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La siguiente página web contiene información actualizada sobre los temas relacio-
nados con esta tesis doctoral:
http://www.hpca.ual.es/

Texto impreso en Almerı́a, marzo de 2013

http://www.hpca.ual.es/




A mis padres, por darme algo que el dinero

no puede comprar: una buena educación.





Preface

This thesis dissertation addresses two different areas that fall below
the term privacy. The first of them is private communications within
closed groups, a matter that commonly receives the name of secure

multicast. A set of participants would like to establish communica-
tions in such a way that no outsider is able to listen to the information
transmitted. This problem has many applications like pay-per-view
services in multimedia streaming platforms, private multiconferences
in business or even military operations.

The typical solution to the problem consists of agreeing on a symmetric
encryption key, namely the session key, which is known by the whole
group and used to encrypt and decrypt every message sent. However,
implementing this solution in practice is not trivial mainly due to two
reasons: using an encryption key for long periods of time makes it
vulnerable to attacks, and variations in the group of members (com-
monly known as churn) forces to use a different key after every new
arrival or leaving of a member. Because of that, the session key must
be refreshed periodically and upon changes in the group composition.
Chapter 1 introduces the aforementioned concepts in a more formal
way and gives a wider vision on the topic.

According to how the session key is refreshed we can classify secure
multicast schemes into three categories: centralized, decentralized and
distributed. In the first one, a central entity, the Key Server, is in charge
of establishing new session keys and dealing them to the whole net-
work. This is the simplest way of solving the problem, at the cost of
limited audience sizes, and most of the proposals to the date belong
to this category. The second type, decentralized schemes, is a natural



extension of centralized solutions: larger audiences are managed by

arranging participants into disjoint clusters, each managed by a sec-

ondary Key Server by means of a centralized scheme. Finally, in dis-

tributed schemes there is no single entity managing the re-key process,

so all participants must agree on the new cryptographic material each

time it is refreshed. Distributed schemes avoid single points of failure

and prevent a single entity from controlling the group, at the cost of

poor scalability.

This thesis dissertation deals with secure multicast schemes due to

their importance as standalone solutions or as building blocks for de-

centralized solutions. A wide review of the state of the art is provided

in Chapter 2. Chapter 3 presents (i) a scheme of this nature, discusses

its properties and puts its performance to the test. The mathematics

behind the scheme are mainly based on the Extended Euclidean Al-

gorithm, which we have also used to develop (ii) an authentication

solution for messages coming from the Key server and (iii) a zero-

knowledge proof that a participant can use to check the membership of

others.

The whole solution has already been the object of a cryptanalysis by

other researchers, with some vulnerabilities being found in the mes-

sage authentication and zero-knowledge proof schemes, but not in the

main secure multicast algorithm. We mention these flaws and show

some solutions to them developed by other researchers. We would like

to make clear that those last solutions are no merit of the author of this

thesis, and are referred here for the sake of completion.

Now, let us turn to the second topic this thesis dissertation deals with:

privacy-preserving distributed computations. In this scenario, nodes

in a network would like to follow the evolution of a global variable

to which every node contributes. However, individual contributions

from each node should not be disclosed to others. A typical example

is the Millionaire’s problem: two millionaires want to know who is

the richest without revealing their fortunes. Solving this problem for



many participants and other functions has many applications like data
aggregation, trust computing and data mining, all of which are cur-
rently hot topics.

This research topic is not new and many algorithms have been pro-
posed so far, most of them being applied to a reduced, static set of
players and with fault tolerance issues not usually addressed. How-
ever, we foresee that addressing practical issues will become more and
more important with the popularization of different types of networks.
For example, in peer-to-peer networks nodes can enter and leave at
any time, just like in the secure multicast problem, and computations
should not be halted or restarted because of that. In wireless sensor
networks, the transmission medium is failure prone, and participants
may come and go. Chapter 4 reviews the related literature.

We have thus developed an iterative privacy-preserving distributed al-
gorithm for peer-to-peer networks that focuses on those practical prob-
lems. Our algorithm follows an asynchronous message passing model
given that asynchrony tolerates churn and message faults in a natural
way, in opposition to synchrony. To prove this, we compare it to a
closely related synchronous proposal from the literature. We believe
our algorithm is the first of its kind. Chapter 5 presents it.

Regarding the types of adversary models considered in the literature,
they can be either semi-honest or malicious. The former will ana-
lyze the received information in order to guess other players’ private
information, but will follow the protocol faithfully. The latter is as-
sumed to take arbitrary actions (forging messages, for example) to ob-
tain the desired knowledge. Our algorithm deals with the semi-honest
adversary type.

To summarize, this thesis dissertation (i) surveys the state of the art in
centralized secure multicast algorithms, (ii) introduces a centralized se-
cure multicast solution with low computational requirements as well as
complementary algorithms to authenticate re-key messages and mem-
bers, (iii) reviews the state of the art in privacy-preserving distributed



computations and (iv) introduces an iterative asynchronous privacy-
preserving algorithm for distributed computations that tolerates node
churn and message faults.



Prefacio

El término privacidad engloba un amplio campo de investigación com-
puesto por diferentes áreas. Esta tesis doctoral se centra en dos de ellas.
La primera son las comunicaciones privadas en grupos restringidos, o
secure multicast. Un grupo de participantes desea mantener comuni-
caciones de forma que ningún oyente externo al grupo sea capaz de
interpretar la información transmitida. Este problema tiene diferentes
aplicaciones como servicios pay-per-view en plataformas de streaming
multimedia o multiconferencias privadas en el ámbito empresarial e in-
cluso militar.

La solución estándar al problema consiste en establecer una clave de ci-
frado simétrico común al grupo, llamada session key o clave de sesión,
con la cual todos los participantes cifran o descifran la información
transmitida. Sin embargo, las implicaciones prácticas de esta solución
no son triviales por dos motivos: el uso de una misma clave de cifra-
do durante largo tiempo la hace vulnerable a ataques, y los cambios
en la composición del grupo (un fenómeno conocido como churn), de
ocurrir, fuerzan a cambiar la clave después de cada entrada o salida de
participantes. Por ello es necesario refrescar la clave de sesión periódi-
camente, y en especial después de cada cambio en la composición del
grupo. El capı́tulo 1 introduce más formalmente estos conceptos y da
al lector una visión más amplia del problema.

Las propuestas de secure multicast existentes pueden clasificarse en
tres categorı́as dependiendo de cómo realicen la renovación de la clave
de sesión: centralizadas, descentralizadas y distribuidas. En las prime-
ras, una entidad central, el Key Server o Servidor de Claves, está a
cargo del establecimiento de nuevas claves de sesión y la distribución



a toda la red. Ésta es la forma más sencilla y popular de resolver el

problema a cambio de soportar tamaños de grupo limitados. La segun-

da categorı́a, las propuestas descentralizadas, es una extensión natural

de la primera: para conseguir mayores tamaños de grupo los partici-

pantes se distribuyen en subgrupos disjuntos, cada uno gestionado por

un Servidor de Claves secundario mediante secure multicast centrali-

zado. Finalmente, en las propuestas distribuidas no existe una única

entidad a cargo del proceso de renovación de claves. En su lugar, todos

los participantes colaboran en la generación del material criptográfi-

co cada vez que sea necesario. Los esquemas distribuidos ofrecen por

tanto más fiabilidad al evitar un único punto de fallo a cambio de una

escalabilidad muy limitada.

Esta tesis se enfoca hacia la categorı́a centralizada debido a su impor-

tancia como solución en sı́ misma y como pilar de construcciones des-

centralizadas. El capı́tulo 2 realiza una amplia revisión del estado del

arte, y el capı́tulo 3 presenta (i) un nuevo esquema centralizado, dis-

cute sus propiedades y pone a prueba su rendimiento. Los fundamen-

tos matemáticos del esquema se basan principalmente en el Algoritmo

Extendido de Euclides, gracias al cual también hemos desarrollado (ii)

una solución de autenticación para los mensajes de renovación pro-

venientes del Servidor de Claves, y (iii) una prueba de conocimiento

cero (zero-knowledge proof) que permite a miembros legales del grupo

verificar la legalidad de otros.

Los tres esquemas han sido ya objeto de criptoanálisis por parte de

otros investigadores, los cuales han hallado algunas vulnerabilidades

en el segundo y tercero (autenticación de mensajes y prueba de cono-

cimiento cero). Sin embargo, el esquema principal de secure multicast

sigue siendo seguro a dı́a de hoy. Mencionaremos las vulnerabilidades

encontradas por el criptoanálisis, ası́ como soluciones propuestas por

otro conjunto de investigadores. Dichas soluciones no son mérito del

autor de esta tesis y se muestran aquı́ con el único propósito de dar al

lector una perspectiva completa.



La segunda parte de esta tesis se centra en computaciones distribuidas

con preservación de privacidad. En este caso, los nodos que conforman

una red desean seguir la evolución de una variable global a la que to-

do el mundo contribuye. Sin embargo, las contribuciones individuales

hechas por cada nodo no deberı́an ser conocidas por los demás. Un

ejemplo tı́pico, muy ilustrativo, es el Problema de los millonarios: dos

millonarios quieren saber quién es más rico sin revelar la cuantı́a de

sus fortunas. Situaciones similares, especialmente aquellas que involu-

cran un número indeterminado de participantes y el cómputo de otras

funciones, son útiles a la hora realizar agregación de datos, cálculo de

confianza y minerı́a de datos, operaciones todas de creciente interés.

El problema de la preservación de privacidad en computación distri-

buida no es nuevo: existen ya un amplio número de soluciones. Sin

embargo, la mayorı́a de ellas es aplicable sólo a un grupo reducido de

participantes y no suelen ser tolerantes a fallos. El autor de esta te-

sis cree que esas dos caracterı́sticas van a cobrar mucha importancia

con el tiempo debido a la popularización de diferentes tipos de redes.

Por ejemplo, en redes peer-to-peer los nodos pueden entrar y salir de

la red de forma inesperada (tal y como hemos comentado previamen-

te para los escenarios de secure multicast), y los cálculos no deberı́an

detenerse o reiniciarse por ello. En redes de sensores (wireless sen-

sor networks) el medio de transmisión es propenso a fallos, y también

los participantes pueden aparecer y desaparecer sin previo aviso. El

capı́tulo 4 repasa de la literatura disponible en este campo.

En vista de la importancia de la tolerancia a fallos y al dinamismo de

las redes, en el capı́tulo 5 hemos desarrollado un algoritmo de cómputo

distribuido iterativo con preservación de privacidad enfocado a redes

peer-to-peer que se adapta a ese tipo de situaciones prácticas. Nuestro

algoritmo sigue un modelo de paso de mensajes ası́ncrono que tolera

churn y pérdida o retraso de mensajes de forma natural, en oposición

a los algoritmos sı́ncronos. Para demostrarlo, lo comparamos con una



propuesta sı́ncrona parecida tomada de la literatura. Creemos que nues-
tro algoritmo es el primero de este tipo.

La literatura en este campo considera dos modelos de adversario a te-
ner en cuenta: semi-honestos y maliciosos. Los primeros analizan cual-
quier dato a su disposición para obtener información privada de otros
participantes, pero se asume que ejecutan el protocolo de forma co-
rrecta. De los segundos se espera que lleven a cabo acciones arbitrarias
para obtener la información privada deseada, tales como enviar men-
sajes falsos. Nuestro algoritmo tolera adversarios semi-honestos.

A modo de resumen de este prefacio, la presente tesis (i) analiza el esta-
do del arte en algoritmos de secure multicast centralizado, (ii) presenta
una solución de secure multicast centralizada con bajos requerimien-
tos computacionales ası́ como algoritmos complementarios para la au-
tenticación de los mensajes de refresco y los miembros, (iii) repasa el
estado del arte en computación distribuida con preservación de privaci-
dad y (iv) presenta un algoritmo iterativo ası́ncrono para computación
distribuida con preservación de privacidad que tolera churn y fallos en
el envı́o de mensajes.
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Chapter

1
Introduction

Security and privacy form a wide body of research that covers a vast set of
topics. It is not necessary to explain its great importance in today’s society. Virtu-
ally every activity that we can benefit from or that we can develop is related to, or
implies, the use of computers, digital devices and the networks connecting them.
These systems have a great exposure to threats since attackers can benefit in many
ways: economical profit, information stealing, denial of service of commercial
competitors or enemies and more [96].

This thesis dissertation deals with two different topics within the privacy world:
centralized secure multicast and privacy-preserving distributed computations on
peer-to-peer networks.

1.1 Centralized secure multicast
Multicast communications allow hosts to send information to other hosts within a
group avoiding the establishment of point-to-point connections with all of them.
IP multicast technologies [65] (which use routing techniques at a low level over a
network, such as the IGMP protocol) have not achieved the expected success due
to several reasons (need for compatible routers, implantation costs, lack of support
from Internet providers, etc.). As a recent alternative, application level multicast
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1. INTRODUCTION

has taken over, since it offers the same functionality at a lower cost and easier

deployment: instead of requiring the deployment of specific protocol-compatible

architectures, a logical network is built and hosts resend messages themselves.

Multicast communications can be either one-to-many, if the source of the trans-

mitted data is one entity only over time (such as IPTV or P2PTV services) or many-

to-many, if several clients or all act as a source of data. Multiconferences are an

example of this (strictly, each data source establishes a one-to-many multicast com-

munication).

There are services that take advantage of multicast but need to keep commu-

nications private. Those technologies that make it possible are known as secure

multicast. Applications of secure multicast are, among others, pay-per-view IPTV

or P2PTV, private multiconferences (oriented to business, politics or even military

affairs), or any private service that involves several participants or clients.

The typical approach to establish secure multicast communications is to agree

on one or several symmetric encryption keys (depending on the topology and size

of the network) to encipher messages. However the key, or keys, must be renewed

periodically to prevent attacks from outsiders or even insiders.

Depending on how key distribution and management are carried out, secure

multicast schemes are divided into centralized, decentralized and distributed. Cent-

ralized schemes depend directly on a single entity to generate and distribute every

cryptographic key. Decentralized schemes replicate the centralized infrastructure

in order to reach larger audiences, usually involving entities that act as local sub-

servers and manage subgroups of users, and requiring full or partial re-encryption

of the multicast information in some cases. Finally, in a distributed approach there

is no group controller, and therefore all members participate actively in the key

generation process. Generally, the final encryption key is therefore the result of the

contributions of all members, which makes the process time and communication

consuming. The popular survey in [90] clearly describes this classification.

Centralized secure multicast schemes are of great use thanks to their simplicity

and the popularization of services like IPTV [22] and ad-hoc networks. Even in

decentralized architectures for huge audiences they appear at the core of every sep-

arate group. Therefore, they play an important role in the secure multicast global

field.
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1.1 Centralized secure multicast

Regardless of their nature, any secure multicast scheme must provide: inform-

ation privacy while in transit, an efficient and fault-tolerant re-keying process so

an acceptable quality of service (QoS) is guaranteed, and forward and backward

secrecy.

Definition 1 Forward secrecy implies that a member that leaves the network (i.e.,
her membership expires) should not be able to decrypt any ciphered information
transmitted thereafter.

Definition 2 Backward secrecy implies that an arriving member should not be
able to decrypt any ciphered information transmitted before her arrival.

Both impose a refreshment of the encryption key used to cipher the transmitted

information. These two constraints may become an efficiency problem at high

churn rates (see Def. 3), though some less restrictive scenarios may not require

backward secrecy.

Definition 3 The churn phenomenon refers to nodes unexpectedly entering or leav-
ing the network at any time.

Additionally, schemes must be resistant to collusion. A collusion attack can be

defined differently depending on the research field we are addressing. Next, we

provide a definition for the secure multicast field.

Definition 4 In a collusion attack to a secure multicast algorithm, two or more re-
voked users ally together and use their expired keying material in order to illegally
decrypt new multicast information.

There are other features of schemes that are directly related to reliability. We

define them next.

Definition 5 A secure multicast scheme is self-healing if members are able to ob-
tain lost keying material from new re-key messages received from the Key Server.
This is, members do not need to request lost messages in order to recover previous
keying material.

A closely related feature is recoverability.
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Definition 6 m-recoverability implies that a member may still recover the current
keying material after missing a maximum of m key updates.

Finally, secure multicast protocols can be divided into stateful and stateless.

Definition 7 In a stateful secure multicast scheme, the state of the keying material
at a given time is defined by the history of that material and the modifications made
on it. Thus, re-key messages contain modifications done on the previous state. This
implies that members must be aware of all re-key operations performed since their
arrival.

Definition 8 In a stateless secure multicast scheme, the state of the keying material
at a given time is independent of the history of the material. As a consequence,
members may obtain all the keying material from scratch at every re-key operation.

The stateless property clearly makes schemes more resilient against faulty net-
works. Addressing reliability has become the trend in the last years due to the
popularization of ad-hoc networks.

