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PrefaceMany technical, environmental and economic problems have challenging optimizational as-pects which require reliable and e�cient solution methods. A substantial part of such problemsbelongs to the class of nonlinear and nonconvex optimization problems where standard opti-mization methods fail since local optima di�erent from the global ones (which we aim to �nd)exists (global optimization).The workshop focuses on theoretical, modelling and algorithmic issues of global optimizationproblems with special emphasis to their real-life applications. The workshop aims to discuss anddevelop further most recent results in the wide range of the many diverse approaches to globaloptimization problems.After the �rst (1985) and the second (1990) Workshops held in Sopron, Hungary, we areglad to announce the Third Workshop on Global Optimization. Since the earlier wokshops werefully supported by IIASA, and this time IIASA could not help, the main problem seemed to behow to help those who otherwise cannot a�ord to participate such a meeting. Thanks to oursponsors and to the organizing OR societies, we could �nd sources to support those who neededit most. This rises hope that future workshops can be organized in a similar basis.One of the main problems was for many interested people the date of the workshop. Theorganizers wanted to follow the tradition of the earlier workhshops with this december date. Wecould also keep the �ve years period. All comments and suggestions are wellcome for the date,place and other organizational details of the next workshop.Having so many interesting papers submitted, over ten editors of the JOGO participating,about 20 participants of earlier workshops and a number of young researchers, we look forward toa meeting which is very likely to match or even surpass the very successful two earlier meetings.
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Daily Schedule Saturday, December 912:00 { 20:00 Registration in the hall of the Forr�as HotelDiner and get together party from 18:00Sunday, December 1009:00 { 09:30 Opening of the IIIrd Workshop on Global Optimization09:30 { 10:00 C.S. Adjiman, I.P. Androulakis, C.D. Maranas and Christodoulos A.Floudas: A Global Optimization Method, �BB10:00 { 10:30 K.G. Ramakrishnan, M.G.C. Resende and P.M. Pardalos: An LP-BasedBranch and Bound Algorithm for the Quadratic Assignment ProblemCo�eebreak11:00 { 11:30 Immanuel M. Bomze: Evolution Towards the Maximum Clique11:30 { 12:00 Victor Korotkich: On a Mechanism of Natural Formation and its Use inGlobal OptimizationLunchbreak13:30 { 14:00 Wilfried Bollweg: Numerical Simulation of Crystal Structures by Simu-lated Annealing14:00 { 14:30 Inmaculada Garcia and P.M. Ortigosa: A Parallel Implementation ofthe Control Random Search algorithm to optimize a reconstruction fromprojection problem14:30 { 15:00 Tale Geramitchioski and Ilios Vilos: Optimisation of the Reducing GearBox with Minimisation its Own WeightCo�eebreak15:30 { 16:00 Eligius Hendrix: Global Optimization and Decision Support16:00 { 16:30 Donald Jones, William Baritompa and Yaroslav Sergeyev: The ParetoApproach to Balancing Local and Global SearchDiner from 18:00Hungarian folk dance show from 20:00 4



Monday, December 1109:00 { 09:30 Jorge Mor�e and Zhijun Wu: Smoothing Transform and Continuation forGlobal Optimization09:30 { 10:00 Panos M. Pardalos: Continuous Approaches to Discrete OptimizationProblems10:00 { 10:30 Emilio Carrizosa and Frank Plastria: Locating an Undesirable Facilityby Generalized Cutting PlanesCo�eebreak11:00 { 11:30 Hisham Al-Mharmah and James Calvin: Average Performance ofComposite and Non-composite Algorithms for Global Optimization ofStochastic Functions11:30 { 12:00 Marco Locatelli: On Relaxing the Hypotheses for the Application ofMulti Level Single LinkageLunchbreak13:30 { 14:00 Zolt�an Kovacs, F. Friedler and L.T. Fan: Algorithmic Generation of theMathematical Programming Model for Process Network Synthesis14:00 { 14:30 Andr�as Pfening and Mikl�os Telek: Optimal Rejuvenation Policy forSlowly Degrading Server Software14:30 { 15:00 Andrew T. Phillips, J. Ben Rosen and Ken A. Dill: CGU: A GlobalOptimization Algorithm for Protein Structure PredictionCo�eebreak15:30 { 16:00 Olga Yu. Polyakova: Reducing the Problem of Organization StructureAdaptation to Optimization Problem in Boolean Space16:00 { 16:30 Jean-Francois Pusztaszeri, Paul E. Rensing and Thomas M. Liebling:Tracking Elementary Particles near their Primary Vertex: A Combina-torial ApproachReception given by the Rector of the J�ozsef Attila University(Central building of the university, Dugonics square 13, 2nd oor, Aula, from 19:00)
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Tuesday, December 1209:00 { 09:30 Arnold Neumaier: NOP - a Compact Input Format for Nonlinear Opti-mization Problems09:30 { 10:00 Stephan Dallwig, Arnold Neumaier and Hermann Schichl: GLOPT - AProgram for Constrained Global Optimization10:00 { 10:30 Alexander S. Strekalovsky and Igor L. Vasiliev: On Global Search inNon-Convex Optimal Control ProblemCo�eebreak11:00 { 11:30 Chris J. Price: A Multistart Linkage Algorithm Using First Derivatives11:30 { 12:00 Marco Locatelli and Fabio Schoen: Analysis of Threshold AcceptingGlobal Optimization MethodsLunchbreak13:30 { 14:00 Kristina Holmqvist, Athanasios Migdalas and Panos M. Pardalos:Greedy Randomized Adaptive Search for a Location Problem with Econ-omy of Scale14:00 { 14:30 Bal�azs Imreh, F. Friedler and L.T. Fan: Polynomial Algorithm for Im-proving the Bounding Procedure in Solving Process Network Synthesisby a Branch and Bound Method14:30 { 15:00 Roman G. Strongin: Global Optimization (Systematic Approach Em-ploying Peano Mappings)Co�eebreak15:30 { 16:00 Yaroslav D. Sergeyev: An Algorithm for Minimizing Functions with Lip-schitzian Derivatives16:00 { 16:30 Jonas Mockus, Audris Mockus and Linas Mockus: Bayesian HeuristicApproach to Discrete and Global OptimizationReception given by the Mayor of Szeged(Szeged City Mayor's O�ce, Sz�echenyi square 9, 1st oor, from 19:00)
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Wednesday, December 1309:00 { 09:30 Alexander S. Strekalovsky and Ider Tsevendorj: Reverse Convex Pro-gramming. Theory and Algorithms.09:30 { 10:00 Oleg V. Khamisov: To the Global Minimization of Functions with Con-cave Minorant10:00 { 10:30 Reiner Horst: Linearly Constrained Global Optimization of Functionswith Concave MinorantsCo�eebreak11:00 { 11:30 Michael Nast: Subdivision of Simplices Relative to a Cutting Plane withApplications in Concave Minimization and Volume Computation11:30 { 12:00 E.S. Mistakidis and Panagiotu D. Panagiotopoulos: Hemivariational In-equailies and Global Optimization. Numerical Search for the Optima.Lunchbreak13:30 { 14:00 Sonja Berner: Parallel Methods for Veri�ed Global Optimization |Practice and Theory14:00 { 14:30 Andr�as Erik Csallner and Tibor Csendes: Convergence Speed of IntervalMethods for Global Optimization and the Joint E�ects of AlgorithmicModi�cations14:30 { 15:00 M.N. Vrahatis, D.G. Sotiropoulos and E.C. Triantafyllou: Global Opti-mization for Imprecise ProblemsCo�eebreak15:30 { 16:00 Victor P. Gergel: Information Models and Methods to Support GlobalOptimization Procedures16:00 { 16:30 J�anos D. Pint�er: LGO - An Implementation of a Lipschitzian GlobalOptimization ProcedureDiner from 18:00
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Thursday, December 1409:00 { 09:30 Tam�as Rapcs�ak: An Unsolved Problem of Fenchel09:30 { 10:00 Nguyen Van Thoai: A Method for Solving a Utility Function Programin Multiple Objective Nonlinear Optimization10:00 { 10:30 Gerardo Toraldo and Panos M. Pardalos: Quadratic Programming withBox ConstraintsCo�eebreak11:00 { 11:30 Jens Hichert, Armin Ho�mann and H.X. Phu: The Computation of theEssential Supremum by using Integral Methods11:30 { 12:00 Zelda B. Zabinsky and Birna P. Kristinsdottir: Complexity AnalysisIntegrating PAS, PRS and Simulated AnnealingLunchbreak13:30 { 14:00 Chris Stephens and William Baritompa: Global Optimization RequiresGlobal Information14:00 { 14:30 Tibor Csendes: Global Optimization Methods for Process NetworkSynthesis14:30 { 15:00 Walter J.H. Stortelder and J�anos D. Pint�er: Numerical Approximationof Elliptic Fekete Point Sets: A Global Optimization ApproachCo�eebreak15:30 { 16:00 James M. Calvin: Average Convergence Rate of a Class of AdaptiveOptimization Algorithms for Brownian Motion16:00 { 16:30 Donald Jones: DIRECT: a Global Optimization Algorithm forComputer-Aided EngineeringDiner from 18:00 Friday, December 15Check-out at the hotel till 12:00
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Average Performance of Composite and Non-Composite Algorithms forGlobal Optimization of Stochastic FunctionsHisham Al-Mharmah and James CalvinAn algorithm is called composite if it maintains its features when going form n to (n+1) obser-vations (see Zhigljavsky (1991)). In this paper we study the composite and the non-compositealgorithms for �nding the global maximum of a continuous function on the unit interval. Manyalgorithms have been proposed to optimize functions satisfying su�cient regularity conditionssuch as convexity and di�erentiability. On the contrary, investigation of the problem in theabsence of these strong assumption is still relatively limited. This work compares the averageperformance of di�erent algorithms under quite general assumptions. The Wiener measure onC([0; 1]) will be taken as the probability distribution on F ; i.e., any f 2 F is taken to be asample path of a Brownian motion process, and the average convergence rate is the criterionwhich we use to characterize the average performance of each algorithm.We concentrate on two classes of algorithms; the random non-adaptive class where the obser-vation sites are generated according to a certain probability distribution, and the deterministicnon-adaptive class where the function is observed at a sequence of �xed locations. Non-adaptivealgorithms make no use of any prior information to choose the next observation site and thegenerated site sequence will not be changed by changing the optimized function. The randomnon-adaptive algorithms are all composite, while the deterministic non-adaptive algorithms isclearly not.For the deterministic non-adaptive class we compare the average performance of three de-terministic non-adaptive algorithms: the uniform grid algorithm, denoted by DU , that placesobservations at equally spaced locations, (i.e., if the number of observations n is known inadvance, then they are placed at �xed locations 1=n; 2=n; :::; 1), the one-sided deterministicsequential algorithm, denoted by DO, that places the observations by always subdividing thelargest interval closest to the zero end point, (i.e., for n = 6, the observations sites will beplaced at 1, 1/2, 1/4, 3/4, 1/8, and 3/8 respectively), and the two-sided deterministic sequentialalgorithm, denoted by DT , that keeps subdividing the largest subinterval closest to one of thetwo end points and choosing the subinterval nearest to the zero endpoint in case of ties, (i.e.,for n = 6, the observations sites will be placed at 1, 1/2, 1/4, 3/4, 1/8, and 7/8 respectively).We show that DO! has a better convergence rate than the uniform grid algorithm and we showthat DT has the best performance.For random non-adaptive algorithms we discuss the distribution characteristics which im-prove the average convergence rate and we compare the average performance of di�erent ran-dom algorithms. Placing the observations independently according to a Beta(2/3,2/3) densityfunction is shown to be the optimal random non-adaptive algorithm. This distribution givesa slightly better convergence rate than choosing the sites according to the distribution of themaximizer, which is the arcsine distribution. Denoting the errors after n observations chosen ac-cording to the Beta(2/3,2/3), arcsine and uniform distributions by �betan , �arcsinen , and �uniformnrespectively, we show thatpnE[�betan ] ! 1�p2B(2=3; 2=3)3=2 � 0:662281;pnE[�arcsinen ] ! 1p2�B(3=4; 3=4) � 0:675978;pnE[�uniformn ] ! 1p2 � 0:707107:Also, we compare the above results with the convergence rate for the uniform grid algorithm9



that places n points equally spaced. Calvin (1994) showed that for this algorithm,pnE[�n]! 1 + C=2p2� � 0:5826;where C = Z 1t=1 t� btct3=2 dt � 0:9207:Thus the convergence is signi�cantly faster with deterministic uniform grid, and thus withthe one-sided and the two-sided sequential deterministic algorithms. However, the di�erencein convergence rate between the di�erent random non-adaptive algorithms is small comparedwith the improvement gained by using a deterministic non-adaptive algorithm. An importantadvantage of the random algorithms is that they are composite, unlike a deterministic algorithm.References[1] Calvin, J. (1994), Average performance of passive algorithms for global optimization, (toappear in Journal of Mathematical Analysis and Applications).[2] Denisov, I.V. (1984), A random walk and a Wiener process near a maximum, Theor. Prob.Appl. 28 821 - 824.[3] Imhof, J.-P. (1984), Density factorizations for Brownian motion, meander and the threedimensional Bessel process, and applications,[4] Kushner, M.J. (1964), A new method of locating the maximum point of an arbitrary multi-peak curve in the presence of noise. Journal of Basic Engineering 86, 97-106.[5] Revuz, D. and M. Zor (1991), Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin.[6] Ritter, K. (1990), Approximation and optimization on the Wiener space, Journal of Com-plexity 6 337-364.[7] T�orn, A. and A. �Zilinskas (1989), Global Optimization, Springer-Verlag, Berlin.[8] Zhigljavsky, A. (1991), Theory of Global Random Search, Kluwer, Dordrecht.
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Parallel Methods for Veri�ed Global Optimization | Practice andTheorySonja BernerThe development of satisfying methods for global optimization is still a problem. Given acontinuously di�erentiable function f : D ! IR; D � IRn, and a set X0 � D, one is searchingfor the global minimum f� = min ff(x) : x 2 X0g and for the set of all global minimum pointsX� = fx 2 X0 : f(x) = f�g.Interval methods are able to �nd reliably an enclosure of the global minimum and the globalminimum points. Here X0 is chosen as a box, i.e. an interval vector X0 = [a1; b1]�� � �� [an; bn].The solution is found by application of the branch and bound principle. The bound-step makesuse of an inclusion function F , computed by means of interval arithmetic (cf. next section), thatprovides an inclusion F (Y ) � ff(y) : y 2 Y g of the range of f for each subbox Y of X0.Problems of global optimization are usually hard to solve. Thus the development of parallelmethods often is a must to make them solvable at all. Here a new parallel approach to paral-lelization of branch and bound methods for validated optimization is presented. The e�ciencyof this new method is shown by measurement on a CM5 parallel computer for a variety of testproblems. It is compared with other existing parallel methods that are briey described. Furthersome theoretical results for the parallel method are given.Interval arithmeticFor a compact real intervalA = [a; a] the bounds are denoted by inf(A) := a and sup(A) := a,w(A) := a�a is the diameter of A. The absolute value of an interval is de�ned by jAj := maxfjaj :a 2 Ag. Interval vectors are termed boxes here. The sum, product etc. of intervals can easily byobtained (cf. [1]).Serial methodThe serial algorithm works in the following way: The starting box X0 is successively sub-divided. Subboxes X which reliably do not contain global minimum points are deleted by useof the criterion inf(F (Y )) > ~f where ~f is an upper bound for the global minimum. All otherboxes X are stored as pairs (X; inf(F (X))) either in a working list L or in a list ~L of possiblesolution boxes if w(F (X)) � " for a chosen ".Choice of the next box As long as L is not empty, one of the boxes of L is chosen forthe next subdivision. Various choices are possible:oldest-�rst strategy: the oldest pair of L is chosen (queue);best-�rst strategy: takes the pair (Y; y) with y minimal (sorted list);depth-�rst strategy: chooses the pair last inserted into L (stack).One can show [2] that the best-�rst strategy, which was used for our algorithm, is the moste�cient, since only useful boxes, i.e. boxes with inf(F (X)) � f� + " are considered for furthercomputations. Using the other two strategies, the number of investigated boxes depends highlyon the actual value of ~f and is normally higher.Even if one restricts oneself to a division of boxes by several successive bisections there arestill various options:Choice of the bisection direction Di�erent strategies on how to choose the direction tobisect a given box X have been examined (compare [3]). A box is always bisected in directioni 2 f1; : : : ; ng where a merit function Di(X) is maximal. Di�erent strategies arise for di�erentchoices of Di(X):Strategy A: Di(X) := w(Xi) 11



Strategy B: Di(X) := w(F 0i (X)) � w(Xi)Strategy C: Di(X) := jF 0i (X)j � w(Xi)Numerical experiments show that for some problems, especially for very large ones, a con-siderable amount of time (up to 92%) can be saved by using strategy C instead of A (similar forB), thus strategy C was chosen for our algorithm.Number of bisections It was tried to subdivide a box X by l � 1 bisections in one step.Experiments with l = 1; 2; 3 showed that l = 2 is a good choice. For all tested problems 20%less time was needed to get the solution, with l = 3 the time was sometimes higher than withl = 1.Further, the monotonicity test, nonconvexity check and the interval Newton method (cf.[3, 9]) were used for acceleration.ParallelizationThe general idea of parallelization is that each processor applies the algorithm to a boxassigned to it, independent of all others. There are three important goals:1. Make all processors know a better upper bound ~f found by one processor as fast as possiblebut with small amount of communication.2. No processor should become idle prematurely, therefore dynamic load balancing is needed.3. One should always try to work on the p \best" boxes, where p is the number of processors,to avoid to work on boxes that are not considered in the serial case.Existing parallelizations Parallel methods can be found in [4, 6, 7, 8]. A master-slavemodel [6] does not seem to be very e�cient, the master becomes a bottleneck. Better results areobtained with a processor farm. In [8] a rather high superlinear speedup of 170 on 32 processorswas reached but it turns out that this was only possible due to an ine�cient serial method usingthe oldest-�rst strategy.A new parallel approach The combination of master-slave model and processor farmyields a new parallelization scheme. Each processor keeps its own sorted list, they work ratherindependent of each other. A better value for ~f is distributed by an asynchronous broadcast.The best-�rst strategy is used on each processor. One processor is chosen as a centralizedmediator (cf. [10]). It is responsible for the dynamic load balancing: It does not work on boxes.Instead it waits for requests of idle processors to send them new boxes. It also keeps a limitmax that is changed dynamically. Processors with more than max boxes send some of these tothe centralized mediator (Figure 1).An advantage of this parallelization is that there is less work for the centralized mediator, thusit will not become a bottleneck as long as the number of processors is not too high. Furthermore,an idle processor knows whom to send a request to, it does not need to try to get boxes fromseveral processors.Our parallel algorithm [2] starts with an initial phase. The starting box is partitioned, eachprocessor gets one subbox. A local optimization on each processor followed by a synchronous loadbalancing often provides a good upper bound ~f and a good distribution of subboxes which is quiteimportant for problems that do not parallelize very well but need a large amount of computingtime. Further improvements of the algorithm are reached by some other modi�cations.Results The new parallel algorithm [2] described above was implemented in Pascal-XSCon a Connection Machine CM5 with 32 nodes.For large problems with high running time mostly slightly superlinear speedup is reached,for small problems the speedup decreases (Figure 2).A good speedup is reached especially for least squares problems with several global minimumpoints or local minimum points with relatively small function value. The problems from geodesy12
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GEO1, GEO2 and GEO3 considered here are least squares problems for example. The sameis true for the Kowalik problem KOW and for the parameter estimation problems of Csendes(CSEN) and Moore, Hansen and Leclerc (MHL). For problem MHL less than linear speedup isreached, see the following for an explanation. HM1, HM2 etc. are test problems used in [6].For some problems the improvement when using strategy C instead of A is higher in theserial than in the parallel case, thus the speedup decreases, although the parallel program isfaster with strategy C. This is true e.g. for the problem MHL where the speedup decreasesfrom 40.6 to 20.0 on 32 processors using strategy C instead of A. With this observation in minda comparison by speedups with other parallelizations which all use strategy A for subdivisionshows that the new parallelization is more e�cient in almost all cases.Some theoretical results have also been proven in [2]. One can show that the parallel methodessentially provides the same enclosures for the global minimum and all global minimum pointsas the serial one. Further it turns out that applying the best �rst strategy true superlinearspeedup cannot be expected.References[1] Alefeld, G., Herzberger, J., Introduction to Interval Computations, Academic Press,1983.[2] Berner, S., Ein paralleles Verfahren zur veri�zierten globalen Optimierung, PhD thesis,submitted to Fachbereich Mathematik, Bergische Universit�at GH Wuppertal.[3] Csendes, T., Ratz, D., Subdivision direction selection in interval methods for globaloptimization, to appear in SIAM Journal of Numerical Analysis.[4] Eriksson, J., Parallel global optimization using interval analysis, Licentiate Thesis, Uni-versity of Ume�a (1991).[5] Hansen, E., Global Optimization Using Interval Analysis, Marcel Dekker, Inc., 1992.[6] Henriksen, T., Madsen, K., Use of a depth-�rst strategy in parallel global optimization,Report 92-10, Technical University of Denmark, Lyngby (1992)[7] Leclerc, A., Parallel interval global optimization and its implementation in C++, IntervalComputations 3(1993), 148{163.[8] Moore, R. E., Hansen, E., Leclerc, A., Rigourous methods for global optimization,in Floudas, C. A., Pardalos, P. M. (Hrsg.), Recent Advances in Global Optimization,Princeton University Press, 1992.[9] Ratschek, H., Rokne, J., New Computer Methods for Global Optimization, Ellis Hor-wood Limited, 1988.[10] Smith, S. L., Schnabel, R. B., Dynamic scheduling strategies for an adaptive, asyn-chronous parallel global optimization algorithm, Tech. Report CU-CS-625-92, University ofColorado (1992)
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Numerical Simulation of Crystal Structures by Simulated AnnealingWilfried BollwegThree dimensional structures of crystals, proteins and nucleic acids can be characterized byenergy potentials. From a numerical point of view appropriate structures appear when theobserved chemical system reaches a state of minimal internal energy. Recently, theoretical sim-ulation methods which try to �nd suitable structures using optimization methods have becomemore and more important [4, 5, 6, 10, 11]. Of particular interest is the topic of crystal structuresimulation.Crystals distinguish themselves as three dimensional constructs of their modules (groups ofatoms, ions or molecules). Di�erent modules form aequidistant rows or lattices of points, layingside by side at �xed distances in the so called \space lattice" built up by the energetic interactionsof the lattice's modules. The even arrangement of the modules e�ects a very characteristicproperty of crystals, certain symmetries in their lattices. One of the most challenging questionsconcerning crystal structures is, whether it is possible to �nd these symmetries by minimizingan appropriate objective function using as little information as possible.Most attempts at a mathematical generation of crystal structures presumed a knowledge ofsymmetry information on the structure. Our talk presents the results of ab initio calculationson di�erent crystal structures based on a physical crystal model which combines short rangeinteractions [7, 12] with long range Coulomb interactions. This method does not require anyknowledge of internal symmetries.The corresponding general nonconvex global optimization problem with an objective functionf : Rn �! R can be written in the following form:P 0(x) = P (T (x)) : min f(T (x)) subject toa � xi � b for i 2 f1; : : : ; ngwhere T : Rn �! Rn is a suitable linear transformation.The �rst successful attempts to �nd chains and lattices of atoms by a minimization of this sys-tem were mostly based on deterministic optimization strategies [9]. The major disadvantageappeared in the fact, that starting with a �xed initial system state, always the next minimum indescend direction was found. A deterministic strategy usually is not able to leave this minimumagain heading for a better one. The situation that an appropriate structure cannot be found witha deterministic method is commonly known for problems of crystal structure determination.A better way to �nd suitable structures by potential energy minimization was achieved witha stochastic optimization strategy called \Simulated Annealing".The Optimization StrategySimulated Annealing is a general purpose optimization strategy proposed by Kirkpatrick etal. [8] for discrete optimization problems. The basic idea of Simulated Annealing is derived froman analogy to the annealing process of a molten solid. The method yields an e�cient stochasticalgorithm for determining local and global solutions of nonlinear optimization problems andextends the \Monte Carlo" method developed by Metropolis et al., to determine the equilibriumstates of a set of interacting atoms at a given Temperature T .In our presentation, we apply Simulated Annealing techniques to search for global and localminimum energy structures of potential energy functions associated with crystal structures.To improve the results, we introduce a variant of the algorithm which uses a modi�ed statetransition procedure derived from the physics crystal model.15



