equation. The methodology and techniques developed in this chapter

can also be straightforward applied to the resolution of the Helmholtz equation based

on other Krylov solvers.

It is necessary to underline that the Krylov subspace methods may sometimes con-

verge slowly. As a result, in practice, some kind of preconditioning has to be applied

to improve their convergence [32, 142]. Focusing our attention on the BCG method

for solving the 3D Helmholtz Equation, the standard BCG [142] can be preconditioned

preserving the regularities of A. Algorithm 6 describes a pseudocode for the precondi-

tioned BCG for solving the 3D Helmholtz Equation [31].

The key operations in the BCG method are two kinds of vector operations (dot and

saxpy) and two sparse matrix vector products (SpMVs) computed at every iteration.

It is remarkable that the symmetry of the Helmholtz equation has allowed the use of

A instead of AT .

In such algorithm, fusion and reordering optimization techniques have been used

to improve the performance of the BCG method. These optimizations, referred as

“Fusion 0-3”, were explained in Chapter 1, Section 1.2.1.1, are the combination or

fusing of multiple BLAS operations, to alleviate the memory bottleneck, to increase

the operational intensity and to improve the total performance of the solver.

In Algorithm 6, the complexity of the most computationally expensive operations is

shown in parenthesis, where n is the matrix size. In the BCG method, the complexity of

the SpMV operation (line 9) is related to the number of non-zero elements of the matrix
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Algorithm 6 Preconditioned BCG-3DH Method

Require: Define ǫ = Accuracy Threshold Complex data

Ensure: The value of x

1: Compute r0 = b−Ax0 for some initial guess x0

2: Choose r′0 = r0; p
′

0 = 0; p0 = p′0; ρ
′

0 = 1

3: Calculate ∆0 = ‖r0‖

4: for i = 1, 2, ... until convergence do

5: solve Mxi−1 = ri−1; M
Tx′

i−1 = r′i−1 (Fusion 0: 2Msystem) O(f(M))

6: ρi = (x′

i−1, ri−1) O(8n)

7: βi = ρi/ρ
′

i−1

8: pi = xi−1 + βipi−1; p
′

i = x′

i−1 + βip
′

i−1 (Fusion 1: 2saxpy) O(16n)

9: qi = Api; q
′

i = AT p′i (Fusion 2: 2Ax) O(38n)

10: αi = ρi/(p
′

i, qi) O(8n)

11: xi = x(i−1) + αipi; ri = ri−1 − αiqi; r
′

i = r′i−1 − αiq
′

i (Fusion 3: 3saxpy) O(24n)

12: ∆i = ‖ri‖ O(4n)

13: if ∆i < ǫ∆0 then

14: return x = xi

15: else

16: ρ′i = ρi

17: end if

18: end for

(nz). In our particular BCG the complexity order is nz = 7n. In the next section, the

regularities of the sparse matrix that allow us to decrease the computational complexity

of the algorithm are explained in detail.

4.4 Compressed Regular Format

In general, Compressed Row Storage (CRS) is the most widespread format for storing

sparse matrices in the memory of multicore and clusters platforms [38]. For GPUs,

other formats such as ELLR-T (see Chapter 2, Section 2.1) can be more appropriate.

ELLR-T has shown to outperform other formats for the SpMV operation on GPUs for

real/complex arithmetic [113, 145, 152].

For structure sparse matrices, the performance of SpMV can be improved when

its regularity is taken into account (Section 1.2 of [70] analyzes this effect for a set of

structured matrices taken from real applications). Bearing in mind that the matrix

involved in the Helmholtz equation has several regularities, our proposal consists of
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defining a specific storage format for these regular sparse matrices which leads to reduce

both, the memory requirements and the number of float operations for computing

SpMV. This kind of format has been referred to as CRF.

The regularities of the matrix involved in the 3D Helmholtz equation can be sum-

marized as follows (see Figure 4.1(b)):

1. A is a symmetric matrix;

2. There is a maximum of seven non-zero elements per row;

3. Non-zero elements are located at seven diagonals in the matrix, where one is the

main diagonal, two of them are the first lower and upper diagonals and four of

them are located at ±D1 and ±D2 from the main diagonal;

4. All the elements of every lateral diagonal are equal (a, b, c);

5. The main diagonal is defined by a set of complex numbers.

From these characteristics, the CRF proposed in this chapter consists of:

1. One array, A[] (complex) of dimension n;

2. Three integer values (a, b, c) to store all remaining entries;

3. Two additional integer values (D1, D2) which specify the displacements of the

lateral diagonals with respect to the main diagonal.

CRF optimally minimizes the amount of data needed to store the sparse matrix.

In this way, the computation time of SpMV is decremented due to the fact that: the

number of memory accesses to read the elements of the sparse matrix is reduced; and

the number of float operations when a = b = c = 1, because six complex multiplications

can be avoided.

CRF significantly reduces the memory requirements with respect to the CRS for-

mat in a factor of 9. According to the Roofline performance model (see Chapter 1,

Section 1.1.3.2) the total number of FLOPs performed divided by the total number of

memory accesses (operational intensity) is an estimation of the maximum attainable

performance of a computer algorithm. Therefore, the operational intensity of SpMV

based on CRF is 1.6 times larger than for the CRS format if a = b = c = 1. As a result,
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the use of the CRF has a strong impact on the performance of SpMV involved in the

resolution of the 3D Helmholtz equation. These optimizations (derived from the use of

this format) do not depend on the architecture model where SpMV is computed. They

have been integrated into the Multi-GPU Cluster version of the Helmholtz equation.

4.5 BCG-3DH Implementations: CPU, GPU, Hybrid ver-

sions

Modern high performance architectures are characterized by the heterogeneity of their

resources. So, parallel implementations have to be tuned for each particular heteroge-

neous architecture. In this context, the main challenge is to determine an appropriate

workload distribution because the computational burden assigned to every processing

element should be related to its computational power. Therefore, it is necessary to

have a detailed knowledge of both the computing resources and the algorithm [93].

In this section, we study the parallel implementation of the 3D Helmholtz equation

based on the exploitation of heterogeneous resources of multi-GPU clusters (multicores

and GPU devices). Exploiting the heterogeneous platforms of a cluster has two main

advantages: (1) larger problems can be solved because the code can be distributed

among the available nodes; and (2) runtime is reduced since more operations are ex-

ecuted simultaneously at different nodes and accelerated by the parallel execution on

CPU and GPU architectures. The three implementations considered are described as

follows:

1. The CPU version is based on the distribution of the problem among several

cores located into different nodes. MPI paradigm is used for processing tasks on

cores which can belong to nodes with shared or distributed memory. Note that

for solving the SpMV operations, we account the regularity of the matrix A for

establishing a strategy that allows the reduction of the number and size of the

messages among the available processors. So, to compute the SpMV, each MPI

process adds redundant elements to the chunk of the vector (at the beginning

and at the end). The number of additional elements is fixed (2 ·D2), hereinafter

referred as “halo”. These “halos” will be exchanged among the processors for

updating the value of the vector before the computation of every SpMV. So,

the use of redundant halos reduces the size of the messages and the number
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of communications among processes to compute the SpMV. This fact allows to

exploit the regularity of A optimizing the communication pattern.

2. The GPU version is based on the distribution of the problem among several GPU

devices that can be located in the same or in a different node. Our proposal

is the development of a parallel code capable of exploiting the benefits of dis-

tributed computing and GPU devices allocated in a multi-GPU cluster. Then,

two different strategies of programming are considered: (1) the distribution of the

computations by MPI [132]; and (2) the exploitation of the GPU devices using

CUDA [14]. In this chapter, an algebraic library (CUBLAS [4]), which provides

commonly used subroutines, has been considered. As it is well known, the key

requirement for obtaining effective acceleration on GPU devices is the minimiza-

tion of data transfer between the memories of the CPU and GPU. So, CPU-GPU

communications are strongly reduced using the strategy based on “halos”, also

applied in the CPU version.

3. The Hybrid version has been designed to exploit all the computing resources of

heterogeneous architectures. The idea behind this last implementation is the

collaboration among CPU and GPU processes to accelerate the BCG algorithm

by the exploitation of the full variety of available resources of multi-GPU clusters

using also the “halos” strategy. Here it is important to highlight that a static

workload balance scheduling has been considered because the workload of the

application is known at compile time and constant during the execution. So, the

distribution among processes can be done at compile time. This hybrid version

presents two main advantages: (1) Despite CPU is slower than GPU, the parallel

computation of GPU and CPU processes contributes to accelerate the algorithm

execution. It has been done by setting up an efficient CPU-GPU collaboration,

by an appropriate balance of the workload assigned to each process; and (2) the

hybrid version can exploit the large memory resources of multicore nodes. This

way, the memory limitation of the GPUs is overcome by the inclusion of CPU

processes in the hybrid strategy.

The exploitation of the resources of multi-GPUs has been based on the definition

of two kind of MPI processes: (1) Processes which exploit every core of the node
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and (2) Processes which exploit accelerators (GPUs). Using different configuration of

this implementation enables the exploitation of only CPUs, only GPUs or the hybrid

(CPUs+GPUs).