Chapters 2 and 3 deal with secure multicast. The former surveys the state of
the art, while the latter introduces a centralized secure multicast scheme.

1.2 Privacy-preserving distributed computations on peer-
to-peer networks
The second part of this dissertation deals with the challenge of adding privacy-
related routines to fully distributed computations. The motivation for it relies on
the fact that a large part of the networked systems is evolving towards a fully dis-
tributed paradigm. Peer-to-peer networks are examples of this, but we can also find
ad-hoc networks composed by powerful mobile phones, wireless sensor networks
(WSNETs), vehicular networks (VANETs), smart power grids and more. These
systems are composed by autonomous nodes that cooperate without the interven-
tion of centralized third parties, therefore executing fully distributed algorithms. An
interesting subset of those algorithms corresponds to functions that obtain global
results based on local attributes of the nodes. With them, nodes can learn global

4
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properties of the whole network by updating a local value with the help of their

neighbour nodes. Typical applications are data aggregation [47, 52, 101], spec-

tral analysis [51], trust management [49], and distributed ranking and data min-

ing [8, 25, 85]. These algorithms can simply monitor a system, or they can be used

for control and optimization as well. A crucial point here is that distributed al-

gorithms should be asynchronous rather than synchronous. We define this concepts

next.

Definition 9 A synchronous distributed algorithm requires that messages are
sent and received within a strict period of time. This type of algorithms imposes
barriers on the progress of processes, thus forcing all of them to carry out execu-
tions at the same pace.

Definition 10 An asynchronous distributed algorithm does not impose dead-
lines on the exchanged messages. As a consequence, processes in these algorithms
can progress at different speeds without affecting the correctness of computations.

The reason why asynchronous algorithms are preferred for the aforementioned ap-

plications is that in large networks one can not assume that a given node will be

online at a given specific time, or that messages will arrive properly.

As usual, some of those algorithms may require privacy mechanisms that pre-

vent nodes from learning others’ attributes. To give the reader an idea of this, let

us refer to the illustrative Millionaires’ problem, in which two millionaires want

to discover who is the richer without revealing their actual fortunes [108]. Pri-

vacy preserving computations have been studied for a long time, however most

of the existing solutions to the date address scenarios with a few participants in a

very controlled environment, such as e-commerce [91]. Let us now define the term

“collusion attack” for a privacy-preserving distributed computations environment.

Definition 11 In a collusion attack to a privacy-preserving distributed computa-
tions algorithm, two or more users ally together and use they knowledge in order
to illegally obtain secret information from other user.

Note that the main difference of this collusion attack definition with Def. 4 relies

on the fact that the colluding users are still active.
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Instead of focusing on a few users, the scenarios we tackle here are composed
by thousands of nodes (or even more). For example, nodes in a trust computing
algorithm will need to calculate the reputation of a peer in the network with the
restriction of not being able to extract the individual opinions contributed by other
participants. As another example, collective measurements might be taken in a
smart power grid without learning the consumption of every single house. The list
of possible applications is extensive. More specifically, the IT industry has recently
started to collect and analyze vast amounts of personal data centrally (specially
social networks companies). These practices raise legal and ethical concerns and
foster research on the privacy preservation field.

Peer-to-peer networks offer an alternative to centrally managed databases of
user profiles and behaviour, hence we are focusing on privacy preserving routines
on this kind of networks, or networks with similar properties. Peer-to-peer net-
works have two characteristics that make the execution of fully distributed al-
gorithms and specially privacy preserving routines a challenge. First, they are in-
herently unreliable: messages may be lost or delayed, affecting algorithms that do
not take this fact into account. Second, it is impossible to assure that every node in
such a large network will be online at a given moment: algorithms should be ready
to cope with churn (see Def. 3) without stopping or restarting computations. For
these reasons, developing privacy preserving routines in peer-to-peer networks is
an interesting and challenging problem, specially if we want communications to be
asynchronous.

Chapter 4 provides the background for this topic and reviews the literature up to
date. In Chapter 5 we introduce our own proposal which, to the best of our know-
ledge, is the first asynchronous privacy-preserving algorithm for fully distributed
computations. Finally, Chapter 6 concludes this dissertation.
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Part I

Contributions to secure multicast
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Chapter

2
Related work on centralized

secure multicast

2.1 Introduction
This chapter extends the work presented in [69, 70] in order to provide a selection
of the most important centralized secure multicast protocols so far. First, a clas-
sification of the field is presented according to the scenario of application. Three
categories arise:

(1) General-purpose schemes, suitable for a wide range of applications.

(2) Multi-group schemes, which address scenarios that involve access control to
more than one information channel and different, hierarchical degrees of priv-
ilege.

(3) Self-healing schemes, for ad-hoc networks, which focus mainly on reliability
since the environment they address is prone to message loss.

Within each category, schemes are discussed and compared attending to the
properties mentioned in the introduction. It is important to remark that many recent
schemes that were not considered in popular but older surveys [16, 90, 115] are
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2. RELATED WORK ON CENTRALIZED SECURE MULTICAST

shown here. We would also like to mention that [69, 70] was the first survey to

include multi-group schemes to the best of our knowledge. To conclude the chapter

a general comparison of all the schemes is shown so the reader can have a global

and clear view of the state of the art.

The following notation will be used for the rest of the chapter. The single

entity that manages the re-keying process receives the name Key Server. Hosts that

conform the main body of the network are named members. h and d denote a tree’s

height and degree, respectively. The total number of members is given by n. b is the

bit-length of a symmetric key and H is the output length in bits of a hash function.

q is the length in bits of a typical RSA problem large prime number, while r is the

number of revoked members. Additional specific notation will be indicated where

needed.

2.2 General-purpose schemes
General purpose schemes were the first ones to appear and have been around for

more than ten years now. One of the earliest is the Group Key Management Pro-

tocol (GKMP) [39], in which the Key Server shares a key with every member in

the audience and a common group key. Some re-key operations require a unicast

connection with each member, hence the scheme scales poorly. More efficient

solutions were soon proposed. We can divide them in two main approaches: the

key hierarchy tree approach, which arranges users into a logical structure in order

to optimize the key refreshment operation and the computational approach, which

rather relies on mathematical strategies.

2.2.1 The key hierarchy tree approach

The hierarchical tree of keys is clearly the most popular idea due to its small com-

putational requirements, and to the fact that the user arrangement is logical, i.e., no

costly underlying topology is created.

The first scheme of that kind was the Logical Key Hierarchy (LKH) [103, 105].

In order to reduce the number of re-key messages per join/leave operation of the

trivial approach, a logical tree is built with randomly chosen user keys at the leaves.
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2.2 General-purpose schemes

Figure 2.1: A key hierarchy tree. ui and ki denote user i and her user key, respect-
ively. k1−8 is the group key. The rest are KEKs.

Figure 2.2: Re-keying associated to a join. User u3 enters the system.

Figure 2.1 depicts such tree. Every user key is only known by its owner and the Key

Server. A Data Encryption Key (DEK), namely the group key, is placed at the root

node: it encrypts the actual broadcast information, while intermediate tree nodes

keep Key Encryption Keys (KEKs), used in the re-key process. A user knows only

the keys in her key path, i.e., the keys in the path from her leaf to the root. The

arrival or departure of a member implies that the group key, the member’s key-

path and those nodes that are siblings to the key path must be refreshed. Figure

2.2 shows the join process. User u3 is joining the tree: as a consequence, the Key

Server sends the user a key under a different secure channel, say k3, and renews

11
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Figure 2.3: Re-keying associated to a leave. User U8 leaves the system.

the keys in her way to the root: k′, k′1−4 and k′3−4. Next, these keys are sent to all

members as follows (notation ab means b encrypted with key a):

Users 1 and 2 receive: k1−2{k′1−4}, k′1−4{k′1−8}
User 3 receives: k3{k′3−4}, k′3−4{k′1−4}, k′1−4{k′1−8}
User 4 receives: k4{k′3−4}, k′3−4{k′1−4}, k′1−4{k′1−8}
Users 5 to 8 receive: k5−8{k′1−8}.

User leaves are treated in a similar way. In Figure 2.3, user u8 is leaving the

system, hence the whole key-path from her leaf to the root is refreshed: k′′, k′′5−8
and k′′7−8. The messages sent are the following:

Users 1 to 4 receive: k′1−4{k′′1−8}
Users 5 and 6 receive: k5−6{k′′5−8}, k′′5−8{k′′1−8}
User 7 receives: k7{k′′7−8}, k′′7−8{k′′5−8}, k′′5−8{k′′1−8}.

For balanced trees the number of required multicast messages for a single join

operation is 2h−1 while the new member must receive h+1 keys. A leave requires

2h keys updated. Appropriate tree configurations for optimal bandwidth usage are

discussed in [18] and [17].

Some improvement in storage overhead at the Key Server can be achieved if

members are grouped within clusters of fixed size (say c). The Clustering approach

[14] uses this idea: every cluster is placed at a tree leaf and assigned a KEK. Mem-

ber departures, however, pose an important drawback since they require one by one

key encryptions withing the affected cluster.
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Subsequent efforts seek to reduce the number of messages sent by LKH. A

widely adopted approach is to use one-way functions or combinations of one-way

functions with pseudo-random number generators (PRNGs). On one hand, LKH+

[102], LKH++ [26] and the recent SKD [58] use this approach in a temporary

manner: new keys are derived from old ones by means of a one-way function,

independently of their position within the tree. LKH++ and SKD approximately

halve LKH’s bandwidth usage in join operations. Additionally, SKD claims a large

reduction of the computational effort required at the Key Server.

On the other hand, One-way Function Trees (OFT) [94], One-way Function

Chain Trees (OFCT) [13] and ELK [88] use the one-way function approach in a

spatial manner: every key in the tree is derived from its children, therefore the tree

is built in a bottom-up fashion starting at user keys (which are randomly picked by

the Key Server). These schemes assume one-way functions to be perfect, but Horng

proposed a collusion attack against OFT in [43] which was taken into account by

Ku and Chen in order to develop an improved collusion resistant version of that

protocol [56]. ELK addresses bandwidth reduction and reliability simultaneously:

a communication-computation tradeoff is introduced and some degree of tolerance

against message losses is achieved. Besides, members need no aid from the Key

Server to derive their key path and no multicast messages are required in joins if

batch re-keying is used (see the end of Section 2.2.3 for more information on this).

The Flat Table (FT) approach [19] (contemporary to LKH) also uses a hier-

archical key tree arrangement though there are subtle differences which allow FT

to refresh exactly the lowest possible number of keys (since trees are not always

balanced) [89]. Whenever one or more members leave the system, the Key Server

uses a well-known boolean function minimization technique that indicates the op-

timal number of encryptions (and which KEKs to use) to deliver the new session

key to the remaining members. However, vulnerabilities against collusion attacks

were discovered as stated in [114]. In response to them, the recent EGK scheme

[114] retakes the Flat Table idea and smartly solves the problem. Its authors claim

to obtain storage-communication-optimality and constant small message sizes.

Another tree-based approach is the subset-difference (SDR) scheme [68]: in

this case the tree is covered by the minimal number of subsets needed to leave all

revoked members out at a given time, each subset receiving a different key. In every

13
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refreshment, the data encryption key is ciphered with the keys of every subset at that

time. Remaining members calculate which subset they belong to and use the proper

key to decrypt the refreshment message. This scheme performs nicely when the set

of renovated members is relatively small and stable; however its performance falls

down with time, given that all revocations since the beginning must be taken into

account in every re-key operation. An extension to SDR, the LSD scheme [38],

makes possible a tradeoff between communication overhead and member storage.

Both SDR and LSD are stateless (see Def. 8).

As a last remark we note that statistical improvements can be applied to member

arrangement in tree-based schemes in order to gain efficiency and scalability [84].

2.2.2 The computational approach

A different group of general purpose schemes uses algebraic calculations to se-

curely provide an encryption key to a given set of members. These solutions are

usually stateless since the current encryption key can be obtained from scratch upon

the reception of a re-key message. This kind of schemes usually combine member

secrets (like a private key or a secret prime owned by each member) with the re-key

information. As a result, only the authorized owners of those secrets can recover

the re-key information.

Probably the most popular scheme of this kind is SecureLock [21]. In it, the

Key Server builds a system of linear congruences (each of them including the key-

ing material and a member’s public key) and solves using the Chinese Remainder

Theorem. The solution is then broadcast to the members, which are able to obtain

the keying material with the aid of their respective private keys. SecureLock is a

simple and smart solution, however the computational effort required to solve the

Chinese Remainder Theorem soon becomes excessive when increasing the number

of members.

The work in [110] by Yoon et al. combines the RSA problem [1] with the

use of one-way functions in order to obtain an efficient solution and short re-key

messages. In their paper, the authors propose the scheme as a building block for

a grid computing platform, but clearly it can be used for other multicast purposes.
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This work is an improvement on the proposal in [63] given that the latter had several

security problems.

A different idea is used in [106]. Its authors use Maximum Distance Separable

(MDS) Codes, a class of error control codes, to prevent unauthorized access to

the re-key information multicast by the Key Server. The main idea is to assign a

secret key to every user in the system, and to construct a code word from the all the

authorized keys at a given moment plus the chosen session key. Upon reception of

the code word, every member with an authorized secret key can obtain the session

key. One can see this as a similar solution to [110], however MDS encoding is

faster than modular exponentiation as shown in [106].

Regardless of the specific computational trick used, schemes within this cat-

egory can not handle audiences as large as the hierarchical tree does due to the

increment in the computational effort required as group size increases. Therefore

it is typical to assume the use of the computational approach to provide service

to small to medium sized member clusters managed by a super-member. These

clusters are assumed to be connected in a hierarchical way by one of the tree con-

structions explained before. In this way, greater audiences can be handled at the

cost of obtaining a stateful solution. For example, the authors of [92] combine

SecureLock with LKH in order to reduce the number of congruences involved in

computations (there is a congruence per cluster). The authors of MDS [106] pro-

pose its combination with LKH in their paper, too. Enhancing the efficiency of

SecureLock from a fully computational perspective is an interesting future work

line.

To finish, let us remark that the work presented in Chapter 3 falls within this

category.

2.2.3 Considerations on general-purpose schemes

Many of the protocols reviewed above can handle large, dynamic audiences in

many multicast services that demand privacy. Regarding security, they are secure

so far except for FT [19] and OFT [94] (which are vulnerable to collusion) and [63]

(vulnerable to several attacks). Concerning reliability we must remark that LKH

was introduced in the late 90’s, a time when the main part of communications were
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Tree/ Storage overhead Communications overhead
Comp Key Server Member Join Leave

Multicast Unicast Multicast
GKMP
[39], 1997

Tree 2b 2b 2b 2b (n− 1)b

Clusters
[14], 1999

Tree n
c

d
d−1

+ n
c

logd(
n
c
) + 2 c− 1 + d logd(

n
c
) logd(

n
c
) + 2 c− 1 + d logd(

n
c
)

LKH
[103,
105],
1999

Tree (2n− 1)b (h+ 1)b (2h− 1)b (h+ 1)b 2hb

ELK
[88], 2001

Tree (2n− 1)b (h+ 1)b 0 (h+ 1)b h(b1 + b2)

SDR
[68], 2001

Tree - 0.5log2n (2r − 1)b 0.5log2n (2r − 1)b

LKH++
[26], 2002

Tree (2n− 1)b (h+ 1)b b+ log2n (h+ 1)b log2n+ (h− 1)b

OFT
[94], 2003

Tree (2n− 1)b (h+ 1)b (h+ 1)b (h+ 1)b (h+ 1)b

SKD
[58], 2009

Tree (dn−1)b
d−1

hb h hb (d− 1)hb

EGK
[114],
2010

Tree log2n log2n b 2b log2n

SecureLock
[21], 1989

Comp nq q nq 0 nq

MDS
[106],
2008

Comp nb b nb 0 nb

Yoon
[110],
2011

Comp 2qn 2q qn+ q +H 0 qn+ q +H

Table 2.1: General-purpose secure multicast schemes comparison. See page 10 for
notation.

held on dedicated links. That is the main reason why its extending proposals nor-

mally do not address the problem of recoverability and therefore they are stateful

and not self-healing. Probably ELK is the most reliable protocol in this family.

Table 2.1 shows a comparison in terms of storage and communication costs of

the most important schemes along with recent proposals. Data are expressed in

bits; worst cases are shown. User keys are assumed to be sent in a separate channel

and are not considered since they are delivered only once per user.

There are small but subtle variations in the results shown. It can be seen that
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older tree-like schemes focus on reducing communications in re-key operations,

while acquiescing in linear storage needs. More recent tree-like proposals focus

on the latter, given that acceptable bandwidth usage results were already obtained.

Other reasons for storage reduction are the popularization of smart devices (with

low storage capabilities) and ever increasing audiences as multimedia multicast

services become more and more popular.