Potential Energy FunctionsThe determination of an objective function for the crystal structure prediction is as yet alarge unsolved problem but the literature contains several attempts for suitable expressions forspecial interactions [3]. One possible method is to �nd correct structures under the assumptionthat all crystallographic parameters of the energy terms and the symmetries of the structure arealready known. In this �eld there exist some large program packages like CFF91_CZEO [2] whichhave been thoroughly tested.However, we didn't try to follow this path. We simply tried to invest as little informationas possible about the structure and didn't prescribe details on the internal structure like bondangles, torsion angles and structure symmetries. A �rst successful step in this direction wasgiven by Pannetier, Bassas{Alsina and Rodruiges{ Carjaval in 1990 [11]. With a relativelysimple objective function using a Simulated Annealing technique they managed to �nd a coupleof structures like NaCl and T iO2. Despite their success with ionic compounds, they found thattheir method fails when it is applied to materials like silica which contain high valence atoms likeSi that tend to form more directional bonds with oxygen. We recognized that it is possible toextend their method which is based on Pauling's valence [12] rule and an electrostatic potentialderived from the electrostatic coulomb law calculated by a spherical cuto� [1]. In our talk weintroduce the idea of Pannetier et al. [11] and present our extension of their method. Withthese ideas it is possible to predict a greater class of crystal structures containing also silicastructures.Though we could not �nd a potential energy function which incorporates all relevant boundforces and electrostatic potentials without detailed structure information, we propose a functionwhich is suitable for determining the correct structure in a variety of ionic crystals only by usingsome empirical rules from electrostatics and crystal chemistry. By using a Simulated Annealingtechnique it is possible to generate symmetries in crystals without assuming a priori knowledgeof symmetry elements.ExamplesBeside the found optimal structures local minima shall be mentioned as well. They areimportant in order to recognize energetic relations between di�erent structures. These localminima often are comparable with natural phenomena. In reality during a too quickly performedannealing process a crystal gets stuck in such a \metastable phase" with a low but not optimalenergy because the atoms of the crystal cannot arrange themselves properly. Some examples ofpredicted crystal structures like CsCl, NaCl, T iO2, SrT iO3 and SiO2 will be used to completeour presentation.References[1] Allen, Tildesley { Computer Simulation of Liquids. Oxford Science Publications, 1987, 28{ 31.[2] CFF91 CZEO FORCE FIELD. BIOSYM Technologies Inc., 9685 Scranton Road, SanDiego, CA 92121{2777, USA.[3] Burnham { Mineral Structure Energetics and Modelling Using the Ionic Approach. Amer-ican Mineralogist, 347 { 388. Boulder, Colorado, USA, May 1993.[4] Byrd, R. H., Derby, T., Eskow, E., Oldenkamp, K. B., Schnabel, R. { A New Stochas-tic/Perturbation Method for Large-Scale Global Optimization and its Application to Wa-ter Cluster Problems. University of Colorado at Boulder, Department of Computer Science,Boulder, Colorado, USA, May 1993. 16



[5] Floudas, C. A., Maranas C. D. { Global Minimum Potential Energy Con�rmations of SmallMolecules. Journal of Global Optimization, 4, 135 { 170, 1994.[6] Journal of Global Optimization, Special Issue on Computational Chemistry, Vol. 4, 1994.[7] Gilbert { Soft-phere Modell for closed-shell atoms and ions. J. Chem. Phys. 49, 2640 { 2642.[8] Kirkpatrick, Gelatt Jr., Vecchi { Optimization by Simulated Annealing Chains. IBM Re-search Report RC 9355, 1982.[9] Kroll, H., Maurer, H., St�ockelmann, D., Becker, W., Fulst, J., Kr�usemann, R.,Stutenb�aumer, Th., and Zingel, A. { Simulation of Crystal Structures by a CombinedDistance Least Squares and Valence Rule Method. Zeitschrift f�ur Kristallographie 199,49-66 (1992).[10] Mumenthaler, C., Braun, W. { Folding of Globular Proteins by Energy Minimization andMonte Carlo Simulations with Hydrophic Surface Area Potentials. Journal of MolecularModeling 1, 1995.[11] Pannetier, Bassas-Alsina, Rodriguez-Carjaval, Calgnert { Prediction of Crystal Structuresfrom Crystal Chemistry Rules by Simulated Annealing. Nature Vol. 346, July 26th 1990.[12] Pauling. The Principles Determining the Structure of Complex Ionic Crystals. Journal ofthe American Chemistry Society, 51, 1926, 1010 { 1026.
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Evolution towards the maximum cliqueImmanuel M. BomzeAs is well known, the problem of �nding a maximum clique in a graph is NP-hard. Nevertheless,NP-hard problems may have easy instances. This paper proposes a new, global optimizationalgorithm which tries to exploit favourable data constellations, focussing on the continuousproblem formulation: maximize a quadratic form over the standard simplex. Some generalconnections of the latter problem with dynamic principles of evolutionary game theory areestablished. As an immediate consequence, one obtains procedure which consists (a) of aniterative part similar to interior-path methods based on the so-called replicator dynamics; and(b) a routine to escape from ine�cient, locally optimal solutions. For the special case of escapingfrom maximal cliques not of maximal size, part (b) uses e�cient block pivoting techniques.Consider an undirected graph G = (V; E) with n vertices. A clique � is a subset of the vertexset V which corresponds to a complete subgraph of G (i.e., any pair of vertices in � is an edgein E , the edge set). A clique � is said to be maximal if there is no larger clique containing�. A (maximal) clique is said to be a maximum clique if it contains the most elements of allcliques. The search for such a maximum clique is an NP-hard problem, and can be formulatedas a special quadratic optimization problem: let Aaij = 8><>: 12 if i = j ;1 if (i; j) 2 E ;0 else. (1)Then it turns out that the maximal (maximum) cliques correspond to the local (global) maxi-mizers of the problem x0Ax! max ! subject to x 2 Sn ; (2)where Sn = fx 2 IRn : xi � 0 for all i 2 V; Pi xi = 1g. The procedure proposed in thispaper consists of two parts. At �rst, a local solution of (2) will be generated very quickly; inthe second step we escape from an ine�cient local maximizer in a way such that improvementin the objective is guaranteed. Both parts work also for the general problem (2) where A is anarbitrary (positive) symmetric n� n matrix, not necessarily of regularized adjacency form (1).Empirical evidence suggests that the resulting procedure indeed has some merits.
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Average Convergence Rate of a Class of Adaptive Optimization Algorithmsfor Brownian MotionJames M. CalvinThe purpose of this paper is to characterize the average performance of a class of adaptive globalminimization algorithms under the Brownian motion model for the objective function. Theobject of a global minimization method is to approximate the global minimum f� of a functionf , and sometimes also a location t� where the minimum is attained. We take f to be a continuousfunction de�ned on the unit interval, and adopt the framework that the approximation is basedon observation of the function value at sequentially selected points in the unit interval. Thatis, the searcher chooses points t1; t2; : : : 2 [0; 1] and forms an approximation (f�n; t�n) to (f�; t�)based on fti; f(ti) : i = 1; 2; : : : ; ng. An adaptive algorithm chooses each new point tn+1 asa function of fti; f(ti) : i = 1; 2; : : : ; ng, while a non-adaptive algorithm chooses each pointindependently of the function values. We allow the possibility that the algorithm uses auxiliaryrandomness in the choice of observation sites.We consider a class of adaptive algorithms that use only limited past information. Forany � > 0, we construct an algorithm for which the error converges to 0 at rate n�(1��),in contrast to the n�1=2 rate characteristic of non-adaptive algorithms. We also identify thelimiting distribution of the normalized error. The improved e�ciency relative to non-adaptivealgorithms comes from using information from past observations to concentrate the search indecreasing sub-regions of the minimizer.Several methods have been used to compare the performance of di�erent global optimizationalgorithms. In this paper we will be concerned with the average performance criterion. Theidea is to regard f as the sample path of a stochastic process and then classify algorithmsbased on the average error in their approximations. This method has been used to study theaverage performance of non-adaptive algorithms in the case where f is taken to be a samplepath of a Brownian motion process. Ritter (1990) showed that for any non-adaptive method, theaverage error decreases at rate n�1=2 in the number of observations n. Calvin (1994) comparedthe average error for deterministic uniformly spaced observations with the expected error withrandom uniform sampling. Al-Mharmah and Calvin (1994) show that the optimal non-adaptivesampling density for approximating the error for Brownian motion is a Beta distribution. Calvinand Glynn (1994) extend many of these results to a more general class of di�usions.Let (B(t) : 0 � t � 1) be a standard Brownian motion de�ned on a probability space(
1;F1; P1), and let fU1; U2; : : :g be a sequence of independent, uniform (0; 1) random variablesde�ned on a probability space (
2;F2; P2). Set (
;F ; P ) = (
1 � 
2;F1 � F2; P1 � P2). LetB� denote the global minimum of the Brownian motion, and t� the (�rst) location where B�is attained. Denote by u�n the value Ui (1 � i � n) such that B(Ui) � B(Uj); 1 � j � n, andUi is the smallest value with this property. Let �n denote the di�erence between the smallestvalue seen in the �rst n observations and the global minimum, and let �n denote the di�erencebetween the global minimizer and the minimizer of the �rst n observations.We are concerned with algorithms constructed according to the following general framework.On the (n+1)st iteration, with probability 1=2 we choose the observation site uniformly over theentire unit interval, and with probability 1=2 we choose the site uniformly over a small subintervalcentered at t̂�n, where t̂�n is the location of the smallest observed value over those points chosenuniformly over the entire interval. The width of the interval of the local search decreases overtime, so that the local searches become more concentrated as the search progresses.Formally, let f�i : i � 1g be a sequence of independent Bernoulli(1=2) random variablesde�ned on (
2;F2; P2), independent of the fUig. Let fang be a decreasing (deterministic)sequence of positive numbers, with an # 0. The algorithms have the following form:19



Set t1 = t̂�1 = t�1  U1, B̂�1 = B�1  B(t1);For k = 1; 2; : : : ; n� 1,If �k+1 = 0,Set tk+1  Uk+1;If B(tk+1) < B�k, then set t�k+1  tk+1; B�k+1  B(tk+1);If B(tk+1) < B̂�k, then set t̂�k+1  tk+1; B̂�k+1  B(tk+1);Else if �k+1 = 1,Set tk+1  tk + ak+1(Uk+1 � 12 );If B(tk+1) < B�k, then set t�k+1  tk+1; B�k+1  B(tk+1).After the last step, B�n is our approximation to B� and t�n is our approximation to t�. We areinterested in the quality of the approximations produced by the algorithm as the number ofsteps n ! 1. Is is easy to see that this algorithm is consistent (for any choice of sequencefang) in the sense that the error converges to zero P2�a.s. for any Brownian path. The onlyinformation from the past maintained by the algorithm consists of t̂�n, B̂�n, t�n, and B�n.To complete the description of the algorithm, it remains to determine a choice of the sequencefang. If an goes to 0 too fast relative to the speed at which t̂�n � t� goes to 0, then the localsearch will tend to concentrate in subregions away from t�. On the other hand, if an goes to 0too slowly, then the performance gain relative to uniform sampling will be small. To determinean appropriate rate, it is necessary to know the rate at which t̂�n � t� converges to 0. Wewill show that n(u�n � t�) converges in distribution, thus giving the convergence rate needed todetermine the fang sequence for our adaptive algorithm. In fact, we will derive the limitingjoint distribution of (pn(B�n �B�); n(u�n � t�)) as n!1.Let R1 and R2 be two independent 3-dimensional Bessel processes, and de�ne a \two-sidedBessel process" R by R(t) = �R1(t); t � 0,R2(�t); t � 0.Let f�ig be an enumeration of the points of a Poisson point process on the line with unit intensity,independent of R, and set � = infiR(�i); � = inffj�ij : R(�i) = �g. We will establish that thejoint Laplace transform of (�;�) is given byZ 1t=0 Z 1y=0 e��t��yP (� 2 dt;� 2 dy)= 2 Z 1x=0 p1 + � e��x=p2p1 + � cosh �xp1 + ��+p� sinh�xp1 + �� sinh(x)cosh2(x)dx:It follows that n(t̂�n � t�) converges in distribution as n!1.We now turn our attention to the class of adaptive algorithms we set out to construct. Let �will denote a �xed (small) positive number. We will use the sequence an = [2(2 � �)]�1n�(1��)in the de�nition of the algorithm. Since n(t̂�n � t�) converges in distribution, this choice of anensures that the distance between t̂�n (the center of the local search) and t� will be asymptoticallynegligible compared to the scope of the local search.Our main result is that under the adaptive algorithm for any 0 < � < 1,�n1��=2�n; n2���n� d! (�;�)as n!1. In particular, the marginal limiting distribution of the function approximation erroris given by P (n1��=2�n � y)! tanh2 �yp2� ;20



and the corresponding normalized mean isn1��=2E(�n)! 1p2 :References[1] Al-Mharmah, H. and Calvin, J. (1994). Optimal random non-adaptive algorithm for opti-mization of Brownian motion. To appear in Journal of Global Optimization.[2] Calvin, J. (1993). Average performance of non-adaptive algorithms for global optimizationof Brownian motion. Journal of Mathematical Analysis and Applications 191 608-617.[3] Calvin, J. and Glynn, P. (1994). Complexity of non-adaptive optimization algorithms for aclass of di�usions. Submitted for publication.[4] Ritter, K. (1990). Approximation and optimization on the Wiener space. J. Complex-ity 6 337-364.
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Locating an Undesirable Facility by Generalized Cutting PlanesEmilio Carrizosa and Frank PlastriaIn this paper we address the problem of locating an undesirable facility within a compact setS by minimizing a strictly decreasing boundedly lower subdi�erentiable function of the squaredEuclidean distances to a set of �xed points.Particular instances are the following optimization problems:� minx2S Xa2A fa(kx� ak2);where each fa is strictly decreasing and convex.� minx2SnA Xa2A fa(kx� ak);where each fa is strictly decreasing and convex, with limt#0 fa(t) = 0 for each a 2 A.� minx2S maxa2A fa(kx� ak2);where each fa is strictly decreasing and Lipschitz.Using (generalized) cutting planes, the resolution of this problem is reduced to solving asequence of maxmin problems. These maxmin problems have a clear geometrical interpretationas generalized power diagrams, which enables to solve them sequentially by means of an on-lineenumeration of the vertices of polyhedra in higher dimensions.
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Convergence Speed of Interval Methods for Global Optimization and theJoint E�ects of Algorithmic Modi�cations1Andr�as Erik Csallner and Tibor CsendesInterval subdivision methods involve robust and reliable algorithms for global optimization.Their usefulness hinges mainly on their convergence speed.A substantial amount of e�ort (e.g. [1 { 4]) has been invested to improve the e�ciency ofthese methods. The most of the algorithms tested can be reduced to a single model algorithm.In this algorithm the place and the way of the modi�cations are easy to describe. The mostof the studies investigate the properties of the model algorithm when using di�erent intervalselection and subdivision direction selection rules.This presentation deals mainly with two things. The �rst part gives a survey on the theo-retical results and shows some numerical tests to support these results.The second part of the talk studies the modi�cations themselves. Some possible versions forthe interval selection rule and the subdivision direction selection rule are listed. Subsequentlythe cross-e�ects of these modi�cations and the cut-o� test are investigated by numerical testing.The proper combinations of di�erent modi�cations can inuence the behaviour of the sub-division methods signi�cantly, and thus they can show new ways how to increase the e�ciencyof these algorithms.References[1] Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York.[2] Kearfott, R.B. and Novoa, M. (1990), INTBIS, a Portable Interval Newton/Bisection Pack-age, ACM T. on Mathematical Software, 16, 152{157.[3] Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, EllisHorwood, Chichester.[4] Ratz, D. (1992), Automatische Ergebnisveri�kation bei globalen Optimierungsproblemen,Dissertation, Universit�at Karlsruhe.