4.5.1 MPI tasks

In the three implementations of BCG-3DH, MPI paradigm has been considered for

the communication among processors [132]. It should be noted that one MPI process

per CPU (GPU) is started. Parallelization has been carried out according to the data

parallel concept. Following this concept, all the data structures (matrix, solution vector

and subsidiary storage vectors) have been distributed among the processors of a cluster

using a homogeneous partition.

The solution vector of the Helmholtz equation is performed in a parallel regime.

Then, each MPI-process outputs a part of the solution vector which is locally stored

into its own local memory. Output data can be merged into the global solution output

file, if necessary.

The decomposition method used for the data structures is a kind of row-wise matrix

decomposition which has been used for solving similar problems [87, 89].

Important issues are the communications among processing units which occur twice

at every iteration: (1) when computing the two SpMV operations; and (2) during the

reduction operations required for obtaining the results of dot operations.

Focusing our attention on the second case, dot operations require communication

operations (MPI AllReduce) to combine local results in order to obtain the global value.

It implies a communication/synchronism point after each dot operation in the BCG

algorithm.

The SpMV operations have been implemented using the CRF that allows the reduc-

tion of the number and the size of the communications among processors. Therefore, to

compute the SpMV, q = Ap, each processor adds redundant elements to the chunk of p

(at the beginning and at the end). The number of additional elements is fixed (2 ·D2)

and is hereinafter referred to as “halo”. These “halos” will be exchanged among the

processors for updating the value of p before the computation of every SpMV (see Fig-

ure 4.2). Thus, the use of redundant halos reduces the size of the messages and the

number of communications among processes to compute SpMV.
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Figure 4.2: Halos swapping among 4 processors (P0, P1, P2 and P3) where every pro-

cessor has a chunk of M + 2 ·D2 = M ′ and M is the local vector v.

The idea of “halos” can be applied because the sparse matrix pattern of the Helmholtz

equation is very regular [78]. However, it is worthy to notice that the “halo swap” step

has a limitation and could be quite expensive as the number of MPI tasks are increased.

It is fair to underline that this approach is advantageous only when the percentage of re-

dundancy with respect to the total data of every process is small; i.e., when P ≪ n/D2,

where P is the number of MPI tasks, n the dimension of A and D2 half of the halo

elements.

4.5.2 GPU computing

GPU and hybrid versions include the exploitation of one GPU device per processor.

For this purpose, an initial mapping from each CPU memory to each GPU memory is

performed. When each CPU has its own data chunk, these data structures are copied

into the GPU associated to each CPU. In this way, all the operations are carried out in

the GPUs, but when a communication process is required among cluster’s processors,

data chunks are copied to the CPU memory and the exchange among CPUs is executed.

Each GPU device is devoted to computing all the local vector operations (dot,

saxpy) and local SpMVs which are involved in the BCG specifically suited for solving
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the 3D Helmholtz equation.

Additionally, several optimization techniques have been considered for developing

the local computation on GPU. The reading of the sparse matrix and data involved

in vector operations are coalesced global memory access, maximizing the bandwidth of

global memory. Moreover, share memory and registers are used to store any subsidiary

data, despite their low reuse. These optimizations are very relevant for improving the

performance of operations dominated by memory accesses (memory bounded) such as

SpMVs, dots and saxpys, which are the keys in the resolution of the Helmholtz equation.

Previous evaluations of BCG implementations on GPUs have revealed that, al-

though SpMV can be optimally accelerated on GPU, the performance of BCG can be

penalized by the poor acceleration of vector operations [113]. BCG is expressed in [113]

as a sequence of kernels related to the individual operations which define the iterations.

An approach to better exploit the GPU by means of the vector operations consists of

the fusion of several operations in one kernel. The fusion of several operations improves

the exploitation of GPU resources, decreases the number of synchronization points and

can introduce data reuse. According to our experience the fusion has strong impact on

the BCG performance on one GPU. Also, the advantages of kernels fusions are analyzed

in terms of performance and energy-aware for Conjugate Gradient in [25]. All these

optimizations have been exploited at the level of the local GPU computations for the

resolution of the Helmholtz equation.

In order to apply fusion of kernels, the following methodology has been applied:

(1) identification of data dependencies; (2) reordering of operations; and (3) fusion of

independent operations. Algorithm 6 shows the operations candidates for fusion in

BCG-3DH (lines 5, 8, 9 and 11).

It is relevant to underline that the fusion of the two SpMVs can be executed at the

same time, so avoiding the reading of A twice, since the Helmholtz matrix is symmetric

A = AT . Consequently, the operational intensity is improved by this fusion.

A specific kernel to compute the two SpMV operations (q = Ap and q′ = Ap′) on

the GPU platforms has been developed. In this kernel, every thread computes one

element of the output vectors (q and q′). Thus, the loop to compute every row has

been unrolled. This way, the parallelism of this kernel is very high. In the kernel, the

number of reads has been considerably reduced since the sparse matrix A is stored in
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the memory of the GPU for both SpMVs. Moreover, this optimization is combined

with the advantages, in terms of performance, introduced by the use of our CRF.

4.6 Evaluation

This section is devoted to analyzing the computational advantages of the resolution of

the Helmholtz equation on a heterogeneous multi-GPU cluster. Algorithm 6 has been

implemented to solve this problem in complex and double precision. Preconditioning

is introduced in BCG-3DH in line 5 of Algorithm 6 (the computational load of these

operations depends on the specific preconditioner M). In general, it is desirable that

these systems are easily solved and have a computationally light load [142]. Therefore,

preconditioning can be considered as an additional vector operation which is included

in the BCG iterative procedure. Since there is not a general preconditioner, for the

sake of simplicity all the experiments have been conducted without a preconditioner.

The characteristics of the set of test matrices used in the experiments are described

in Table 4.1. Let us remark that n is the dimension of the sparse matrix (A); D1 and

D2 are locations of the lower and upper diagonals (±D1− th and ±D2− th diagonals);

and nz is the number of non-zero elements in A. We have considered instances with

n ≥ 1603 because we have experimentally verified that for these problem sizes the GPU

implementation has relevant gains in terms of performance compared to that of CPU.

For problem sizes smaller than 1603 the use of GPU computing was not very relevant.

Furthermore, matrices larger than 5203 have not been studied due to the limitations

related to the global memory resources of the GPU.

For the evaluation, a Bullx cluster composed of 4 nodes whose main characteristics

are described in Chapter 1, Section 1.3 has been considered. In the same section, the

characteristics of the GPU devices can be found (see Table 1.4). Notice that the peak

GFlops in single precision is twice the peak GFlops in double precision. Table 1.4

also provides features of the GPU global memory, which is actually the key parameter

limiting the size of the problem that can be solved. The experiments have been compiled

with NVIDIA CUDA C and mpicc compilers with -O2 as the optimization option. The

three implementations of BCG-3DH aforementioned have been evaluated: CPU version

using only the CPU processors, GPU version using only the GPU devices of the cluster
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Table 4.1: Characteristics of the test matrices (complex and double precision numbers).

Complex Matrix n D1 D2 nz

m 1603 4.10E+06 160 25600 2.87E+07

m 2003 8.00E+06 200 40000 5.60E+07

m 2403 1.38E+07 240 57600 9.68E+07

m 2803 2.20E+07 280 78400 1.54E+08

m 3203 3.28E+07 320 102400 2.29E+08

m 3603 4.67E+07 360 129600 3.27E+08

m 4003 6.40E+07 400 160000 4.48E+08

m 4403 8.52E+07 440 193600 5.96E+08

m 4803 1.11E+08 480 230400 7.74E+08

m 5203 1.40E+08 520 270400 9.84E+08

and a hybrid version which exploits both CPU and GPU processes located into the

multi-GPU cluster.

In Table 4.2, a preliminary study of the sequential approach on a CPU single core

was carried out. We considered 1000 iterations of the BCG method based on the

Helmholtz equation to identify the hot spots of the code. The gprof tool was used and

showed that most of the execution time (≈ 98%) is spent on four routines: 2saxpies,

2Ax, 3saxpies (lines 8, 9 and 11 of Algorithm 6) and dots (all the dots of Algorithm

6). As a result, we have focused our attention on the evaluation of these particular

routines. Table 4.2 provides the experimental results of evaluating the execution time

of these specific operations as well as the total runtime of BCG-3DH. Column Total

runtime represents the execution runtime (in seconds) of 1000 iterations of the BCG-

3DH. Columns 2Ax, saxpies and dots represent the runtime (in seconds) for the calls

to these routines. As can be observed, most of the runtime is consumed by the saxpy

operations and SpMV. One issue that can be observed in such table is that BCG-3DH

could not be executed on a single core for matrix with the largest size due to the

limitations related to the global memory resources of one core.