In the computational approach it can be observed that the length of the multicast

re-key information is always linear with the number of users. That is clearly a

drawback which restricts the use of these schemes to reduced groups. As mentioned

above, a typical approach is to split the audience into small enough groups, which

are in turn joined together by a tree.

It is interesting to remark that some of the mentioned schemes may perform

batch re-key operations [41], i.e. on a timely manner, rather than triggered by joins

or leaves.

Definition 12 Batch re-key operations are performed by the Key Server at a given
fixed frequency (say, after a few minutes) rather than being triggered by a single
join or leave. Batch re-key operations take into account both the new and evicted
members since the last re-key.

This strategy helps to reduce the burden of re-keying in high churn scenarios and

can be used in every scheme, even if the authors do not make it explicit.

The authors of this survey do not expect great new improvements in the LKH

category. However, new computational developments might appear given the in-

creasing power of multi-core processors.

2.3 Multi-group schemes
There exist scenarios in which several, different information channels are encrypted

separately and reach different, not disjoint groups of members. Typical examples

are multimedia platforms with several pay-per-view channels and communications

in hierarchically managed networks. Schemes shown next can be seen as an exten-

sion of the tree approach: multiple trees are built from a single, global set of leaves,

thus obtaining several roots. Figure 2.4 shows an arrangement example. Given that
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Storage overhead Communications overhead
Key Server Member Join Leave

Multicast Unicast Multicast
MG
[98, 99], 2007

O(log n) O(Mn) O(d log n) O(Md log n) O(Md log n)

HAC
[112], 2008

O( d
d−1

Mn0) O(log n0) 0 O(1) O(d log n0)

Zhang et al.
[111], 2006

O(n) O(1) 0 O(M) O(M)

Table 2.2: Multi-group secure multicast schemes comparison. See page 10 for
notation.

a single member may now belong to more than one group, her key path includes
all keys from her leaf to the different roots it is connected to. Therefore re-key
operations will normally affect more than one tree. However, note that not all users
are always connected to all roots. The pioneer proposal, the MG scheme, appears
in [98] and [99]. Due to the intricate resultant network, single re-key operations
become significantly complex in terms of overhead and therefore batch re-keyings
are used. The HAC scheme [112] reduces both bandwidth and communications
overhead by improving the multi-tree arrangement and using one-way functions.
Both schemes are stateful. Zhang et al. present a stateless protocol based on the
bilinear Diffie-Hellman Problem [111].

Figure 2.4: A multi-group tree. Users u1 to u14 are arranged into three overlapping
groups: G1, G2 and G3.

Table 2.2 shows a comparison of [99, 111, 112] and [113] in big−O notation
terms. M is the number of groups/trees and n0 the average number of members
in a subgroup. Other multi-group schemes are [107] and [53]. The authors of the
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latter claim a reduction of up to 15.2% of communication overhead against MG by
using trees with different degrees.

2.4 Self-healing schemes for ad-hoc networks
Last decade advances on smart devices have led to the development and wide use
of ad-hoc networks, characterized by unreliable links, limited bandwidth, highly
dynamic topologies and unpredictable member behavior (there is no guarantee that
members will be online at a given time or for a given period of time). What’s more,
most of the devices used in these networks have low computational capabilities
given their need to manage energy efficiently. Due to the specific restrictions that
ad-hoc networks impose, re-keying is usually performed on a batch manner. An
interval between two batch re-keys is called a session. Zhu et al. present one of the
earliest schemes in [116]. They add reliability and self-healing to the aforemen-
tioned SDR general-purpose scheme ([68]) in order to obtain m-recoverability at a
low additional bandwidth overhead. Self-healing schemes may be split into three
main families according to the cryptographic technique they use [104].

Revocation polynomials

The first family uses revocation polynomials and secret sharing techniques. The
pioneering work in self-healing schemes, presented by Staddon et al. [95], falls
within this category. It combines the transmission to members of an initial set of
shares with the transmission of additional, redundant shares in every update round.
With that information, members are able to recover a given key even if they miss
its corresponding update. The price is an increase in bandwidth overhead, up to
O(mt2): m is the maximum number of updates a member can miss, while t is both
the polynomial degree and the minimum number of ex-members that must collude
in order to break the system. More et al. [67] found some reliability problems in
[95]. Also Blundo et al. [11] made some criticism on [95] concerning security and
proposed an alternative, more secure and efficient solution that reduces bandwidth
overhead to O(tj). The value j is the current session within the interval m: note
that the re-key information transmitted is a multiple of j and therefore increases
with time, to a maximum of m times. Other proposals are Liu et al. [60] and
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Hong et al. [42]: the latter slightly reduces Blundo’s requirements. Generally
speaking, this family of schemes is secure enough against collusion, but requires
large messages for re-keying.

Access polynomials

A different family uses access polynomials, which are formed by a product of terms
(x− IDα) for every legal member α plus the re-key material (IDα is a unique user
identifier in numeric format for member α). When a legal member α evaluates
the polynomial on IDα the re-key material is recovered. Schemes of this kind
have been proposed by Zou et al. [117] and Tian et al. [100]. They claim to
obtain optimal storage requirements: only 2 keys must be stored by every member.
However, their main drawback lays on message lengths, which are linear on the
number of members. As an anecdote, the authors of [100] point out an error in
the communication overhead datum provided by Hong et al. [42], which they fix
(the correct value is shown later in Table 2.3). Additionally, [117] allows to revoke
users on a temporary manner: other previous schemes like [11] and [60] do not
support that feature (revoked members can not rejoin).

One way functions

The last family of self-healing schemes relies on the use of one way functions. The
scheme in [32] by Dutta et al. achieves a better bandwidth usage, constant mem-
ber storage requirements, presumably unconditional security and is not restricted
to only m sessions recoverability. However, Du et al. later revealed security weak-
nesses in [32] and proposed an improved, collusion-free protocol [29]. Finally, the
same authors recently proposed another constant storage scheme [30] but they did
not guarantee its resistance to collusion. Generally speaking, schemes in this cat-
egory perform nicely in terms of member storage and communication overhead but
are vulnerable to collusion attacks so far.

2.4.1 Considerations on self-healing schemes
Table 2.3 compares the schemes found in [11, 30, 32, 42, 60, 95, 100, 117] focusing
on their storage requirements at the member and the communication overhead per
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Storage at Communication Collusion Key long
member overhead resistant life-span

Staddon et al.
[95], 2002

(m− j + 1)2 log q (mt2 + 2mt+m+ t) log q Yes No

Blundo et al.
[11], 2004

(m− j + 1) log q (2tj + j) log q Yes No

Liu et al.
[60], 2003

2(m− j + 1) log q (mt+ jt+ t+m+ 1) log q Yes No

Hong et al.
[42], 2005

(m− j + 1) log q (tj + j + t) log q Yes No

Zou et al.
[117], 2006

2 log q (t+ n+ 3) log q Yes No

Tian et al.
[100], 2008

2 log q n+ 2 log q Yes No

Dutta et al.
[32], 2007

3 log q (t+ 1 + j) log q No Yes

Du et al.
[30], 2009

3 log q (3t+ 2 + j) log q No Yes

Table 2.3: Self-healing secure multicast schemes comparison. See page 10 for
notation.

key update (q is a large prime involved in calculations, greater than the audience

size n). Data are expressed in terms of bits. Given the limited memory space of

smart devices constant storage requirements are desirable: those schemes using

access polynomials or one-way functions ([30, 32, 100, 117]) offer the best results

in that sense.

Regarding communication overheads, one way function schemes ([32] and [30])

show the best results. However, their vulnerability to collusion attacks makes them

a weak option to choose. Conversely, access polynomial schemes ([117] and [100])

exhibit a very high overhead since they depend on the number of members. That is

clearly a drawback. Revocation polynomials show an intermediate communication

overhead that, combined with their resistance to collusion, probably makes them

the best option. Note that in most cases overhead depends among other values on

the security parameter t, which results in a tradeoff between security and message

length.

The “Key long life-span” column refers to member keys lifetime: most of the

schemes require the member key to be renewed after m sessions. That is another

drawback since it increases the workload at the Key Server side and bandwidth
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usage, specially in not reliable networks which is the case.
To conclude, we believe that self-healing schemes still have several challenges

to overcome, mainly: costly setup phases that must be repeated after m sessions,
generalizing a constant use of storage and going further on bandwidth usage re-
duction while maintaining security and, finally, overcoming the usual security-
communication overhead tradeoff. The author of [104] states that almost none
of the schemes proposed so far is able to cope with real use conditions in large
mobile or wireless sensor networks, and suggests the proposal in [42] as the most
balanced. Finally, let us refer the reader to [12, 115] for a wider analysis on this
specific group of schemes.

2.5 Conclusions
This chapter provides a survey on the Centralized Secure Multicast field that in-
cludes some of the latest proposals. Table 2.4 compares the different schemes
reviewed according to their features:

• category (either general-purpose, multi-group or self-healing),

• whether stateful or stateless,

• whether secure so far or not, and

• whether a hierarchical tree of keys is used or not.

The main challenges that arise for the future come from the fact that Inter-
net and ad-hoc networks have conquered the small world: smart devices with low
computational and energy resources that operate in mobile, highly dynamic, some-
times infrastructure-less environments. Researchers therefore face the challenge
of designing new protocols that can provide an acceptable degree of security, effi-
ciency and flexibility for such scenarios. This translates into new requirements for
a centralized secure multicast scheme: (1) reductions of the number and frequency
of communications with the Key Server, (2) recoverability from information loss
and (3) lightweight computations are highly desirable features for future proposals.
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Category Stateful/
Stateless

Secure Reliable Keys tree

SecureLock [21], 1989 General Stateless 3

GKMP [39], 1997 General Stateful 3

Cluster [14], 1997 General Stateful 3 3

LKH [103, 105], 1999 General Stateful 3 3

LKH+ [102], 1999 General Stateful 3 3

OFCT [13], 1999 General Stateful 3 3

FT [19], 1999 General Stateful 3

ELK [88], 2001 General Stateful 3 3 3

SDR [68], 2001 General Stateless 3 3

LSD [38], 2002 General Stateless 3 3

LKH++ [26], 2002 General Stateful 3 3

SecureLock+LKH[92],2002 General Stateful 3 3

OFT [94], 2003 General Stateful 3

Ku [56], 2003 General Stateful 3 3

MDS [106], 2008 General Stateless 3 3

MDS+LKH [106], 2008 General Stateful 3 3

SKD [58], 2009 General Stateful 3 3

EGK [114], 2010 General Stateful 3 3

Yoon [110], 2011 General Stateless 3 3

Zhang [111], 2006 Multi-group Stateless 3 3 3

MG [98, 99], 2007 Multi-group Stateful 3 3

HAC [112], 2008 Multi-group Stateful 3 3

Xia [46], 2009 Multi-group Stateless 3 3

Yan [107], 2009 Multi-group Stateful 3 3

Koo [53], 2009 Multi-group Stateful 3 3

Hur [44], 2010 Multi-group Stateless 3 3 3

Staddon [95], 2002 Self-healing Stateless 3

Zhu [116], 2003 Self-healing Stateless 3 3

Liu [60], 2003 Self-healing Stateless 3 3

Blundo [11], 2004 Self-healing Stateless 3 3

Hong [42], 2005 Self-healing Stateless 3 3

Zou [117], 2006 Self-healing Stateless 3 3

Tian [100], 2008 Self-healing Stateless 3 3

Dutta [32], 2007 Self-healing Stateless 3

Du [29], 2008 Self-healing Stateless 3 3

Du [30], 2009 Self-healing Stateless 3

Table 2.4: Feature comparison for the different schemes reviewed.
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Chapter

3
A centralized secure

multicast solution

3.1 Introduction
This chapter describes a centralized secure multicast solution which was first intro-
duced in [76] and later extended in [77]. According to the classification outlined in
Chapter 2, it is a general-purpose computational solution. The following features
are provided:

(a) private communications and efficient key refreshment,

(b) key server messages authentication, and

(c) validation among members.

Three different and complementary schemes are proposed in order to achieve
those goals. They can be implemented as a whole solution or on their own depend-
ing on the addressed scenario and its requirements. The core operation in all three
schemes is the Extended Euclidean Algorithm, which is briefly described next. The
Chinese Remainder Theorem and the practical infeasibility of factorizing very large
numbers are also used.
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3. A CENTRALIZED SECURE MULTICAST SOLUTION

After the publication of [76, 77], Peinado et al. made a cryptanalysis of the

whole solution in [86, 87] and exposed some security flaws. In response to it,

Antequera et al. made some remarks on the seriousness of some of the flaws and

proposed solutions to others [3]. Their respective works are cited and discussed

later only for the sake of completeness: the author of this thesis has not participated

in them.

The chapter is organized as follows. Section 3.2 describes the Extended Euc-

lidean Algorithm and the Chinese Remainder Theorem. Section 3.3 describes the

scenario conditions we assume for our solution. Section 3.4 presents the key re-

freshment scheme, as well as a security and efficiency discussion, a comparison

with the state of the art and simulation results. Sections 3.5 and 3.6 introduce and

discuss the schemes for key server messages authentication and verification among

hosts, respectively. Section 3.7 briefly mentions some extensions to our scheme

proposed by Antequera et al in [2]. Finally, the conclusions of the chapter are

presented in Section 3.8.

We would like to emphasize that the work in [2, 3, 86, 87] is not part of this

thesis and that it is referenced here for the sake of completion.

3.2 Algebraic background
This section describes two algebraic tools that will be useful later. The information

shown in this section is mainly taken from the Handbook of Applied Cryptography

[64].

3.2.1 The Extended Euclidean Algorithm

The computational solution proposed in this chapter requires the calculation of the

greatest common divisor (gcd), which can be easily computed for small numbers

with Alg. 1.

However, the factorization of large numbers is still an open problem and even-

tually becomes computationally unfeasible as the number to be factorized grows.

Fortunately, the Extended Euclidean Algorithm (EEA, Alg. 2) finds the greatest

common divisor in O((log n)2) time. What’s more, it allows to compute the values
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Algorithm 1 Greatest common divisor of two positive integers using their prime
powers.

INPUT:
a, b: positive integers, with a ≥ b.
OUTPUT:
gcd(a, b): the greatest common divisor of a and b.

1. Let p1 · · · pk the first k distinct prime numbers.
2. Write a as pe11 · · · p

ek
k , where ei ≥ 0.

3. Write b as pf11 · · · p
fk
k , where fi ≥ 0.

4. result← p
min(e1,f1)
1 · · · pmin(ek,fk)k

5. Return result as gcd(a, b).

Algorithm 2 The Extended Euclidean Algorithm.

INPUT:
a, b: positive integers with a ≥ b.
OUTPUT:
gcd(a, b): the greatest common divisor of a and b.
u, v: integers such that au+ bv = gcd(a, b).

1. if b = 0 then
2. gcd(a, b)← a, u← 1, v ← 0

3. return gcd(a, b), u, v

4. else
5. u2 ← 1, u1 ← 0, v2 ← 0, v1 ← 1

6. while b > 0

7. q ← ba/bc, r ← a− qb, u← u2 − qu1, v ← v2 − qv1
8. a← b, b← r, u2 ← u1, u1 ← u, v2 ← v1, v1 ← v

9. endwhile
10. result← a, u← u2, v ← v2

11. return result as gcd(a, b) and u, v
12. endif

27
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u, v that satisfy Bezout’s identity shown in Theorem 1. We will take advantage of
this fact later.

Theorem 1 Bezout’s identity. Let a and b be non-zero integers. There exist in-
tegers u, v for which au+ bv = gcd(a, b).

3.2.2 The Chinese Remainder Theorem
The Chinese Remainder Theorem (CRT) is described in Theorem 2.

Theorem 2 Chinese Remainder Theorem. Given the pairwise relatively prime in-
tegers n1, . . . , nk, the system of simultaneous congruences

x = a1 mod n1

...

x = ak mod nk

(with a1, . . . , ak also integers) has a unique solution modulo n = n1 · . . . · nk.

3.3 Scenario
The scenario we address is the following: private communications are to be estab-
lished within a restricted group. There is a Key Server in charge of key management
issues. There is also a set of members which may communicate among them and/or
with the Key Server, depending on the nature of the service. Therefore communic-
ations can be either one-to-many or many-to-many. Both forward and backward
secrecy (see Defs. 1 and 2) are required.

Private communications are the main goal of a secure multicast solution. How-
ever, we have tried to exploit our solution in order to achieve authentication of
re-key messages and members.

3.4 Distribution of secrets within closed groups
The first scheme allows the Key Server to generate and privately distribute a secret
piece of information among a restricted audience. In our target scenario this sens-
ible information can be used directly as an encryption key or fed to a Key Derivation
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Function in order to derive a proper key (we will discuss this issue shortly). The
most relevant features of the scheme are:

• Only one message is generated per re-key operation.
• Suitable for all topologies.
• No need for message re-encryption.
• Only one secret piece of info is held by each client. We call this pieces

member tickets.
• Cost-effective and easy to deploy.