1The work was supported in part by the Grants OTKA-T016413 and OTKA-T01724123



Global Optimization Methods for Process Network Synthesis1Tibor CsendesProcess network design problems (e.g. [4, 6]) form an important application �eld for nonlinearoptimization algorithms. The problems range from basically bound constrained ones to heavilyconstrained ones, where the set of feasible points is of much lower dimension than the searchspace. The reliability and the sharpness of the results play an indispensable role. We discussthree classes of algorithms: interval techniques [3, 5], convex underestimator methods [1, 6] andtraditional penalty function approaches (in a clustering framework) [2].A substantial part of the talk is devoted to the advantages and drawbacks of interval meth-ods. Much e�ciency improvement reserves are still in the proper tuning of the interval globaloptimization algorithms. We discuss also the problem how to �nd suboptimal intervals in thesearch domain containing exclusively feasible points for constrained global optimization prob-lems [5]. The suboptimal solutions with preset tolerances can be very useful in production levelapplications.The numerical experiences with the three approaches will be discussed on the basis of severalchemical network design problems. According to the early results, no single algorithm can besuggested for the whole class | each method has problems for which it is optimal. Better asensible combination of the studied algorithms can serve as an e�cient procedure that providesmeaningful results. The talk will review these real life applications together with theoreticalbackground and numerical e�ciency �gures.References[1] Androulakis, I.P., C.D. Maranas and C.A. Floudas: �BB: a global optimization method forgeneral constrained nonconvex problems, manuscript, 1995.[2] Csendes, T.: Nonlinear parameter estimation by global optimization | e�ciency and relia-bility, Acta Cybernetica, 8 (1988), pp. 361{370.[3] Csendes, T. and D. Ratz: Subdivision direction selection in interval methods for globaloptimization, to appear in SIAM Journal of Numerical Analysis.[4] Kov�acs, Z., F. Friedler, L.T. Fan: Recycling in a separation process structure. AIChE J.,39(1993) 1087{1089.[5] Kristinsdottir, B.P., Z.B. Zabinsky, T. Csendes, M.E. Tuttle: Methodologies for toleranceintervals. Interval Computations, 3(1993) No. 3, 133{147.[6] Quesada, I. and I.E. Grossmann: Global optimization algorithm for heat exchanger networks,Industrial and Engineering Chemistry Research, 32 (1993), pp. 487{499.
1The work was supported in part by the Grants OTKA-T016413 and OTKA-T01724124



GLOPT { A Program for Constrained Global OptimizationStefan Dallwig, Arnold Neumaier and Hermann SchichlGLOPT �nds the global minimizer of a block-separable objective function subject to boundconstraints and block-separable constraints of the formXk fk(xJk) 2 [q], orXk fk(xJk) + b = xj:where xJk is a subvector indexed by a one- or two-dimensional index list Jk, and [q] is apossibly unbounded interval.GLOPT is written in Fortran 77; since it does not use directed rounding, its reliability isthat expected of other numerically stable oating point calculation; i.e., because of roundingerrors, we �nd a nearly globally optimal point that is near a true local minimizer. Unless thereare several nearly global local minimizers, we thus �nd a good approximation to the globalminimizer.GLOPT uses a branch and bound technique to split to problem recursively into subproblemswhich are either eliminated or reduced in their size. This is done by an extensive use of theblock separable structure of the optimization problem.For processing with GLOPT, constrained optimization problems are coded in the inputformat NOP [4] that explicitly displays the internal structure of the problem with very littleoverhead.As in a method by Jansson & Kn�uppel [2] for bound constrained global optimization, noderivative information is used in GLOPT for problems where the feasible domain has a nonempty(and not too tiny) interior. For problems where the feasible domain has empty interior, localoptimization techniques are used to locate feasible points.At the time of writing (Sept. 15th), the algorithm solves successfully most problems fromChapter 2 of the problem collection by Floudas & Pardalos [1], and all problems consideredby Jansson & Kn�uppel [2].Our present implementation does not yet implement some features supported by the NOPformat (integer or threshold constraints, multiobjective optimization), but this might changesoon.References[1] C. A. Floudas and P.M. Pardalos, A collection of test problems for constrained global opti-mization algorithms, Lecture Notes Comp. Sci. 455, Springer, Berlin 1990.[2] C. Jansson and O. Kn�uppel, A global minimization method: The multi-dimensional case,Preprint, 1992.[3] A. Neumaier, NOP { a compact input format for nonlinear optimization problems, talk atthis conference.
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A Global Optimization Method, �BBC.S. Adjiman, I.P. Androulakis C.D. Maranas and C.A. FloudasOptimization problems abound in diverse areas of chemical engineering such as process designand control, operations planing, product design. Except for a few special instances (i.e., convexproblems), optimization problems are characterized by the presence of multiple local minimawhose number increases rapidly with the size of the problem. Locating the global minimum pointdespite the presence o� a plethora of local minima is of particular importance. This is becausethe global minimum point typically describes a unique state of the system being optimized.In this paper, the deterministic global optimization algorithm, �BB, (�-based Branch andBound) is presented. This algorithm o�ers mathematical guarantees for convergence to a pointarbitrarily close to the global minimum. The key idea is the construction of a convergingsequence of upper and lower bounds on the global minimum through the convex relaxationof the original problem. A convex relaxation of the original nonconvex problem is obtainedby (i) replacing all nonconvex term of special structure i.e. bilinear, univariate concave) withcustomized tight convex lower bounding functions and (ii) by utilizing the � parameter asde�ned by Maranas and Floudas (1994), to underestimate nonconvex terms of generic structure.In most cases, the calculation of the exact value of the parameter � in order to construct validconvex underestimating is a challenging task. A novel approach which generates a valid boundon � is proposed. It has the advantage being computationally tractable while preserving theglobal optimality guarantees of the algorithm. This method relies on the generation of theinterval Hessian matrix of the function being investigated, or an enclosure of that matrix. Theextremal eigenvalues of an appropriate subset of its vertex matrices are then calculated, basedon a Kharitonov-like theorem and thus yielding a guaranteed bound on the value of �.The implementation of the �BB algorithm includes a user-friendly parser, which facilitatesproblem input and provides exibility in he selection of a suitable underestimating strategy. Inaddition, the package features both automatic di�erentiation and interval arithmetic capabilities.The proposed approach is illustrated with a large number of process systems examples in-volving design problems of various sizes, distillation sequencing and reactor design.
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Polynomial Algorithm for Improving the Bounding Procedure in SolvingProcess Network Synthesis by a Branch and Bound MethodB. Imreh, F. Friedler and L.T. FanThe MIP model of process network synthesis (PNS) contains a large number of binary variablesassociated with operating units. This renders the model di�cult to solve by any availablemethod without exploiting the speci�c features of process structures. The branch and boundmethod has various advantages in solving MIP problems over other methods. Nevertheless, thegeneral branch and bound method is far from e�cient in solving the MIP model of PNS becauseit tends to give rise to a large number of partial problems, each of which contains unnecessarilylarge number of variables. Combinatorial analysis of the MIP models of PNS and that of feasibleprocess structures have yielded mathematical tools for exploiting the unique characteristics ofPNS (Friedler et al., 1995). These tools accelerate the branch and bound search for the optimalsolution by minimizing the number of partial problems to be solved and by reducing the size ofan individual partial problem.The present work is concerned with the bounding procedure for further acceleration of thebranch and bound search under the assumption that the cost function of an operating unitincludes a positive �xed charge in addition to a linear or nonlinear variable charge cost. Theconventional bounding procedures, e.g., LP relaxation of a MILP problem, do not consider the�xed charges of the operating units not included in a partial problem; however, if the partialproblem is not a solution of the PNS problem, it must be extended with some operating units.Thus, the conventionally generated lower bound can be increased with the sum of the �xedcharges of these operating units. This sum should be the minimum among the sums of the�xed charges of such sets of operating units that can extend the partially de�ned structure toa feasible structure of the PNS problem. This minimal sum can only be generated by availablealgorithms in exponential time. The present work introduces a combinatorial algorithm thatgives a sharp lower estimation for this minimal sum in polynomial time.Reference1. Friedler, F., J. B. Varga, E. Feh�er, and L. T. Fan, Combinatorially Accelerated Branch-and-Bound Method for Solving the MIP Model of Process Network Synthesis, presented atthe International Conference on State of the Art in Global Optimization: ComputationalMethods and Applications, Princeton University, Princeton, NJ, U.S.A., April 28-30, 1995;also to be published in Nonconvex Optimization and its Applications, Kluwer AcademicPublishers, Norwell, MA, U.S.A. (in press).
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A Parallel Implementation of the Controlled Random Search Algorithm toOptimize an Algorithm for Reconstruction from Projections1Inmaculada Garcia, P.M. Ortigosa, L.G. Casado, G.T. Herman and S. MatejA parallel implementation of a global optimization algorithm is described in this paper. Thealgorithm is based on a probabilistic random search method. Computational results are illus-trated through application of the algorithm to a time consuming problem which arises from the�eld of image reconstruction from projections.In areas such as tomography and electron microscopy the reconstruction from projectionsproblem is solved by several kinds of methods. One of the problems in these �elds is to determinewhich method is the best approach. Also the question for a particular method is: what are thevalues for the free parameters that optimize the quality of the reconstructed images?. An answercan be obtained by the application of a global optimization algorithm on a function (Figure OfMerit) that estimates the quality of the reconstructed image compared to the original image. Thereconstruction method used in this work is a particular implementation of the well known ART(Algebraic Reconstruction Techniques) algorithm [1] and the objective function to be minimizedis the distance between the original and the reconstructed images. Briey the problem can beposed as: Given a set of projection data (g1; : : : ; gm), which have been obtained from an image(F1; : : : ; Fp), and the reconstructed image (Xr0 ; : : : ;Xrp), obtained by the application of ART,�nd the minimum value of the function:�(�1; : : : ; �r) = sPpi=1(Fi �Xri (�1; : : : ; �r))2n ; (1)where vector � = �1; : : : ; �r is a set of free parameters used in the reconstruction algorithm. Inour application we have chosen a �xed relaxation parameter of the ART method as the variablefor the optimization problem. ART is an iterative algorithm that at the jth iteration updatesthe vector Xj by applying m times the following equation:Xj;k+1 = Xj;k + �j [gk+1 � hhk+1;Xj;ki]khk+1k2 hk+1; k = 0; 1; : : : ;m� 1 (2)The convergence and performance of this general algorithm have been studied by Herman etal. (see for example [2, 3] and their references). They point out that ART using blobs may bethe most e�cacious algorithm for reconstruction from projection and also that the value of therelaxation parameters is likely to have a large inuence on the quality of the reconstructions.In the selection of a global optimization method for our particular application we havetaken into account the fact that the computational cost of the function to be evaluated isenormous (15-20 minutes on a Sparc 10, 50Mhz). As a consequence, a parallel algorithm forglobal optimization seems to be the most appropriate. In this work we propose a parallelalgorithm which is based on the Controlled Random Search (CRS) algorithm of Price [4, 5]. Someparallel approaches have been proposed by McKeown [6], Sutti [7], Ducksbury [8], Price [9] andWoodhams and Price [10] using various kind of parallel computers and strategies. Our proposal,described in the next section, makes little modi�cations to the original sequential version ofCRS. These modi�cations are aimed at estimating the objective function on several processorssimultaneously. Nevertheless, the general strategy used in CRS remains in our parallel version(PCRS).1This work was supported by the Ministry of Education of Spain (DGICYT PR94-357), by the Consejeria deEducaci�on de la Junta de Andalucia (07/FSC/MDM), and by the National Institutes of Health (HL28438 andCA54356). 28



In Section 3 we show some results obtained from the application of PCRS to a classical setof test functions [12]. Results of the PCRS algorithm for image reconstruction from projectionsare shown in Section 4.The PCRS algorithm and its parallel implementationThe Parallel Controlled Random Search (PCRS) algorithm is based on a master-workercommunication model. In this strategy the master processor executes the PCRS algorithm anda worker processor only evaluates the objective function at the trial points supplied by themaster processor. After every evaluation it sends the result back to the master. PCRS startswith the evaluation at N trial points chosen at random from the search domain V over whichthe objective function � : Rn ! R is to be optimized. In our description the coordinates of atrial point j are stored in a vector Aj1; : : : ; Ajn and Aj0 = �(Aj1; : : : ; Ajn). The objective functionat the N trial points is computed in parallel by the worker processors. Two procedures, calledSEND and RECEIVE, are used by the master and worker processors to exchange a real vectorA0; : : : ; An (see the algorithmic description of PCRS in the Appendix at the end of the paper).The master processor chooses randomly n+1 points (R0; : : : ; Rn) from the set A0; : : : ; AN�1 anddetermines their centroid G and a trial point P . If P is in the domain V , then P is sent to one ofthe idle worker processors, otherwise a new random choice of (R0; : : : ; Rn) is made. In order toget the best e�ciency of the parallel implementation, this procedure is repeated NP times (NPis the number of worker processors). As a consequence every processor in the parallel systemis doing useful work and the workload of the parallel system is balanced. At this moment, aprocedure is executed by the master processor iteratively until a stopping criterion is satis�ed.During an iterative step the greatest value Am0 in the set A00; : : : ; AN�10 is determined. If a valueB0 smaller than Am0 is received from a worker processor, then Am is replaced by this new trialpoint B(B0; : : : ; Bn). The stopping criterion is based on the maximum distance between anytwo points in the set A0; : : : ; AN�1 and on the maximum di�erence of the objective function inthe set A00; : : : ; AN�10 .Results on a set of test functionsSome results are given in Tables 1 and 2 for the problems of Goldstein/Price, Hartmanand Shekel. For each problem the same series of �ve random sequences were used. Data inTable 1 are the maximum number of evaluations over the series (the sum totals for all NPworker processors). The index of success for �nding the global minimum was 100% for everytest functions. The percentage of increasing (or decreasing) in the number of function evaluationsusing NP processors, relative to the sequential case, is represented in parentheses. The resultssuggest that the number of function evaluations does not increase with the number of workerprocessors; it seems to depend on the speci�c function within a range of �20% as compared tothe sequential version.Table 1: Maximum number of function evaluations for a set of test functions versus the numberof worker processors (NP )NP Gold/Price Hartman-6 Hartman-3 Shekel-5 Shekel-7 Shekel-101 338 2904 852 1419 1270 11902 384 (+13.6) 2845 (-2.0) 853 (+0.1) 1215 (-14.4) 1242 (-2.2) 1258 (+5.7)4 388 (+14.8) 2781 (-4.2) 865 (+1.5) 1218 (-12.8) 1240 (-2.4) 1250 (+5.0)8 395 (+16.9) 2869 (-1.2) 943 (+10.7) 1254 (-11.6) 1236 (-2.7) 1245 (+4.6)16 376 (+11.2) 2784 (-4.1) 983 (+15.3) 1157 (-18.5) 1155 (-9.1) 1254 (+5.4)The performance of a parallel algorithm is usually measured by the speed-up. Speed-up is29



de�ned as the ratio t1tNP , where t1 and tNP are the times spent by the algorithm using one andNP processors, respectively. It is clear that t1 and tNP depend on the number of evaluationsin a particular execution of the algorithm and tNP is also a function of the delay introduced inthe parallel system because of the interprocessor communications. Let tf and tc be the CPUtimes for evaluating once the objective function and for the interprocessor communication delay,respectively. Let n1 and nNP be the number of evaluations for a uniprocessor system and for amultiprocessor system with NP worker processors. Then t1 = n1 � tf , tNP = nNP � (tf + tc),and speed�up = t1tNP = n1nNP � 11 + tctf (3)There are two terms in the speed-up equation; the ratio n1nNP and that due to the delay forcommunicating data in the parallel system. Table 2 provides the ratio NP � n1nNP for the set oftest functions of Table 1. From Table 2 it can be concluded that, when tctf < 0:1, almost a linearspeed-up and sometimes a super speed-up can be achieved.Table 2: Values for speed-up considering that tctf << 1NP Goldstein/Price Hartman-6 Hartman-3 Shekel-5 Shekel-7 Shekel-102 1.8 2.0 2.0 3.4 2.1 1.94 3.5 4.2 3.9 4.6 4.1 3.88 6.9 8.1 7.2 9.1 8.2 7.616 14.4 16.7 13.9 19.7 17.6 15.2PCRS for reconstruction from projectionsIn image reconstruction from projections the input data are noisy. Consequently, the resultof optimization based on only one data set may not be reliable. For this reason we have usedfour data sets. The PCRS optimization algorithm has been applied to the image reconstructionproblem for the unidimensional case when the relaxation parameter is the free variable andthe objective function is the average root mean squared error over the reconstructed images.Figure 1 presents the values of the objective function for the four sets of projection data andfor their average. Clearly, the noise introduced in the projections data does not greatly modifythe solution (the maximum di�erence of the objective function is 5� 10�5 which is 0:1% of theaverage value.This work, presenting results for unidimensional optimization, can be considered to be our�rst step towards multidimensional optimization for image reconstruction from projections. Weare know testing PCRS and other optimization algorithms in multidimensional spaces (n =4; n = 7) using several reconstruction algorithms.References[1] G.T. Herman. Image Reconstruction from Projections: The fundamentals of computerizedTomography. Academic Press, New York, 1980.[2] H.T. Herman and L.B. Meyer. Algebraic reconstruction techniques can be made computa-tionally e�cient. IEEE trans. Med. Imag., MI-12(3):600{609, 1993.[3] S. Matej, G.T. Herman, T.K. Narayan, S.S. Furuie, R.M. Lewit and P.E. Kinahan. Evalua-tion of task-oriented performance of several fully 3D PET reconstruction algorithms. Phys.Med. Biol., 39:355{367, 1994. 30



[4] W.L. Price. A controlled random search procedure for global optimization. In L.C.WDixon and G.P. Szeg�o, editor, Towards Global Optimization 2, pages 71{84. North Holland,Amsterdam, 1978.[5] W.L. Price. Global optimization algorithms by controlled random search. Journal of Op-timisation Theory and Applications, (40):333{348, 1983.[6] J.J. McKeown. Aspect of parallel computations in numerical optimization. In F. Archettiand M. Cugiani, editor, Numerical techniques for stochastic systems, pages 297{327. 1980.[7] C. Sutti. Local and global optimization by parallel algorithms for MIMD systems. Annalsof Operating Research, (1):151{164, 1984.[8] P.G. Duckbury. Parallel array processing. Ellis Horward, Chichester, 1986.[9] W.L. Price. Global optimization algorithms for a CAD workstation. Journal of OptimisationTheory and Applications, (55):133{146, 1987.[10] F.W.D. Woodhams, W.L. Price. Optimizing accelerator for CAD workstation. IEE Pro-ceedings Part E, 135(4):214{221, 1988.[11] I. Garc��a, G.T. Herman. Global optimization by parallel constrained biased random search.In C.A. Floudas and P.M. Pardalos, editor, State of art in global optimization: Computa-tional Methods and Applications. In press.[12] A. Torn and A. Zilinskas. Global Optimization. Lecture Notes in Computer Science 350.Springer-Verlag, Berlin, 1989.Appendix: PCRS algorithmBegin PCRS(N; n; V; NP )Choose N points at random over V ! A0; : : : AN�1.do j = 0 : min(N � 1; NP � 1)SEND Aj to PEj ( PEj compute A0 = �(A1; : : : ; An))k = 0if N > NPdo j = NP � 1 : N � 1RECEIVE (A; IDP )A! AkSEND Aj to PEIDPk = k + 1do j = 0 : min(N � 1; NP � 1)RECEIVE (A; IDP )A! Akk = k + 1do j = 0 : NP � 1Choose randomly n+ 1 points R0; : : : ; Rn from the set A0; : : : ; AN�1.Determine the centroid G for R1; : : : ; RnP = 2�G�R0if P 2 V SEND P to PEjelse j = j � 1flag = 0while until convergencyDetermine the stored point m which has the greatest function value Am0Choose randomly n+ 1 points R0; : : : ; Rn from the set A0; : : : ; AN�1.if flag = 0Determine the centroid G for R1; : : : ; RnP = 2�G �R0 31



else P = G+R02flag = 0if P 2 VRECEIVE (B; IDP )SEND P to PEIDPif B0 < Am0 then B ! Am and compute success rate (succ)else if (succ < 50%) then flag = 1End whileEnd PCRS
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Optimization of the Reducing Gear Box with Minimization its Own WeightTale Geramitchioski and Ilios VilosOne access for thick sheet metal optimisation of the reducing gear box construction with theprincipal of gear box mass minimization is given.The reducing gear box has a multiplex signi�cance in reduce gears functions. All loadsconcentrated in bearings are accepting and transiting to the platform by gear box, it ensurerespective mutually position of the reduce gear parts, it ensures physical separating of theatmosphere space and the inner gear box space where exists the driving gears, shafts, bearingswhere the inner space is using as a lubricant container too.The gearing box construction has two parts - upper and lower. The gear box must haveappropriate ultimate strength and sti�ness, but also the simplicity and easy for constructionand production because of the cost price reducingReducing gear box are producing most often by cast iron or by welding sheets metals. The�rst proceeding is priority for the complex geometrical constructions, and the other is mostacceptable for the cases when the gear box weight minimization is the priority condition.The Function of MinimizationThe �rst step to solving the problems is to compose the function of all inuence constructionweight parameters. As a variables in this problem we are using the gear box fundament thick,the thick of the length and transversal walls where the resultant bearing loads are accepts, and�nally, the strengthening ribs thick using under the bearings, on the gear box lower part.In �nite shape, the function of the purpose which valye minimizing is given with this formu-lation.FC = (L �H1 � (B �Bv) + 2 � Bv �H) + (Bv � (L� 2)) � �1 + (2 � L �H2��=2 � (D12 +D22)� 2 � Bv) � �2 � (2 � L �H1 + �=2 �D12 +D22)� 4 �H1 +D2 +D1) � �3 +(4 � L� 6) � �1 � �3The parameters using in upper formulation are speci�ed at the end of the paper, and on �g2. we can see the graphical presentation of the gear box cross section with using variables.The Function of LimitationsThe �rst criterion - necessary warping of transversal and length wallsH1�D1=2 � 2 � �1i � 25 (1)- cross section radius of inertia with necessary satis�ed the buckling strengthR125 � �21 + �2 � �3 � �D (2)for the wall under the biggest bearing hole with diameter and load .H1�D2=2 � 2 � �1i � 25 (3)with satis�ed the buckling strength R225 � �21 + �2 � �3 � �D (4)33



Second criterion - limitation of surface pressure on the bearing holesR1� �D1 � (�2 + �3) � pd (5)R2� �D1 � (�2 + �3) � pd (6)The third criterion - limitation of walls strengthMCIx�xc � ymax�c � �cd (7)M2Ix�x2 � ymax�2 � �cd (8)The fourth criterion - constructive limitations2 � �2 + 2 � �3 +Bv � B5 < �1 > 50; 5 < �1 > 50; 5 < �1 > 50 (9)Mathematical Solving the Problem with One ExampleComplex method by M.J.Box [3] was used for solving the existing nonlinear problem. Thatmethod is a kind of modi�cation of the simplex Nelder-Mead method [4]. One example of thegear box optimization using the method of minimization it's own weight, and input parametersof the solving problem is given.OPTIMIZATION OF THE REDUCING GEAR BOX CONSTRUCTION INPUT PARAM-ETERS FOR SOLVINGThe total high of the gearing box H(mm)=212. The total length of the gearing box L(mm)=315.Axle base A(mm)=100. High of the gearing box lower part H1(mm)=112. High of the gearingbox upper part H2(mm)=100. The �rst bearing hole diameter D1(mm)=32. The second bear-ing hole diameter D2(mm)=40. The �rst bearing reaction R1(N)=1500. The second bearingreaction R2(N)=2000. Diameter of the smaller gear Dz1(mm)=60. Diameter of the bigger gearDz2(mm)=110. The critical normal strength of the material SIGD(N/mm2)=60. Number ofthe variable's in function N=3. Number of the limiting function's M=9. Constructive limit'snumber : 3. 5 � X(1) � 50; 5 � X(2) � 50; 5 � X(3) � 50THE MINIMIZATION FUNCTION:FC = K1 +K2 �X(1) +K3 �X(2) +K4 �X(3) +K5 �X(1) �X(3)With the constants: K1 = L �H1 � (B �Bv) + 2 �Bv �HK2 = (Bv � (L� 2))K3 = 2 � L �H2��=2 � (D12 +D22)� 2 � BvK4 = 2 � L �H1 + �=2 �D12 +D22)� 4 �H1 +D2 +D1K5 = 4 � L� 6THE LIMITS The �rst initial solutions: X(1)=20 X(2)=20 X(3)=20(H1�D1=2 � 2 �X(1))=i � 25R1=(25 �X(1)2 +X(2) �X(3)) � �D34