In [137] has been shown the improvements of fusing saxpy operations, which rep-

resents an acceleration of the ≈ 9% of the total runtime with respect to the sequential

code. Moreover, the SpMV operations have been also optimized using the CRF. The

runtime for saxpies is larger than for 2Ax because the FLOPs for 2Ax (38n) are slightly
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Table 4.2: Profiling for 1000 iterations of the sequential code of the BCG to solve the 3D

Helmholtz equation. Columns 2Ax, saxpies and dots represent the runtime (in seconds)

for the calls to these routines and total runtime identifies the total execution runtime (s).

2Ax saxpies dots Total runtime

m 1603 75.6 89.8 46.5 214.3

m 2003 129.8 152.9 87.8 378.0

m 2403 259.4 296.2 155.4 719.4

m 2803 356.7 428.6 239.9 1038.4

m 3203 631.9 731.1 353.5 1750.8

m 3603 766.4 911.7 511.6 2217.7

m 4003 1278.5 1376.0 718.4 3411.1

m 4403 1475.7 1665.0 932.5 4124.3

m 4803 2236.0 2381.8 1245.2 5929.4

m 5203 - - - -

lower than for saxpies operations (40n). Therefore, the experimental profiling for se-

quential BCG-3DH code is in accordance with the theoretical computational cost of

the individual operations, as provided in Algorithm 6.

4.6.1 CPU and GPU versions

Focusing our attention on the CPU approach, a study of the acceleration factors using

several (P) CPU processors against the sequential code has been carried out. P = 2, 4, 8

processors were used for the evaluation. The experimental results of the speed up for

2Ax, saxpies and dots were nearly the ideal. Here it is important to highlight that

in the CPU version, most of the time (> 96%) is spent on processing time, and the

communication times (MPI routines) are negligible.

For the GPU version, several issues have to be taken into account, so a deeper

analysis has been carried out. Firstly, the range of the performance (GFlops) for

the set of test matrices considering 1000 iterations of the BCG-3DH using the GPU

approach (with 4 and 8 GPUs) is shown in Table 4.3. The range of GFlops for the CPU

version (4 and 8 CPUs) have also been included. It can be seen in Table 4.3 that the

best performance is reached by the saxpy operations thanks to the fusion of kernels.

Furthermore, good results in terms of performance are obtained for the 2Ax routine
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thanks to the CRF and to the fusion of the two SpMV operations, which together

improve the operational arithmetic of this kind of operations.

Table 4.3: Range of GFlops for the set of test matrices considering 1000 iterations of

the BCG-3DH with 4GPUs and 8GPUs. Additionally, values for sequential, 4CPUs and

8CPUs implementations are shown. Columns 2Ax, saxpies and dots show the range of

GFlops achieved by theses operations.

2Ax saxpies dots

sequential 1.8-2.2 3.4-3.9 0.7

4CPUs 7.1-8.6 13.1-15.3 2.6-2.7

8CPUs 14.1-17.1 27.6-29.9 4.7-5.5

4GPUs 67.3-69.3 93.6-98.4 22.5-31.7

8GPUs 132.2-134.0 187.7-196.5 26.9-56.4

Figure 4.3 shows the distribution of the runtime devoted to the main operations for

4 and 8 GPUs. As can be observed, the percentage of the communication time is more

relevant for 8 GPUs than for 4, because the aforementioned condition (P ≪ n/D2)

is stronger for P = 4 than P = 8. Note that for the GPU approach, halos swapping

requires four communications between the GPU/CPU at every iteration. It can be seen

that for small problems, the bottleneck is due to the communications CPU-GPU for

the halos exchange. However, as the size of the problem increases, the communication

time decreases since for a specific value of P the condition P ≪ n/D2 is stronger as n

increases. Therefore, this consideration agrees to the experimental results which show

that the percentage of communications decreases as the size dimension of the matrix

increases.

Figure 4.4 shows the acceleration factors of every operation for 4 and 8 GPU imple-

mentations versus the sequential profiling of Table 4.2. It can be seen that all operations

are considerably accelerated thanks to the use of GPU computing. The saxpy opera-

tions have the lowest acceleration factor, representing a relevant percentage of the total

runtime (see Figure 4.3). This is because the majority of the operations in Algorithm 6

are saxpies and they are less accelerated by the multi-GPU architecture than the 2Ax

or dots operations.

A study of the runtime of the CPU and GPU versions has also been carried out.

Tables 4.4 and 4.5 show the experimental results where columns Runt provide the total
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Figure 4.3: Percentage of the runtime for each call to function using 4GPUs (a) and

8GPUs (b).

Figure 4.4: Acceleration factors of operations of 2Ax, saxpies and dots routines with

4GPUs (a) and 8GPUs (b) versus the sequential time of these routines.

runtime in seconds of the BCG-3DH execution and columns %C give the percentage of

the communications penalties with respect to the total runtime. Note that CPU and

GPU processes have been launched in different nodes since the number of MPI processes

has been selected less or equal to the number of available cores on the cluster. To be

more specific, the implementation using 2CPUs (2GPUs) has been launched using two

nodes of the cluster and the implementations using 4CPUs (4GPUs), 8CPUs (8GPUs)

and 16CPUs, using the four nodes of the cluster. Focusing our attention in Table 4.4,

up to 16CPUs have been considered for the parallelization because using more CPU

processors (e.g. 32CPUs) the size of the halos are relevant with respect to the local

data and consequently the communication penalties deteriorate the performance.

Tables 4.4 and 4.5 clearly shown that the runtime (Runt) decreases as the number

of CPU and GPU processes increases, because the BCG-3DH method is dominated by

the computation. This fact is more evident for the CPU version with the low value
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Table 4.4: Runtimes, in seconds, of 1000 iterations of the BCG-3DH using the CPU

version with 1, 2, 4, 8 and 16 processors (1CPU, 2CPUs, 4CPUs, 8CPUs and 16CPUs)

(Column Runt). Column %C identifies the percentage of the total runtime that consume

the communication processes for every execution.

1CPU 2CPUs 4CPUs 8CPUs 16CPUs

Runt Runt %C Runt %C Runt %C Runt %C

m 1603 214.32 108.12 1.34 54.64 1.95 28.18 3.84 16.34 11.32

m 2003 377.98 190.80 1.45 98.30 2.31 50.67 4.66 31.44 6.50

m 2403 719.37 357.22 1.15 179.84 4.08 92.96 2.88 54.38 4.84

m 2803 1038.38 520.67 1.10 264.55 0.83 140.53 6.22 85.24 4.77

m 3203 1750.79 920.56 0.68 458.92 2.02 230.57 3.59 127.79 4.93

m 3603 2217.68 1111.75 1.53 560.56 3.74 295.42 3.70 177.96 4.23

m 4003 3411.10 1687.70 0.85 847.62 1.69 436.52 2.01 250.03 3.26

m 4403 4124.25 2095.97 2.56 1035.28 0.43 538.26 2.74 324.65 3.84

m 4803 5929.36 2963.20 0.49 1489.04 1.20 752.24 1.93 429.89 4.16

m 5203 - 3410.84 0.61 1743.64 0.81 878.22 2.07 538.24 2.89

of %C column with values which range from 0.43 to 11.32. In the GPU version, the

communication penalties are larger (range from 4.48 to 33.94) and correspond to the

additional communication between the CPU and the GPU and to the runtime reduction

of the GPU. The value of %C is directly related to the size of the problem to solve,

therefore, the larger is the problem, the less impact of the communication time respect

to the total runtime. One issue that can be seen in Table 4.5 is that BCG-3DH could

not be run for the matrices with the largest size due to the limitations related to the

global memory resources of the GPUs, even for 8GPUs.

The best results in terms of performance are always obtained by the GPU approach

thanks to massive parallelism that GPU devices offer. So, the execution of BCG-3DH

algorithm with 1000 iterations using 2, 4 and 8 GPUs are faster than the execution

using 2, 4, 8 and 16 CPU processors, with acceleration factors which range from 5.6 to

8.6 when we compare the same number of CPU and GPU processes (2CPUs-2GPUs,

4CPUs-4GPUs and 8CPUs-8GPUs). Moreover, the communications penalties of the

GPU version are higher than the CPU version due to the additional communication

GPU-CPU and CPU-GPU in the “halos” swap.

Table 4.6 shows the acceleration factors (AF) achieved by the CPU and the GPU
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Table 4.5: Runtimes, in seconds, of 1000 iterations of the BCG-3DH using the GPU

version with 2, 4 and 8 GPU devices (2GPUs, 4GPUs and 8GPUs) (Column Runt). Column

%C identifies the percentage of the total runtime consumed by the communication processes

for every execution.