Let us assume r is the secret to be multicast, and that there are n members at a
given time. The following paragraphs explain how the scheme works.

When a member i joins, the Key Server assigns her a member ticket, xi. Every
ticket is a different large prime1 and is communicated to the corresponding member
under a secure channel (e.g. SSL/TLS [27]). This communication is made once per
member only, so it does not affect global efficiency. xi is known only by its owner
and the Key Server, and r is shared by all members and the Key Server as a result
of executing the protocol. Algorithm 3 shows the generation and distribution of r.

New values for m, g, p and/or k must be chosen for each refreshment of r.
Note that δ, u and v depend on them and will change as they do. Some remarks
can be made to the algorithm which are stated next.

Finding a proper g

First, a proper value g at step 1iii of Alg. 3 is easy to calculate: once the Key Server
has chosen m = p · q + 1, a value a is chosen satisfying that m − 1 is the least
integer such that am−1 mod m = 1 (that is, a is a primitive value from Zm). Then
g = aq mod m.

Using r as a symmetric encryption key

Second, the secret r can be treated as a symmetric key to be used along with any
symmetric encryption algorithm such as AES [82]. However, the bit-length of

1Strictly, it is sufficient that all xi are coprime and greater than δ. In that case, however, it would
be necessary that every xi has a large prime factor in order to make the factorization of L harder (δ
and L are introduced in Algorithm 3).
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Algorithm 3 The re-keying algorithm.

1. The Key Server selects:

i. m, p, large prime numbers, such that m− 1 = p · q.

ii. k and δ, such that δ = k + p and δ < xi, for every i = 1 . . . n.

iii. g that verifies 1 = gp mod m.

The secret to be distributed is r = gk mod m.

2. The Key Server calculates L =
∏n

i=1 xi. L is kept private in the Key Server.

3. The Key Server finds u, v, by means of the Extended Euclidean Algorithm,
such that

u · δ + v · L = 1 (3.1)

4. The Key Server multicasts (makes public) g, m and u on plain text.

5. Each member i calculates u−1 mod xi = δ and gδ mod m = gk mod m = r.

r can be as much as that of m, therefore some preprocessing should be applied

to r before feeding it to a fixed key-length symmetric encryption algorithm (m

will be presumably longer than a typical symmetric key). A trivial solution would

be to truncate r at the desired length, while the most prudent is to apply a Key

Derivation Function (KDF) to r. KDFs return cryptographically strong, arbitrarily

long symmetric key material that depends on the input provided. Two well known

standards of KDF are the NIST SP 800-108 [20] and HKDF [54]. The multicast

information should then be encrypted and decrypted with KDF(r).

Recomputing L

Third, fortunately it is not necessary to recompute L from scratch between two

consecutive re-key operations: L is simply multiplied by the incoming members

tickets and divided by those of the leaving members. This dramatically speeds the

process up.

30



3.4 Distribution of secrets within closed groups

Long intervals without joins nor leaves

Fourth, the Key Server might decide to refresh r after a long period of time with no

members joining or leaving for security reasons.

Disclosure of public keys

The protocol can be used for an additional purpose: the refreshment of asymmetric

key pairs and the disclosure of the public part. Recall that the encryption key

delivered to the audience has the form r = gk mod m, which is similar to an

Elgamal public key [33]. An Elgamal key pair has the form:

Kpub : g,m, gk mod m

Kpriv : k

Therefore, the protocol can be seen as a way of controlling the disclosure of

Elgamal public keys if the scenario requires it: the public key is only communicated

to a closed group of recipients.

3.4.1 Proof of correctness

Given that δ < xi, i = 1 . . . n and with every xi prime (or coprime at least), it is

clear that:

gcd(δ, xi) = 1, for every i = 1, . . . , n

and hence,

gcd(δ, L) = 1 (3.2)

Equation (3.2) ensures, by the Extended Euclidean Algorithm, the existence of

u, v ∈ Z such that δ · u+ v ·L = 1, from where it is deduced that δ · u = 1 mod xi

and so u−1 = δ mod xi, for every i = 1, . . . , n. The Chinese Remainder Theorem

guarantees that the solution for u−1 mod xi = δ and δ < xi, for every i = 1, . . . , n

is unique.
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The value r = gk mod m is obtained as shown next (recall step 1iii of Alg. 3):

gδ = gk+p mod m

= gk · 1 mod m

= gk mod m

g is public, but the use of δ assures that an outsider will not be able to guess k and,

therefore, r.

3.4.2 Efficiency considerations on the re-key scheme

Kruus [55] suggests five issues that a multicast key management protocol must

address. They are:

1. efficiency in initial keying,

2. efficiency in re-keying,

3. computational requirements,

4. storage requirements,

5. scalability.

There is no difference in our scheme between first time keying (requirement

1) and further re-keying operations. Re-keying operations are simple (requirement

2): the Key Server generates a single message which is injected into the multicast

network on plain text, since only authorized members will be able to process it

correctly. Requirements 3, 4 and 5 are discussed next.

We can observe that L will be large, given that L =
∏n

i=1 xi. So will be u (recall

Eq. (3.1)). In order to estimate it, assume for the rest of the chapter that every xi
value is stored in an unsigned binary data type of b bits. The greatest value that can

be represented is 2b − 1. Assume also there are n members. The maximum length

of L is then n · b bits. That is also the maximum length of u.

From the previous consideration we assume that Kruus’ requirements 3 and 5

are the weakest points of our scheme. The solution that allows to overcome these
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problems consists of logically dividing the audience into s disjoint subgroups while

delivering the same encryption key to all of them. This can be done by running a

different instance of the algorithm for every subgroup, with some variations: val-

ues m, g, p and k are the same for every subgroup j (and so is δ), but each partial

product, Lpartj with j ∈ [1, s] from now on, contains the product of the tickets of

the members within the given subgroup only. With this modification the same key

is delivered to every subgroup by means of several shorter messages that are dis-

seminated throughout the network, which is more convenient in terms of efficiency.

Now every peer needs only to process the short message addressed to its subgroup.

However, the join and leave operations still require the whole set of members

to obtain a new key, therefore s refreshment messages (g, m and the corresponding

u) must be computed and multicast now; each one for a different subgroup. Figure

3.1 shows an example: note that all subgroups receive the same g and m (which

guarantees that the same key is obtained) but a different u, due to the use of different

Lpart values, Lpart1 = xAxBxCxD, Lpart2 = xExFxGxH and Lpart3 = xIxJxKxL.

It is important to remark that such division is logical and independent from the

topology of the network, that is, the underlying topology is not affected, neither

dissemination of the encrypted information nor re-key messages. Only the Key

Server is aware of the global arrangement, while a given peer knows only which

subgroup it belongs to. However, in the case that the network topology is naturally

divided through time (such as a regional division, for example) a topology-aware

logical arrangement may be used.

Adopting the subgroups approach brings many benefits, even though the final

bandwidth requirement does not change. First, it is obvious that, for a fixed number

of members, the length of u values decreases linearly as the number of subgroups

increases. Second, the message generation process that takes place at the Key

Server can be sped up. Every different u can now be computed by a separate

process, which may run concurrently with the others. This is specially appropriate

for current multi-core processors. The whole process can be sped up by almost

s times if the software is properly tuned. As a consequence, a better scalability

is achieved, allowing to increase the maximum number of members that can be

handled. Let us remark that users should be assigned to subgroups in a balanced

way in order to keep refreshment messages as short as possible. This raises other
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Figure 3.1: The subgroups extension to the re-key scheme. Capital letters denote
members. r is the multicast secret.

issues, such as the problem of re-balancing subgroups after a leave avalanche, for

example.

3.4.3 Security considerations on the disclosure scheme

Security in the distribution of r relies on the infeasibility of calculating the right δ

in a reasonable time if a valid xi is not known by the attacker (recall that values for

Eq.(3.1) in Algorithm 3 are unique). The privacy of k and p is guaranteed if:

• a sufficiently large value is chosen for m,

• p and q have a similar bit-length (recall that m− 1 = p · q).

In that case factorizing m− 1 will be more difficult. Additionally, a strong prime1

can be chosen for m. Next, security is discussed considering three different types

of attacker.

1From [64]: a prime number p is said to be strong if three conditions are satisfied,

i. p− 1 has a large prime factor, say f ,
ii. f − 1 has a large prime factor, and

iii. p+ 1 has a large prime factor.
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Security against an outsider

First, we assume the presence of an adversary who neither has nor has had a valid

ticket. Her intention is to learn about the secret value that is being disclosed to legal

members. Those members, as was explained in step 5 of Algorithm 3, compute a

modular inverse by using their corresponding ticket as the modulo. Let us assume

that a non-member obtains a re-key message, i.e. g, m, u on plain text. In order

to guess r, the non-member must discover the value δ used by the Key Server.

Now, if we take into account that δ is the unique solution of the congruence system

x = u−1 mod xi in the interval [0, L−1], then the calculus of δ implies knowing L

or one valid ticket xi. L is kept private in the Key Server but, even if it were public,

its factorization is still a challenge as long as long enough tickets were used. On

the other hand, in this attack we assume that the attacker does not know any valid

ticket. Therefore, the only option to the best of our knowledge is a brute-force

attack on r.

Security against an insider

Legal members might be interested in compromising other authorized member tick-

ets. Consider such an attacker: she knows that u · δ = 1 mod L, i.e., L divides

u · δ − 1. Then by factoring u · δ − 1 she would get all factors in L (the tickets).

As in the previous attack, this factorization problem is computationally difficult to

solve if tickets are long enough.

Security against an ex-insider

Finally, a former user who still holds her old ticket might intercept a refreshment

message hoping that her ticket was reassigned to a new member. If that was the

case it is clear that she would be successful in recovering the secret r. The way to

prevent this attack is to never reuse tickets (or for a large period of time at least).
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3.4.4 Security considerations on the disclosure scheme by Peinado
et al. and Antequera et al.

As we mentioned earlier, Peinado et at. analyzed the whole solution in [86, 87].

Regarding the disclosure scheme, they claim to have found a security flaw by ob-

taining a multiple of the secret value L, or even the value itself with some probab-

ility. This can then be used for two different purposes: forging fake refreshment

messages and (presumably) recovering user tickets.

For every attack we also show comments from Antequera et al. in their response

work [3]. The notation used here is similar to that used in [87].

3.4.4.1 Attack 1

Let us recall Eq. 3.1

u · δ + v · L = 1

After one execution of the key refreshment scheme, user h gets δ = u−1mod xh,

and consequently can obtain vL by simple manipulation of Eq. 3.1.

v · L = 1− u · δ. (3.3)

The value v · L can be used to forge new fake key refreshment messages as

explained in [87]:

1. Member h generates a new value δ′ < δ and computes u′ and v′ by means of

the Extended Euclidean Algorithm such that

u′ · δ′ + v′ · (v · L) = 1 (3.4)

2. Member h sends g, m and u′ to every other member i. Such member i will

obtain the new value δ′ = u′−1 mod xi, and compute the refreshed key from

it.

The result is member h controlling the key refreshment process.
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3.4.4.2 Remark to attack 1

The attack above, while correct and smart, deals with impersonating the Key Server
which is a complementary issue as stated in [3]. Every secure multicast scheme has
a similar problem if no authentication measure is taken. As an example, take the
Logical Key Hierarchy shown in Section 2.2.1: every member knows the whole key
path to the root and can thus mislead all other members within the same branch.

A simple and standard countermeasure to this attack is therefore to add a digital
signature to every refreshment message from the Key Server.

3.4.4.3 Attack 2

This attack deals with recovering the value L with the aid of two consecutive re-
freshment messages. First, let us assume that the members set has not changed
in the meantime: this implies that the same L was used and thus the malicious
member h can use two equations, each one corresponding to one refreshment.

v · L = 1− u · δ
v′ · L = 1− u′ · δ′ (3.5)

Therefore, h knows two different multiples of L, i.e., v · L and v′ · L. The
greatest common divisor of them is L with high probability.

Second, if there was any change in the members set between the two refresh-
ments then h obtains the following equations,

v · L = 1− u · δ
v′ · L′ = 1− u′ · δ′ (3.6)

with L and L′ different, but sharing many common factors (the tickets of the re-
maining members). The greatest common divisor of L and L′, say Lsub, corres-
ponds to the product of those remaining tickets. This process can be repeated with
the hope that eventually Lsub will be formed by a single ticket in the case that only
one member from the original set remains.

3.4.4.4 Remark to attack 2

In the first case, when L does not change, factoring L is still a problem for the
attacker. The use of 1024 bits long primes already makes the factorization of L
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computationally not affordable nowadays. Peinado et al. use a genetic algorithm
for the factorization of L when tickets are 64 bits long in [87]. This short size is far
from secure nowadays.

In the case of Lsub, Antequera et al. suggest to include an unassigned extra
ticket x∗ inL, so in the worst case we haveLsub = xi·x∗, which is still an intractable
problem for long enough primes. Therefore no assigned ticket will be disclosed
regardless of the size of Lsub.

3.4.5 Experiments
We have developed a Java 1.7 implementation of the scheme in order to obtain ex-
ecution times. The BigInteger Java class was used for handling large numbers, and
the Miller-Rabin test [64] was employed to check primality. The hardware used
was an Intel Core i5 with 4GB RAM and four cores, each one at 3.33GHz. How-
ever, parallelization was not exploited: a single core was used. Each experiment
was run ten times: in the following tables we show the average and the standard
deviation per experiment. Graficos

Página 1

1000 5000 10000
0

10

20

30

40

50

60

70

80

90

2304 bits

2048 bits

1536 bits

1024 bits

Group size

E
xe

c.
 ti

m
e 

( s
ec

s)

Figure 3.2: Key server total execution time.
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Audience size
1000 5000 10000

1024 bits Total 2.2218 2.1433 6.1864
tickets Total std 2.1865 1.2030 4.4841

MPQ 2.1906 2.0602 6.0470
MPQ std 2.1866 1.2032 4.4834
Total - MPQ 0.0312 0.0830 0.1395
Total - MPQ std 0.0012 0,0017 0.0033

1536 bits Total 8.3064 14.6533 15.9610
tickets Total std 6.736 16.508 17.157

MPQ 8.2253 14.4729 15.6535
MPQ std 6.7362 16.508 17.159
Total - MPQ 0.0811 0.1804 0.3075
Total - MPQ std 0.0003 0.0018 0.0073

2048 bits Total 34.0932 24.3556 45.9582
tickets Total std 27.49 15.846 23.436

MPQ 33.9226 24.0146 45.4015
MPQ std 27.49 15.847 23.44
Total - MPQ 0.1707 0.3409 0.5567
Total - MPQ std 0.0007 0.0014 0.0079

2304 bits Total 54.5011 66.8079 79.3990
tickets Total std 31.828 38.907 51.583

MPQ 54.2676 66.3647 78.6849
MPQ std 31.827 38.906 51.584
Total - MPQ 0.2334 0.4432 0.7142
Total - MPQ std 0.0005 0.0018 0.0035

Table 3.1: Key Server execution times in seconds for different ticket lengths and
audience sizes.

Table 3.1 shows execution times for the Key Server part of the Algorithm 3

with different ticket bit-lengths and audience sizes. The total figures (rows Total)

are also depicted in Figure 3.2. In order to obtain a better understanding of the

composition of total time results we have broken them down into MPQ time and

(Total - MQP) time: MPQ refers to step 1i in Algorithm 3, i.e., finding two primes

m, p such that m − 1 = p · q. For this, we used the method to find strong primes

suggested in [37]. This method has proven to be relative slow for large bit-lengths
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MPQ comparacion
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Figure 3.3: Key server total execution time breakdown.

(see rows MPQ) and its execution times are not deterministic as the standard devi-

ation indicates (see rows MPQ std). Figure 3.3 shows this breakdown: we can see

the main part of the execution is spent in searching for strong primes for m and p,

while the rest of the algorithm consumes a negligible part of the total time.

Fortunately, the MPQ part of the algorithm is completely independent and can

be run apart in a different thread. Thus, the Key Server may concurrently generate

m, p, q threesomes in advance so they are immediately available for the re-keying

algorithm when needed. Rows Total - MPQ and Figure 3.4 show the execution

time of the re-key algorithm without the MPQ part: it is small for all bit-lengths

and audience sizes and suggests that the algorithm can cope with high re-key rates.

Regarding the key recovery part of the algorithm run at the member, Table 3.2

and Figure 3.5 show the total execution times. These are also small, which is a pos-

itive feature since member hardware can vary from computers to low performance

set-top boxes (dedicated hardware).
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Figure 3.4: Key server Total - MPQ execution time breakdown.