(H1�D2=2 � 2 �X(1))=i � 25R2=(25 �X(1)2 +X(2) �X(3) � �DR1=(� �D1 � (X(2) +X(3))) � pdR2=(� �D1 � (X(2) +X(3))) � pdMC=(Ix�xc) � ymax�c � �cdM2=(Ix�x2) � ymax�2 � �cdRESULTSTHE OPTIMAL VALUES OF THE VARIABLES:X1(mm)=29.24120 X2(mm)=24.09092 X3(mm)=23.10294 THEMINIMUMOF THE FUNC-TION (MINIMUM VOLUMEN mm ) IS: 3503045 THE MINIMUM WEIGHT OF THE GEAR-ING BOX SHEET METAL T(kg) IS: 269.7643 NUMBER OF THE ITERATIONS TO THEFINITE SOLUTION ARE: 7

References[1] An�mov,M.I.: Reduktory,konstrukcii I rascjot, Masinostroenije, Moskva, 1965[2] Acerkan,N.S.: Detali masin, spravocnik, Sudostroenije, Leningrad, 1970[3] Box,M.,J.: A new method of constrained optimisation and a comparison with other method's,The Compt. Journal 8, 45-52, 1965[4] Nelder, J., Mead, R.: A Simplex Method For Function Minimization, The Comput. Journal7, 308-313, 1965[5] Bunday, B.D.: Basic Optimisation Methods, School of Mathematical Sciences, University ofBradford, UK, 1988 35



Information Models and Methods to Support Global OptimizationProceduresVictor P. GergelIn our lecture we intend to discuss some problems of collecting, storing and processing searchinformation obtained in the course of global optimization. Within the framework of our discus-sion we shall propose a number of new models for the presentation of this information. Thesemodels make it possible to apply e�ective methods to process search data. As we expect, suchresults can be used for obtaining numerical solutions to the problems of global optimization,pattern recognition and etc.1. Consider the N-dimensional problemmin f(y); y 2 D(1) (1)where the search domain D = y 2 Rn : ai � yi � bi; 1 � i � N;IRn is the N-dimensional Euclidean space and the objective function f(y) to be minimized maybe multiextremal. We suppose also that evaluating values of f(y) at any point y 2 D mayrequire extensive computing e�orts.Let us make two assumptions about the nature of how a global optimization method selectsiteration points to solve the problem (1).As we suppose, for many well-known global search techniques a procedure for selecting anew iteration point yk+1 after making k, k > 1, search iterations at the points y1; y2; : : : ; yk canbe described as the mapping (the decisive rule)yk+1 = Gk(y1; y2; : : : ; yk; z1; z2; : : : ; zk); (2)where zi; 1 � i � k, are the values of the function f(y) at the points yi, 1 � i � k. That is,when a new iteration point is selected the method uses function values calculated in previousiterations. It is important to note that reducing the number of iteration points taken intoaccount in (2) may deteriorate the convergence properties of the method.We suppose also, that when the method selects yk+1 from (2) it estimates possible functionvalues at points from D. To do that, for instance, at some point y 2 D the method takes intoaccount mainly function values zi, 1 � i � k, calculated at the nearest points, i. e. at the pointsyi : 1 � i � k; �(yi; y) � �;where � is the metric in the N -dimensional Euclidean space. As a rule, the value of � isunknown which requires to sort points yi; 1 � i � k in accordance with the distance to thepoint y. The complexity of such operation can be evaluated as O(Nk log k). Let us supposethat the number of neighbourhoods estimated in the course of selecting a new iteration pointis directly proportional to the number of previous iterations and the number of iteration pointsare inversely proportional to a required accuracy � of the global minimum estimate, viz. wesuppose that k = (1=�)N . In this case the total complexity of making optimization iteration canbe evaluated as T1 = O(Nk2 log k) = O(N2(1=�)2N log(1=�)): (3)This dependence demonstrates that even for the small dimensions (e.g. N = 4) and for therough accuracy (e.g. � = 0:1), executing the optimization iterations requires hard computations.36



As a result we can conclude that the problem of search information processing is one of the mainproblems of global search implementation.2. Search information can be very useful also for solving optimization problems which canbe transformed in the course of global search. For instance, solving a multicriteria problem canbe performed as solving a sequence of scalar multiextremal problems [1]minF (y); F (y) = max1�j�s�jfj(y); y 2 D; (4)with various values of the weight coe�cients �j , 1 � j � s, of the partial criteria fj; 1 � j � s. Ifin this case we store values zij ; 1 � j � s; 1 � i � k, of the partial criteria fj; 1 � j � s, calculatedat previous iteration points yi; 1 � i � k, then for any � we can calculate values Zi; 1 � i � k,of the aggregated criterion F (y) at the same points yi; 1 � i � k; by the expressionZi = max1�j�s�jzij ; 1 � i � kwithout repeating time-consuming computations of the values fj(yi). As a result the methodcan start to solve the problem (4) with a new value � having known values of F (y) at previousiteration points. This, undoubtedly, will speed up the problem solution.3. The search information obtained in the course of optimization can be presented as the set
k = (yi; zi) : 1 � i � k; (5)where yi; 1 � i � k, are points of previous iterations, zi; 1 � i � k, are function values calculatedat these points (in general zi; 1 � i � k, may be vector values - see Section 2).A possible way to decrease the complexity of search information operations is based onemploying the set of joint space-�lling curves [2-4] for reducing multidimensional data.Consider the plural mappingY (x) = y[x](x� [x]); x 2 (0; L+ 1) (6)where yl(x); 0 � l � L, is the partial mapping that maps the segment [l; l+1] of real axes x ontothe N -dimensional search domain D from (1), [x] is the integer part of x. This mapping p(x) canbe formed in such a way that for any two close points y0; y" from D will exist a partial mappingyl(x); 0 � l � L, which produces close preimages x0; x" for the points y0; y" [2-4]. Thereforethe procedure of searching "nearest neighbours" among multidimensional iteration points canbe replaced by a search among scalar preimages.Using the mapping Y (x) from (6) we can transform the search information set 
k from (5)to the form !k = (xi; zi) : 1 � i � K = (L+ 1)k; x1 < x2 < ::: < xk; (7)which contains all the preimages of previous iteration points yi; 1 � i � k, in accordance withthe mapping Y (x). As it can be noted preimages in !k are placed in the ascending order.Search information presented in the form (7) can be supplied with e�ective procedures forsearching "nearest neighbours" for any point y 2 D:1. indicate the value �; 1 � � � L, that determines the neighbourhood of yD(y; �) = y0 2 D : jyj � y0jj < (bj � aj)=2� ; yi = y0i; 1 � i � N; i 6= jwhere the vectors a = (a1; :::; aN ), b = (b1; :::; bN ) from (1);2. calculate the preimages xj; 0 � j � L, of the point y in accordance with Y (x) from (6),i.e. y = Y (xj); 0 � j � L 37



3. form the set I = i; 1 � i � K : 9j; 0 � j � L; jxi � x0jj � 2��N ;which keeps the number of iteration point preimages located near with some preimages ofy;4. select the numbers J = j; 1 � j � k : 9i 2 I;9l; 0 � l � L; xjl = xiwhich indicate the points yi; 1 � i � k, having at least one preimage whose number belongsto the set I.The complexity of the presented procedure can be evaluated asT2 = O(2N(log2(1=�))2):This dependence demonstrates that the complexity depends linearly on the dimension of theproblem and as a binary logarithm on the number of previous iterations. As a result, thecomputational e�orts needed for processing the search information decrease substantially (see(3) for comparison).In particular for global optimization it can be added that we can construct multiextremalmethods which don't require "nearest neighbours" search procedures at all. Instead of it thesemethods analyze one-dimensional intervals (xi�1; xi); 1 � i � K, from (7) directly (see, forinstance, [4]).To illustrate proposed approach we intend to present suitable optimization software.References[1] Gergel V.P. (1993), A Software System for Multiextremal Optimization, European Journalof Operation Research 65, N 3, 305-313.[2] Gergel, V.P., Strongin, L.G., Strongin, R.G. (1987), The Vicinity Method in Pattern Recog-nition, Engineering Cybernetics (Transl. from Izv. Acad. Nauk USSR, Techn. Kibernetika 4,14-22).[3] Gergel, V.P., Strongin, R.G. (1992), Multiple Peano Curves in Recognition Problems, Pat-tern Recognition and Image Analysis 2, N 2, 161-164.[4] Strongin, R.G. (1992), Algorithms for Multi-Extremal Mathematical Programming ProblemsEmploying the Set of Joint Space-Filling Curves, Journal of Global Optimization 2, 357-378.
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Global Optimization and Decision SupportEligius HendrixGlobal optimization methods is the name for a group of algorithms with the purpose to �ndthe global optimum of a real valued continuous function over a feasible set, de�ned by a set ofinequalities. Until recently most literature on global optimization focused on theoretical prop-erties of the methods. At the moment we are working on a monograph based on the experienceon �nding answers for Global Optimization questions in the past �ve years. The central themeof this work is, what global optimization has to o�er to a group of potential users. At one sidethere exists literature on global optimization, which mainly focuses on theoretical achievementsof the methods, see Handbook on Global Optimization (Horst and Pardalos, 1995). At theother side there are potential users. The target group of our study uses mathematical modellingfor research, though it does not exist of experts in optimization. In the work, stimulated byexperience at the Agricultural University, the following categories of modellers and potentialusers of global optimization methods are distinguished:{ Researchers in agricultural and environmental studies{ designers{ OR decision scientists of environmental and agricultural planning problems.In all the categories, mathematical modelling and optimization are used to get a betterunderstanding of a practical problem, an object system. When the answers of the optimizationare satisfactory for practical planning problems, the optimization routines can be build intoDecision Support Systems to generate suggestions for the decisions to be made. In contrast tomethods from linear programming and combinatorial optimization, the GLOP methods havehardly reached this level. This inability motivates our study.An important question is, how the modeller can use his knowledge to select global opti-mization methods and to apply the knowledge further interactively during the solution process.Reversely, which useful information do the algorithms generate, which may help the modellerto get a deeper understanding of the practical problem which has been modelled and to speedup the solution process. An important notion is the division of GLOP methods in two groups.On one side there are deterministic methods such as Branch-and-Bound, which require specialstructure or at least analytical expressions (interval methods) of the model feeding the optimiza-tion problem. At the other side there are methods based on random search and/or local searchwhich do not require any special structure. The choice of using a particular method depends onthe information in the head of the modeller of one of our target groups who poses the question.This can be structure information e.g. bilinearity, or value information such as amount of op-tima, promising regions and bounds on �rst or second derivatives. The Oracle structure wherea criterion value is provided by a (sub)program e.g. performing numerical integration, occursvery frequently. Bounds on the parameter values may be available, but we cannot make use ofany information on the criterion function to be optimized. We will use the opportunity of thepresentation at the workshop to enumerate globally the global optimization related questionswe have worked on in the past few years since the last workshop and to report on the results.At the rest of the workshop there is the possibility to discuss the central theme and to discussindividual topics more thoroughly. A list of the reports which appeared on paper is added. Sometopics follow here.We start where we left �ve years ago. At the 1990 workshop we presented an algorithm fora design question which mathematically translated to "Find a feasible point of a set de�ned byquadratic inequalities" (Hendrix and Pinter, JOGO)39



� What happened with the practical implementation? Confronted with interior point so-lutions, the designers where very pleased as they could allow mistakes in the productionprocess without the product being out of its speci�cations. They called this a robustdesign.� How can we optimise the robustness of the design? (Hendrix, Mecking and Hendriks,EJOR)Biologists applying population dynamics models derived criteria describing the develop-ment of a population depending on the ability for animals to travel from one living place(patch) to another.� Given a budget for infrastructural improvements for a certain species, which improvementsshould be carried out?Technologists applying systems control came with the following mathematical question.� Given a set of points in Rn, �nd a hyperrectangle (axes to be chosen freely) with minimumvolume containing the set of points.Researchers applying farm management models came across some nasty nonlinear envi-ronmental restrictions.� How to cope with the speci�c bilinear restrictions in a further linear model? (Bloemhofand Hendrix, EJOR)In 1993 we invested in the implementation of a derivative free local optimization routineand a graphical user interface for experimental purposes on questions with a typical Oraclestructure.� What does it look like?A �rm producing metal �lters used in sugar re�ners o�ered a nice opportunity to use theoptimizer for Oracle structured design problems.� Create designs for �lters which are strong and have a high throughput.For an ecological model builder �tting some 8 parameters to a 'sophisticated' model alocal optimizer generated in�nitely many 'optima', which after all appeared to be causedby numerical reasons, which we called ill conditioning.� Develop heuristical methods which deliver the real optimum. (Hendrix, Mous, Roosmaand Scholten, technical note)Ecological model builders are sometimes interested in the speci�c shape of a level set of a(oracle) goodness of �t function.� Develop a method which generates a sample of a uniform distribution over a level set.(Klepper and Hendrix, Ecological modelling, Environmental Toxicology and Chemistry)Many random based global optimization methods guarantee to reach the optimum in limit.A typical question however is: Give me the best result you can obtain before tomorrow9.00 a.m.� What are good strategies allocating the budget of calculation time to local search and toglobal (random) search?� When is it useful to do a global search anyway? (and other questions in Hendrix andRoosma, technical note)When science is rather a matter of questions than of answers, we are really proceeding.The topics mentioned here leave many questions open for research and discussion.40
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The Computation of the Essential Supremum by using Integral MethodsJens Hichert1, Armin Ho�mann and H.X. Ph�uWe give an equivalence between the tasks of computing the essential supremum of a summablefunction and of �nding a special zero of a one-dimensional convex function. Interpreting theintegral method as Newton-type method we show that the algorithm can work very slowly.For this reason we propose an idea of a faster version of the algorithm which is in some respectsimilar to the method of Aitken/Steffensen.IntroductionIn many practical problems a global optimum of a real-valued objective function is needed.Therefore, global optimization became an important �eld of research in optimization. On theother hand, with some practical problems the global optimum can be an unsuitable solution,namely in such cases in which the global optimizer is an unstable state in the system investigated.This can happen if, for instance, the objective function has a jump on the location of theglobal optimum, or if there is a very narrow peak in a neighbourhood of this location, andso, from a numerical point of view, any small perturbation of the state parameters of thesystem will imply a signi�cant worsening of the objective function. Therefore, it is sometimesmore convenient to compute the essential supremum (or in�mum) instead of the global one.Some global optimization methods work under certain conditions guaranteeing the equalityof the essential supremum and the global supremum, such as continuity, robustness ([2], [3]),density([1]). Other methods try to �nd the global supremum even if it is much larger than theessential one. The �rst aim of our paper is to present an algorithm that really computes theessential supremum whenever the objective function is an L1 function. This will be done inthe next section. Secondly, in Section 3 we investigate the convergence speed of the algorithmdepending on di�erent types of the objective. In Section 4 we present a faster version of thisalgorithm in order to decrease the amount of computing time using more information about thefunction.An integral methodConsider a measurable function f : D ! IR de�ned on a measurable set D of IRn withrespect to the Lebesgue measure �, where 0 < �(D) < +1. Throughout this paper we assumef 2 L1(D). We use the abbreviation[f � �] := fx 2 D : f(x) � �g:In order to develop an algorithm for computing ess sup ff(x) : x 2 Dg we investigate the volumefunction F : IR! IR de�ned by F (�) = Z[f��] [f(x)� �] d�;which is motivated by the following properties (see [1]):Theorem 1 F is Lipschitzian, non-negative, non-increasing and convex for any f 2 L1(D).Furthermore, F has almost everywhere the derivative F 0(�) = ��[f � �].1This work was partially supported by the Deutsche Forschungsgemeinschaft within the Graduiertenkolleg"Automatisierung des Entwurfs analoger und gemischt analog-digitaler Strukturen"42



Theorem 2 �� := supf� 2 IR : F (�) > 0g = ess sup fand �[f � �] > 0 8� > ��:Based on these two theorems we state a Newton algorithm for �nding the smallest zero �� ofthe function F which equals the essential supremum of f . We assume that one initial value �0with �0 < �� was found. Then, the algorithm generates an increasing level sequence (�k) bythe rule �k+1 = �k + F (�k)� [f � �k] k = 0; 1; : : : : (1)Proposition 1 ([1], [2]) The sequence (�k) generated by (1) converges monotonously to ��.Due to the special structure of F , for every number � 2 IR with F (�) = 0 there is not anyinformation about the distance j� � ��j. However, Proposition 2.1 states that this situationdoes not occur within the Newton algorithm, apart from the situation �k = �� for any k,which means that the algorithm has been terminated after a �nite number of steps.Proposition 2 ([2]) The set sequence ([f � �k]) generated by (1) converges monotonously to[f = ��], the set of the locations of the essential supremum of f .The iteration rule (1) is equivalent to the mean value level set method in [2]. But by consideringthe convex function F we can easily come to other stopping conditions and further interestingaspects concerning the convergence speed and its acceleration. In connection with convergenceinvestigations, some smoothness properties of F are of interest.Proposition 3 The function m : IR! IR with m(�) := �[f � �] is left-hand continuous.Proposition 4 F is continuously di�erentiable in an open set U � IR i� �[f = �] = 0 for all� 2 U .A connection between the smoothness of the objective function f and the volume function Fprovides theProposition 5 Let D � IRn an open set and f 2 C1(D).If rf(x) 6= 0 a.e. on D, then �[f = �] = 0 8� 2 IR.We do not know whether the statement of Proposition 5 is reversible.Convergence speed of the level sequenceThe practicability and e�ectiveness of the integral method stated above mainly dependson the way of evaluating the functions F (�) and m(�). Until now, there has been just oneappropriate method based on Monte Carlo models, computing both F (�) and m(�) in oneprocedure. Nevertheless, in every practical realization of the theoretical Newton algorithm onefunction evaluation will be very expensive. Therefore both the convergence order and speed ofthe level sequence (�k) are of interest. In order to investigate this convergence order we aregoing to distinguish between two "types" of objective functions f . We want to consider f to beof the type A if �[f � ��] > 0 holds. Otherwise, we consider f to be of type B.If f is a function of type A, the well-known theory of the Newton algorithm is available andprovides satisfactory statements about the speed of the convergence of the algorithm:43



Theorem 3 Let f be a function of type A and there exists an � 2 IR with F 2 C1(�; ��). Then,either the algorithm stops after �nite steps or the convergence of the sequence (�k) generatedby (1) is Q-superlinear. If F 0 satis�es a Lipschitzian condition in a neighbourhood of �� theconvergence is Q-quadratic.However, a function of type A is not so typical for problems arising in practice. A more usualsituation is given if the essential supremum of a function f is only reached on a set of measurezero. In this case, due to Theorem 1 and Proposition 3, F is di�erentiable in �� and F 0(��) = 0.Therefore, the zero �� of the function F has a higher order. This means that the Newtonalgorithm for computing the essential supremum of a type B function converges in general onlyQ-linearly. The order of the zero increases with the dimension n of the problem. This meansthat an increasing dimension implies a decreasing convergence speed (see also Proposition 6). Toavoid this drawback we propose an appropriate and faster algorithm useful for type B functionsf using more information about the order of the zero �� of F .Speeding up the level sequenceLet ' : IR ! IR and �� a zero of ' of the order � (this means that ' 2 C�+1 and '(��) ='0(��) = : : : = '(��1)(��) = 0, '(�)(��) 6= 0). Under this condition it is well-known fact thatthe modi�ed Newton algorithm�k+1 = �k � � '(�k)'0(�k) k = 0; 1; : : :converges locally Q-quadratically to ��. In order to apply this improvement in Newton'salgorithm to our situation of type B functions, we consider at �rst a "prototype" of the functionf .Proposition 6 Let f(x) = � nPi=1 aijxi�x�i jp+ y�; ai > 0 8i = 1; : : : n with some p � 1. Then,for each �0 < �� the iteration�k+1 = �k + �1 + np� F (�k)m(�) k = 0; 1; : : :leads to �� in one iteration step, that is, �1 = �� = y�.Note that in Proposition 6 no information is needed about x� and y�. We now assume thatfunctions glb(x) = � nXi=1 aijxi � x�i jp + y�gub(x) = � nXi=1 bijxi � x�i jp + y� ai; bi > 0 8 iexist being a lower and upper bound of f respectively, that is,glb(x) � f(x) � gub(x) a:e: onD: (2)Then with q := Qni=1 � biai�1=p < 1 we can choose a stepsize� := �1 + np� q (3)(again independent of x� and y�) having the following properties:44