2GPUs 4GPUs 8GPUs

Runt %C Runt %C Runt %C

m 1603 13.89 9.50 7.90 19.40 5.03 33.94

m 2003 26.60 7.55 14.80 15.84 9.12 30.22

m 2403 45.73 6.45 24.85 12.28 14.60 25.38

m 2803 72.49 5.28 38.43 10.44 22.18 22.68

m 3203 108.15 4.48 55.57 9.32 31.90 19.23

m 3603 - - 78.95 8.38 44.22 16.90

m 4003 - - 107.42 6.99 58.04 14.85

m 4403 - - - - 76.73 13.79

m 4803 - - - - 97.86 11.66

m 5203 - - - - - -

approaches considering P = 8 (columns AF CPUs and AF totalGPUs, respectively),

with respect to the sequential version executed on one core of Intel Xeon E5 2650. It is

relevant to underline that the CPU version achieves speed-ups which range from 7.5 to 8,

therefore the CPU version exhibits good scalability. This is because more than the 98%

of the total runtime of the execution is devoted to computation and communications

are negligible. Focusing now our attention on column AF GPUs which represents the

gain of using the GPU (AF GPUs = AF totalGPUs/ AF CPUs), it can be observed

that GPUs are able to obtain accelerations in the range of 5.6 to 7.7 depending on the

size of the problem. This is due to the ratio computation/communication increases as

the size of the problem increases. As previously mentioned, the communication process

depends on the size (2 ·D2) of the halos size (n).

The largest speed-ups have been obtained by the GPU version (AF totalGPUs

column), with values that range between 41.5 and 60.6. Notice that when the dimension

of the problem to solve increases, the importance of the halos decreases since they

represent a negligible percentage of the total dimension of the problem. Moreover, the

AF totalGPUs increases as the problem size increases, which highlights the interest of

using multi-GPU computing to considerably accelerate the BCG-3DH algoritm.
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Table 4.6: Acceleration factor (AF), where AF CPUs represents the AF of the implemen-

tation with 8 CPUs versus the sequential code (1 CPU core), AF GPUs identifies the AF

of the use of GPU computing versus the implementation using 8 CPUs, and AF totalGPUs

represents the AF of the GPU approach over the sequential code (1 CPU core).

AF CPUs AF GPUs AF totalGPUs

m 1603 7.6 5.6 42.6

m 2003 7.5 5.6 41.5

m 2403 7.7 6.4 49.4

m 2803 7.4 6.3 46.8

m 3203 8.0 7.2 54.6

m 3603 7.5 6.7 50.2

m 4003 7.8 7.5 58.8

m 4403 7.7 7.0 53.7

m 4803 7.9 7.7 60.6

m 5203 - - -

Results demonstrate the relevance of the use of multi-GPU computing to consid-

erably accelerate the resolution of the 3D Helmholtz equation. Therefore, it is clear

that thanks to the use of the CRF, which better exploits the architecture of the GPU,

it is possible to efficiently solve larger problems. It implies that our GPU version ef-

ficiently exploits the distributed architecture resources such as one multi-GPU cluster

and allows the Helmholtz equation to solve larger problems.

4.6.2 Hybrid implementation: Fast-Helmholtz

In the hybrid version (Fast-Helmholtz) we have considered the executions with 4 and 8

GPU processes as these resources reached the best results in terms of performance for

the size of the test problems. Table 4.7 shows the runtime of 1000 iterations of the BCG-

3DH method using two hybrid configurations: 4GPUs+8CPUs and 8GPUs+8CPUs.

The following notation is used, Runt identifies the total runtime in seconds and GPU(s)

and CPU(s) represent the runtime in seconds of the GPU and CPU processes, respec-

tively. Column F identifies the ratio between the workload assigned the CPU and the

GPU. The workload assigned to a GPU process is F times higher compared to the

workload of the CPU process. Different benchmarking processes have been carried out

for this cluster and this algorithm to determine the computational burden associated to
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the hybrid version which provides the best workload balance. The value of F has been

estimated by a preliminary benchmarking (not automatized) using values which range

from 8 to 12 (these values are related to the acceleration factor of running BCG-3DH

algorithm on one GPU with respect to one CPU). Column %I represents the acceler-

ation factor of the hybrid implementation versus the GPU version with 4 GPUs (for

4GPUs+8CPUs implementation) and 8 GPUs (for 8GPUs+8CPUs implementation).

As aforementioned, the workload of the GPU version has to be larger than the work-

load of the CPU version but taking into account the memory limitation of the GPUs.

Therefore, for problems of dimension 4403, 4803 and 5203 with 4GPUs+8CPUs, the

memory requirements of BCG-3DH are larger than the memory resources of 4 GPUs

and the values of F are less than 8.

Table 4.7: Profiling of the resolution of the 3D Helmholtz Equation based on 1000 it-

erations of the BCG method using the hybrid version and two different configurations:

4GPUs+8CPUs and 8GPUs+8CPUs. Column Runt identifies the total runtime in seconds

of the execution, GPU(s) and CPU(s) show the runtime of the GPU and the CPU, re-

spectively, F column denotes the factors to balance the workload in the hybrid approach

and, finally, %I represents the acceleration factor of the hybrid implementation versus

the GPU version with 4 GPUs (for 4GPUs+8CPUs implementation) and 8 GPUs (for

8GPUs+8CPUs implementation).

4GPUs+8CPUs 8GPUs+8CPUs

Runt GPU(s) CPU(s) F %I Runt GPU(s) CPU(s) F %I

m 1603 7.24 5.29 3.31 11 8.45 4.81 3.03 2.48 10 4.24

m 2003 13.66 10.74 7.49 12 7.73 8.62 5.80 4.22 11 5.45

m 2403 21.63 17.47 16.17 10 12.96 14.4 9.66 10.09 11 1.40

m 2803 33.44 27.36 26.75 8 12.98 21.42 15.00 13.67 10 3.43

m 3203 49.13 41.74 37.95 12 11.58 30.52 22.18 18.58 11 4.35

m 3603 69.73 60.10 50.61 10 11.67 41.73 29.80 31.36 10 5.61

m 4003 93.75 83.41 68.05 11 12.73 55.80 43.70 42.81 9 3.87

m 4403 131.99 101.85 123.08 7 - 73.35 56.62 56.58 11 4.41

m 4803 329.82 102.76 306.90 3 - 93.38 75.65 73.67 9 4.58

m 5203 473.82 15.45 459.82 2 - 123.49 97.83 98.14 9 -

As can be observed in Table 4.7, the runtimes of the CPU and GPU processes are

well balanced. Note that in all experiments, 4 GPU or 8 GPU cards are exploited and

the runtime decreases as the number of GPU processes increases. It is due to the fact
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that CPU processes collaborate with the GPU processes to accelerate the computation.

Note that the workload balance is not optimal for the matrices m 4403, m 4803 and

m 5203 due to the memory limitations of the GPU. So, although the workload of the

CPU processes is high, the CPU memory resources allow to extend the size of problem

with light penalties of performance. For the problem’s sizes considered (from n = 1603

to n = 5203), the approach with 4GPUs+8CPUs reaches the best results in terms of

performance compared to the 4GPUs version (acceleration factors range from 8.45 to

12.73). It results evident that this kind of platforms can only be efficiently exploited

for very large problems, even larger than the instances considered in this chapter. It

is also clear that the hybrid platform is appropriate to overcome the GPU memory

limitations.

4.7 Conclusions

In this chapter we have studied the performance of BCG-3DH algorithm using heteroge-

neous multi-GPU clusters. This method is based on two main ideas: the collaboration of

CPU and GPU platforms for accelerating the operations involved in the algorithm and

the use of MPI for distributing the workload among the available processors. Moreover,

we have used a specific format (CRF) that makes it possible to considerably reduce the

memory requirements for the storage of the large sparse diagonal matrix involved in

the solution of linear system of equations, like the BCG-3D method. This also implies

an important reduction in the runtime of the method.

Experimental results have shown that Fast-Helmholtz outperforms both, the CPU

and the GPU versions when several CPU cores collaborate with the GPU devices.

However, we only obtain large acceleration factors using more GPUs when the size of

the problem is large enough.

Optimizations of the code at different levels have been carried out: (1) at the se-

quential programming level, the use of the CRF has improved the operational intensity

of the SpMV operations; (2) at MPI level, a distribution scheme which minimizes com-

munications has been applied (bearing in mind the regular pattern of the Helmholtz

matrix); (3) at the GPU level, the use of fusion optimizations for the exploitation of

the memory and the improvement of the vector and sparse matrix operations.
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Experimental results show the importance of using GPU-based clusters to design

parallel software on the modern heterogeneous architectures. As a result, the resolution

of the 3D Helmholtz equation for large real world applications has been made feasible.

According to the above results, several aspects of the Fast-Helmholtz can be still im-

proved, so our future work will be focused on them specifically. The difficulty of having

the workload well-balanced is related to the appropriate distribution of the workload

between the CPU and GPU processes, so our current on-going work involves to autom-

atize the benchmarking process to determine the most suitable factor F to exploit the

specific architecture considered. Furthermore, another future work will be focused on

the development of a hybrid version MPI-OpenMP on the hybrid multi-GPU cluster.