Audience size
1000 5000 10000

1024 bits Total 0.0267 0.0631 0.1127
tickets Total std 0.0276 0.0300 0.0322

1536 bits Total 0.0464 0.1290 0.2327
tickets Total std 0.0275 0.0319 0.0354

2048 bits Total 0.0841 0.2219 0.3954
tickets Total std 0.0371 0.0294 0.0305

2304 bits Total 0.1064 0.2791 0.4925
tickets Total std 0.0291 0.0282 0.0283

Table 3.2: Member execution times in seconds for different ticket lengths and audi-
ence sizes.

3.5 Key refreshment message authentication

At this point we have achieved privacy in multicast communications. This sec-

tion presents a mechanism that authenticates the refreshment messages from the
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Figure 3.5: Member total execution time.

Key Server: such mechanisms are required to protect the system against forged

re-keying messages. The usual technology for message authentication is digital

signature: a hash of the message is encrypted with the sender’s private key. The

receiver can then decrypt the hash and compare it with its own result of a hash

operation on the received information.

Instead, we propose an alternative approach that is not based in the use of public

key cryptography, as a fast, straight and simple alternative for scenarios in which

a public key infrastructure is not available. Our solution intends to prove that the

sender either knows or ignores the recipient’s ticket. The two only entities in the

system that know any given ticket are its owner member and the Key Sever. As-

suming the ticket has not been stolen, any message received by a member that

successfully runs the verification scheme should only come from the Key Server.

The authentication method naturally arises from the re-keying material and no ad-

ditional infrastructure is needed.

Unfortunately, an attack against our authentication scheme was developed by

Peinado et al. in [86, 87], which we discuss later.
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For the moment, let us introduce the scheme. Algorithm 4 shows the re-key

message authentication process. We assume the Key Server is performing a re-

freshment of r so the authentication process is complementary to that described in

Section 3.4.

Algorithm 4 The key refreshment message authentication algorithm.

1. The Key server:

i. computes s = (gk)−1 mod L by means of the Extended Euclidean Al-
gorithm,

ii. chooses a random number a, such that a < xi, for every xi, and

iii. multicasts {a · s, h(a)}, where h(a) is the output of a one-way operation on
a. Such operation is not specified here.

2. Every member i receives the authentication message and computes h(a · s ·
r mod xi), which should be equal to the value h(a) received if xi is a factor of
L.

It is convenient that the authentication message is attached to the refreshment

message so authenticity can be verified upon reception. If the subgroups approach

is used for re-keying (see Section 3.4.2) then each partial re-keying message for

group j must be authenticated separately, using the corresponding Lpartj value.

3.5.1 Efficiency considerations on the message authentication scheme

Regarding efficiency, the arbitrary-precision arithmetic additional operations re-

quired at the Key Server side are a modular inverse and a multiplication. On the

other hand, every client must compute a modular multiplication. Those operations

have very little impact on the final runtime since they can be run very efficiently by

most of the hardware with arbitrary-precision arithmetic capabilities.

The scheme poses a disadvantage, however: the authentication message can be

as long as the key refreshment message.
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3.5.2 Security considerations on the message authentication scheme
by Peinado et al. and Antequera et al.

Peinado et al [86, 87] show that the message authentication protocol can be broken

by using a trick similar to that of attack 1 (Section 3.4.4.1). We show the method

next.

3.5.2.1 Attack 3

Let us assume that a forged key refreshment message is sent by member h as stated

in attack 1. Therefore forged parameters m′, p′, g′, δ′, k′ are used by h along with

v · L. By means of the EEA u′, v′ are also obtained. Member h now follows the

message authentication protocol as stated in Algorithm 4 with those forged values:

s′ = (g′k)−1 mod v · L (3.7)

Finally, a random value a′ is used and the authentication message is (a′·s′, h(a′)).

It is clear that this data correctly authenticates the forged refreshment message since

they were generated from the same initial parameters. Members receiving this in-

formation will therefore be misled to believe it comes from the Key Server.

3.5.2.2 Remarks to attack 3

Antequera et al. [3] propose a solution to the message authentication flaw that

somehow resembles the Secure Lock solution [21]. In it, the Key Server assigns a

second ticket bi ∈ [0, xi−1] to every member i and solves a system of congruences.

Algorithm 5 shows the steps taken by the Key Server. We assume the algorithm is

run along with Alg. 3.

The new algorithm is correct, however it has the same drawbacks than Secure

Lock: solving a huge system of congruences, a problem which does not scale well.

3.6 Peer validation: a zero-knowledge proof
Our last proposal deals with authentication among peers. Its aim is to verify

whether a given peer j holds a valid ticket xj without gaining knowledge of the
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Algorithm 5 The new message authentication algorithm by Antequera et al.

1. The Key Server:

i. selects a such that a < xi for every member i.

ii. calculates s = (gk)−1 mod L and solves the system of congruences x =

a · s+ bi mod xi, i = 1, . . . , n, obtaining the solution S.

iii. attaches (S, h(a)) to the key refreshment message.

2. Member i, upon reception of the message:

i calculates Si = S − bi mod xi.

ii checks whether h(Si · gk mod xi) equals h(a). In that case the message is
authentic.

latter: this means that j is a legal peer, assuming no information leakage. Verific-
ation is carried out by means of a challenge, with no disclosure of any private nor
sensible information. The scheme is presented next.

Assume that peer i wants to verify whether peer b is a legal peer, prior to estab-
lishing communications with it. Algorithm 6 shows the process.

Algorithm 6 The peer validation algorithm.

1. Peer i chooses a random integer wi such that 1 < wi < m and sends it to the
Key Server.

2. The Key Server computes the challenge invi = w−1i mod L and sends it to i.

3. Peer i sends {invi, gxi mod m} to b.

4. Peer b calculates wb = inv−1i mod xb, βj = wb · (gxi)xb and sends {βb, gxb} to
i.

5. Peer i computes βi = wi · (gxb)xi , which should be equal to βb.

From the algorithm, it is clear that b owns a valid ticket xb if βi = βb. Otherwise
peer i should warn the Key Server so preventive measures can be taken against b.

45



3. A CENTRALIZED SECURE MULTICAST SOLUTION

In case this protocol is implemented in a standalone manner and no public key

disclosure algorithm is being run then the Key Server must choose the values g and

m as shown in Section 3.4 and communicate them to peers before any authentica-

tion is done.

3.6.1 Efficiency considerations on the peer validation scheme

Regarding efficiency, the protocol involves one communication with the Key Server,

which clearly limits its application range. Next, two extensions that partially alle-

viate the problem are proposed. Both can be combined together.

3.6.1.1 Challenge precomputation

Peer i sends a list of several wi values, (wi1, . . . , win), to the Key Server on each

request. The Key Server replies with the corresponding list of challenges, (invi1,

. . . , invin), that can then be used by i when needed. A new request to the Key

Server is issued when all, or near to all, challenges have been used. Note, however,

that challenges are only valid until the next re-keying operation due to the change

of L.

3.6.1.2 Subgroups approach with trusted super-peers

In the subgroups approach (see Section 3.4.2) the global L value is split into dif-

ferent, smaller Lpartj values. If fully trusted super-peers are introduced, each one

receiving an updated version of one or more distinct Lpartj values from the Key

Server, then they can act as signature servers, thus alleviating workload at the Key

Server side and increasing overall scalability. Peers can now send their challenge

requests to the corresponding super-peer. Given that super-peers are fully trusted

our security considerations still hold, and tickets within the product Lpartj still re-

main private. Even if a super-peer went malicious and tried to gain access to the

tickets, it still should have to factorize Lpartj , which is a computationally imprac-

tical task if a proper ticket bit-length is chosen.
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3.6.2 Security considerations by Peinado et al. and Antequera et
al. on the peer validation scheme
Peinado et al. [86, 87] developed an attack that allows a malicious member i to
obtain the ticket of the victim j.

3.6.2.1 Attack 4

Alg. 7 shows the process. Here the notation used by Peinado et al. is not used since
it conflicts with ours.

Algorithm 7 Attack 4, proposed by Peinado et al. on the peer validation scheme.

1. Member i computes gxi mod m, chooses a random inv and sends
(inv, gxi mod m) to j.

2. Member j computes wj = inv−1i mod xj , gxj mod m and
βj = wj · (gxi)xj mod m. Then she sends (βj, g

xj mod m) to i.

3. Member i computes βi = (gxj)xi mod m. Then, she recovers
wj = βj ·(gxixj)−1 modm. Ifm ≥ xj , then wj = wj modm and inv ·βj−1 is a
multiple of xj . Therefore, xj could be computed as xj = gcd(inv ·βj − 1, v ·L)

with high probability.

Note that member i does not communicate with the Key Server. Instead, she
chooses a random inv.

3.6.2.2 Remark to attack 4

Antequera et al. [3] show that this attack works only either if m ≥ xj or wj ∈
[0,m]. Therefore the attack fails ifm < wj < xj since wj 6= wj mod m. Then they
propose the following extension based on the extension in Section 3.6.1.1: member
i must send a list of wi candidates to the Key Server. From them, the Key Server
chooses one such that m < w−1i mod xl, where xl is the largest ticket in the system
(so it can be used with any member j). Then, the Key Server signs wi and sends
the value and the signature back to i, who forwards it j. This way, j knows that the
value comes from the Key Server and was not maliciously chosen.
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Additionally, we propose a simplification of this solution: the Key Server can

directly choose wi so it does not need to come from i.

3.7 Other extensions by Antequera et al.
In a different work, Antequera et al. refer to the scheme as Euclid and propose two

different extensions [2]. The first one combines the key refreshment scheme with

the Hierarchical Tree Approach in order to address larger audiences and shorter

refreshment messages.

In the second extension, they propose a distributed multicast protocol. In this

scenario the audience is divided into subgroups, each one controlled by a trusted

group manager. We refer the reader to [2] for further reading.

3.8 Conclusions
This chapter introduces three different applications of the Extended Euclidean Al-

gorithm, all of them focusing on privacy and security in multicast scenarios. The

main one, a re-keying mechanism, allows a single entity to manage the distribution

and renewal of encryption keys within restricted groups with the final goal of hold-

ing private communications. Despite an attack introduced by Peinado et al. the

protocol is secure so far as stated by Antequera et al.: the difficulty of the attack

increases with ticket bit-length. Tickets from 1024 bits length on can be considered

secure so far. That bit-length is common in today’s public key cryptography.

The second application is a message authentication mechanism which is not

based on public key cryptography. It was intended for situations in which the latter

is not available, and can be run along with the first scheme. Unfortunately, Peinado

et al. exposed a flaw in which the Key Server can be impersonated: its implications

are that this scheme is not secure for practical use. The Chinese Remainder The-

orem based solution proposed by Antequera et al. might be an alternative, however

the simplest and fastest solution is to use a public key based signature.

Finally, a zero-knowledge protocol was presented which can be used for valid-

ation between two members. By using this protocol clients can decide whether to
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trust others or not before establishing communications with them. It works by chal-
lenging clients to demonstrate that they own a valid ticket. A flaw in the protocol
exposed by Peinado et al. was later fixed by Antequera et al. The new solution pro-
posed by them achieves an applicability similar to that of the initial sub-protocol.
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Contributions to privacy-preserving
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peer-to-peer networks
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Chapter

4
Related work on

privacy-preserving
distributed computations

After having introduced our centralized secure multicast solution we now move

forward to the second part of this thesis dissertation: privacy-preservation commu-

nication models for fully distributed computations in peer-to-peer networks. The

present chapter reviews the related work so far and provides some needed back-

ground, while Chapter 5 introduces and discusses our proposal.

The outline of this chapter is as follows. First, Section 4.1 introduces Shamir′s

Secret Sharing scheme, a fundamental primitive of cryptography widely used in

this research field. Section 4.2 introduces the two different types of adversaries

considered in the literature. Section 4.3 reviews some pioneering solutions, which

address small scenarios with a reduced number of participants. They are interesting

because they serve as a basis for more recent works. Section 4.4 shows some recent

proposals that deal with large networks. Finally, Section 4.5 goes into the details

of one of those recent proposals, which we will compare to a solution proposed by

us in the next chapter.
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4.1 Shamir′s Secret Sharing scheme
Secret sharing schemes are a core routine in cryptography. A (t, n) secret sharing
scheme can be defined as follows.

Definition 13 A (t,n) Secret Sharing Scheme distributes a secret x in n shares,
needing t ≤ n shares to reconstruct it, and being this impossible with a number of
shares below a threshold t.

In other words, player i wants to share a secret x into n pieces, such that t
of them are enough to recover it. Among all secret sharing schemes Shamir′s is
undoubtedly the most popular. Algorithm 8 shows its steps.

Algorithm 8 Shamir′s Secret Sharing algorithm.
1. Player i generates a polynomial P (x) = x+

∑t−1
s=1 asx

s. Note that x is the free
coefficient.

2. Player i creates n shares by evaluating P (x) at different points. For example,
share j corresponds to P (j).

3. Player i gives each other player a different share.
4. To recover x, at least t players must gather and interpolate their shares, thus

obtaining a new polynomial P ′(x) with free coefficient x.

4.2 Adversary models
During the execution of a distributed algorithm an unknown arbitrary number of
players may be interested in obtaining private information from other nodes. A
privacy-preserving algorithm tries to prevent them from succeeding. Typically, two
assumptions are made when modelling enemies.

First, the enemy is seen as an entity controlling a set of nodes. This means
assuming the worst case scenario: that all adversary nodes collaborate together
in order to achieve the same goal. Therefore the collusion attack is commonly
considered in the literature (see Definition 11 in Chapter 1).

The second assumption deals with the actions the adversary may carry out.
Based on them, an adversary may either be semi-honest or malicious [59].
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Definition 14 A semi-honest adversary tries to obtain hidden knowledge from the
information disclosed by the protocol without deviating from the correct execution
of the latter.

That means that a typical semi-honest adversary will never forge messages, for
example, but will store incoming messages for later analysis.

Definition 15 A malicious adversary deviates from the behaviour assumed by the
protocol and tries to obtain private information by taking arbitrary actions.

Malicious adversaries will probably forge messages, or in other words, fake their
input of the algorithm in order to expose other players′ private information. Pre-
venting attacks by this kind of enemies is far more difficult than in the semi-honest
case, resulting in complex and usually less efficient algorithms.

4.3 Foundations of privacy-preserving computations
Yao published the first important works on the field in 1982 [108] and 1986 [109].
In them he posed the Millionaire′s problem and similar ones, and presented a
framework that allows two players to privately compute the output of a distrib-
uted function as well as some applications of this framework. He also extended
this solution to the multiplayer case.

A similar, more advanced framework was proposed by Malkhi et al. in 2004
[62], and its multiplayer extension in 2008 [5]. Other important previous multi-
player protocols are [6] and [35].

The proposals above allow to compute any generic function that can be pre-
viously transformed into a Boolean circuit. Apart from them, Clifton et al. [23]
proposed also an early framework based on secret sharing [64] for executing dif-
ferent privacy preserving operations in distributed algorithms, such like sum, set
intersection and set union. These operations can be combined to create more com-
plex ones. Also, Ishai et al. [45] show a very recent solution to the problem.

Even though most of the solutions above have multiplayer extensions and tar-
get both semi-honest and malicious adversaries they are complex and, most im-
portantly, not very efficient since they impose a synchronous execution. Therefore,
they are not suitable for peer-to-peer networks.
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4.4 Proposals for the computation of specific functions

A different group of more recent proposals achieve better applicability in large and

dynamic scenarios at the cost of focusing on the computation of a single operation

rather than of any function. For example, Canny addresses collaborative filtering in

peer-to-peer networks [15], while Kamvar et al. compute the Eigentrust algorithm

for reputation management purposes [50]. Let us remark that, again, all solutions

reviewed here impose synchronous constraints on the execution.

He et al. [40] propose a solution for wireless sensor networks that combines

secret sharing with encryption. However the resulting algorithm does not address

churn and accuracy may be affected by message loss (a typical phenomenon in such

networks). Even vehicular networks (VANETs) have been considered as scenarios

for the problem [57].

Das et al. [24] address sum computations in peer-to-peer networks with the

additional advantage that nodes can set their desired level of privacy. However,

their proposal is partially synchronous and problems like message loss and node

churn have not been taken into account.

Other ideas that have been applied to peer-to-peer privacy preservation are ran-

dom perturbations [31] and homomorphic encryption [83]. The first can be applied

only to aggregation and consists of adding a random, controlled noise to every

piece of data sent: when summing all the information received the noise will most

probably cancel out. Though efficient and simple, this technique lacks accuracy

and offers limited privacy as shown in [28].