Proposition 7 1. Using formula (3)�� := �+ � F (�)m(�) � �� 8� < ��:2. Furthermore, j��jj�j � 1� q2 8� < ��:In other words, if the inclusion (2) of f is su�ciently sharp, the (theoretical) stepsize � guaranteesan increasing sequence (�k) converging monotonously to ��, but faster than the sequence (�k)generated by (1). The values q and p are, of course, not known. But under certain conditionswe might assume that q tends to 1, and an ideal stepsize � = 1 + np with some p � 1 will bereached. In our algorithm we update the stepsize by assuming f to be a prototype function asin Proposition6: �k = �1 + npk�s sksk�1 n+ pkn (4)where sk := F (�k)m(�k) . One way to update pk can be chosen bypk = n� sksk�1 � 1� : (5)Our algorithm contains additional considerations in order to ensure a monotonously increasingsequence (�k) by �k+1 = �k + �ksk k = 0; 1; : : :with updates (4) and (5). Nevertheless, if such an iteration step works without any problems,(4) and (5) lead to �k+1 = �k + s2ksk � sk�1which is similar to one step of the method of Aitken/Steffensen (see [4]) to speed up theconvergence of an iteration method.References[1] Ph�u, H.X., Hoffmann, A.: Essential Supremum and Supremum of Summable Functions.Submitted in 1995.[2] Chew Soo Hong, Zheng Quan: Integral Global Optimization. Springer, 1988.[3] Kostreva, M.M., Zheng Quan: Integral Global Optimization Method for Solution ofNonlinear Complementarity Problems. Journal of Global Optimization, 5 (1994), pp. 181-193.[4] Stoer, J.: Numerische Mathematik 1. Springer 1994.
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Greedy Randomized Adaptive Search for a Location Problem withEconomies of ScaleKristina Holmqvist1, Athanasios Migdalas and Panos M. PardalosOne of the most central problems in continuous location theory requires the generation of optimalsites form new facilities to serve the demands from a set of n customers. In distribution systems,the facilities typically represent warehouses or depots. The optimal locations of the new facilitiesare those which result in a minimum of total transportation and warehousing costs. In planningof real distribution systems, the number of new facilities to add is a key decision variable. Theoptimal value of m is determined by considering the trade-o� between warehousing costs, whichinclude investment and operating costs, and transportation costs. Clearly, as warehousing costsare increased by adding new facilities to the system, the transportation costs will decrease sincethe average travel distance between warehouses and customers will be decreasing.Obviously, this is a problem with great importance in planning shipment of goods. Theconcave costs implies that the more we ship through facility i, the cheaper it is per unit.Problem De�nitionThere are n customers each with demand bj which should be ful�lled by facilities out ofa given set of m candidate locations. At facility i the total amount of goods that is shippedaway from the facility is de�ned as the throughput level yi. The cost for shipping one unit fromfacility i to customer j is denoted by cij and the amount of goods that is transported the sameway is denoted by xij . Thus, we can describe the location problem as:min mXi=1 gi(yi) + mXi=1 nXj=1 cijxijsubject to nXj=1xij = yi, i = 1; : : : ;mmXi=1 xij = bj , j = 1; : : : ; nyi � 0, i = 1; : : : ;mxij � 0, i = 1; : : : ;m, j = 1; : : : ; nIn this paper g is a concave function and we chose to consider the following form of warehousingcosts gi(yi) = ( 0 if yi = 0a1i + a2iyi + a3ipyi if yi > 0where a1i, a2i and a3i are given non-negative parameters. The constant term a1i represents a�xed investment cost, while the remaining terms provide a variable operating cost that dependson the throughput of the facility. The square root results in concavity of the g function andaccommodates economies of scale in the operation of the facility. Economy of scale is a normalphenomenon, since larger facilities can operate more e�ciently and can utilize automated tech-nologies in cost e�ective manner. Whenever the facilities are homogeneous, the cost parametersdo not vary with i.The problem is thus to determine the throughput level yi for each facility and the amountxij of goods to be transported from facility i to customer j, so as to satisfy all demands withminimum total warehousing-transportation cost.1Research partially supported by CENIIT (Center for Industrial Information Technology).46



Problem Sizecap71,72,73,74 16 � 50cap101,102,103,104 25 � 50cap131,132,133,134 50 � 50capa,b,c 100 � 1000Table 1: Problem sizesGreedy Randomized Adaptive Search ProcedureThe Greedy Randomized Adaptive Search Procedure (GRASP) [1] is an iterative process.This randomized sampling technique provides a feasible solution within every iteration. The�nal result is simply the best solution found over all iterations. Each iteration consists oftwo phases, a construction phase and a local search procedure. In the construction phase arandomized greedy function is used to build up an initial solution. This solution is then exposedfor improvement attempts in the local search phase.When implementing a GRASP for a particular problem the procedure for constructing theinitial (feasible) solution must be decided. Briey, the construction phase can be described asiteratively adding one element to the incumbent (incomplete) solution. The strategy for choosingthe next element is based on randomly choosing the element from a list which is built up withregard to a greedy function. The heuristic is adaptive in the sense that the e�ect of alreadychosen elements are regarded.Also, the neighbourhood function used in the local search phase must be de�ned. Of course,di�erent problems require di�erent construction and local search strategies but the advantage ofGRASP before other heuristics is that when these strategies are de�ned, there are only a coupleof parameters to tune (the size of the candidate list and the number of GRASP iterations.)Test ProblemsWe have used test problems from the OR-library, available on the world wide web athttp://mscmga.ms.ic.ac.uk/. However, these problems are not including economies of scaleand therefore we have to add some values for the variables in the concave cost function g. Theproblems have similar structures but di�erent number of facilities and customers. There is alsoa distance matrix for the distances between each facility and customer. This distance matrixis used to evaluate the objective function value, since we use the distance as transportationcost. In Table 1 the problem sizes (number of facilities � number of customers) are given. Thevalues used for the variables in the concave function are the same for all locations in all probleminstances. We have chosen to set the parameter values of a2i = 20 and a3i = 100. The �x costfor allocating facility i gives us the a1i values. This �xed cost is given in the test problems. Thevalues of a2i and a3i should ensure that the transportation cost will not be dominating.Numerical ResultsThe measurements presented in this section were done on an unloaded Sun SPARCstation20/50. We compiled the C program with the SunSoft C compiler version 3.0.1 using the option-xO2 and the Fortran 90 program with the Cray Fortran 90 compiler version 1.0.3 using theoption -O2. Timing was done with the routines clock gettime(3R) and TIMEF(3F) respectively.ConclusionsThe GRASP we present is capable of solving large problems in acceptable time.47
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Linearly Constrained Global Optimization of Functions with ConcaveMinorantsReiner Horst(based on di�erent joint work with M. Nast and N.V. Thoai)1. Functions with concave minorantsA common property of Lipschitz functions, d.c. functions and some other function classes ofinterest in global optimization is that, at every point of the domain, one can construct a concavefunction which coincides with the given function at this point, and underestimates the functionon the whole domain (concave minorant, cf. Khamisov (1995)). We present a new branch andbound algorithm for minimizing such a function over a polytope which, when specialized toLipschitz or d.c. functions, yields improved lower bounds as compared to the bounds in pre-vious branch and bound methods. Moreover, the linear constraints will be incorporated in astraightforward way so that \deletion{by{infeasibility" rules can be avoided. Finally, we showthat these bounds can be improved further then the algorithm is applied to solve systems ofinequalities.De�nition 1.1. (Khamisov (1995)) A function f : S ! IR, de�ned on a nonempty convexset S � IRn is said to have a concave minorant on S if, for every y 2 S, there exists a functionFy : S ! IR satisfying(i) Fy(x) is concave on S,(ii) f(x) � Fy(x) 8 x 2 S,(iii) f(y) = Fy(y):The functions Fy(x) are called concave minorants of f(x) (at y 2 S) and the class of func-tions having a concave minorant on S will be denoted by CM(S).Example 1.2. Examples of functions on CM(S) include Lipschitz continuous functions (andmore general certain Hoelder continuous functions), functions representable as di�erences ofconvex functions (d.c. functions), weakly convex functions on IRn.Lemma 1.3. Let fxkg and fykg be sequences in S such that limk!1xk = limk!1yk = s 2 S.Then, for each of the concave minorants given in Example 1.2, we havelimk!1Fyk(xk) = f(s):2. Branch and Bound ApproachWe consider the problemminimize (x); (1)x 2 Dwhere D is a polytope in IRn with nonempty interior, and f 2 CM(S) for some n{simplexS � D.A lower bound for f over the intersection of an n{simplex S with the feasible set is obtainedby the following result: 49



Proposition 1.4. Let S = [v0; : : : ; vn] be an n{simplex with vertices v0; : : : ; vn, D bea polytope in IRn; T be a nonempty �nite set of points in S, and f 2 CM(S) with concaveminorants Fy. For each y 2 T , let 'y denote that a�ne function which is uniquely de�ned bythe system of linear equations 'y(vi) = Fy(vi); i = 0; : : : ; n:Then, the optimal value �(S \D) of the linear programminimize ts.t. 'y(x) � t; y 2 T; x 2 S \Dis a lower bound for minff(x) : x 2 S \Dg.Notice that, while solving the LP for �(S\D) a �nite set Q(S) of feasible points is detected.AlgorithmInitialization:Determine an initial n{simplex S � D, the lower bound �(S \D), and the set Q(S).Set �(S) = �(S\D), Q = Q(S), � = minff(x) : x 2 Qg and choose z 2 Q satisfyingf(z) = �: De�ne M = fSg, set � = �(S); k = 1.Iteration k:If � = �, then stop; z is an optimal solution, and � is the optimal objective functionvalue of Problem (1).Otherwise, choose S 2M satisfying �(S) = �:Bisect S into the simplices S1 and S2.Compute �(Si \D), i = 1; 2; and�(Si) = maxf�(S); �(Si \D)g (i = 1; 2):Set Q = Q [ fQ(S1); Q(S2)g, update � = minff(x) : x 2 Qg, and choose z 2 Qsatisfying f(z) = �.Set M = (M n fSg) [ fS1; S2g;M = M n fS : �(S1) � �g;� = ( minf�(S) : S 2Mg if M 6= ;� if M = ;and go to iteration k + 1.Proposition 1.5. In Problem (1), let f 2 CM(S) be continuous on the initial simplex S.Moreover, for each pair of sequences fxkg, fykg � S such that limk!1xk = limk!1yk = s assumethat limk!1Fyk(xk) = f(s): Then, if the algorithm does not terminate after a �nite number ofiterations, we have limk!1�k = limk!1 f(zk) = limk!1�k;and every accumulation point z� of the sequence fzkg is an optimal solution of Problem (1).50



3. Systems of Inequalities and Numerical ResultsProbably the most interesting application of the approach is in solving systems of inequalitieswhere all of the functions involved are in CM(S). Here we obtain a drastical further improvementof earlier bounds. Details on this and on numerical experiments and comparisons are reportedin the talk.References (selected)[1] Horst, R., Nast, M. and Thoai, N.V. (1995), New LP{Bound in Multivariate Lipschitz{Optimization: Theory and Applications. Journal of Optimization Theory and Applica-tions, Vol. 86, No. 2, 369{388.[2] Horst, R. and Nast, M. (1996), Linearly Constrained Global Minimization of Functionswith Concave Minorants; accepted for publication in Journal of Optimization Theory andApplications.[3] Horst, R. and Thoai, N.V. (1988), Branch and Bound Methods for Solving Systems of Lip-schitzian Equations and Inequalities. Journal of Optimization Theory and Applications,Vol. 58, 189{146.[4] Khamisov, O. (1995), Functions with Concave Minorants; accepted for publication inFloudas, C. and Pardalos, P.M. (eds.), State of the Art in Global Optimization, Kluwer,Dordrecht{Boston{London.
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The Pareto Approach to Balancing Local and Global SearchDonald R. Jones, William Baritompa and Yaroslav D. SergeyevFor an algorithm to be truly global, some e�ort must be allocated to what may be calledglobal search|search done primarily to ensure that potentially good parts of the space are notoverlooked. On the other hand, to achieve e�ciency, some e�ort must also be placed on localsearch|search done in the area of the current best solution(s). In fact, one can argue that theessence of a global search procedure lies in how it balances these competing objectives.In this paper, we show that Lipschitzian optimization, interval analysis, and Bayesianoptimization|however di�erent they may be conceptually|all balance global and local search inessentially the same way. We then reduce this common technique for global/local balance to itsbare essentials, and use this simpli�ed technique as the basis of a new heuristic called DIRECT.This heuristic turns out to be truly remarkable, and with small modi�cations can be appliedproblems that are continuous, discrete, smooth, nonsmooth, constrained, or unconstrained.The origin of DIRECT goes back four years, when the �rst author was simultaneously work-ing in the areas of Lipschitzian optimization, Bayesian optimization, and interval analysis. Thesemethods have many similarities. For one thing, all of them are space-partitioning algorithms.That is, they all work with a partition of the search space into regions and, in each iteration, theyselect a region, subdivide it, and sample new points within the resulting subregions. But thereis a deeper similarity: in all three methods, the criterion for selecting regions can be divided intotwo terms. The �rst term depends only on the goodness of the sampled points in a region. Byitself, this term would cause us to do local search. The second term, on the other hand, dependsonly on the size of the region. By itself, this term would lead us to do global search. The threemethods combine the two terms in di�erent ways, but every combination has the following keyproperty: the attractiveness of a region increases as the sampled function values get better oras the size gets bigger.Once the above similarities were apparent, all the heavy theoretical baggage of stochasticprocesses, Lipschitz constants, and so on, began to seem like nothing more than very elaborateways to justify particular formulas for balancing global and local search. But if our goal ismerely to select those regions which do well on sampled function values and size, why not justselect those regions that are Pareto optimal with respect to these two criteria? That is, why notselect all those regions that are not dominated by another region on the two criteria of sampledfunction values and size. Now a region is said to \dominate" another on two criteria if it isstrictly better on both criteria, or the same on one criterion and strictly better on the other.Thus a nondominated region has the property that all regions of the same size or larger haveworse sampled function values. This Pareto idea was the key insight that led to DIRECT andall its variants.The Pareto selection criteria is extremely clean. One of its nicest properties is the lack ofany parameters (Lipschitz constants, convergence tolerances, etc.) that determine the balancebetween local and global search. Instead of using such parameters to �x the global/local balanceand then select a single region, the Pareto method identi�es several regions in each iteration(the Pareto optimal set). Some regions in the Pareto set are good for local search and some aregood for global search. Another attractive feature of Pareto selection is that it is nonmetric.Whether or not one region dominates another depends only on relative function values. As aresult, we get exactly the same sequence of iterates whether we are minimizing f , log(f), orexp(f).The DIRECT algorithm is nothing but a space-partitioning heuristic that uses an easy-to-manage partitioning strategy together with this Pareto selection rule or intuitive variations ofthe rule. On the traditional Dixon-Stiglitz test suite, DIRECT works about the same as, andoften much better than, the best existing black-box heuristics. In our opinion, it is simply52



amazing that a deterministic algorithm with no tuning parameters, one that relies entirely onthe Pareto criterion, even works, let alone works so well.The present paper makes signi�cant extensions to the original version of DIRECT that waspublished in 1993. One of the most interesting extensions is to discrete problems such as 0-1 programming and permutation problems (scheduling, etc.). We also show how the methodcan be extended to incorporate gradient information (if it is available) and to handle generalnonlinear inequality constraints. The details of these extensions are given in the paper. Herewe will here limit ourselves to a few comments.With respect to discrete problems, notice that when we discussed the idea of dividing the\search space" into \regions," nothing we said implied that the search space was Euclidean orthat the regions were rectangles (as in the original DIRECT algorithm). This is why DIRECTapplies to discrete problems. To apply DIRECT, one only need be able to devise a way ofpartitioning the discrete space into subsets, measuring the size of these subsets, and samplingpoints within subsets.With respect to using gradient information, the reader may wonder why we even bother.After all, using gradient information seems to be against the spirit of general-purpose black-boxheuristics. The reason we have considered using gradient information is that using gradientstends to focus the search, allowing the optimum to be found in fewer iterations. In low di-mensions, the savings in iterations may be swamped by the high cost of performing numericalderivatives, and so the value of gradients is doubtful. But in higher dimensions, the use ofgradients can allow the optimum to be found before the search tree explodes exponentially andthe search becomes hopelessly bogged down. So the true value of using derivatives lies in theway it helps DIRECT stretch into higher dimensions.Extending DIRECT to handle constraints was the most di�cult part of this research. Infact, we have only succeeded so far in handling inequality constraints. The technique we use forhandling these constraints is fairly novel, as it does not involve penalty or Lagrangian functions.At an intuitive level, the technique amounts to developing a criterion function that is related tothe likelihood that further search in a region will reveal a feasible point that beats our currentbest solution by �. We then select all those rectangles that have the property that, for someparticular � > 0, they have the best value of this criterion. This constrained version is lesssimple than the unconstrained version, but it is the natural generalization of it.In its constrained version, DIRECT has been used at General Motors for solving small tomedium (5 to 20 variable) problems in which the goal is to optimize the parameters of a me-chanical design. These mechanical design problems are hard enough to confuse local optimizers,but they are far from pathological, and DIRECT has proven to be quite e�ective. So far theapplications include optimizing the design of piston shapes, crankshaft counterweights, heatexchangers, blanking dies, and advanced shock absorbers.
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To the global minimization of functions with concave minorant1Oleg V. KhamisovLet a set R � En and a real valued function f(x); f : R! E1 be given.De�nition 1 A function f(x) is said to have a concave minorant or concave support functionon R if there exists function '(x; y); ' : En � R ! E1, continuous in x for any �xed y, suchthat 1: '(x; y) is concave in x;2: f(x) � '(x; y) 8(x; y) 2 R�R; (1)3: f(y) = '(y; y) 8y 2 R: (2)The function '(x; y) is called a concave minorant or concave support function of f(x),constructed at the point y 2 R. A set of all functions f(x); f : R ! E1 which has a concaveminorant on R is denoted by CM(R) and each function f 2 CM(R) is called a c.m. function onR ("c.m." is an abbreviation of "function with a concave minorant"). The function f 2 CM(En)is called a c.m. function.Below we assume that R 2 En is a compact set. The functional class CM(R) is quite large,since it is not di�cult to see that any Lipschitzian function f(x) is also a c.m. function with'(x; y) = f(y)� Lkx� yk;where L is a Lipschitz constant. Main properties of c.m. functions and comparison with otherclasses of functions are given in [1]. Let us shortly describe some properties of c.m. functions.Proposition 1 Each function f 2 CM(R) is a l.s.c. function on R.De�nition 2 Let D � En be a convex set. A function f : D ! E1 is called d.c. on D if thereare two convex functions p : D ! E1; q : D ! E1 such thatf(x) = p(x)� q(x); 8x 2 D:A function that is d.c. on En will be called a d.c. function.Proposition 2 A function f : En ! E1 is a d.c. function if and only iff(x) = supy2Y  (x; y);where  (x; y) = c(y)T (x� y) + r(y)� q(x);c(y) 2 En; r(y) 2 E1; y 2 Y , Y is some nonempty set and q(x) is a continuous convex function.The next proposition follows directly from De�nition 1.Proposition 3 Let c.m. functions f(x); fi(x); i = 1; : : : ;m be given. Then the following state-ments are true.(i) Any nonnegative combination of functions fi(x) is a c.m. function;(ii) max1�i�m fi(x) and min1�i�m fi(x) are c.m. functions;(iii) f+(x) = maxf0; f(x)g , f�(x) = minf0; f(x)g are c.m. functions.1Supported partialy by the Russian Fund of Fundamental Investigations54