Apart from that, in order to increase the flexibility of the implementation, the use of

rCUDA (a middleware which allows to make use of remote GPUs as if they were local

ones) [3] will be part of a future work. This virtualization framework allows the ex-

ecution of GPU-accelerated applications within virtual machines (VMs), enabling the

sharing of a pool of centralized GPU resources that reside externally to the compute

nodes. Finally, another line of future work is the development of implementations on

multi-GPU clusters of BCGSTAB and COCG as alternative methods for solving the

resulting systems from the Helmholtz equation.
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5
Optical Diffraction Tomography as a case of study

This chapter is focused on a real physical problem of Optical Diffractional Tomography

(ODT) based on holographic information. ODT is a non-damaging technique which

allows the extraction of the shapes of objects with high accuracy. Therefore, this tech-

nique is very suitable to the in vivo study of real specimens, microorganisms, etc., and

it also makes the investigation of their dynamics possible. Tomography has recently

been incorporated to the field of fluid velocimetry to provide three dimensional infor-

mation of the location of particles. Previous works have proven the potential of Optical

Diffraction Tomography for biological and microfluidic devices.

Several approaches to tomographic reconstruction that are essentially based on lin-

ear and non-linear combinations of holographic reconstructions of the scattered fields

observed under varied illuminating conditions have been considered to solve this prob-

lem. Linear ODT has shown to provide images of highest fidelity, however these meth-

ods cannot properly accounts for the effects of multiple scattering. A non-linear ODT

physical model (NLODT-P) based on a two dimensional reconstruction of the seeding

particle distribution in fluids was proposed by J. Lobera and J.M. Coupland. However,

to address its extension to a three dimensional model makes compulsory the use of

HPC techniques due to its high computational cost (both memory requirements and

runtime).

This model requires the solution of the Helmholtz equation, whose discretization

results in a complex, regular, large and sparse linear system of equations. BCG is the

proposed solver to obtain the solution of the Helmholtz Equation. As a result, the

development of the model is based on the implementation of BCG on GPUs exploiting
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the regularities of the sparse matrix as described in Chapter 4. In this chapter, the

implementation and validation of this physical model for the case of three dimensional

reconstructions is carried out.

This chapter is organized as follows. In Section 5.1 the Optical Diffraction To-

mography (ODT) problem is described. Section 5.2 studies and analyzes the proposed

Non Linear ODT model for locating particles (NLODT-P). Section 5.3 validates the

model. Section 5.4 is devoted to discussing our GPU implementation. Section 5.5 pro-

vides experimental evaluations of our model using a GPU device. Finally, Section 5.6

summarizes the main conclusions and future works.

5.1 Introduction

Holographic Particle Image Velocimetry (HPIV) provides simultaneous three compo-

nents, three-dimensional (3C-3D) measurements of a seeded fluid flow [26, 49]. Classical

analysis of HPIV recordings assumes that the particle illuminating and the scattered

beam do not suffer multiple scattering. In practice, however, multiple scattering ef-

fects increase background noise, decreasing the number of velocity vectors that can be

retrieved from a given flow field [88]. Tomographic methods using several recordings

from different observation directions have been proposed in the last years to mitigate

this problem [60, 131, 133]. In Tomographic Particle Image Velocimetry the particles

within the entire volume need to be imaged in focus, which is obtained by setting

proper numerical aperture (NA). The application of Optical Diffraction Tomography

(ODT) in HPIV [100], and more specifically the non-linear ODT, would improve the

spatial resolution. ODT is a non-damaging radiation technique that provides a 3D

map of the object refractive index from holographic recordings of scattered fields with

different illumination or observation directions. If the linear approximation is assumed,

the spectral components of the field scattered by the object are directly related to the

spectral components of the object refractive index field [36, 94, 158]. Some impressive

advances have been done recently in coherent microscopy [84, 102, 161], even though

these measurements are incomplete and the assumption of weak scattering is severely

restrictive.

For the non-linear ODT approach, image reconstruction is considered the solution

that better explains the scattered far field but it requires large and powerful compu-
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tational resources. In the implementation of the optimization method, the Helmholtz

equation (see Chapter 4, Section 4.1) needs to be solved for a known refractive in-

dex distribution and illuminating field - the forward problem. Appropriate sampling is

roughly a tenth of the wavelength, and due to the size of volume of interest in biological

flows the computational requirements are very demanding. Thus, the performance of

the non-linear Optical Diffraction Tomography in HPIV is determined by the selected

computing strategy, and this is particularly true for its implementation for 3D prob-

lems. The use of a priori information concerning the object can reduce instability in

optimization and computation time [28, 47, 99, 100]. In fluid velocimetry we usually

have additional information about the object, such as the diameter and the optical

properties of the seeding particles, effectively reducing the particle imaging reconstruc-

tion problem to a particle location problem [134].

In this context, High Performance Computing (HPC) is required to implement and

validate the aforementioned model. HPC allows the scientific community to extend

their models and accelerate their simulations by the exploitation of a wide variety of

computing resources [45]. However, the selection of HPC architectures and program-

ming interfaces for the models to be developed require an important effort. Earlier

works have shown the parallel computation capability of GPUs in performing ODT

models [84, 114].

Thanks to technological and architectural advances [75], current standalone com-

puters present tremendous power and they can be considered as desktop supercom-

puters if their heterogeneous resources (such as GPUs) are appropriately exploited.

As aforementioned in Section 1.1.2.4, MATLAB is a popular framework used by the

scientific and engineering community to develop software applications and to test mo-

dels [6]. In this chapter, we discuss an implementation of our Non-Linear ODT model

at a source-level MATLAB compiler calling MEX-files for using GPU routines, which is

also experimentally evaluated. The main objective of this chapter is an attempt of the

development and validation of the NLODT-P model using the issues studied in previ-

ous chapters of this thesis. More concretely, the BCG-3DH method with one GPU has

been used to parallelize the most computationally demanding procedure of the model.

In this chapter some numerical experiments have been carried out showing very

promising results for 3D volumes of (10µm)3. This chapter shows the feasibility of

this approach and the outstanding imaging capability of non-linear ODT compared to
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linear tomographic approaches. In particular, we make the following contributions: (1)

development and validation of a non-linear ODT 3D model for the location of particles

in a multiple scattering environment. This model has been capable of locating particles

from a set of small numerical experiments where the linear ODT could not find them;

(2) an efficient exploitation of the parallel computing power of the GPU devices for per-

forming optical diffraction tomography image reconstruction; and (3) illustrating how

scientists can extend their models, based on MATLAB, to more complex applications

by the use of HPC techniques. HPC resources can be used from MATLAB through the

MEX-files, which provide an interface between MATLAB and HPC platforms.

5.2 Description of NLODT-P model

In fluid velocimetry the studied flow is seeded by small particles with a refractive index

different from the background. Typically, a coherent source is used to illuminate the

flow, and this illuminating beam is scattered by the seeding particles, which allows to

determine their location at one instant of time. To determine the velocity field of the

flow, two consecutive recordings are required. In particular, we will focus our attention

on the combination of several simultaneous recordings to recover the position of each

particle on a certain volume of interest at one time.

The proposed method consists in a minimization of the cost function defined by the

square root difference between the measured and the computed scattering field by the

seeding particles. This is a non-linear optimization problem that would be addressed

by a modified Conjugated Gradient Optimization Method (CGM) [100]. The search

direction at the first iteration is the negative gradient of the cost function. Although

the gradient can be expressed by an analytical equation, it still requires the resolution

of the forward problem twice. This forward problem consists of computing the scattered

field Es(r) by a known object and an illuminating beam Er(r). According to scalar

diffraction theory the (complex) amplitude of a monochromatic electric field, E(r) =

Es(r) +Er(r), propagating in a medium of (complex) refractive index, n(r), obeys the

Helmholtz equation [129] which can be rewritten in the following inhomogeneous form

using the appropriate transformation described in [100]:

(∇2 + k2
0
n2(r))Es(r) = f(r)Er(r) (5.1)
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where f(r) is the scattering potential, defined by:

f(r) = −k20(n
2(r)− 1) (5.2)

Our objective is to find the particle field position that minimizes the square differ-

ence between the measured Em(r) and the computed field that should be measured,

cost(f), according to the available estimation of the refractive index, Ec(f, r):

cost(f) =
∑

i

|Ei
m(r)− Ei

c(f, r)|
2 (5.3)

where for any hologram there is a separate contribution (i) to the cost function.

CGM has been chosen to minimize this cost function. Thus, given a scattering

potential, the gradient of the cost function can be taken as an image of the difference

between the real n(r) and its available estimation. This image is typically a smooth

distribution with several local maxima, even when some sharp refractive index changes

are expected, as for our case of particles on a flow. Furthermore, in general the object

in fluid velocimetry applications is a sparse distribution of particles of known refractive

index and shape. Subsequently a relatively small matrix PL that stores the location

of the particles could describe the 3D refractive index field.

Bearing in mind the previous considerations, the developed model referred as NLODT-

P is detailed below. A procedure presenting the most important steps involved in the

NLODT-P model are shown in Algorithm 7 and the notation used in this chapter is

presented in Table 5.1.

This model is composed by a first procedure (step), where the location of the first

particle is determined (see Step 1 of NLODT-P as shown in Algorithm 7), and an

iterative process, where the remaining particles are located. The initial step does

contain computations similar to the subsequent iterations, but no special computing

resources are required, therefore it is considered separately. Next, the main details for

every NLODT-P step are described.