Homomorphic encryption has also been proposed as a solution. However, it

requires a trusted third party and imposes synchronism, thus slowing down compu-

tations. Bickson et al. show that neither random perturbations nor homomorphic

encryption are the best choices for large dynamic networks [9]. In the same paper,

Bickson et al. propose SSS, the most advanced solution so far to the best of our

knowledge. We discuss it in the next section.
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4.5 SSS: the proposal by Bickson et al.
Bickson et al. introduce their algorithm SSS in [9]: a method for the computation

of privacy preserving sums in peer-to-peer networks in presence of semi-honest

adversaries. We note that although the SSS method has been extended to cope with

malicious adversaries [10] it has not been prepared to deal with the realistic failure

models we wish to target here, so here we focus on the version presented in [9].

Let us discuss it in a more formal way. Assume a peer-to-peer overlay network

with N nodes, where each node i has a private value xi and each link (i, j) has

an assigned weight wij . The ultimate goal of the method is having every node i

compute the sum ∑
j∈IN [i]

wjixj, (4.1)

without being able to extract every independent value xj , being IN [i] the set of in-

neighbors of i. This implies that every private value xi in the network remains a

secret except for its owner. Additionally, the sum in Eq. (4.1) is known only by i.

The strategy followed to achieve this goal is based in Shamir′s Secret Sharing

scheme [93] (hence the name SSS), and is stated in Algorithm 9 (taken from [9];

notation is adapted to ours). In a nutshell, each in-neighbour of i, i.e. each j ∈ IN [i]

generates k shares from its secret value xj and delivers each one to a different in-

neighbour of i (including itself). Then, every node j sums all the shares received

within this iteration and sends the result to the central node i. Finally, i interpolates

the aggregated shares received and obtains a polynomial P (x). The free coefficient

of P (x), i.e. P (0), corresponds to Eq. (4.1).

Figures 4.1 and 4.2 shed light on the process. We consider the neighbourhood

formed by node i and j, l, m ∈ IN [i]. The secret values of the latter nodes are

5, 6 and 7, respectively, and all link weights are 1 for simplicity. Therefore, node i

should learn the following linear combination

wji · xj + wli · xl + wmi · xm = 1 · 5 + 1 · 6 + 1 · 7 = 18 (4.2)

after one round of execution.

Each in-neighbour of i is assigned a different random x-coordinate, say 1, 3,

and 2, respectively. The upper part of Figure 4.1 shows the polynomials chosen by
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Algorithm 9 The SSS algorithm by Bickson et al.

INPUT:
xj at every node j ∈ IN [i]

k: a fixed security parameter, such that k ≤ |IN [i]|
OUTPUT:
The value computed in Eq. (4.1) at node i.

1. Each node j generates a random polynomial Pji = wjixj+
∑ki−1

s=1 asx
s of degree

ki − 1 (where ki ≤ |IN |[i ]).
2. For each neighbour l of node i, i.e. l ∈ IN [i ], each node j creates a share Cjil of

the polynomial Pji(x) by evaluating it on a single point xl.
3. Each node j sends Cjil to node l, which is also i’s neighbour.
4. Each neighbour l of node i aggregates the shares she received from all neigh-

bours of node i and computes the value Sli =
∑

j∈Ni
Pji(xl)

1.
5. Each neighbour l sends the sum Sli to node i.
6. Node i treats the value received from node l as a value of a polynomial of degree
ki − 1 evaluated at the point xi.

7. Node interpolates Pi(x) for extracting the free coefficient, which in this case is
the weighted sum of all messages

∑
j ∈ IN [i]wjixj .

the in-neighbours

Pji = 2x2 + x+ 5

Pli = 4x2 + 3x+ 7

Pmi = 3x2 + 2x+ 6,

and the shares generated by each in-neighbour: Cjij , Cjil, Cjim, Clij , Clil, Clim,

Cmij , Cmil, Cmim. We can see that the shares are actually points in their respective

polynomials. Then, those shares are spread among the neighbourhood (Fig. 4.2(a)

depicts j sending its own), and each in-neighbour sums every share received (Fig.

4.2(b) shows node l receiving all shares). Finally, every in-neighbour sends its

1Note that the result of this computation is equal to the value of a polynomial of degree ki − 1,
whose free coefficient is equal to the weighted sum of all messages sent to node i by its neighbours.
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Figure 4.1: Aggregation and interpolation of shares in the SSS algorithm.

summation of shares to i: Sji, Sli, Smi (see Fig. 4.2(c)). These S messages are

actually points of the polynomial Pi = Pji + Pli + Pmi, depicted in the lower part

of Figure 4.1. Node that i obtains Pi by simply interpolating the three S messages.

The free coefficient is the value shown in Eq. (4.2).

The value k is actually a security parameter. From Shamir’s Secret Sharing

scheme it is straight that i must collude with k − 1 in-neighbours if she wants to

discover the secret value of j. This parameter is fixed for every neighbourhood and

must be established prior to executing the algorithm. This means that nodes can not

decide autonomously on their security degree. In general, any change in parameter

values has to be agreed on in every neighbourhood. In practical implementations

parameters will be probably imposed by i.

Regarding tolerance to message loss, the algorithm tolerates the loss of up to

|IN [i]| − k type S messages (those addressed to i), but each in-neighbor j ∈ IN [i]
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(a) Sending shares (b) Collecting shares (c) Sending share
aggregations

Figure 4.2: Messages sent in the SSS algorithm.

must receive every share of type C sent to it by all the other in-neighbors of i in

order to be able to send a correct S message to i. Note that in case this did not

happen then computations would be corrupted. Also note that even if message

losses were detected by some mechanism (not mentioned in [9]) the result of the

affected iteration should be discarded.

Message complexity is O(|IN [i]|2 + |IN [i]|) for each neighbourhood because

all the possible pairs of node in IN [i] must communicate with each other, and later

every node sends a message to i.

4.6 Conclusions
This chapter reviews the field of privacy preservation in peer-to-peer networks.

Despite researchers have paid attention to the problem of computing a common

result without revealing individual inputs for a long time, the scenarios considered

always involved a few players only, specially in the older works. Furthermore,

practical issues like fault tolerance and node churn were not seriously considered.

More recently, some authors have moved the same problem to a variety of net-

works, like peer-to-peer, wireless sensor networks (WSNETs) or even vehicular

networks (VANETs). However, even in those works the aforementioned problems

are barely addressed. Additionally, all the schemes reviewed here impose some

level of synchrony on the execution, even if the underlying computation algorithm
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does not.
We have also discussed one of the most relevant proposals to the date by Bick-

son et al. We will use this work as a base for the research presented in the next
chapter.
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Chapter

5
A privacy-preserving

distributed computations
algorithm

5.1 Introduction
In this chapter, based in the work introduced in [78], we present a privacy-preserving

distributed algorithm against semi-honest adversaries that suits peer-to-peer net-

works. Our algorithm serves as a privacy-preserving layer to be run on top of

distributed iterative algorithms.

The kind of computations supported by the algorithm are linear combinations

of the values provided by a node’s in-neighbours. It is privacy-preserving because

(1) the node can not obtain the individual value provided by each in-neighbour, and

(2) no other node is aware of the final sum computed at a given node.

As we mentioned in the previous chapter, peer-to-peer networks present distrib-

uted algorithms with harsh conditions that can make the execution difficult. The

main problems are unreliability (messages can be lost or delayed) and node churn

(nodes can enter and leave unexpectedly at any time). For this reason our algorithm

is asynchronous, i.e., makes no assumptions about the arriving time of a message (if
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it arrives at all), and tolerates node churn in a natural way. The result is a flexible

algorithm that tolerates realistic message loss and delay rates as well as realistic

churn patterns. At the end of the chapter we will show experimental results to

support these claims.

The rest of the chapter is organized as follows. Section 5.2 presents the scenario

we consider and our goal. Section 5.3 shows the main idea behind our proposal.

Section 5.4 discusses how that idea can be applied in practice and describes the

algorithm itself. Section 5.5 deals with practical experimentation and discusses the

results obtained. Finally, Section 5.6 concludes the chapter.

5.2 Scenario
Let us assume a network with N nodes, with each node being connected with dir-

ected links by at least k other nodes. Nodes communicate by exchanging messages

that may get lost or delayed. Besides, the network may suffer from churn: nodes

can leave but they are assumed to rejoin eventually remembering their previous

state and neighbours, i.e. they rejoin in the same neighbourhood. Each node i has a

secret value xi known by no other, and each directed link (i, j) is assigned a weight

wij . The set formed by the in-neighbours of i is denoted IN [i], while the set formed

by the out-neighbours of i is OUT [i]. As in the SSS scheme by Bickson et al. [9]

every node i computes the value

∑
j∈IN [i]

wjixj, (5.1)

in a way such that no other node apart from i can learn this value, and i can not

guess xj for any j ∈ IN [i].

Adversaries we will be facing belong to the semi-honest type (see Definition

14): thus they are not assumed to forge messages, although nodes can collude

in order to try to guess any xi value. Eavesdropping on arbitrary links without

corrupting nodes is not considered either. This is not a crucial restriction, since

eavesdropping can be easily prevented with public key encryption.
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5.3 A sum-splitting secret sharing scheme
The use of a (k, |IN [i]|) Shamir’s Secret Sharing scheme with k < |IN [i]| intro-
duces a (|IN [i]| − k) redundancy of shares in the secret recovering process, so the
SSS scheme might be seen as a highly fault-tolerant protocol. This is not exactly
the case since, as we already mentioned in Section 4.5, SSS tolerates the loss (or
delay beyond deadline) of up to (|IN [i]|−k) type S messages only. Having one type
C message lost or delayed corrupts computations for the current iteration. This is
worsened by the fact that a change in a secret value forces its owner to choose a
new polynomial and send new shares (recall Alg. 9), which imposes a synchronous
flow on the execution. We can see this last fact as if all shares participating in one
round were entangled: shares from different rounds can not be mixed, therefore
synchrony is imposed.

Instead of Shamir’s Secret Sharing scheme, we propose the use of a sum-
splitting scheme as follows: for a secret s ∈ R, let the first k − 1 shares be random
elements of R (i.e., s1, . . . , sk−1 ∈ R), and let

sk = s−
k−1∑
i=1

si. (5.2)

This turns out to be a (k, k) secret sharing scheme with zero redundancy. Now,
we can replace Shamir’s scheme for this one in SSS: being i the central node in the
neighbourhood, every j ∈ IN [i] sends random shares to other in-neighbours of i
and keeps the last share (see Eq. (5.2)) for itself. At every node all received shares
are summed up and the result is sent to i. Finally, i simply sums all the incoming
messages, obtaining the desired value (see Eq. (5.1)).

As a consequence, we lose the aforementioned (|IN [i]| − k) fault-tolerance.
However, the benefits largely compensate this minor loss as we explain next.

Share reuse

A nice property of the new scheme relies on the fact that any share can be computed
from the secret and the other k − 1 shares. This allows node j to recompute the
last share sk without sending a new set of shares whenever its secret value changes.
Thanks to that, the imposed entanglement drawback is overcame: random shares
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s1, . . . , sk−1 can be reused if sk is recalculated after every change of the secret

value. Additionally, any node can change any of the random secret shares, if de-

sired, by sending the new one. The other shares will remain unchanged.

Asynchronism

Reusing shares brings the most important feature of the new scheme: the elimin-

ation of synchronization among nodes. Now the central node can process every

message asynchronously as it arrives, independently from the others. Nodes can

therefore work at a different pace and there are no deadlines.

Different and flexible k values

As a second benefit, every node can now set its own value of k (number of shares)

and even a different set of share recipients. This means that node j ∈ IN [i] needs

not to send a share to every other α ∈ IN [i] any more.

Lower message complexity

Finally, the new message complexity per neighbourhood of one round of execu-

tion is O(|IN [i]|k + |IN [i]|) while for SSS it was O(|IN [i]|2 + |IN [i]|). Note that

if k << |IN [i]| the complexity of the sum-splitting scheme is much lower so,

even though we are using a (k, k) secret sharing scheme, sending fewer messages

implies more overall robustness to failure. In the worst case, i.e. k = |IN [i]|,
message complexity is equivalent to that of SSS. For the sake of completeness,

the final algorithm shown in Section 5.4 has an additional O(|IN [i]|) complexity

since some control messages are sent in one round, being the final total complexity

O(|IN [i]|k + 2|IN [i]|). However, this fact does not affect the discussion above.

5.3.1 Collaborator nodes

Being i the central node of a neighbourhood (that who will receive the privacy-

preserving sum of values) and nodes j, α ∈ IN [i], we note a share sent from

j to α by s[jαi]. Given that j is using node α as a collaborator in the privacy-

preserving process, we say that α is an out-collaborator of j. We note the set of
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(a) (b)

Figure 5.1: Communication during the sum-splitting scheme.

out-collaborators of j as OC [ji], and remark that OC [ji] ⊆ IN [i]. The size and

composition of OC [ji] can be freely chosen by node j. So, if we rewrite Eq. (5.2)

in terms of the new notation, we have

s[jij] = wjixj −
∑

α∈OC[ji]

s[jαi]. (5.3)

Node j keeps s[jij] to itself.

At the same time, node j can receive shares from other in-neighbours of i. For

example, share s[βji] is sent by β to j. In-neighbours of i that send shares to j are

called in-collaborators of j, and this set is noted as IC [ji], with IC [ji] ⊆ IN [i]. The

size of this set is not chosen by j, it is rather given by the number of in-neighbours

of i that decide to send a share to j.

So, the privacy-preserving message that node j sends to central node i is the

last of j’s own shares (s[jij]) plus the shares received from its in-collaborators:

M [ji] = s[jij] +
∑

β∈IC [ji]

s[βji] = wjixj −
∑

α∈OC [ji]

s[jαi] +
∑

β∈IC [ji]

s[βji], (5.4)

If we could guarantee that there is no delay or message loss, and that all nodes

have completely up-to-date information about the secret shares, then node i could

simply compute

xi =
∑
j∈IN [i]

M [ji] =
∑
j∈IN [i]

wjixj. (5.5)
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Figures 5.1(a) and 5.1(b) illustrate the scheme we propose using the notation

defined above. Let us assume nodes {2, 3, 4, 5} = IN [1] want to share a linear

combination of their private values with node 1. Figure 5.1(a) depicts the nodes

sending random shares to other randomly chosen in-neighbors of 1. Note that the

number of shares, i.e., the value of k, can be different for each node. Figure 5.1(b)

shows the nodes sending the final messages to 1. Node 1 simply adds these final

messages to obtain the linear combination. From this moment on, any node j ∈
{2, 3, 4, 5} can freely send M [j1] messages at the desired rate: node 1 will always

compute Eq. 5.5 correctly since shares have not changed. This fact makes our

scheme asynchronous.

5.4 Implementing asynchronous distributed algorithms
Once we are able to compute the sum in Eq. (5.1) we can compute global functions,

with additional assumptions. For example, if these sums are computed iteratively

in a synchronized fashion then we can implement many iterative methods including

one for solving linear systems of equations or finding the dominant eigenvector of

the matrix W = [wij]
N
i,j=1 [36]. For example, the well-known power method [4]

for calculating the dominant eigenvector of W is based on the iteration defined by

x
(t+1)
i =

∑
j∈IN [i]

wjix
(t)
j , (5.6)

where the vector [x
(t)
i ]Ni=1 converges to the dominant eigenvector of W under very

mild conditions provided that the spectral radius ofW is 1. Several key algorithms,

including PageRank, rely on finding the dominant eigenvector of an appropriate

matrix [7].

If we relax the assumption on synchronization, then many of the algorithms

mentioned above can still be executed in a rather simple way, under very similar

conditions [34, 48, 61]. For example, Algorithms 10, and 11 show the Power It-

eration algorithm, a non-secure asynchronous distributed implementation of the

aforementioned power method, taken from [48] and adapted to our own notation.

The active part, Alg. 10, is in charge of sending the state of the owner node to its

neighbours. The passive part, Alg. 11, receives and processes incoming messages.
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Algorithm 10 Async. distrib. Power Iteration at node i, active thread
1. while(true)
2. wait(∆)
3. for-each j ∈ OUT [i] do
4. send wjixi to j
5. bi ←

∑
k∈IN [i] bki

6. xi ← bi

Algorithm 11 Async. distrib. Power Iteration at node i, passive thread
1. while(true)
2. msg ← receive message()

3. k ← msg.sender

4. bki ← x

For a privacy-preserving method to be applied on top of those algorithms, it

should be able to run asynchronously. We have not found such a method on the

literature. Our proposal does, thanks to the lack of entanglement of shares. After

having introduced the basic idea behind our algorithm, we show now how to imple-

ment it on top of asynchronous distributed algorithms and under the harsh condi-

tions of peer-to-peer networks. We will do this in the context of the Power Iteration

algorithm, given it is a popular and useful one. We will use Algorithms 10 and 11

later as a skeleton. For other numerical methods that support asynchronism, like

those that solve systems of linear equations, the same method is applicable with

trivial modifications.