Proposition 1 describes quite general properties of c.m. functions. If we have some (nonconvex)function how to recognize whether this function is a c.m. function and, moreover, if yes, thenhow to construct its concave minorant ? We give a description of rather a wide subclass of theclass of c.m. functions and give rules for the constructing the concave minorant for a functionfrom this subclass.De�nition 3 If function f : R! E1; R � En satis�esf 2 CM(R);�f 2 CM(R); (3)then f is called a c.m. symmetric function on R.A set of all c.m. symmetric functions on R is denoted by CMS(R). If f 2 CMS(En), then f iscalled a c.m. symmetric function. It follows from (3) that for every f 2 CMS(R) there existsthe function '�(x; y); ' : En � R ! E1 that is continuous and concave in x and the function'+(x; y); ' : En �R! E1 that is continuous and convex in x, such that'�(x; y) � f(x) � '+(x; y);'�(y; y) = f(y) = '+(y; y); y 2 R:Function '+(x; y) is called a convex majorant and '�(x; y) is called a concave minorant of thefunction f(x). By virtue of Proposition 1.1 a c.m. symmetrical function is continuous.Proposition 4 Let f 2 CMS(R) and fi 2 CMS(R); i = 1; : : : ;m; m > 1; R be a compact set.Then(i) Pmi=1 �ifi 2 CMS(R); �i 2 E1;(ii) f2 2 CMS(R);(iii) f1 � f2 2 CMS(R);(vi) if f(x) > 0;8x 2 R; then 1f(x) 2 CMS(R);Consider the following mathematical programming problemmin f(x);x 2 R;where R � En is a compact convex set., f 2 CM(R). We call this problem the c.m. program-ming problem.Let x1; x2; : : : ; xk be some points in R. Thenf(x) � max1�j�k'(x; xj) = fk(x);8x 2 Rwhere '(x; y) is a concave minorant of f(x). We call the problemmin fk(x); (4)x 2 R (5)an approximating c.m. problem sincef� = minx2R f(x) � minx2R fk(x) = f�k :Problem (4)-(5) is again a c.m. programming problem and, therefore, multiextremal, but herewe have the advantage in the special form of the objective function. More exactly, it was shownin [2] that fk(x) is a d.c. function sincefk(x) = f+k (x)� f�k (x);55



where f+k (x) = � min1�i�kf kXj=1;j 6=i'(x; xk)g;f�k (x) = � kXj=1'(x; xk)and both f+k (x) and f�k (x) are convex. Introducing now an additional variable xn+1 we canreduce the approximation c.m. problem to the following oneminfxn+1 � f�k (x)g; (6)f+k (x) � xn+1; (7)x 2 R: (8)The feasible domain in problem (6)-(8) is convex and the objective function is concave. Hence,(6)-(8) is a concave programming problem. Thus, the problem of global minimization of ac.m. function over a convex set can be approximated by the sequence of concave programmingproblems. This fact seems to be the natural generalization of the approximation of a convexprogramming problem by a sequence of linear programs. Therefore, we can say that in generalalmost each mathematical programming problem can be approximated by a sequence of auxiliaryproblems which are not more complicated than the concave programming problem.We used term "approximation" to emphasize that in this way we obtain only bounds of theglobal minimum since, strictly speaking, we have to prove some convergence conditions.Essential part of the contribution is devoted to the numerical testing of the described ap-proach in global optimization and discrete and stochastic programming.References[1] O.Khamisov, Functions with concave minorant.A general view Manuscript of Institute ofOperations Research, University of Zurich, 1994.[2] H.Tuy, Convex programming with an additional reverse convex constraint, J.O.T.A. 52, 463-485, 1987.
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On a Mechanism of Natural Formation and its Use in Global OptimizationVictor KorotkichMolecular conformation and protein folding have been subjects of considerable recent in-terest in global optimization [1], [2]. The development of e�cient algorithms calls for furtherinvestigation on the laws governing these processes of formation in nature which still have manyquestions unanswered. It is becoming clear that what happens in biochemical systems is not athermodynamical but dynamical problem which is not explainable by extremum principles butby the laws of spacetime dynamics [3]. In this sense simulated annealing which is based on anextremum principle has limits to simulate formation in nature.In this paper we propose and address a model of formation in nature in an attempt todetermine a mechanism which can be used for the algorithms development, i.e. to make thearti�cial dynamics of algorithms to reproduce formation in nature. A new approach to provide away to deal with the problem is put forward. The main concepts of the approach are structuralcomplexity and symmetry. There are many concepts of complexity which appear as di�erentmanifestations of intuitive notions of what the word ought to mean [4]-[9]. A concept of structuralcomplexity is introduced in an attempt to provide a measure of complexity for global descriptionof a particular sequence [10]. The concept is expressed in terms of relationships between integersand can be viewed as a measure of relationships between sequence components. A concept ofstructural symmetry is de�ned to formally capture a symmetry which underlies the relationships.In section 1 a short account of the foundations upon which our study rests is provided,namely: the concepts of structural complexity and symmetry. Of necessity, we concentrate onbackground material giving �rst a brief description of the concepts and afterwards sketch howthey come together. As well as summarizing the concepts we take the opportunity to introducesome notation and terminology.At the heart of the approach is the idea that structural complexity and symmetry can be usedto study formation in nature. In particular, structure-forming with the maximum in structuralsymmetry is suggested as a decisive criterion for its modeling. This statement becomes a formalde�nition after we specify the concepts involved in the formulation.To provide a context in which to explore the idea a model of structures formation is intro-duced in section 2. It is employed in an indirect e�ort to get insight into formation in nature.The model ignores many complex e�ects and is a simple tool that gives a way to describe struc-tures formation in terms of the spacetime symmetry only, i.e. structural symmetry. Symmetryis one of the most fundamental concepts in describing nature the emphasis on which has led tomany impressive successes in a variety of �elds and it arises naturally to use structural symmetryas a guiding principle in describing formation in nature.Speci�cally, in the model a formation of a structure is represented by a certain spacetimepattern emerging from interactions with the environment. Structural symmetry is broughtinto focus when the performance of a formation is characterized by the structural symmetryof the pattern. To assess the total performance all patterns produced by a formation in termsof structural symmetry are considered. A formation is called optimal if it has the highesttotal performance with respect to all formations. In such a manner a concept of optimality isintroduced without appeal to any explicit criterion of goodness and becomes rooted only in thespacetime symmetry, i.e. structural symmetry.The problem of fundamental importance is to propose a model of structures formation whichis relevant to formation in nature. We attempt to approach this problem by the proposal thatthe optimal formation of the model imitates formation in nature. In a search for the optimalformation we exploit a connection between structural complexity and symmetry [11], [12] anduse it to represent the optimal formation in terms of structural complexity.57



It turns out that the model under the proposed de�nition of optimality exhibits many of newphenomena encountered in biochemical systems. In particular, the optimal formation operatesat "the edge of chaos" and is in agreement with the recent experimental �nding of long-rangecorrelations in the human noncoding sequences, which are very likely to be general characteristicfeature of nucleotide organization in DNA [13] - [17]. More importantly, the fact that a naturalphenomena formation appears to be optimal under the model de�nition seems to indicate thatthe model is indeed related to formation in nature.Having established in section 2 the concept of optimality, we consider in section 3 a mech-anism, which constructs rules of the optimal formation. It is important that the mechanismadmits two di�erent descriptions.The �rst description, called structural complexity, is expressed in terms of the structuralcomplexity machinery and allows to discover explicitly principles that are at work in the optimalformation. The description sheds light on the optimal formation rules construction, in particularit shows how they change as a result of interacting with the environment.The second description, called natural phenomena, is based on using causal powers of naturalphenomena processes. This description arises from the properties of the �rst one and turns outto be connected with self-organizing processes of formation in nature. Figuratively, it equatesthe computational powers of computing devices with the causal powers of natural phenomenaprocesses and o�ers a means to propose a "super-Turing" model in computer science, whosecomputational power can surpass that of the Turing model(for more details see [18], [19]).This mechanism description gives a way to use these processes for the development of globaloptimization algorithms which can reproduce formation in nature. In particular, at the end ofsection 3 the natural phenomena description of the mechanism is extended to be used in globaloptimization and a global optimization algorithm represented in its terms is proposed.References[1] P.M. Pardalos, D. Shalloway, and G. Xue, Optimization Methods for Computing GlobalMinima of Nonconvex Potential Energy Functions, Journal of Global Optimization, Vol. 4,(1994), pp. 117-133.[2] D.M. Deaven and K.M. Ho, Molecular Geometry Optimization with a Genetic Algorithm,Physical Review Letters, Vol. 75, (1995), pp. 288-291.[3] I. Prigogine, New Perspectives on Complexity, in The Science and Praxis of Complexity,The United Nations University, Tokyo, (1985), pp. 107-118.[4] G.J. Chaitin, Information, Randomness, and Incompleteness, World Scienti�c, (1987).[5] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory ofNP-Completeness, Freeman and Company, San Francisco, (1987).[6] M. Gell-Mann, The Quark and the Jaguar. Adventures in the Simple and the Complex,Freeman and Company, New York, (1994).[7] G. Nicolis and I. Prigogine, Exploring Complexity, Freeman and Company, New York,(1989).[8] A.N. Kolmogorov, Probl. Inf. Transm., Vol. 1 (1965).[9] R.J. Solomono�, Inf. and Control., Vol. 7 (1964).[10] V. Korotkich, Integer Code Series with Some Applications in Dynamical Systems and Com-plexity, Communications on Applied Mathematics, Russian Academy of Sciences, The Com-puting Center, Moscow, (1993). 58



[11] V. Korotkich, Multicriteria Analysis in Problem Solving and Structural Complexity, Ad-vances in Multicriteria Analysis, P.M. Pardalos, Y. Siskos and C. Zopounidis (Editors),Kluwer Academic Publishers B.V., (1995), (to appear).[12] V. Korotkich, Symmetry in Structural Complexity, Physical Review Letters, LG5781, 10July 1995 (submitted).[13] A. Arneodo et. al., Characterizing Long-Range Correlations in DNA Sequences fromWavelet Analysis, Physical Review Letters, Vol. 74, (1995), pp. 3293-3296.[14] M. Ya. Azbel, Universality in a DNA Statistical Structure, Physical Review Letters, Vol.75, (1995), pp. 168-171.[15] W. Ebeling and T. Poshel, Europhys. Lett. 26, 241 (1994), and references therein.[16] I. Kanter and D.A, Kessler,Markov Processes: Linguistics and Zipf's Law, Physical ReviewLetters, Vol. 74, (1995), pp. 4559-4562.[17] C.K. Peng et. al., Nature, London, Vol. 356, 168, (1992).[18] H.T. Siegelmann, Computation Beyond the Turing Limit, Science, Vol. 268, 28 April 1995,and references therein.[19] J. Glanz, A Quantum Leap for Computers, Science, Vol. 269, 7 July 1995.
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Algorithmic Generation of the Mathematical Programming Model forProcess Network SynthesisZ. Kovacs, F. Friedler and L. T. FanProcess network synthesis (PNS) is involved in the design of any process system for producingdesired products from available materials. A process system is a network of operating units wherea speci�ed number of input materials with known quality are transformed in an operating unitinto a speci�ed number of output materials by altering their physical, chemical or biologicalproperties. The importance of PNS arises from the fact that essentially every product of thechemical and allied industries, including the petrochemical industry, is manufactured by sucha network; moreover, the pro�tability of the same product from di�erent networks may varywidely. Therefore, the generation of the globally optimal solution of PNS is indeed essential.The capability of PNS methods has expanded due to the recent development of high per-formance computers and e�ective mathematical programming methods. Thus, optimal or nearoptimal solutions can often be generated for mathematical programming models of PNS prob-lems. Nevertheless, little fundamental information is available on the relation between theoptimal solutions of a PNS problem and its model. New questions, therefore, have arisen: (i)what form should the mathematical model take to have a consistently valid optimal solution ofthe PNS problem modeled? (ii) how can the model be generated algorithmically? Unexpectedanswers to these questions for simple classes of PNS problems have indicated that it is indeednot trivial to resolve these questions.Traditionally, PNS has been viewed as involving three major tasks: representation, evalua-tion, and search. This division has been useful in establishing the theory of PNS. To facilitatethe resolution of the new questions, it has been divided into two major steps: (i) the generationof a mathematical programming model of a given class of PNS problems, and (ii) the solutionof the resultant model. While the �rst step is the true "synthesis" part, the second, in reality,is the "analysis" part of PNS. The majority of the available methods, in fact, deals only withthe second step, i.e., analysis. So far, the �rst step is essentially performed manually in an adhoc manner.The present work focuses on the model generation step, i.e., the �rst step, of PNS fromthe mathematical point of view. It proposes the basic de�nitions and introduces fundamentaltheorems for solving this step of PNS. The result is illustrated with the exact solution of a simpleclass of PNS problems.
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On relaxing the hypotheses for the application of multi level single linkageMarco LocatelliWe consider the global optimization problem:minx2X f(x); X � <d:Multi Level Single Linkage (MLSL) is one of the most well known stochastic global optimizationmethods. The main idea is based on the will of doing clever local searches, improving uponmethods like Multistart, where a local search is started from every sampled point. In order toavoid useless and expensive local searches, i.e. local searches which take to already detectedminima, MLSL analyzes chains of descending and "close" sampled points and starts a localsearch from any point such that it has no "close" points with function value not greater than itsfunction value. The meaning of "close" is related to a parameter �k which is decreased, slowlyenough, at any step. The algorithm can be described as follows:1. let N > 0 and  2 (0; 1] be �xed and �k := ��1=2(�(1 + d=2)� log kNkN )1=d;2. at step k generate a uniform random sample of size N in X;3. sort the whole sample of kN points in order of increasing function value, and select thekN best of them; the resulting sample is called reduced sample;4. apply a local search to the points of the reduced sample which satisfy the following condi-tions:� have not any point with lower function value at a distance smaller or equal than �k;� are not within a distance d1 > 0 from an already detected minimum;� are not within distance d2 > 0 from the border;5. check some stopping rule and if it says of going on repeat the whole procedure.A part from its good practical performance, it has also nice theoretical properties:� almost sure convergence of the record (the best point observed till the current step) to theglobal optimum;� �nite expected number of local searches for � > 4;� every local minimum is detected in �nite time with probability 1.The preceding results are obtained under the following assumptions:1. f 2 C2;2. X compact, convex and with non empty interior;3. �nite number of stationary points;4. stationary points in the interior of X. 61



In this paper we relax all these hypotheses except the second one. The reason is that a lotof functions which can occur in global optimization do not enjoy the properties given above.For instance, the fourth hypothesis excludes all concave functions whose minima belong to theborder of X. A simple function as:f(x; y) = ( x2 �1 � x � 1 0 � y � 1x2 + (y � 1)2 �1 � x � 1 1 � y � 2violates both the �rst and the third hypothesis. We now introduce some de�nitions, which aregeneralizations of the classical de�nitions of maximum and minimum points:De�nition 1 Let A � X be a set of points such that:1. A is connected and maximal (with respect to the inclusion);2. 8 x 2 A; f(x) = f(A) = const.Then we de�ne A as a:� minimum set if 9 � > 0 : 8 y 2 X n A; d(y;A) � �; f(y) > f(A);� saddle set if it contains more than one element and 8� > 0 9 y1; y2 2 X n A; d(yi; A) ��; i = 1; 2 : f(y1) < f(A) < f(y2);� maximum set if 9 � > 0 : 8 y 2 X nA; d(y;A) � �; f(y) < f(A)(d(x;A) denotes the distance of the point x from the set A). A set which is a minimum, saddleor maximum set is called a stationary set.Now we are ready to substitute the original hypotheses with some weaker ones:1. f lipschitzian with a constant L that we can assume, without loss of generality, greaterthan 1;2. X compact, convex and with non empty interior;3. there exist a �nite number of stationary sets.We can �nally introduce the following algorithm, which is inspired, but not equal to MLSL:� at step k generate a random point Xk from the uniform distribution on X;� a chain is de�ned as a sequence of points xi = Xvj ; vj < k starting from x0 = Xk, withthe following characteristics: kxi � xi�1k � �k; i � 1f(xi) � minj<i f(xj) + �k (1)where �k is a parameter corresponding to the one present in MLSL and �k is a furtherparameter;� we stop the sequence in the point xfinal if at least one of the following conditions is satis�ed:1. another point satisfying (1) can not be found;2. from xfinal a local search has already been started;3. xfinal is at a distance not greater than �k from an already detected minimum (inthe case of minimum sets with more than one element by this we mean an alreadydetected point which represents the whole set);62



� in the �rst case we start a local search from xfinal;� we check a stopping rule and if it says of continuing we go to step k + 1.We outline here the di�erences with classical MLSL.1. the "batchsize" N in MLSL is set to 1;2. we do not reconsider every point at any step to decide from which points starting a newlocal search (actually at any step we can not start more than one local search);3. the value  of MLSL is set to 1;4. the rule to decide whether to start or not a local search is di�erent: we can possiblyconsider even not "too worse points" compared with the current one.While the �rst three di�erences do not seem to be crucial, and we are con�dent that the samedevelopment which will follow can be applied also to algorithms which are more similar toclassical MLSL, the fourth di�erence is very important. The main di�erence with MLSL is thefact that also some non monotonic chains of sampled points are considered when it has to bedecided whether to start or not a local search, while MLSL considers only monotonic chains.This modi�cation is inspired to non monotonic methods for local searches.
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Bayesian Heuristic Approach to Discrete and Global OptimizationJonas Mockus, Audris Mockus and Linas MockusDi�erent Approaches to Numerical Techniques, Di�erent Ways to Regard Heuris-tics: Possibilities and LimitationsGeneral ideasWe call "heuristics" a formally expressed subjective expert knowledge about a problem ofdiscrete and global optimization. The main goal is to describe di�erent ways to apply heuristics.The di�erent ways represent di�erent degrees of formalization. We start from the traditionalBayesian Approach (BA), where heuristics are included by a choice of an a priori distribution, see[5] We extend the formal BA to semi-formal Bayesian Heuristic Approach (BHA), see [4], whereheuristics might be included more exibly. We �nish by the description of informal DynamicVisualization Approach (DVA), see [3]. Using DVA we may include heuristics directly by-passingformal mathematical framework.All the theoretical results are applied to some real-life or test problems. All application exam-ples illustrates some theoretical results. One of the real life application examples- the schedulingof batch operations- is described in details, see [7], because this single example illustrates mostof the theoretical results.Di�erent Formalization DegreesThe maximal deviation is traditionally used while developing various numerical techniques.We call that a Minimax Approach (MMA) or the worst case analysis.The advantage of MMA is the complete formalization. Everything is well de�ned, and we getthe results with guarantee. The disadvantage is the high price we have to pay for the guarantee.Often the price is an algorithm of exponential complexity.In this paper we consider an average deviation as a criterion when designing numericaloptimization techniques and algorithms. We call that a Bayesian Approach (BA).The disadvantage of BA is a degree of uncertainty while de�ning an a priori distribution ona set of problems to be optimized. Thus we get no guarantee. The advantage is the possibilityto include some elements of the expert knowledge while de�ning an a priori distribution. Byinvolving the expert knowledge we may tailor the algorithm to the speci�c problems. This waywe may increase algorithms e�ciency.We may involve the expert knowledge by de�ning the a priori distribution on a set of random-ized heuristic decision rules, too. We call this extension of traditional BA a Bayesian HeuristicApproach (BHA). Thus we get less formalization but more exibility.Both BA and BHA help the algorithm developers to include the expert knowledge by aregular mathematical framework.The dynamic visualization helps the decision makers to include the expert knowledge directly.We denote that as a Dynamic Visualization Approach (DVA)The objective of this paper is to discuss the possibilities and limitations of di�erent ap-proaches, di�erent techniques of optimization, using heuristics. From a strictly formal BA, to asemi-formal BHA, to an informal DVA. Therefore, in addition to BA and BHA algorithms wediscuss various visualization techniques considering the case studies of optimal decision making.We start the description from the application of the BA to the continuous global optimization.Then we show how to extend the results to the BHA, namely, to the optimization of parametersof randomized heuristic techniques of global continuous and discrete optimization.A new theoretical idea of this research is to de�ne an a priori distribution on a set ofrandomized heuristic. The usual way is to de�ne it on a set of functions to be minimized. The64



de�nition of the a priori distribution on the set of heuristic decision rules helps to include theexpert knowledge more exibly and to speed up the search.We show the advantages and disadvantages of BA and BHA applying those approaches indi�erent problems of global and discrete optimization.Application ListWe apply BA to the following problems, see [5, 6], of global continuous optimization:� modeling and yield maximization of electrical circuits� optimization of the sock-absorber� estimation of parameters of an immunological model� estimation of parameters of bilinear time series� estimation of parameters of fractionally integrated time series describing the exchangerates� search for the equilibrium in a competitive economic model� optimization of composite laminates� minimization of molecule potential energy� optimization of thermostable polymeric compositionWe apply BHA to these discrete optimization problems, see [6]:� knapsack� ow-shop� travelling salesman� parameter grouping� scheduling of batch operations.We describe the dynamic visualization techniques which could be useful while solving theill-de�ned optimization problems. We call an optimization problem "ill-de�ned" if we updatethe objective and the model during the optimization process. It means that we have to de�nethe objective and the model interactively. Considering various real life optimization problemswe see that many of them are "ill-de�ned".We illustrate the dynamic visualization techniques by the following examples:� smooth dynamic representation of data collected at �xed locations, see [1] (we want tominimize the deviations from a constant temperature over space and time)� dynamic representation of observations in the form of averages over regions in space andtime, exempli�ed by epidemiological data, see [2] (we are looking for spatial-temporalpatterns that can suggest the most e�cient ways of prevention and control)� visual indexing, a dynamic index to a collection of 30,000 images, see [2] (we search forthe "most interesting" subsets of images by visual inspection of the index)65