Step 1. Location of the 1st particle

In [99] it has been shown that the gradient of the cost function can be expressed

as the sum of the simulated Bragg holograms between the illuminating field and the

back propagated measured field. In particular, for the initial iteration, the illuminating
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Algorithm 7 Algorithm of the NLODT-P model.

1: #Step 1. Location of the 1st particle (line 2)

2: Compute PL(1)

3: It = 2

4: while It < iterMax and V alue < threshold do

5: for i = 1, 2, ... until i < Nh do

6: #Step 2. Update the refractive index field (line 7)

7: Update n(r)

8: #Step 3. Compute the updated gradient, g(r) (lines 9 - 14)

9: Ei
s(r) = Forward(Ei

r(r), n(r))

10: Ei
r,n(r) = Ei

s(r) + Ei
r(r)

11: Ei
c(r) = Filter(Ei

s(r), k
i
0, NA)

12: Ei
m,n(r) = Forward((Ei

c(r) − Ei
m(r))∗, n(r))

13: Ei
m,n(r) = Ei

m,n(r) + (Ei
c(r) − Ei

m(r))∗

14: g(r)∗ = g(r)∗ + (Ei
m,n(r), E

i
r,n(r))

15: end for

16: #Step 4. Locate next particle (lines 17 and 18)

17: gMF (r) = Matched F iltering(g(r), sample)

18: [PL(It), V alue] = max(abs(gMF ))

19: It = It+ 1

20: end while

field Ei
r(r) and the back propagation of the measured field Ei

m(r) are considered undis-

turbed. Thus the gradient is essentially the First Born Approximation of the scattering

potential:

f(r)∗ ≈
∑

i

Ei
m(r)∗Ei

c(r) (5.4)

where ∗ represents the conjugate value. So, the particle location could be obtained from

the location of the absolute value of the maximum of f(r)∗. Although a better perfor-

mance of the model can be obtained if a matched-filtering is previously applied. This

matched-filter can be obtained considering the (linear) ODT image from an isolated

particle.

Step 2. Update the refractive index field, n(r)

From the a priori knowledge of the object in fluid velocimetry, we assume that the

refractive index field can only take: (1) the refractive index of the seeding particles

within a spherical region around any located particle; and (2) the fluid refractive index

in the remaining voxels of the volume of interest. So, if a new particle is located the
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Table 5.1: Notation used in this chapter

Abbreviation Description

Ei
r(r) Illumination field of i− th hologram

Ei
s(r) Scattering Field of i− th hologram

n(r) Estimated object index refraction (from the previously

computed particle position)

Ei
m(r) Measured field of i− th hologram

Ei
m,n(r) Updated measured field of i− th hologram, given a n(r)

g(r) Gradient of the cost function

f(r) Scattering potential

sample Image of an isolated particle

V ol Number of voxels used for discretizing the volume to reconstruct

Nh Number of holograms

iterMax Maximum number of iterations of the model

PL Particles Locations

V alue Maximum value of g(r) modulus

refractive index around its position is updated.

Step 3. Compute the updated gradient, g(r)

The gradient g(r) of the cost function provides the distribution that should be added

to the estimated scattering potential f(r) to minimize the cost function according to

the classical Conjugated Gradient Optimization Method. However, our model does not

need to solve the full image problem neither to update the scattering potential. Once an

estimation of the scattering potential is available, a similar expression to Equation 5.4

can be obtained for the new gradient g(r). However, the meanings of both interfering

fields and its computational strategy have changed:

• Update illuminating field: Ei
r,n(r). We need to take into account the presence

of the particles already located. The forward solver computes the scattered field

Ei
s(r) due to the object described by n(r) and the original illuminating field

Ei
r(r). The updated illuminating beam, Ei

r,n(r) will be the sum of both fields

Ei
r(r) + Ei

s(r).

• Update measured field: Ei
m,n(r). The back propagation of the measured field is

computed in two stages: Firstly, the expected or computed measured field: Ei
c(r)
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can be obtained by filtering the Ei
s(r) to take into account the numerical aper-

ture and the far field situation of the recording devices. Secondly, the difference

between the measured field and the computed measured field (Ei
m(r)− Ei

c(r)) is

back-propagated taking into account the diffraction introduced by the estimated

refractive index n(r). Let us remark that the role of the illuminating beam in

this case will be the conjugated remaining field: (Ei
m(r)− Ei

c(r))
∗.

As in the initial iteration, a separate contribution to the gradient g(r) should be

obtained for each hologram.

Step 4. Locate next particle and exit

As for the initial iteration, the most probable position of next particle is the ab-

solute maximum of the matched-filtered gradient (gMF (r)). The position is stored in

the output variable PL, and the peak value (V alue), can be used to decide the end

of the iterations. Experience shows that value will decrease in each iteration and a

convenient value of threshold ensures the process stop. However, the criterion to select

an appropriate value of the threshold is not addressed in this work. Thus, a maximum

number of iteration is imposed.

In each iteration of the optimization problem, the Helmholtz equation (Forward

solver in Algorithm 7) has to be solved. The Helmholtz equation is an example of a

linear elliptic Partial Differential Equation (PDE), which has been extensively stud-

ied [129]. It can be numerically solved by means of an appropriate transformation

based on Green’s functions and a spatial discretization [73, 129], for example, Finite

Element Method (FEM) [77, 79]. FEM discretizes the region of interest in small ele-

ments, assuming the function E(r) can be approximated to a constant value in each of

these elements. A regular mesh of elements is usually considered when the object shape

is the unknown (inverse problems). So, the spatial derivatives of the Laplace operator

can be discretized with a seven-point stencil in 3D.

Thus, when the discretization process is based on FEM and a spatial regular 3D

mesh, the linear system of equations resulting from Equation 5.1 is described by a ma-

trix with only seven non-zero diagonals. Therefore, FEM transforms the 3D Helmholtz

equation into the linear system (Ax = b), where the independent term, b, depends on

the illumination field (Er), the unknown vector, x, identifies the scattered field and

the matrix A, related to the refractive index (n(r)), is sparse and exhibits a strong
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regularity in both the pattern and the values of its non-zero elements and has a very

large size which depends on the number of spatial discretization points or voxels into

the volume (V ol) [116]. It is well known that the “pollution effect” limits the reliability

of the FEM solution of the Helmholtz equation for high wave-numbers [30]. Thus, to

avoid this instability effect, a high spatial discretization has to be used on the volume

of interest. All these aspects mean that the Forward solver actually consists on the

resolution of a large size linear system of equation composed by complex number (e.g.

BCG-3DH method as described in Chapter 4).

5.3 Experimental validation of the model

In order to validate our model we have chosen an apparently simple particle distribution

consisting on four 2µm particles recorded with three inline holograms. The illumina-

tion (and observation) direction for each hologram is chosen along x, y and z axis,

respectively. We consider a typical coherent illumination provided by a He-Ne laser,

with λ = 0.633µm and that the holograms are recorded at far field with a NA = 0.55

microscope objective.

The volume of interest has been divided in 160 × 160 × 160 voxels of one tenth of

the wavelength. Multiple scattering presences will be due to two main reasons: (1)

the particle cannot be considered as point source and (2) the scattering field diffracted

by one particle will modify the illuminating beam that reaches the others. The first

contribution to multiple scattering is apparent when an isolated particle recorded by

the same optical system is considered. The linear ODT image, that is, the modulus of

f(r) obtained by Equation 5.4 has been represented in Figure 5.1. Left image shows

the shape of the brightest region (larger than 0.6 the maximum value), meanwhile right

image shows the central plane.

This particle image can be used as sample to compute a matched-filter and unravel

the gradient for any other 2µm−particle field.

One of the most difficult particle distributions to recover is shown in Figure 5.2,

as for any of the holograms there is always one particle obscured by the others. The

minimum distance between particles is 3µm.

The particle distribution of solving a linear ODT image problem is shown in Figure

5.3. The scattering potential obtained from Equation 5.4, which coincides with the
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Figure 5.1: Matched-Filtering sample image of an isolated particle: 3D view of the surface

draw by the voxels above 0.6 of the maximum value and 2D view at the central plane.

Figure 5.2: 3D view of the particle distribution problem.

first gradient, is shown on the left, and the filtered gradient with the matched filter

obtained from Figure 5.2 on the right.

Top row pictures in Figure 5.3 show the shape of the voxels with higher values

(above 0.6 the maximum value). To better illustrate the blurred image, the modulus

of the gradient at the planes centered on the particle positions are shown below: plane

z = 57 pixels (middle row) and plane 104 pixels (bottom row).

Although the expected resolution of the system should be λ/(2NA) = 9 pixels.

The position of the particles cannot be recovered from the linear ODT image (left

row). However, taking into account that particles cannot be considered point sourced

and computing the matched-filtered gradient, we can clearly identify the position of four

peaks. The error of the particle positions are below 2.5 pixels, that means 0.16µm. As

expected, NLODT-P can also solve this particle distribution problem with similar error

results. For this case, the use of a matched-filter was enough to unravel the linear ODT

image.
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Figure 5.3: Gradient (left) and filtered gradient (right) computed at the initial iteration:

3D view of the surface at 0.6 the maximum value (top) and 2D views at z = 57 pixels

(middle) and at z = 104 pixels (bottom).