5.4.1 Share versions

Between iterations, a node may want to change one or more shares to increase

the security obtained from the algorithm. As we mentioned before, the node may

change either one or more shares at the same time. Actually, it may even change the

composition and size of its out-collaborators set. All nodes can do this independ-

ently. Since we assume there is no synchronization, we assign a version number t

to the shares, and we use the notation s[jαi]t . For example, s[jαi]1 indicates that the
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old value s[jαi]0 has been updated to a newer one. From now on, when the version
number t is omitted from the notation, we assume t is the latest existing version.

5.4.2 Fault tolerance mechanisms
We have just mentioned that nodes manage their out-collaborator sets independ-
ently as well as the version of their shares. Since we assume the existence of
message loss and delay, and churn, it is not guaranteed any more that the informa-
tion that reaches node i is consistent. For example, node j can update share s[jαi]t

by sending s[jαi]t+1 to α ∈ OC [ji], but the message might be lost. As a consequence,
j would start to use the newer version of the share for Eq. (5.4) while α would use
the old one in its own computations: the result at i would be therefore corrupted.

To solve this problem, node j maintains two lists of share-related information,
one per set of collaborators, LOC [ji] for OC [ji] and LIC [ji] for IC [ji]:

LOC [ji] = {(j, α, t) | α ∈ OC [ji]} (5.7)

LIC [ji] = {(β, j, t) | β ∈ IC [ji]}, (5.8)

where j, α, β, t are taken from s
[jαi]
t and s[βji]t . We would like to make clear that

different shares within the same list may have different t values, since shares may
be updated on a one-by-one basis. Note also that the actual value of the shares is
not included in the list.

These lists therefore indicate the current state of the OC [ji] and IC [ji], respect-
ively, and are sent by j to i along with every message M [ji] (see Eq. (5.4)). Based
on the lists, node i will update its value according to Eq. (5.5) only if the following
condition is satisfied: ⋃

j∈IN [i]

LOC [ji] =
⋃

j∈IN [i]

LIC [ji], (5.9)

which expresses the fact that all collaborator groups are consistent, and use the
same version of the secret shares.

The mechanism above helps node i to detect possible inconsistencies. Now,
in order to solve them, node i sends information back to j regarding the share
versions other nodes use from j. This is, i periodically sends back the versions of
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shares used by nodes in OC [ji]. Note that i knows this information because she
receives LOC and LIC lists from every node in the neighbourhood. We call these
information pieces checklists, and denote them by CH [ji]. More formally,

CH
[ji]
t = {(j, α, t) ∈

⋃
α∈IN [i]

LIC [αi], (β, j, t) ∈
⋃

β∈IN [i]

LOC [βi]}. (5.10)

Upon reception of the latest checklist, j can check which version of the shares
are effectively in use by its out-collaborators. If the version of any of the shares is
not the latest, node j re-sends the latest share version again to the corresponding
out-collaborator. A different checklist is elaborated by i for every in-neighbour,
therefore no consensus among nodes is needed. Checklists have their own version
index t too.

Finally, we have included a third mechanism to prevent the following situation:
let us assume that node j sends s[jαi]t+1 to α and, consequently, starts using version
t+ 1 when computing Eq. (5.4). However, let us also assume that α is offline for a
long period of time and the last message M [αi] received by i had used s[jαi]t . Node
i informs j about the problem with a checklist, however even if j resends version
t + 1 the problem will not be solved because that α is offline. As a consequence
node i can not compute the correct result.

In order to solve this, i sends a new list along with every checklist. This new list
indicates which nodes i believes to be online, i.e., which nodes recently contacted
i with a message. More formally,

online nodes
[i]
t = {γ ∈ IN [i], that i believes to be online}. (5.11)

Now, if node j realizes that α is offline then it will switch back to s[jαi]t rather than
insisting on s[jαi]t+1 . The information reaching i should be consistent now.

5.4.3 The algorithm
After having introduced mechanisms that provide fault tolerance to the sum-splitting
scheme we present the full algorithm in a formal manner. For this, we specify three
types of messages:

Type 1 (random share): node j ∈ IN [i] sends s[jαi]t to node α ∈ OC [ji].
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Type 2 (checklist): node i sends to j ∈ IN [i] two sets,

CH
[ji]
t = {(j, α, t) ∈

⋃
α∈IN [i]

LIC [αi], (β, j, t) ∈
⋃

β∈IN [i]

LOC [βi]},

and

online nodes
[i]
t = {γ ∈ IN [i], that i believes to be online},

Type 3: node j ∈ IN [i] sends V [ji]
t = (M [ji],LOC [ji],LIC [ji]) to node i.

We remark again that version numbers t refer only to the entity they index and
do not necessarily have the same value. They have also been included in Type 2
and 3 messages so that nodes can drop delayed out-of-order messages. In s[jαi]t the
index t denotes the active version number. The set online nodes [i] is maintained
by each node i based on recording the senders of recently received messages. In a
Type 2 message, node i sends this set to node j.

The algorithm at a node j takes as input the local structure of the commu-
nication graph (the overlay network), that is, OUT [j], IN [i] and wji for all nodes
i ∈ OUT [j], where wji is the link weight. In addition, node j has an initial secret
value xj , and a period ∆ that determines the frequency of the execution of the loop
in the active thread. All the nodes could in principle select a different ∆ or they
could execute their active thread even irregularly since the asynchronous iteration
tolerates this. However we assume that all the nodes use the same period ∆ for the
sake of simplicity.

The algorithm is actually composed of two different threads running in paral-
lel. Algorithm 12 shows the active thread, while Algorithm 13 shows the passive
thread: they are the privacy-preserving versions of Algorithms 10 and 11, respect-
ively. We describe them in the following paragraphs.

The active thread is in charge of sending information. An instance of it is run
at node j for all i ∈ OUT [j], that is, for all the nodes i for which j ∈ IN [i]. Its
main tasks are (1) managing the set of out-collaborators, OC , and sending shares
(Type 1 messages) to its members, (2) verifying the received checklists to check
the correct arrival of the shares and resending them if needed, (3) computing and
sending Type 3 messages and (4) sending Type 2 messages (given that the node is
also the central node in its own neighbourhood).
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The algorithm first initializes several variables: a copy of the last received Type
3 message from each in-neighbor (line 1), the set OC [ji] and a timeout for updating
the shares of the members of the set (line 3). The first set of shares is sent in line 5.

The main loop runs with a period of ∆ time units that defines the frequency of
sending messages. First, we clear the set of nodes that j estimates to be online.
This set is filled in the passive thread during the waiting period (see Algorithm 13).
Then, if the share renewal timeout expires, we first identify those out-collaborators
that are probably online, we try to add new collaborators if the old ones seem to
be offline (line 11), and then we send the new shares (line 15). Note that send-
ing new shares to collaborators that are offline is not a problem. From line 17 to
19, the freshest available checklist is used to discover which shares s[jαi] have not
been installed successfully, and these are re-sent. Node j then creates new Type 2
messages for its own in-neighbors (line 20).

Finally, a Type 3 message is created and sent to node i in line 38. For those
shares sent by j (lines 25 and 27), node j uses the version in the checklist received
from i. This way j makes sure it is using the last share that reached i. The case
of shares received by j is more interesting. The sender β wants proof that node
j has started using the new version before switching to it itself. However, if β is
offline, it can get the proof only when it comes back online, which may in fact
never happen. So node j is cautious and switches to the new version only if there
is a good chance that β will detect it, and will switch too. This is only a heuristic,
since with a small probability it might happen that β is incorrectly considered to
be online. However, this is not a problem, because node j will switch back to the
working version included in the checklist in the next round, should β stay offline.

The passive thread in Algorithm 13 handles message arrivals at node j, updates
its private state when possible and fills the set online nodes [j]. If the incoming
message is of Type 1 (line 3) then the received share is stored (line 4). For a Type
2 message (line 6) the checklist is stored and the set online nodes [i] is added to
online nodes [j] (line 8). Incoming Type 3 messages are stored and if the condition
in (5.9) holds (line 12) then the internal state xj is updated and the corresponding
share timeout is decreased. Note that it is not necessary to update shares if the
private state is not changing, so in that case we do not decrement the timer. The
sender of any message is added to online nodes [j] (lines 5, 8 and 11).
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Algorithm 12 Async. privacy-preserving Power Iteration at j, active thread
1. for-each node λ ∈ IN [j] #initialize incoming type 3 msgs
2. V [λj] ← (0, {}, {}, timestamp)

3. choose random s timeout [ji] and a randomly sized set of nodes OC [ji] ∈ IN [i]

4. for-each node α ∈ OC [ji] #send shares
5. send type 1 msg (s[jαi]t=0 ) to α
6. while(true)
7. online nodes [j] ← {} #it is updated in the passive thread
8. wait(∆) #determines message sending frequency
9. if i ∈ online nodes [j] and s timeout [ji] ≤ 0 #renew one share

10. if OC [ji] ∩ online nodes [j] = {} and IN [i] ∩ online nodes [j] 6= {}
11. add a node α to OC [ji] from IN [i] ∩ online nodes [j]

12. if OC [ji] ∩ online nodes [j] 6= {}
13. choose one node α ∈ OC [ji] ∩ online nodes [j]

14. generate new share s[jαi]t←t+1

15. send new type 1 msg (s[jαi]t ) to α # t was increased by 1
16. choose new random s timeout [ji]

17. for-each share s[jαi]t #check shares and versions in checklist
18. if (j, α, t) /∈ CH [ji]

19. resend s[jαi]t to α #resend the share if needed
20. for-each node l ∈ IN [j] #send type 2 messages
21. compose CH [lj] according to its definition
22. send type 2 message: (CH [lj], online nodes [j], timestamp) to node l
23. LOC [ji] ← {} #send type 3 messages
24. M [ji] ← wjixj

25. for-each (j, α, t) ∈ CH [ji] #share version t from checklist[ji]

26. M [ji] ←M [ji] − s[jαi]t

27. store (j, α, t) in LOC [ji]

28. for-each (β, j, t) ∈ received shares [ji] #shares received from in-collaborators
29. if β ∈ online nodes [j] #decide which version of the share to use
30. M [ji] ←M [ji] + s

[βji]
t with t the newest version received

31. store (β, j, t) in LIC [ji]

32. else
33. M [ji] ←M [ji] + s

[βji]
t′ with t′ obtained from CH [ji]

34. store (β, j, t′) in LIC [ji]

35. if LOC [ji] = {} and LIC [ji] = {} #happens only during bootstrap
36. send type 3 message V [ji]: (0,LOC [ji],LIC [ji], timestamp) to node i
37. else
38. send type 3 message V [ji]: (M [ji],LOC [ji],LIC [ji], timestamp) to node i
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Algorithm 13 Async. privacy-preserving Power Iteration at j, passive thread
1. while(true)
2. msg ← receive message()

3. if type 1: s[βji]t , β ∈ IN [i] # s[βji]t received

4. store s[βji]t in received shares [ji] (replace s[βji]t−1 if exists)
5. online nodes [j] ← online nodes [j] ∪ β
6. else if type 2: CH [ji], online nodes [i] # checklist received from i

7. store CH [ji] (replace older version if exists)
8. online nodes [j] ← online nodes [j] ∪ online nodes [i] ∪ i
9. else if type 3: V [λj], λ ∈ IN [j] #V msg received

10. store V [λj] (replace older version if exists)
11. online nodes [j] ← online nodes [j] ∪ λ
12. if ∪λ∈IN [j]LOC [λj] = ∪λ∈IN [j]LIC [λj] then #check Eq. (5.9)
13. xj ←

∑
λ∈IN [j] M [λj] #update internal state

14. s timeout [ji] ← s timeout [ji] − 1

5.4.4 Practical considerations on the algorithm

It was already mentioned that our scheme runs in an asynchronous mode: this is

due to the fact that node i can update its secret value upon the arrival of a single

Type 3 message from any in-neighbour (as long as the condition in Eq. (5.9) holds).

As a consequence, the impact of message loss and delay is dramatically reduced.

Node churn is also naturally supported by our algorithm. For example, in SSS

every neighbourhood needs to agree on a given k. If the number of online nodes at

a given moment is below k then the remaining nodes must agree on a new k. This

issue is not discussed in [9] and is not straightforward. Having a static value of k

for the whole network is neither a solution since neighbourhoods with less than k

nodes would not be able to compute a result.

On the other hand, our algorithm allows nodes to set independent k values,

and there is no lower limit on the number of online nodes at a given time in a

neighbourhood. This means that computations can carry on even if there is only

one active neighbour apart from the central node i: the active node can still send

valid Type 3 messages to i even if all its out-collaborators are offline. There is one
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problematic case, however, in which node i will not be able to update its state. This

case was already mentioned: if there is a share version incompatibility at node i

and both the sender and the collaborator are offline. As an example, let us suppose

that node j sends s[jαi]t+1 to α, who is offline at that time. Then, j sends a Type 3

message to i in which s
[jαi]
t+1 was used and goes offline. However, the last Type

3 message that i had received from α involved s[jαi]t rather than the t + 1 version.

This inconsistency prevents i from updating its private value and can only be solved

when either j or α become online again.

Finally, our scheme allows nodes to increase their individual degree of privacy

by augmenting the value of k and consequently the size of their out-collaborators

set. In Algorithm 12 we do this when the node decides to refresh a share but no

out-collaborator is found online. Then a new out-collaborator is chosen.

5.4.5 Considerations on privacy

Here we discuss the level of privacy achieved by our algorithm and compare it with

that of SSS. Remember that the adversary model considered both here and in SSS

is the semi-honest one, and that eavesdropping on links is not considered given that

public key encryption easily eliminates that threat. Having said that, there are two

questions to considerate here.

First, our algorithm requires a collusion of more than k nodes in order to guess

the private value of another node j, assuming that j has generated k = |OC [ji]|
shares. To see this, let us recall Eq. (5.4),

M [ji] = s[jij] +
∑

β∈IC [ji]

s[βji] = wjixj −
∑

α∈OC [ji]

s[jαi] +
∑

β∈IC [ji]

s[βji].

From the equation, it is clear that in order to guess wjixj all nodes inOC [ji] plus all

nodes in IC [ji] plus i itself (the only receiver of the Type 3 message) must collude.

Given that |OC [ji]| already equals k, we have that |OC [ji]| + |IC [ji]| + |{i}| ≥ k.

On the other hand, in SSS it is enough that k − 1 nodes collude in order to guess

the private value of a given node. To make things harder, in our algorithm out-

collaborators do not know how many shares other nodes have created: only the

central node knows this number.
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Second, the central node i might be able to detect trends in wjixj if the expres-

sion
∑

α∈OC [ji] s[jαi] +
∑

β∈IC [ji] s[βji] remains a constant for too long. In that case,

the difference between two consecutive Type 3 messages, i.e., M [ji]
t+1 −M

[ji]
t will

reveal the variation of the value wjixj . However, still node i should separate wji
from xj . In any case, there exist scenarios in which our scheme may not be an

appropriate solution because of this: for example, in a smart power metering infra-

structure one could know when the owner of a house arrives home because power

consumption increases.

5.5 Experiments
The purpose of the experiments we have carried out is to show the viability of

our proposal and its superiority in terms of fault-tolerance, churn tolerance and

performance over SSS. Real experimentation on peer-to-peer networks is always

problematic given the impossibility of having a real, large enough testbed. Hence,

we used the widely known event-based PeerSim simulator [66].

Power Iteration is an iterative algorithm for finding the dominant eigenvector

of a matrix. Here we use its distributed version presented in [48], which is based

on the asynchronous chaotic model introduced in [61]. The matrix is given by the

network itself, being its link weights the entries of the matrix (missing links rep-

resent a zero value entry). Every node calculates a single element of the dominant

eigenvector: these are the private values to compute. For the sake of comparison,

each node’s private value was initialized to 1.0, although in a real deployment we

suggest the use of initial random values when possible to mask variations on the

private value.

The implementation of our proposal on top of Power Iteration was previously

shown in Algorithms 12 and 13. For the sake of fairness, we have also implemented

SSS on top of it.

The method introduced in [61] computes the dominant eigenvalue of non-negative,

irreducible matrices with a spectral radius of one. For this reason, we have used two

artificially generated sparse matrices. The generation process for them is described

in [48] and we recall it next. Each matrix has 5000 nodes.
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The first matrix, called “random k-out normalized” (Rnd) was generated by

adding 8 random out-links to each node. This would represent a baseline nor-

mal, random network. The second matrix, or “small gap normalized” (SmlG), was

generated by placing all nodes in an undirected ring and adding two random out-

links to every node. This generation process ends up in a matrix with a small gap

between its two largest eigenvalues: a feature that makes Power Iteration converge

very slowly. We use this matrix to test the two algorithms in a harsh scenario. Fi-

nally, both matrices were normalized so the sum of each column is 1 in order to

ensure that the spectral radius is one.