We describe most of the examples as some illustrations that show how to apply the techniquesdeveloped in this research. We consider in detail one example. That is the scheduling of batchprocesses. A reason is that the batch scheduling can be considered either as a continuous or asa discrete optimization problem. Besides, the batch scheduling is an important and well knownengineering problem so we may conveniently compare BHA with the results of other approaches.We describe the software for UNIX and DOS platforms, see [6].References[1] W.F. Eddy and A. Mockus. An example of non-interactive dynamic graphics for manufac-turing process data. International Statistical Review, 61:81{95, 1993.[2] W.F. Eddy and A. Mockus. An example of the estimation and display of a smoothly varyingfunction of time and space - the incidence of the disease mumps. Journal of the AmericanSociety for Information Science, 45(9):686{693, 1994.[3] William Eddy and Audris Mockus. Dynamic visualization in modeling and optimization ofill de�ned problems, case studies and generalizations. Journal of Global Optimization. inprint.[4] A. Mockus, J. Mockus, and L. Mockus. Bayesian approach adapting stochastic and heuristicmethods of global and discrete optimization. INFORMATICA, 5:167{122, 1994.[5] J. Mockus. Bayesian approach to global optimization. Kluwer Academic Publishers,Dordrecht-London-Boston, 1989.[6] Jonas Mockus. Application of Bayesian approach to numerical methods of global and stochas-tic optimization. Journal of Global Optimization, 4(4):347{366, June 1994.[7] L. Mockus and G.V. Reklaitis. A new global optimization algorithm for batch processscheduling. Journal of Global Optimization. in print.
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Subdivision of Simplices Relative to a Cutting Plane with Applications inConcave Minimization and Volume ComputationMichael NastSubdivision of simplices relative to a cutting planeLet S = [v0; : : : ; vn] be an n{simplex with vertex set V (S) = �v0; : : : ; vn	, vi 2 IRn; 0 �i � n; and for a 2 IRn; b 2 IR let H = fx 2 IRn : ax� b = 0g be a hyperplane generating thehalf{spaces H� = fx 2 IRn : ax� b � 0g ; H� = fx 2 IRn : ax� b � 0g :De�ne the corresponding open half{spaces H� := H� nH; H+ := H� nH,the vertex setsV � (S) := V (S) \H�; V + (S) := V (S) \H+; V = (S) := V (S) \Hand their cardinalities n� (S) := jV � (S)j ; n+ (S) := jV + (S)j ; n= (S) := jV = (S)j.De�nition 1 The hyperplane H is called irredundant for S; i�S \H� 6= S 6= S \H�:Lemma 1 H is irredundant for S () min fn+ (S) ; n� (S)g � 1.Now let S be an n{simplex, H a hyperplane irredundant for S. Then S can be written asS = conv (V � (S) [ V + (S) [ V = (S)) where V � (S) 6= ; 6= V + (S). For any pair of verticesu 2 V � (S) ; v 2 V + (S) there exists a unique intersection point h = e\H of the edge e = [u; v]with the hyperplane H, which is given byh = h (u; v;H) = �u+ (1 � �)v;where � = (av � b) = (av � au) 2 (0; 1). The radial subdivision (see, e.g., [8], [10]) of the simplexS with respect to the point h yields the two n{simplicesS1 = conv (V (S) n fug [ fhg) and S2 = conv (V (S) n fvg [ fhg)satisfying S1 [ S2 = S, intS1 \ intS2 = ;.De�nition 2 The radial subdivision of S in h is called a bisection of S with respect to u; v andH, or short a bisection with respect to h.The following Algorithm 1 applies bisections on a given n {simplex S, until a given hyper-plane H redundant or irredundant for S is redundant for every generated subsimplex:Iteration 0: Set IL fSg ; M�S  ;; M+S  ;; k  1.Iteration k:k:1 : If L = ;, then stop.k:2 : Choose Sk 2 L and set L  L n nSko.k:3 : If n+ (Sk) = 0, setM�S  M�S [ nSko and go to step k:6.k:4 : If n� (Sk) = 0, setM+S  M+S [ nSko and go to step k:6.67



k:5 : Choose u 2 V � (Sk) ; v 2 V + (Sk) and bisect Sk withrespect to h (u; v;H) generating two n{simplices Sk1 ; Sk2 ,and set L  L [ nSk1 ; Sk2o.k:6 : Set k  k + 1 and go to Iteration k.Proposition 1 Let n+ := n+ (S), n� := n� (S), n= := n= (S). Then we have:(i) Algorithm 1 stops after a �nite number of iterations iS. If K := ���M�S [M+S ��� is the numberof simplices generated, then iS = 2K + 1:(ii) MS := M�S [M+S forms a simplicial partition of S, M+S forms a simplicial partition ofS \H+ and M�S forms a simplicial partition of S \H�.(iii) K = jMS j = �n++n�n+ �, K+ := ���M+S ��� = �n++n��1n� � and K� := ���M�S ��� = �n++n��1n+ �, wherewe understand �nk� = 0 for k > n.It is an easy task to derive from Algorithm 1 a small recursive procedure, which builds fora given pair (S;H) the simplicial partitionM�S of the polytope P� := S \H�. Regarding thenumber of simplices, we get the following result:Theorem 1 Let D = nSi : i 2 Io be any simplicial partition of P�. If V (Si) � V �P�� 8i 2 I;then jIj = ���M�S ���. Moreover, ���M�S ��� is the minimal cardinality of any simplicial partition of P�.Application to Concave MinimizationIn this section, we will derive a �nite Branch and Bound algorithm for the problemminx2P f(x) (1)of minimizing a function f : ID ! IR concave on a suitable set ID � IRn, where dimP = n andP � ID, based on the subdivision procedure of Section . AssumeP = fx 2 IRn : aTi x � bi; i 2 Ig ; (2)where I is a �nite index set, and ai 2 IRn; bi 2 IR; i 2 I.Lower BoundsLet S = [v0; : : : ; vn] be an n{simplex, P a polytope given in the form (2) and let f : S �! IRbe concave on S. Then to calculate a lower bound for f?(S) := min ff(x) : x 2 S \ Pg ; wepropose to compute either �1(S) := min0�j�n f(vj) (3)or, at the expense of solving a linear program,�2(S) := min�2IRn+18<: nXj=0�jf(vj) : � � 0; eT� = 1; aTi V � � bi; i 2 IS9=; ; (4)where in (4), e := (1; : : : ; 1)T 2 Rn+1, V := �v0; : : : ; vn� 2 Rn�n+1 is the matrix containing thevertices of S a columns, IS := ni 2 I : 9 j 2 f0; : : : ; ng : aTi vj > bio ; (5)and �2(S) =1 if (4) has no feasible solution. 68



Proposition 2 Both �1(S) and �2(S) as de�ned above de�ne valid lower bounds for f?(S). If~S is an n{simplex containing S, then �j(S) � �j( ~S); j = 1; 2. Moreover, �2(S) � �1(S) and, ifIS = ;; then �1(S) = �2(S) = f?(S).Upper BoundsFor any simplex S generated in the course of solving problem (1), let Q(S) := V (S) \ P bethe set of feasible vertices of S . If using (4) for lower bounding, then add the feasible optimalsolution obtained when calculating �2(S) < 1 to Q(S). Obviously, the (possibly in�nite)number (S) := min ff(x) : x 2 Q(S)g yields an upper bound for f?(S), and := minS2S (S) (6)is an upper bound for min f(P ), if S denotes the set of all generated simplices.Subdivision of Simplices, Deletion by InfeasibilityLet S = [v0; : : : ; vn] be an n{simplex with �(S) < , where �(S) is given by either (3) or(4). Then �(S) < (S) and IS 6= ;. Choose i 2 IS and subdivide S with respect to the cuttingplane Hi := nx 2 IRn : aTi x� bi = 0o into the n{simplices contained in the setM�S =M�S (Hi).Let M�S = fS1; : : : ;S`g, where ` = K� is given by Proposition ( 1)(iii). Then we propose toreplace S by fS1; : : : ; S`g. Note that, if for some i0 2 IS one has V (S) � H�i0 , the correspondingset M�S is empty. In this case, we have ` = 0, and we propose to eliminate S from the set ofsimplices under consideration without any further subdivision. Applying this (implicit) deletionrule, one eliminates partition sets S with S \P � @P , i.e. one cuts o� at most randpoints of P .Algorithm 2:Iteration 0: Determine an initial n {simplex S0 � P , the lower bound �(S0) and the set Q(S0). Set Q0  Q(S0), 0  minff(x) : x 2 Q0g and choose y0 2 Q0 satisfying f(y0) = 0, ifQ0 6= ;. Set P0  fS0g, �0  �(S0), k  1.Iteration k:k:1 : If k�1 = �k�1, then stop. (yk�1 is an optimal solution to Problem (1) with optimalfunction value k�1)k:2 : Select Sk 2 Pk�1 satisfying �(Sk) = �k�1.k:3 : Choose ik 2 ISk and compute the setM�Sk with respect to the cutting plane Hik (asdescribed in ). Let ` := ���M�Sk��� ;M�Sk = nSk1 ; : : : ;Sk`o. Compute the lower bounds�(Skj ) for 1 � j � `.k:4 : SetQk  Qk�1[Sj̀=1Q(Skj ); Pk  Pk�1nnSko[Sj̀=1 nSkjo ; k  min ff(x) : x 2 Qkgand �k  minn�(S) : S 2 Pko. If k <1, choose yk 2 Qk satisfying f(yk) = k.k:5 : Set Pk  Pk n nS 2 Pk : �(S) � ko. If Pk = ;, set �k  k.k:6 : Set k  k + 1 and go to Iteration k.Theorem 2 In Problem (1), let f be continuous on P; where the polytope P is given in theform (2) with jIj = m. Then algorithm 2 stops in iteration K +1 yielding an exact solution yKwith �K = K = f(yK). An upper bound for the iteration steps is given by K � Mm�1M�1 ; the totalnumber N of simplices generated satis�es N � Mm+1�1M�1 ; and the maximal size of any partitionPk is bounded by ���Pk��� �Mm�1 +M � 1; where M := � nbn2 c�.69



Application to Volume ComputationIf S = �v0; : : : ; vn� is an n{simplex, then the volume of S can be computed byvol(S) = 1n! ���det �v1 � v0; : : : ; vn � v0���� : (7)Therefore, perhaps the most natural approach to the problem of computing the volume of apolytope P is to generate a simplicial partition P of P; what is often called a triangulation ofP . Then compute the volumes of the individual n{simplices S 2 P and add them up to �ndthe volume of P . In fact, besides computing V (S) for all S 2 P, the problem is how to �nd thetriangulation P of a polytope. The following Algorithm 3 does both tasks simultaneously:Iteration 0: Determine an initial n {simplex S0 � P , and its volume vol (S0) : Set P0  fS0gk  1.Iteration k:k:1 : If IS = ; 8S 2 Pk�1 then compute vol (P ) =PS2Pk�1 vol (S) and stop.k:2 : Select Sk 2 Pk�1 satisfying ISk 6= ;.k:3 : Choose ik 2 ISk and compute the setM�Sk with respect to the cutting plane Hik . LetM�Sk = nSk1 ; : : : ;Sk`o. Derive the volumes rmvol(Skj ) for 1 � j � ` from vol(Sk).Set Pk  Pk�1 n nSko [Sj̀=1 nSkjo ; k  k + 1 and go to Iteration k.The crucial step is the computation of vol(Skj ) given vol(Sk) in step k:3. Here, this becomes asimple calculation which avoids the evaluation of (7). It can be incorporated into the subdivisionprocedure, since for every bisection of a simplex S with respect to a point on an edge of S it ispossible to calculate the volumes of the generated subsimplices by a multiplication.References[1] Benson, H.P. and Sayin, S. (1994), A Finite Concave Minimization Algorithm Using Banchand Bound and Neighbor Generation, Journal of Global Optimization, 5, pp. 1{14[2] Cohen, J. and Hickey, T.(1979), Two Algorithms for Determining Volumes of Convex Poly-hedra, Journal of the Association for Computing Machinery, Vol. 26, Nr. 3, pp. 401{414[3] Edelsbrunner, H. (1987), Algorithms in Combinatorial Geometry, Springer, New York[4] Edelsbrunner, H. (1993), Geometric Algorithms, in Handbook of Convex Geometry, Vol. A,ed. by P.M. Gruber and J.M. Wills, North{Holland, Amsterdam, pp. 699{735[5] Gritzmann, P. and Klee, V. (1993), On the Complexity of some Basic Problems in Compu-tational Convexity II: Volume and mixed volumes, Report Nr. 493, University of Trier[6] Gr�unbaum, B. (1967), Convex Polytopes, Wiley{Interscience, London[7] Horst,R. and Thoai, N.V. (1988), Modi�cation, Implementation and Comparison of ThreeAlgorithms for Globally solving Concave Minimization Problems, Computing, Vol. 42, pp.271{289[8] Horst,R. and Tuy, H. (1993), Global Optimization (Deterministic Approaches), 2nd Edition,Springer, Berlin 70



[9] Tam, B.T. and Ban, V.T. (1985), Minimization of a Concave Function Under Linear Con-straints. Ekonomika i Matematicheskie Metody , 21, 709{714, (in Russian)[10] Tuy, H. (1991), E�ect of the Subdivision Strategy on Convergence and E�ciency of SomeGlobal Optimization Algorithms, Journal of Global Optimization, Vol. 1, Nr. 1, pp. 23{36[11] Von Hohenbalken, B. (1978), Least distance methods for the scheme of polytopes, Mathe-matical Programming, Vol. 15, pp. 1{11[12] Von Hohenbalken, B. (1981), Finding simplicial subdivisions of polytopes, MathematicalProgramming, Vol. 21, pp. 233{234
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NOP { a compact input format for nonlinear optimization problemsArnold NeumaierThis paper de�nes a compact format NOP for specifying general constrained nonlinear opti-mization problems. The proposed format is a nonlinear analogue of an explicit representation ofsparse matrices by means of index lists and values of the corresponding matrix entries. Thus theformat abstracts from the meaning of the problem and hence does not allow names for variablesor parameters, but it explicitly displays the internal structure of the problem. This is a veryuseful feature for global or large scale local optimization.In contrast to the SIF input format proposed by Conn, Gould, and Toint [1] for theirLANCELOT package, the amount of overhead in the formulation of smaller problems is veryslight: For example, problems like Rosenbrock's function can be represented in a few lines insuch a way that the least squares structure is visible in the representation. In general, partiallygroup separable problems are as easy to code in NOP as in SIF format.Together with an interface to GLOPT [4], a global constrained optimization code developedin Vienna, and with planned interfaces to the local optimization package MINOS (Murtagh &Saunders [3]) for large scale problems and to the modeling language AMPL (Fourer, Gay &Kernighan [2]) to allow the automatic structuring of input on a higher level, this is a promisingtool for the formulation and solution of nonlinear optimization problems.Each NOP �le consists of a sequence of records describing a constrained optimization problemof the formmin !xss.t. x0 � x � x00;E�(x); � = 1; : : : ; N;possibly with additional integer or threshold constraints. The bound constraints x0 � x � x00may have in�nite bounds to allow for one-sided bounds and free variables.The so-called elements E�(x) are constraints of one of the formsXk f(a; bk; xJk) 2 [q];Xk f(a; bk; xJk) + b = xj ;where f is a so-called element function, a; bk; b are parameters or parameter vectors, xJkis a subvector indexed by the index list Jk, and [q] is a possibly unbounded interval, possiblyrestricted to integers or with zero adjoined. The contributions f(a; bk; xJk) are referred to asthe pieces of the element. (Elements containing a single piece only are, of course, permitted.)The NOP format supports block structure and multiobjective optimization by allowing vector-valued components xi and element functions f .References[1] A.R. Conn, N.I.M. Gould, and Ph. L. Toint, LANCELOT. A Fortran Package for large-scalenonlinear optimization. Springer, Berlin 1992.[2] R. Fourer, D.M. Gay, B.W. Kernighan, AMPL. A modeling language for mathematicalprogramming, Scienti�c Press, San Francisco 1993.72



[3] B. A. Murtagh and M.A. Saunders, MINOS 5.1 user's guide, Tech. Report SOL 83-20R,Stanford Univ., Stanford, Calif. 1983, revised 1987.[4] A. Neumaier, S. Dallwig and H. Schichl, GLOPT { a program for constrained global opti-mization, talk at this conference.
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Hemivariational Inequalities and Global Optimization. Numerical Search forthe OptimaE.S. Mistakidis and Panagiotu D. PanagiotopoulosNonconvex nonsmooth energy functions lead to a new type of variational expressions, thehemivariational inequalities. They characterize all the solutions of the general type inclusion0 2 @�(u) where @ is the generalized gradient and � is a nonconvex and nonsmooth global(super)potential. We consider here hemivariational inequalities of the type: Find u 2 V suchthat a(u; v � u) + �(v)� �(u) � (f; v � u)8v 2 V;where a(:; :) is a bilinear function, � is nonconvex and nonsmooth energy function, f 2 V 0 is alinear function and V is an appropriately de�ned Banach space. A method is proposed for thenumerical treatment of the problem consisting in the replacement of the nonconvex problem by asequence of quadratic energy problems. These subproblems are e�ectively treated by quadraticprogramming algorithms. Finally a method is presented for the classi�cation of all solutionsof the equilibrium equations which are e.g. local and global minima and saddle points. Themethod of the paper is illustrated by numerical applications.References[1] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex andNonconvex Energy Functions (Birkh�auser, Boston-Basel, 1985); Russian translation (MIR,Moscow, 1989).[2] P.D. Panagiotopoulos, Hemivariational inequalities. Applications in mechanics and engineer-ing. Springer Verlag New York - Berlin 1993.
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Continuous Approaches to Discrete Optimization ProblemsPanos M. PardalosDiscrete (or combinatorial) optimization problems, that is, problems with a discrete feasibledomain and/or a discrete domain objective function, model a large spectrum of applications incomputer science, operations research and engineering.Solution methods for discrete optimization problems can be classi�ed into combinatorialand continuous approaches. A typical combinatorial approach generates a sequence of states,which represent a partial solution, drawn from a discrete �nite set. Continuous approachesfor solving discrete optimization problems are based on di�erent equivalent characterizationsin a continuous space. These characterizations include equivalent continuous formulations, orcontinuous relaxations, that is, embeddings of the discrete domain in a larger continuous spaceThere are many ways to formulate discrete problems as equivalent continuous problems or toembed the discrete feasible domain in a larger continuous space (relaxation). The surprising va-riety of continuous approaches reveal interesting theoretical properties which can be explored todevelop new algorithms for computing (sub)optimal solutions to discrete optimization problems.We are going to discuss continuous approaches to several discrete problems, including themaximum clique problem, graph coloring and the satis�ability problem.
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Optimal Renewal Policy for Slowly Degrading SystemsAndr�as Pfening and Mikl�os TelekPreventive maintenance is considered to be one of the key strategies to increase system avail-ability and performance. In general, preventive maintenance consists of periodically stoppingthe system, and restarting it after doing proper maintenance, that reduces the probability offailure and increases system performance. Some cost is unavoidable since the system has tobe stopped and it is unavailable during the maintenance. The arising research problem is to�nd the optimal maintenance policy, the policy that minimizes a certain cost function. Whilepreventive maintenance concepts have been usually applied to mechanical systems, they can alsobe e�ectively applied to the �eld of software reliability. Thus fault tolerant software can becamean e�ective alternative to virtually impossible fault-free software.Huang et. al. have suggested a technique which is preventive in nature. It involves periodicmaintenance of the software so as to prevent crash failures, they call it Software Rejuvenation [2].Garg et. al. [1] have improved Huang's model by allowing deterministic regeneration time andprovided an optimal rejuvenation policy for the studied class of systems, regarding crash failures.But monitoring real applications showed that software \ages" when it is run, i.e. its per-formance decreases and the probability of failure increases instead of su�ering crash failures.Memory bloating, unreleased �le-locks, data corruption are the typical causes of slow degrada-tion which could lead to crash failure as well if it is not taken care of. Software rejuvenationinvolves periodically stopping the system, cleaning up, and restarting it from its peak perfor-mance level. This \renewal" of software prevents (or in the least postpones) a crash failure andincreases performance.Problem StatementIn the paper we address the problem of soft failures of a server software, i.e. the preventivemaintenance is done to increase system performance, while crash failures are not considered.The server software serves jobs arriving to the system with slowly degrading performance. Theproblem is to determine the rejuvenation time interval, if the probability distribution of theinterarrival times and the service times are known. It should be performed to optimize thecost of the rejuvenation, consisting of the costs paid for the lost jobs that arrived during therejuvenation and costs paid for the jobs that were queued waiting for service when rejuvenationstarted, since these jobs are lost. We also take into account the run time of the system, sincethe same cost paid in case of a longer run is preferred.In the paper two systems are analyzed, they di�er in the applied queuing policy. The �rststudied system does not allow bu�er overow (we will refer to it as no bu�er overow case)by stopping and rejuvenating the system when the bu�er is full and a new job arrives to thesystem. It may be the case when the bu�er is supposed to be large enough to accommodate allthe arriving jobs, or when the system operator does not want to loose jobs during the systemoperation. The second scenario (bu�er overow case) allows bu�er overow during operation,however the cost caused by the lost jobs must be reected in the overall cost function.No Bu�er Overow CaseIn the �rst studied system Poisson arrival process of jobs is assumed with parameter �, andthe service rate is decreasing with time: limt!1�(t) = �1 and �(t) � �(t+�) if � � 0. With theabove assumptions the system states can be described by two variables for the no bu�er overowcase, the time spent since the last rejuvenation, and the number of jobs waiting for service inthe system. Our goal is to �nd a policy, that determines for each state of the system whetherto stop the system and rejuvenate it, or to continue the service.76



If we discretize the system variable that describes the time spent since the last rejuvenation,we arrive to a Markov Decision Process (MDP). In the framework of MDP theory an algorithm(we will refer to it as MDP algorithm) is provided to approximate the optimal policy, the policythat yields the minimum expected cost [3].In the paper we derive a condition for the cost function (the function that de�nes the costof stopping the system in the current state) when the optimal policy can be approximated byapplying the results for MDPs.In addition to the general results we investigated the special case when the cost function hasthe simple form of C(b; t; stop) = b+ �TRt+ TR ;where b is the number of jobs waiting in the queue, t is the time spent since the last rejuvenation,and TR is the rejuvenation time. If Poisson arrivals are assumed, �TR is the mean value ofnumber of jobs arrived during the rejuvenation period, i.e. this cost function is simply theaverage number of lost jobs per time unit. We show that the MDP algorithm converges to theoptimal policy. Two simple rules are also derived determining a bu�er content dependent upperlimit of time tUB(b), for which if t � tUB(b), the optimal policy will continue the service, anda bu�er independent lower time limit tLB, for which if t > tLB the optimal policy will choosesystem rejuvenation (tLB � tUB(b)).In practical applications if the cost di�erences in the time interval (tUB(b); tLB) are notsigni�cant, it is not necessary to use the MDP algorithm. The applied policy can be simplybased on the derived upper and lower time bounds.Bu�er Overow CaseIn the bu�er overow case the system can be characterized by three variables, since we haveto consider the number of lost jobs to �nd the minimal cost decision.Similar analysis steps are accomplished like in the no bu�er overow case. The concern-ing MDP algorithm is de�ned, and conditions for the cost function are derived to assure theconvergence to the optimal policy.The analyzed simple cost function is modi�ed toC(b; t; L; stop) = b+ �TR + Lt+ TR ;where L r.v. denotes the number of lost jobs in [0; t]. The convergence of the MDP algorithmis not guaranteed, however a simple rule for tUB(b; L) can be derived also for this case.Numerical ExampleThe theoretical results are illustrated by numerical examples. The MDP algorithm is imple-mented inMathematica 2.0 for the no bu�er overow case, and the results of the MDP algorithmand the derived simple rules are compared in some �gures.References[1] S. Garg, A. Pulia�to, M. Telek, and K. S. Trivedi. Analysis of software rejuvenation usingmarkov regenerative stochastic petri net. In Sixth International Symposium on SoftwareReliability Engineering'95 Toulouse, France, 1995.[2] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software rejuvenation: Analysis,module and applications. In To Appear in Proc. Of 25Th Symposium on Fault TolerantComputing, June 1995.[3] S. M. Ross. Applied Probability Models with Optimization Applications. Dover Publications,Inc., New York, 1992. 77