However, for real fluid velocimetry application, the number of particles will increase

to the order of one thousand particles. In that case, the effect of the multiple scatter-

ing between particles will be more significant. In addition, a limited optical access can

make compulsory the iterative optimization. To illustrate the problem let consider the

case when the minimum distance between particles is 2µm (close enough), so multiple

scattering is mainly due to its proximity (see Figure 5.4). We considered two configura-
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tions: (1) a full-optical access with three in-line hologram as in the previous experiment

and (2) a slightly more realistic set-up, in which we illuminate as before, but we only

have one camera. The observation direction has been chosen pointing along the di-

rection k̃obs = 1, 1, 1. That means the camera will look to the particle distribution of

Figure 5.4 roughly as the reader.

Figure 5.4: 3D view of the particle distribution problem.

As expected, the linear ODT image does not solve the four particles. The matched-

filtered scattering potential is shown in Figure 5.5. For the full optical access configura-

tion (Figure 5.5 left) does resolve the four particles. The particle image at the bottom

corner is significantly smaller than the others. That particle image cannot be recovered

from the one-camera configuration (Figure 5.5 right). Only the other three particles

can be envisaged, even for any other selection of the iso-valued surface.

Figure 5.5: Linear ODT image after computing the corresponding Match-filter of the

particle distribution of Figure 5.4 for a three-in-line hologram configuration (left) and

three illumination and one observation direction configuration (right).
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Meanwhile NLODT-P finds the particle position for both configurations, with a po-

sition error roughly of 4.6 pixels (0.3µm). Further work using more realistic problems

with larger number of particles, is needed. It has also to be considered the non-linear

ODT performance when there is a particle size distribution and some background noise

is present. From these small numerical experiments, it can be derived that the perfor-

mance of NLODT-P is clearly advantageous compared to the linear approach. In the

next section it will be shown that the combination of MATLAB with GPUs for solving

the Forward problem makes feasible the study of such kind problems and, subsequently,

the NLODT-P for fluid velocimetry applications.

5.4 GPU-Based implementation of the model

The computational cost of the advanced numerical model described in this chapter

is very high. So, it is essential to apply High Performance Computing techniques to

its implementation. We have chosen GPU computing as the tool for accelerating this

model because GPUs offer desktop massive parallelization that can accelerate this kind

of computations. CUDA is a parallel computing platform and programming model that

enables to increase the performance by harnessing the power of GPUs [8]. Scientists

usually describe their models by means of a higher-level abstraction programming such

as MATLAB. So, it is necessary to assemble both languages (MATLAB and CUDA) to

have the ease of use of MATLAB and the acceleration of GPU computing. Concretely,

a model can be implemented in MATLAB, and GPU computing can be used in the

procedure/s with the highest computational cost. To be more precise, in our model 95%

of the total runtime is devoted to the resolution of the large linear system of equations

involved in the Forward solver. The resolution of this linear system is closely related

to the numerical method used. However, even using one of the most efficient solver

for these types of systems, the resolution of this large linear system of equations takes

a long time and has large memory requirements because of the large dimension of A

(Ax = b).

The rest of this section is devoted to the description of the computational re-

sources, the numerical methods and the computing optimizations used to implement

the NLODT-P model.
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5.4.1 Software resources

Our implementation of the model shown in Algorithm 7 is based on the exploitation of

both, the MATLAB framework and GPU computing by means of MEX-files routines

(see Section 1.1.2.4). As aforementioned, our starting point has been a MATLAB

implementation of NLODT-P, for which the procedure with the highest computational

cost has been accelerated using a GPU device. Our NLODT-P model relies on numerical

calculations, specifically linear system solvers and vector operations. An approach

to facilitate GPU programming is based on the use of basic routines or libraries for

computing the most used operations in scientific and practical applications. Table 5.2

shows several packages that provide options for carrying out the calculations on GPUs

in combination with the MATLAB environment. In this context, it is necessary to

develop a specific library to solve large, complex and sparse systems of equations by

the integration of MEX-files and CUDA interface. This way, MEX-files routines [11]

combined with MATLAB have been developed for accelerating the most computational

cost procedures of the model (Forward solver).

Table 5.2: Comparison of features of available CUDA-based numerical linear algebra

packages that can be combined with the MATLAB environment.

Package Open-Source Sparse System Solver

Real Complex

Jacket [13] No No No Yes

GPUmat [21] Yes No No No

Ad hoc routines based
Yes Yes Yes Yes

on MEX-files [11]

5.4.2 Numerical methods and memory optimizations for computing

Forward

As aforementioned, our effort is devoted to accelerating accelerate the Forward solver,

used in the resolution of the NLODT-P model, by means of HPC techniques such as

GPUs platforms (using CUDA interface). The Forward solver is in charge of obtaining

a solution for the 3D Helmholtz PDE. The large system of equations obtained from the

discretization of the 3D Helmholtz PDE can be solved using different solvers. In general,

the Krylov subspace methods based on Lanczos biorthogonalization are effective for
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5.4 GPU-Based implementation of the model

solving complex systems in terms of convergence properties and memory requirements

[27, 142, 143]. Examples of this are the Biconjugate Gradient method (BCG) and the

Biconjugate Gradient Stabilized method (BCGSTAB). BCG and its variant BCGSTAB

are the most widely used iterative solvers for complex systems [127]. These methods are

based on a one-term recurrence which consists of a set of vector and matrix operations.

In this thesis, in previous chapters, the BCG method and more specifically the BCG-

3DH algorithm for solving the Helmholtz equation have been extensively analyzed and

several parallel implementation have been discussed and evaluated.

We have developed an approach to accelerate the resolution of the Helmholtz equa-

tion using the BCG solver by exploiting the regularities of matrix A and the GPU

computing. From a computational point of view, BCG has a high memory requirement

because of the storage of a large sparse matrix (A) [112]. It is necessary to use strate-

gies for the reduction of memory resources runtime because the ODT model has double

precision complex numbers. Bearing in mind that the sparse matrix exhibits several

regularities, a specific storage format, which stores the minimal information to define

the sparse matrix, is considered. In this way, both, memory requirements and BCG

runtime are considerably reduced since this new format requires less memory accesses

to read sparse matrix elements. The format which takes advantage of the regularities

of A was called “Compressed Regular Format (CRF)” and was defined in Chapter 4,

Section 4.4. CRF optimally minimizes the amount of data needed to store the sparse

matrix. CRF significantly reduces the memory requirements with respect to the COO

format in a factor of 10. Table 5.3 shows the memory requirements in GB to store the

sparse matrix A using the COO format (set by default by MATLAB) and our proposed

CRF.

Table 5.3: Memory requirements (GB) for storing A using two formats: COO and CRF.

Vol COO CRF

2003 1.25 0.12

2203 1.66 0.16

2403 2.16 0.21

2603 2.75 0.26

2803 3.43 0.33
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5.5 Computational experiments

This section analyses the computational performance of our NLODT-P model with

different dimensions of the volume. In order to show the evolution of the runtime

of our NLODT-P model, several tests (with different dimensions of V ol) have been

carried out. Four particles of 0.5µ diameter have been located in the tested volumes.

The remaining parameters of the example are: Nh = 3, iterMax = 4 and the values of

V ol range from 2003 to 2803 voxels. For the evaluation, a CPU (2× 4 Intel Xeon E5620

cores, 48 GB RAM, 2.4 GHz clock speed and under Linux) and a GPU device NVIDIA

Tesla M2090 have been considered. The NVIDIA GPU, which is CUDA enabled, is

used in parallelizing the Forward solver. The main characteristics of the GPU device

are shown in Chapter 1, Section 1.3.

Figure 5.6: Evolution of the runtime of NLODT-P using different values for V ol (from

2003 to 2803). The remaining parameters of the example are: Nh = 3 and iterMax = 4.

As it is well known, there can still be significant differences in performance between

a program written in MATLAB and one written in a lower-level language, say C. In this

work, the model has been developed and tested for several examples using (1) MATLAB

framework; and (2) MATLAB framework and CUDA programming. It means that one

GPU device is called from MATLAB for accelerating the two Forward solvers involved

for each iteration. Preliminary experiments have shown that both approaches of the

model obtain the same accurate results for the three-dimensional location of particles.
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5.6 Conclusions

Moreover, the use of MATLAB and GPU computing has strongly reduced the runtime.

Figure 5.6 shows the runtime (in seconds) of the execution of NLODT-P using both

approaches (only MATLAB framework and CUDA-MATLAB combination). For the

GPU implementation of NLODT-P, the runtime is approximately reduced by a factor

of ≈ 40× with respect to the initial MATLAB version.