5.5.1 Scenario setup

Let us now present the setup of some important parameters. The security parameter

k = |OC [ji]| was set to a constant value of 3 in SSS. This deliberately small value

allows SSS to tolerate the loss of a large number of S messages at the expense of

a lower level of privacy. In our proposal, the same parameter is randomly chosen

from [1, |IN
[i]|

2
] by each node i. In addition to that, our scheme looks for new

out-collaborators at the time of share renewal if no collaborators are thought to be

online, but never discards old collaborators (this means that nodes in our scheme

will find themselves in harder conditions than their equivalents in SSS). This naive

policy is probably not the best one for real deployments, but suffices for our testing

purposes. Parameter ∆ corresponds to the cycle length for both SSS and our pro-

posal (see Alg. 12). The s timeout parameter in our scheme is randomly drawn

from [150∆, 300∆].

Regarding drop rates and delays, our aim was to compare the behaviour of

the algorithms under difficult conditions and to show that our method can face

unreliable and heterogeneous network links. For that reason, we chose a loss rate

of Drop = 0.1 (10% of the messages are lost, which is already a high rate). We

also used a loss rate of Drop = 0 (no loss) as a baseline case for comparison. For

message delay we draw a uniformly distributed random value from [0, 0.1∆] or

from [0,∆] (a very large maximum boundary) for every message. We also consider

zero delay (instant arrival) as an ideal case.
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Session length
Online Offline

No churn ∞ 0

Fast churn Weibull(0.4, 20∆) Weibull(0.4, 40∆)

Slow churn Weibull(0.4, 40∆) Weibull(0.4, 80∆)

Table 5.1: Churn scenarios considered in the simulations. Session lengths are
measured in simulation cycles.

Node churn was modelled basing on realistic patterns taken from [97]. The

authors of that work suggest that the Weibull(0.4, b) distribution (shape 0.4, scale

b) accurately reproduces the churn patterns found in real traffic samples. We have

designed three different scenarios by varying the scale parameter. Table 5.1 shows

them, and the Weibull functions used are depicted in Figure 5.2(a). In every scen-

ario, each time a node changes from online to offline state of vice versa we draw a

random value from the corresponding Weibull function. This value tells the node

how many cycles she will be in the new state. Figure 5.2(b) shows the online pop-

ulation of the two non zero churn models during a sample execution. Note that the

number of online nodes is similar in both cases; however the behaviour of nodes is

different as they join or leave the network for longer periods of time in the case of

slow churn. This makes a difference as we will see soon. Note also that simulating

a slower churn with the same ∆ is equivalent to assuming the same fast churn but

with a smaller cycle length ∆.

It is important to remark that in the experiments nodes join back keeping their

previous state, which includes the secret value and the neighbours. By doing this

the solution dominant eigenvector remains static and we can calculate the distance

from it to the currently approximate solution.

Now let us explain how correctness of results was measured. The actual dom-

inant eigenvector w was precalculated for both matrices: w is actually a 5000-

dimensional euclidean vector. During every experiment, the current solution x is

obtained after each simulation cycle and the angle between it and w is calculated

by means of the formula arccos ||w
T ·x||

||w|| ||x|| . This angle tends to zero as the calculated

solution approaches the actual solution. Simulations are stopped when the angle is
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(a) Weibull functions used.

(b) Online population during a sample execution.

Figure 5.2: Churn modelling.
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less than ε. For Rnd we use ε = 0.05 and for SmlG, ε = 0.1. We say then that the
algorithm has converged.

On the other hand, we need a measure for algorithm performance. Time is
measured in iterations in PeerSim; however using the number of iterations needed
until convergence would not be fair since SSS is synchronous and our proposal is
asynchronous; thus, the concept of iteration makes little sense in our case. For this
reason we use the average number of messages sent per node until convergence. In
addition to that, this measure takes into account the different message complexities
in a natural way. The total number of messages sent throughout the network can
be easily found by multiplying the average number of messages per node by the
network size.

5.5.2 Results
Let us turn, at last, to the results of the simulations. Tables 5.2 and 5.3 show the
average number of messages sent per node under the scenarios introduced above
and on the RnD and SmlG matrices, respectively. These results were averaged from
three independent runs and rounded to an integer. A single run of each experiment
is shown in Figures 5.3 to 5.6 for the same scenarios.

The only results shown for SSS correspond to the no churn scenario. This is
because SSS did not make any observable progress in any churn scenario after
several hours of simulation. On the other hand, our scheme converges under all
circumstances and, furthermore, we beat SSS in absence of churn. When conditions
are ideal (no message loss nor delay) this is due to our lower message complexity.
When introducing loss and delay the fault-tolerant properties of our asynchronous
model make the performance difference bigger.

From these scenarios we can learn that in no churn conditions (or under very
mild churn) shortening period ∆ in our scheme will provide higher performance
given that nodes work independently. The larger amount of messages we send to
the central node, the faster we will converge. However, in SSS nodes need to wait
for each other; that restriction imposes a lower boundary on ∆ that will depend on
network latency and failure rate.
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SSS Ours
no churn no churn fast churn slow churn

Drop Delay mean std mean std mean std mean std

0 0 145 0 52 0 3,438 209 4,678 731

0 ∈ [0, 0.1∆] 144 0 54 0 3,393 347 5,565 1,079

0 ∈ [0,∆] 745 0 117 0 6,776 258 10,031 369

0.1 0 225 32 80 0 4,772 397 7,604 1,278

0.1 ∈ [0, 0.1∆] 248 32 90 0 5,125 232 8,234 1,367

0.1 ∈ [0,∆] 9,774 186 169 0 7,068 424 12,621 1,199

Table 5.2: Average number of messages sent per node on Rnd. The mean and the
standard deviation are shown for three independent runs. In the presence of churn
we could not run simulations long enough to reach convergence with SSS.

SSS Ours
no churn no churn fast churn slow churn

Drop Delay mean std mean std mean std mean std

0 0 1,273 0 139 0 56,272 3,215 165,930 45,496

0 ∈ [0, 0.1∆] 1,279 10 155 2 63,027 1,529 161,080 25,684

0 ∈ [0,∆] 14,079 1,305 303 6 68,345 4,776 158,360 23,254

0.1 0 2,548 35 175 2 63,369 11,877 116,800 6,329

0.1 ∈ [0, 0.1∆] 2,609 82 191 0 63,010 2,308 140,560 20,666

0.1 ∈ [0,∆] 67,538 3,883 346 7 70,144 8,101 133,420 19,621

Table 5.3: Average number of messages sent per node on SmlG. The mean and the
standard deviation are shown for three independent runs. In the presence of churn
we could not run simulations long enough to reach convergence with SSS.
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Figure 5.3: Matrix Rnd with no churn, and message drop probability 0 (top)
and 0.1 (bottom).

83



5. A PRIVACY-PRESERVING DISTRIBUTED COMPUTATIONS
ALGORITHM

 0.1
 1  10  100  1000  10000  100000

an
g

le

avg. num. of messages per node

SSS,delay=0
SSS,delay∈[0, ∆]

delay=0
delay∈[0, ∆]

 0.1
 1  10  100  1000  10000  100000

an
g
le

avg. num. of messages per node

SSS,delay=0
SSS,delay∈[0, ∆]

delay=0
delay∈[0, ∆]

Figure 5.4: Matrix SmlG with no churn, and message drop probability 0 (top)
and 0.1 (bottom).
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Figure 5.5: Matrix Rnd with churn, and message drop probability 0 (top) and
0.1 (bottom).
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Figure 5.6: Matrix SmlG with churn, and message drop probability 0 (top) and
0.1 (bottom).
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When considering churn, we see how missing nodes affect convergence speed.

This is because churn prevents information spreading in the network. To under-

stand it, consider any neighbourhood. During stable periods (no nodes switching

their online state) the information transmitted remains more or less static and even-

tually becomes repetitive: online in-neighbours of i send very similar Type 3 mes-

sages to i during this time. It is not until the set of online nodes varies that fresh

information arrives at node i (who in turn will propagate this new information to

its own out-neighbours).

This last phenomenon suggests that maintaining short periods ∆ does not make

sense under slow churn conditions. Instead, we should be able to reduce the fre-

quency at which Type 3 messages are sent without slowing down convergence,

while saving on communication. This is because increasing ∆ is equivalent to

speeding up the churn. Confirming this theory and designing an adaptive mechan-

ism to optimize ∆ is an interesting direction for future research.

However, note that this slowdown is in fact a collateral effect of our setup: we

are measuring convergence as the distance from a final global correct solution. In

practical scenarios there will probably not exist an “end solution”: instead, it will

likely depend on the set of online nodes at any time, thus evolving with the state

of the network. Experiments in that direction would also be interesting for future

work.

5.6 Conclusions
This chapter discusses the work presented in [78]: to the best of our knowledge, the

first asynchronous distributed algorithm for privacy preservation that suits highly

dynamic and unreliable networks such as peer-to-peer overlays. The algorithm al-

lows the computation of linear combinations of secret values while preserving the

privacy on those values separately. In order to demonstrate this, we implemented

our solution on top of Power Iteration, an asynchronous distributed method that cal-

culates the dominant eigenvector of certain matrices. Any iterative method based

on linear combinations can be implemented, though.
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We compared our idea with the closest solution available (a synchronous one)
and demonstrated how asynchronism offers far better results when facing network
failures and node churn, and even in ideal conditions.

In terms of privacy, our scheme allows flexible setups and better privacy on one
hand, if we attend to the number of colluding nodes supported. On the other hand,
in our scheme it might be possible to learn trends in other nodes’ secret values.

There are several possible work lines for future work. First, more experiment-
ation would be needed under slow churn conditions: it would be interesting to test
our theory regarding the adaptation of the period ∆ in order to optimize the num-
ber of messages sent (i.e. the bandwidth consumed by our algorithm). Second,
carrying out experiments in a ”dynamic solution” setup (see the last paragraph of
Section 5.5.2) would provide interesting information. Finally, the next natural step
is to adapt our algorithm to support malicious adversaries.
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Chapter

6
Conclusions

This thesis dissertation has dealt with two different topics within the informa-
tion privacy field. In this chapter we give a brief summary of the main issues and
conclusions, and suggest some research directions that may be of interest, in our
opinion, for future work.

6.1 Centralized secure multicast
The first part of the dissertation is focused on centralized secure multicast schemes.
Chapter 2 provides a deep survey of the field’s state of the art. We arrange the
surveyed works into three categories.

First, there is a large group of schemes that can be thought of as “generalists”
since they provide good performance in generic scenarios. These schemes usually
do not consider reliability problems or more than one transmission channel. Most
of them rely on the key hierarchy tree idea (recall Section 2.2), which allows them
to give service to large audiences. Another group of generalist schemes relies on al-
gebraic tricks, and allow the Key Server to refresh the encryption key using a single
message (something that the tree approach does not). However, these schemes do
not usually scale well for computational reasons and can reach smaller audiences
than their tree-based counterparts. The general category is the oldest of the three.
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We believe it is rather mature nowadays and little surprises are expected. If any,

they could come from the computational branch.

The second group includes schemes that are technically similar to the general

category but provide a service based on different information channels. In the

scenarios addressed by these schemes, audience members are divided into different

sets according to access control rules. For example, they may exist different chan-

nel packs in a pay-per-view digital television system, or there might be different,

hierarchical communication channels in army operations. This differentiation is

achieved by building a different tree for every group of members and joining them

together. It is the first time that this category of schemes is considered on a survey

to the best of our knowledge.

The third group is probably the most active today, with many schemes appear-

ing lately: we refer to self-healing multicast schemes. They are designed for wire-

less scenarios where reliability is a key issue: if a re-keying message is lost then

many users can be left out without service. The solution is to provide messages

that allow the user to recover a given number of previous session keys, so mem-

bers who miss a key can recover it from the next re-key message. Research within

this category has a great momentum and its related literature grows quickly, so we

expect many more developments here in the near future given that wireless com-

munications tend to gain more and more importance.

In Chapter 3 we presented a suit of algorithms for a centralized secure multic-

ast scenario composed of three different schemes. The first one is a computational

centralized secure multicast algorithm. This is the cornerstone of the whole pro-

posal. It allows the distribution of a secret (a session key, for example) with a single

message by exploiting the Extended Euclidean Algorithm. It is shown to be fast

at the cost of a message length that grows linearly with the number of recipients.

The second scheme allows audience members to verify the authenticity of mes-

sages sent by the Key Server when executing the first scheme. This verification

intends to be an alternative to digital signatures since no public key cryptography is

involved. Finally, the third scheme is a zero-knowledge protocol that allows a legal

member of the audience to verify the membership of another user with the aid of

the Key Server.
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After publication of the three schemes, a cryptanalysis was applied on them by

Peinado et al. They posed serious doubts regarding the security of the first one, and

break the security of the second and third. Later, Antequera et al. demonstrated that

the first algorithm is computationally secure so far and provided a secure version

of the third scheme. The second scheme is currently broken. Antequera et al.

have also combined our scheme with a key hierarchy tree in order to reach bigger

audiences, on one hand, and have built a distributed secure multicast framework

that uses our scheme within every cluster of members.

There exist some research lines as a continuation of this work. For example,

exploiting recent advances in parallel hardware and programming techniques could

make computational general schemes faster to compute, thus being able to reach

bigger audiences. This would be specially interesting in the case of the Secure

Lock scheme. Another interesting research work line is trying to break the linear

growth of the message length in the first scheme of our own solution. That would

allow our scheme to reach bigger audiences without the help of a key hierarchy

tree. Finally, it would be interesting to solve the security flaw in the the message

authentication scheme.

6.2 Privacy-preserving computations on peer-to-peer
networks
The second part of this dissertation deals with preserving privacy in distributed

computations over a peer-to-peer network. By this we mean that nodes obtain a

global view on a given value over the network without knowing the individual

values of their neighbours.

Chapter 4 surveys the literature. Even though the problem of computing func-

tions in a distributed manner has been widely studied, most of the proposals are

of difficult application in practice. For example, the vast majority of works to the

date support a reduced number of players (nodes participating in the computations)

and can not cope with difficulties such as network failure or churn (sudden absence

or rejoin of nodes). The most advanced solutions in this sense still impose syn-

chronous restrictions on the execution, which makes their application a hard task,
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specially in problematic scenarios such as peer-to-peer or wireless sensor networks.
In Chapter 5 we introduce our own proposal by extending a work by Bickson

et al. Our scheme is asynchronous, extremely fault tolerant and resistant to node
churn. Experiments with the PeerSim simulator show that it offers better perform-
ance than the proposal by Bickson et al. and suggest that it can be used in practice.

Regarding future work several directions arise. First, our solution tolerates
semi-honest adversaries: it seems logical to try to extend it so it can cope with
malicious adversaries. Second, more experimentation with different setups would
offer interesting information. Third, adapting the behaviour of our scheme (spe-
cially the frequency at which messages are sent) to churn conditions seems to offer
promising results in terms of bandwidth savings.
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A
Publications arisen from this

thesis

The research work carried out for the present thesis resulted in a number of

publications. This appendix lists them along with their respective quality indicators

and sorted by their year of publication (oldest first) within each category.

A.1 Publications in international journals
[76] Naranjo, J.A.M., Casado, L.G. & López-Ramos, J.A. (2011). Group oriented

renewal of secrets and its application to secure multicast. Journal of Inform-

ation Science and Engineering, 27, 1303–1313

Impact factor JCR 2011: 0.175. Journal ranking: 132/135 in Computer Sci-

ence, Information Systems.

[70] Naranjo, J.A.M. & Casado, L.G. (2012). An updated view on centralized se-

cure group communications. Logic Journal of the IGPL, DOI: 10.1093/jig-

pal/jzs026

Impact factor JCR 2011: 0.913. Journal ranking: 1/19 in Logic, 50/289 in

Mathematics, 85/245 in Mathematics, Applied.
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A suite of algorithms for key distribution and authentication in centralized
secure multicast environments. Journal of Computational and Applied Math-

ematics, 236, 3042–3051, DOI: 10.1016/j.cam.2011.02.015
Impact factor JCR 2011: 1.112. Journal ranking: 62/245 in Mathematics,

Applied.
[78] Naranjo, J.A.M., Casado, L.G. & Jelasity, M. (2012). Asynchronous privacy-

preserving iterative computation on peer-to-peer networks. Computing, 94,
763–782, DOI: 10.1007/s00607-012-0200-5
Impact factor JCR 2011: 0.701. Journal ranking: 51/99 in Computer Science,

Theory & Methods.

A.2 Publications in proceedings of international con-
ferences with DOI
[69] Naranjo, J.A.M. & Casado, L.G. (2011). Keeping group communications

private: An up-to-date review on centralized secure multicast. In A. Herrero
& E. Corchado, eds., Computational Intelligence in Security for Information

Systems, vol. 6694 of Lecture Notes in Computer Science, 151–159, Springer
Berlin Heidelberg, DOI: 10.1007/978-3-642-21323-6 19

A.3 Publications in other international conferences
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B
Other publications produced
during the elaboration of this

thesis
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