5.6 Conclusions

In this chapter we have detailed a three dimensional non-linear ODT model to locate

particles, as part of a fluid velocimetry technique. We have presented some numerical

experiments to illustrate the accuracy, reliability and effectiveness of the Non-Linear

ODT model compared to the Linear ODT one. In particular, we have considered

some circumstances when an image post-processing, such as a matched filter, could

be enough to unravel the linear ODT image, and when an iterative optimization such

as NLODT-P will be compulsory. We have implemented the model using MATLAB

combined with GPU computing by means of MEX-files. Acceleration factors ≈ 40×

with respect to the approach that only uses MATLAB framework have been obtained.

Additionally, the use of a specific format to store the large sparse matrix (A), involved

in the BCG method, has reduced the memory requirements until ≈ 10× with respect

to the traditional format for specifying sparse matrices in MATLAB (coordinate list

(COO)).

As consequence of this work we can say the NLODT-P is able to improve the accu-

racy of linear ODT methods to locate particles into a fluid and the High Performance

Computing is essential to develop and apply this approach. Our future work will be

focused on the extension of the NLODT-P model to experimental data of practical

interest, it means that larger volumes will have to be computed. For this purpose, an

additional effort based on the integration of the distributed resolution of the Helmholtz

equation, described in Chapter 4, in combination with MATLAB will be carried out.

Thus, the resolution of larger problem sizes of practical interest will be possible.
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6
Contributions and future work

In this thesis, several computational issues related to the resolution of linear systems of

equations which come from the discretization of physical models described by means of

Partial Differential Equations (PDEs) have been discussed. We start from the algebraic

description of the model associated with the physical phenomena and its contributions

focus on the design of techniques and computational models that allow the resolution

of these linear systems of equations. To be more specific, it deals with the study of

models which require a high level of discretization inn which the matrix A involved in

the system is usually very large and sparse (very low percentage of non-zero elements).

One of the major contributions of this thesis is the implementation of routines to solve

sparse linear systems of equations using High Performance Computing (HPC). More

concretely, routines which require the exploitation of Graphics Processing Units (GPUs)

and multi-GPU clusters have been implemented.

In order to compute the Sparse Matrix Matrix product (SpMM) on GPU platforms,

a strategy called FastSpMM has been proposed. It has been evaluated and compared

to another algorithm described in literature, i.e., the CUSPARSE library (supplied by

NVIDIA). Results have shown that FastSpMM outperforms the existing approaches

because it combines the use of the ELLPACK-R storage format with the exploitation

of the high ratio computation/memory access of the SpMM operation and the overlap-

ping of CPU-GPU communications/computations by CUDA streaming computation.

Future work in this research line will consist of extending FastSpMM to matrices with

complex elements, broadening the kinds of platforms which can be exploited by Fast-

SpMM. Moreover, we are particularly interested in the reduction of the Processing Time
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through improving the memory management. In order to achieve this goal, FastSpMM

will be re-written according to the GPU programming tool CudaDMA. Additionally,

the implementation of the multi-GPU version of FastSpMM is also a future line to work

on.

In addition, a BCG implementation to solve complex and/or nonsymmetric linear

systems of equations on GPUs has been carried out (CuBCGET ). After an extensive

experimental evaluation using two sets of representative test matrices, it can be con-

cluded that CuBCGET clearly achieves better performance that other approaches in

the literature. This is mainly due to the fact that the kernel ELLR-T can be better

adapted to a wide variety of sparse matrix patterns. The analysis has shown that

despite the fact that the inner products in the BCG algorithm represent a small per-

centage of the total workload, their poor performance on GPUs has a strong impact on

the performance of the BCG.

In this research line a methodology has also been developed for expressing every iter-

ation of BCG by the fusion of algebraic operations in single kernel (see Section 1.2.1.1).

Preliminary experimental evaluations of this methodology have shown the relevant im-

provements on the performance of BCG on GPUs [137]. An extensive evaluation of

this methodology applied to other Krylov methods (CG and BCGSTAB) will be part

of future work.

In this thesis a solver has also been developed for the 3D Helmholtz equation which

combines the exploitation of the high regularity of the matrices involved in the numer-

ical methods, and the massive parallelism supplied by heterogeneous architecture of

modern multi-GPU clusters. This parallel approach (called Fast-Helmholtz) not only

makes it possible to obtain a faster solution, but also to solve larger size instances.

According to this study’s experimental results, several aspects can still be improved,

so future work will be focused on further optimizations. The difficulty of having the

CPU and GPU workload well-balanced is an important part of our current and future

research work. Our goal will consist of determining the automatic workload distribu-

tion among CPUs and GPUs. Furthermore, another future work will be focused on

the development of a hybrid version MPI-OpenMP on the heterogeneous multi-GPU

cluster. Apart from that, in order to increase the flexibility of the implementation, we

also plan to use rCUDA. This virtualization framework allows the execution of GPU-
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accelerated applications within virtual machines (VMs), enabling the sharing of a pool

of centralized GPU resources that reside externally to the compute nodes.

Regarding the contribution of this thesis to the resolution of large and sparse linear

systems of equation, there are several research issues that we believe are worth exploring

in the future. One of them is the development of new strategies for the most widely used

routines in the resolution of real problems. We plan to create an efficient open source

library capable of improving the performance of other existing approaches. Moreover,

we are interested in the performance evaluation of some of these routines on many-core

architectures such as the new GPU generations and Xeon Phi coprocessors.

Chapter 5 of this thesis has been focused on the resolution of a real physical problem

of the Optical Diffractional Tomography (ODT) based on holographic information.

It allows the extraction of the shape of objects with high accuracy and with a non-

damaging technique. To be more specific, a three dimensional non-linear ODT model

(named NLODT-P) to locate particles, as part of a fluid velocimetry technique, has

been implemented using MATLAB interface in combination with GPU devices. Our

implementation based on HPC has proven to be compulsory for the resolution of the

3D reconstruction based on non-linear ODT problems. With a long term perspective,

we plan to solve real problems of HPIV in aneurysms models where locating hundreds

of particles will be needed.
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Glossary

This glossary provides a list of the nomenclature and definitions of acronyms used in

the thesis.

API: Application Programming Interfaces

ASIC: Application-Specific Integrated Circuit

BLAS: Basic Linear Algebra Subprograms

BCG: Biconjugate Gradient

BCG-3DH: BiConjugate Gradient method solving the 3D Helmholtz equation

BCGSTAB: BiConjugate Gradient Stabilized

BS: Block Size

CG: Conjugate Gradient

CGM: Conjugate Gradient Optimization Method

CGS: Conjugate Gradient Squared method

COO: COOrdinate storage format

CPU: Central processing Unit

CRF: Compressed Regular Format

CRS: Compressed Row Storage

CUBLAS: Optimized BLAS for NVIDIA based GPU cards

CUDA: Compute Unified Device Architecture

CULA: NVIDIA CUDA Linear Algebra library

CUSP: NVIDIA CUDA sparse linear algebra and graph computations library

CUSPARSE: NVIDIA CUDA Sparse Matrix library
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DRAM GDDR: DRAM Graphics Double Data Rate

DP: Double Precision

DSP: Digital Signal Processor

FGMRES: Flexible Generalized Minimal Residual method

FPGA: Field-Programmable Gate Array

GMRES: Generalized Minimal Residual method

GPU: Graphics processing Unit

HPC: High Performance Computing

HPIV: Holographic Particle Image Velocimetry

ILP: Instruction Level Parallelism

ISA: Instruction Set Architecture

LAPACK: Linear Algebra PACKage

MAGMA: Linear Algebra library for heterogeneous GPU-based architectures

MATLAB: High-level language and interactive environment for computation

MEX-file: MEX stands for MATLAB Executable

MIMD: Multiple Instructions Multiple Data

MISD: Multiple Instructions Single Data

MKL: Math Kernel Library

MPI: Message Passing Interface

MPMD: Multiple Programs Multiple Data

MUMPS: MUltifrontal Massively Parallel sparse direct Solver

NA: Numerical Aperture

NUMA: Non-Uniform Memory Access systems

ODT: Optical Diffraction Tomography

OpenCL: Open Computing Language

PDE: Partial Differential Equation

PETSc: Portable, Extensible Toolkit for Scientific computation

Pthreads: Posix Threads

QCG: Quadratic Conjugate Gradient

QMR: Quasi-minimal Residue

SAXPY: Single-Precision A · X Plus Y

SIMD: Single Instruction Multiple Data

SISD: Single Instruction Single Data
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SIMT: Single Instruction, Multiple Threads

SM-SIMD: Shared Memory SIMD

SM-MIMD: Shared Memory MIMD

SM: Streaming Multiprocessor

SP: Single Precission

SpMM: Sparse Matrix Matrix product

SpMV: Sparse Matrix Vector Product

SuperLU: Sparse Direct Solver

TFLOPS: Tera Floating Point Operations per Second

TFQMR: Transpose-free QMR

UMA: Uniform Memory Access systems
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HPC approach for coherent tomography. In Proc. of the 2013 International Con-

ference on Mathematical Methods in Science and Engineering (CMMSE), pages

1109–1113. June 2013

Publications in National Conferences

[117] G. Ortega, J.A. Mart́ınez, E.M. Garzón, A. Plaza, and I. Garćıa. ADITHE: An
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