CGU: A Global Optimization Algorithm for Protein Structure PredictionAndrew T. Phillips, J. Ben Rosen and Ken A. DillThis talk will discuss the CGU (convex global underestimator) algorithm which is a globaloptimization algorithm designed to predict the native state of protein molecules, given theirprimary amino acid sequences. Computing the native state of a protein requires: (1) a suitablepotential energy function, and (2) a conformational search method that can �nd the globalminimum of the energy function. Neither of these problems is yet solved. Finding the globalminimum is di�cult because reasonable physical energy functions typically have many localminima, the number of which grows exponentially with polymer size. We have a reasonableenergy function, described below, for which we know that the bottleneck is the search strategyrather than the energy function. In this talk, we focus on the global optimization rather thanon the potential function problem.We have developed a global optimization method that we have already tested on �ndingglobal optima of homopolymer conformations. For that purpose we have used the energy func-tion: U = Ub + Uba + Ut + Unlwhere Ub = bond stretching energy, Uba = bond angle energy, Ut = torsion angle dependentenergy, Unl = non-local pairwise interaction energy. The �rst three terms are explicitly givenin terms of internal coordinates, but Unl is given in terms of the pairwise distances betweenamino acids ai and aj. A major part of the computational e�ort in the energy minimization isdevoted to computing Unl, and its derivatives, in terms of the internal coordinates. We useda Lennard-Jones potential for Unl in our initial investigation of the new global optimizationalgorithm [1].Our algorithm for computing the global minimum of a polymer potential energy functionis based on the iterative use of global underestimators to localize the search in the region ofthe global minimum. This new method, developed and implemented by J. Ben Rosen andAndrew T. Phillips [1], is designed to �t all known local minima with a convex function whichunderestimates all of them, but which di�ers from them by the minimum possible amount in thediscrete L1 norm. The minimum of this underestimator is used to predict the global minimumfor the function, allowing a localized conformer search to be performed based on the predictedminimum. A new set of conformers generated by the localized search then serves as a basisfor another convex underestimation. This new algorithm combines some aspects of both quasi-Newton methods and genetic algorithms. The e�ectiveness of this algorithm has been shown byits ability to compute global minima for n-mer chains, as summarized next.The use of an underestimating function allows the translation of a very complex functioninto a simple underestimator. If the underestimator is well suited to the problem (i.e. providesaccurate predictions for the global minimum), the global solution can be found in very few itera-tions. This new technique has already been successfully used to determine the three dimensionalmolecular structures for n-mer hydrocarbon homopolymer chains with as many as n = 30 beads.While there are estimated to be O(3n) local minima for a chain of length n, this method requiresonly O(n4) computing time on average. In fact, for all hydrocarbon chains of length n � 12,the predicted structures obtained by applying this algorithm have been con�rmed as the globalenergy minimizers of the potential function used. Moreover, it has also been shown that theglobal energy minimum values, as a function of chain length n, lie on a smooth curve that canbe approximated very closely by a simple concave quadratic function. This important propertyof the very complicated function U , which seems not to have been observed previously, permitsestimation of the global minimum energy for larger molecular chains, and can also be used toaccelerate the global minimization algorithm. 78



While the algorithm developed has been shown to require O(n4) time on average, it is alsohighly amenable to massively parallel computation. In fact, for homopolymers ranging in sizefrom n = 14 through n = 22, the results show that the algorithm is scalable with increasedproblem size using a parallel heterogeneous computer system involving the Cray Y-MP C90 and128 node Cray T3D at the University of Minnesota Supercomputer Institute. Furthermore, itis expected that as the problem size increases, this new method will continue to make full useof the computational power of this system. The solution to the 22 bead hydrocarbon problemrequired approximately 36 minutes (wall clock time using only 8 processors).Based on the success of the homopolymer tests described above, we have already begunthe process of applying the CGU method to more realistic protein-like models. This sameiterative global underestimating algorithm can be used with a potential function correspondingto the more complicated chain of residues in a realistic model of proteins. Ken Dill's groupat the University of California, San Francisco, has developed simple lattice models to betterunderstand the physics of protein folding ([2],[3],[4]). These models are based on evidencethat the hydrophobic interaction is the dominant force in protein folding, and that, to �rst-order approximation, a protein can be modeled as a speci�c sequence of hydrophobic (H) andhydrophilic (P) monomers. While such simple models show many of the secondary and tertiarystructural features of real folded proteins (including a-helices and b-sheets), the restriction tolattices is too arti�cial to allow realistic folding, but the Dill group has recently developed amore realistic o�-lattice model.An even more realistic, yet still simpli�ed, potential function has been developed by S. Sun[5]. It is an o�-lattice model in which the mainchain is represented by spherical beads centeredat C alpha carbons, and sidechains are also single spherical beads. In that work, interactionsare modelled based on protein database derived potentials. However Sun, now working in Dill'sgroup, has developed a much simpler potential function that has been used in a restrictedsearch problem. Their new potential function is simple but physical, and does not derive froma protein database. Sun and Dill [6] have shown that the use of the Sun chain representation,along with only a hydrogen bond energy term and a single hydrophobic interaction energy term,when searched using simulated annealing and genetic algorithms, reproduces relatively well thechain folds of 10 small proteins, provided helices and strands are �xed in their known nativeconformations (to limit the conformational searching time). Remarkably, despite the simplicityof the potential function, the limiting problem is again found to be the conformational searchstrategies, not the potential function: the energies of the true known native structures are lowerthan the best computed structures in 9 out of 10 cases. Hence the aim of this joint work is toapply the CGU global optimization strategy can do better, using the same potential function.Results from this most recent work will be presented.References[1] A.T. Phillips, J.B. Rosen and V.H. Walke: Molecular Structure Determination by ConvexGlobal Underestimation of Local Energy Minima, Journal of Global Optimization (in press)[2] H.S. Chan and K.A. Dill, The Protein Folding Problem, Physics Today, 1993, 24-32[3] K.A. Dill, Dominant Forces in Protein Folding, Biochemistry, 1990, 29, 7133-7155[4] K. Yue and K.A. Dill, The Forces of Tertiary Structural Organization in Globular Proteins,Proceedings of National Academy of Science (in Press)[5] S. Sun, Reduced Representation Model of Protein Structure Prediction: Statistical Potentialand Genetic Algorithms, Protein Science, 1993, 2, 762-785[6] S.Sun and K.A. Dill, A Simple Protein Folding Algorithm Using Binary Code and SecondaryStructure Constraints, Protein Engineering (submitted)79



LGO: An Implementation of a Lipschitzian Global Optimization ProcedureJ�anos D. Pint�erDecision problems are frequently modelled by optimizing the value of an objective function understated feasibility constraints. Speci�cally, we shall consider the following global optimizationproblem (GOP) min f(x) subject to x 2 D � IRn: (1)It is supposed that in (1) f : D ! R is a continuous function, and D is a bounded, robustsubset (`body') in the Euclidean n-space IIRn. In addition, the Lipschitz-continuity of f on Dwill also be postulated, when appropriate.The above assumptions de�ne a fairly general class of optimization problems. Essentially,they reect a decision paradigm in which a rather vaguely de�ned, possibly quite `large' and/or`complicated' search region is given on which a (potentially) multiextremal|possibly `blackbox'|objective function is minimized. For reasons of analytical tractability, it will also besupposed that the (non-empty) set of global solutions X� � D is, at most, countable. We shallapply the notation f� = f(x�), for x� 2 X�.To solve (1), a general family of branch-and-bound type adaptive partition strategies can beintroduced: for comprehensive discussions, consult, e.g., Horst and Tuy (1990), Pint�er (1992a,1995), Hansen and Jaumard (1995), with extensive lists of additional references. Necessary andsu�cient convergence conditions can be established: these lead to a uni�ed view of numerous GOalgorithms, permitting their straightforward generalizations and various extensions, to handlespeci�c cases of the general GOP (1).An implementation of LGO, a Lipschitzian global optimization procedure (integrated withother solvers) is discussed briey below. PC and workstation related experience, numerical testresults and several applications are highlighted. Application areas include, among others, thefollowing (Pint�er, 1992b, 1995):� general (Lipschitzian) nonlinear approximation� systems of nonlinear equations and inequalities� calibration (parametrization) of descriptive system models� data classi�cation� generic hierarchical con�guration design� aggregation of negotiated expert opinions� product/mixture design� optimized design/operation of `black box' (engineering, environmental, etc.) systems.The LGO Program SystemScope of ApplicationThe LGO program system serves for �nding|that is, numerically approximating|the bestsolution, or (theoretically) all solutions, of the possibly multiextremal optimization problem inits standardized, box-constrained form: mina�x�b f(x): (2)80



In (2) a, x, b, are �nite n-vectors, and f is Lipschitz-continuous on [a; b]. Note that Lipschitz-continuity is an obvious `minimal' requirement, in order to assure a guaranteed approximationof the optimal objective function value f�, on the basis of a �nite set of sample points from D.Notwithstanding, GOPs having a purely continuous structure are also of practical interest, andcan be numerically handled within the framework of LGO.Let us observe that a signi�cantly more general class of (continuous or Lipschitz) GOPs ofthe form min f0(x) fi(x) � 0; i = 1; : : : ;m a � x � b (3)(in which f0 := f , fi, i = 0; : : : ;m are continuous or Lipschitz) can be numerically approximatedin the form (2), following a penalty transformation based incorporation of the constraints fi, i =1; : : : ;m into the objective function. (Consult, e.g., Fletcher's (1983) review on such techniques.)The penalty multipliers associated with the constraints can be adaptively chosen, to enforce the(approximate) feasibility and optimality of the solution found.Other solver options to handle the general GOP (3)|in the framework of LGO|are underelaboration.Solution MethodologyThe current program system includes|in an integrated fashion|the following optimizationprocedure options:� Lipschitz global optimization by adaptive partition and search (LGO)� pure random search on the interval [a,b] (RS)� local search (Fletcher-Reeves-Polak-Ribi�ere method, FRPR)� local search (Powell-Brent method, PB).A few comments related to these solvers are in order. As known, RS is a very simple,`folklore' approach to solve GOPs. In the present context, it can be applied, for instance,by novice users who want to explore the feasible set, and/or as a preliminary search phasefor possibly reducing the initially chosen search interval. The Lipschitzian solver is far moresophisticated, and|enabled with proper parametrization|it should provide a reasonably closeapproximation of the global solution(s), before the LGO system is switched to local search(solution re�nement). The classical local optimization approaches FRPR and PB (for a morerecent practical discussion, consult Press, Teukolsky, Vetterling and Flannery, 1992) have beenmodi�ed for this implementation. Further implementation details are discussed by Pint�er (1995);additional options to solve (2) are under development.Structure of LGO Application ProgramsThe following abbreviations will be used (reecting a Fortran environment on PCs):� NAME { name of LGO application (given by user)� NAME-DR.FOR { source code of main driver (prepared/adapted by user)� NAME-OF.FOR { source code of objective function f (by user)� NAME.IN { input parameter �le (by user)� USERSRC.FOR { additional source code (optional, by user)� LGOSBRS.OBJ { object �le of LGO program system81



� NAME.OUT { more detailed output �le generated by LGO� NAME.SUM { summary output �le generated by LGO.Commented templates of NAME-DR.FOR, NAME-OF.FOR and NAME.IN are provided,to assist users. The principal structure of LGO application program systems is shown below.
Observe that USERSRC can also be given as an object �le, hence enabling the operation ofLGO on true `black box' applications.Current System Requirements and Problem Size LimitationsHardware and Software RequirementsPC Environment� IBM PS/2 Intel 386 & 387, 486 or Pentium processor based computer (or compatible)� minimum 4 Mbyte (recommended: 8 Mbyte, or more) RAM� appropriate hard drive space (when running LGO in virtual memory mode)� professional Fortran development environment� appropriate memory management tools.Workstation EnvironmentNo special restrictions (most systems, on which a professional Fortran is installed, are appropri-ate). Installation of LGO in other environments and programming languages is also possible.Problem Size Limitations� The present (explicitly declared) array structure in LGO supports the formulation andsolution of GOPs up to 50 variables.� Up to 10000 (currently active) partition subintervals can be simultaneously present in theLGO solution mode.Note that both of these limitations can be easily relaxed|if necessary|but memory require-ments and computational times will correspondingly increase.Using LGO in an Interactive EnvironmentThe current PC version of LGO can be activated and used in an interactive fashion, usinga menu-based interface under DOS. (A Windows version is also under development; on work-stations X-Windows readily provides an interactive multitasking environment.) The applicationmenu includes the following integrated options:� introduction (general LGO information) 82



� demonstration program information� edit application �les� compile LGO application programs� run LGO applications� view optimization output �les� view graphical summary of results� quit (return to operating system).Numerical Experience and ApplicationsTest problems of realistic complexity (up to 50 variables) have been solved using LGO; a fewexamples are presented in Pint�er (1995). Additionally, problems in numerical analysis, indus-trial and environmental engineering|having one to over 60 variables|have been solved, usingdi�erent versions of LGO. For details on several more recent numerical studies and applica-tions, consult, e.g., Pint�er (1990a,b, 1991), Pint�er and Pesti (1991), Hendrix and Pint�er (1991),Pint�er (1992b), Csendes and Pint�er (1993), Van der Molen and Pint�er (1993), Finley, Pint�er andSatish (1994), Pint�er, Fels, Lycon, Meeuwig and Meeuwig (1995), Stortelder and Pint�er (1995).Numerous further prospective applications are collected in Pint�er (1995).AcknowledgmentsThis research has been supported by the Hungarian Scienti�c Research Fund (OTKA) andby the Dutch Technology Foundation (STW).References[1] Csendes, T. and Pint�er, J. (1993). The impact of accelerating tools on the interval sub-division algorithm for global optimization. European Journal of Operational Research 65,314{320.[2] Finley, J.R., Pint�er, J. and Satish, M.G. (1994). Aquifer model calibration applying globaloptimization. Working Paper 94-05, Department of Industrial Engineering, Technical Uni-versity of Nova Scotia, Halifax.[3] Fletcher, R. (1983). Penalty functions. In: Mathematical Programming: The State of theArt, (ed. A. Bachem, M. Gr�otschel and B. Korte), pp. 87{114. Springer, Berlin.[4] Hansen, P. and Jaumard, B. (1995). Lipschitz optimization. In: Handbook of Global Op-timization, (ed. R. Horst and P.M. Pardalos), pp. 407{493. Kluwer Academic Publishers,Dordrecht.[5] Hendrix, E.M.T. and Pint�er, J. (1991). An application of Lipschitzian global optimizationto product design. Journal of Global Optimization 1, 389{401.[6] Horst, R. and Tuy, H. (1990). Global Optimization { Deterministic Approaches. Springer,Berlin. (2nd ed., 1993).[7] Pint�er, J. (1990a). Globally optimized calibration of environmental models. Annals of Op-erations Research 25, 211{22.[8] Pint�er, J. (1990b). Solving nonlinear equations via global partition and search: Some ex-perimental results. Computing 43, 309{323.83
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Numerical Approximation of Elliptic Fekete Point Sets: A GlobalOptimization ApproachWalter J.H. Stortelder and J�anos D. Pint�erThe objective of this work is to provide a numerical approximation of elliptic Fekete pointsets, applying Lipschitz global optimization. This problem is of obvious practical interest inscienti�c modelling; consult, for instance, [1, 3, 4].Let us consider an n�tuple x = (x1; : : : ; xn) in which xi 2 IR3; we are interested in theglobal maximum offn(x) = Y1�i<j�n k xi � xj k; s.t. k xi k = 1; i 2 f1; : : : ; ng; (1)in which k � k denotes the Euclidean norm. It is known that problem (1) has a non-polynomiallyincreasing number of local optima and saddle points; its analytical solution is unknown, and itapparently poses a nontrivial numerical challenge. The points x1; : : : ; xn which give the globalmaximum of (1) are called the elliptic Fekete points of order n.In order to solve this problem e�ciently, �rst we will discuss a straightforward transformationto spherical coordinates. After briey discussing some analytical results concerning the prob-lem, we shall apply the Lipschitzian global optimization strategy LGO (consult [2]) to providenumerical approximations to elliptic Fekete point sets. LGO is a combination of Lipschitzianadaptive search, pure random search, and gradient-free local optimization.Acknowledgments: This research has been supported by the Dutch Technology Foundation(STW) and the Hungarian Scienti�c Research Fund (OTKA).References[1] P.M. Pardalos, An open global optimization problem on the unit sphere, Journal of GlobalOptimization, 6, 1995, p. 213.[2] J. Pint�er, Global Optimization in Action (Continuous and Lipschitz Optimization: Algo-rithms, Implementations and Applications), Kluwer Academic Publishers, Dordrecht, 1995.[3] M. Schub and S. Smale, Complexity of Bezout's theorem. III: Condition number and packing,Journal of Complexity, 9, 1993, 4{14.[4] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Tokyo, 1959.
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Reducing the Problem of Organization Structure Adaptation toOptimization Problem in Boolean SpaceOlga Yu. PolyakovaThe situation which is considered is: there is a hierarchical structure S which describe the natureand the state of production system. When hindrances inuence on system or the environmentof the system have changed the structure of system must be changed too. So the structureadaptation problem become the actual one.Let the structure S is described by such set of parameters:S = (X;Y; FX ; FY ):Here, X is the set of structure elements, Y is the set of connections between elements, FX isthe set of elements' characteristics, FY is the set of connections' characteristics.The problem formulation of structure adaptation problem considered in some literature isbased on the set of possible variants of structure and possibility of looking over all those variants.However such approach isn't expedient one for production system structure because of largedimension of the set of elements. It doesn't allow to synthesise an e�ective algorithm for sulutingthis problem.From the other side the clustering algorithms which are used for synthesis of organizationstructure of production system allow to solve a large-dimensioned problem. Minimum of clustersnumber (when a threshold value is �xed) is the criterion for structure synthesis problem. Thiscriterion describe management characteristics of structure, not it's stability characteristics.To study the stability quality of synthesized structure the stability function is used. It maybe used as a criterion for the synthesis problem or as an additional criterion. However thestability function describe static characteristics of structure and tell nothing about it's potentialchanging possibilities when environment is changing.Another stability function can be proposed as a criterion which allow to study the dynamicstability of structure. Let assumpt that the single-elements cluster is absolutely stable one. Suchpartitioning may be considered for each problem when no another criterion used. Let de�ne thefreedom degree of cluster as a value which depend on number of elements included in cluster,stability of each element, degree of connections between elements and cluster's diameter.Fl = NlN 24 NlXi;j=1 uij35�1 diam(Ql); (1)where uij = ( degree of connection between elements i,jstability of the element iNl is the number of elements included in cluster Ql, N is the number of all elements.Let for absolutely stable partitioning stability function (II) is equal 1 and for any otherpartitioning stability of it's cluster: Ul = 1Fl ; l = 1; :::;MM is the number of clusters. (We suppose that all elements are in unit cube).When hierarchical structure is considered the beginning elements for next level synthesis areclusters of the previous level. 86



Now the synthesis problem for the organisation structure of production system can be rep-resent as a two-criterion optimization problem:U(S)! maxdim(X)! min (2)with restrictions: X = X00 [X01 [ ::: [Xmn ;Xki \Xkj = ;;PNji=1 xki;j = 1;xij = ( 1; Xki 2 Xk+1j0 (3)m is the number of hierarchy level. The stability function (II) U(S) can be represented in theform: U(S) = 1m� 1 24m�1Xk=0 1Nk 24Nk+1Xj=1 NkXj=1 uki xkij3535 (4)The complexity of using this function as a criterion is that neither number of hierarchy level nonumber of obtained clusters are known. However the nature of problem let suppose that thefunction has a global maximum when it is considered in boolean space Bn. The dimension ofthe space is unknown for the synthesis problem but we consider a restriction for the structureadaptation problem n < dim(X)and take n = dim(X) as a beginning value.The structure adaptation problem is transformed to the formU(S�)! maxBndim(S�)! minBn (5)with restrictions U(S�) > U(S) (6)Restriction (6) is like restriction (3) k S� � S k< � (7)S is the known structure, S� - unknown structure, � - the assumed measure of di�erence betweenstructures. It is suppose that dim(X0 \X�0 )� dim(X04X�0 )in other case the solving adaptation problem is unexpedient.The speed of solving adaptation problem will depend on choice of beginning point. Thebeginning vector in boolean space must ensure the condition (7) and let save a part of previousstructure. Such vector is easy found.The synthesis of algorithm is based on the assumption about existence of global maximumand the one-to-one correspondence between some components of vector from boolean spacewhich describe a new structure.An algorithm of soluting structure adaptation problem will allow to get a new structure withthe more little expenditures then it is need for solving production system synthesis problembecause of saving a part of old structure. 87



A Multistart Linkage Algorithm Using First DerivativesChris J. PriceThis paper describes an optimization algorithm for estimating various acoustic parameters ofan ocean environment. The parameter estimation proceeds as follows: a continuous wave singlefrequency source in the ocean generates a sound �eld. This �eld is measured at a number ofpoints in the ocean. A normal mode model (see eg. [1]) incorporating various sea oor parameterssuch as density, sound speed, and attenuation is used to predict the measured �eld values. Theparameters are chosen to minimise the 2{norm of the di�erence between the measured andpredicted �eld values. It is possible to modify the normal mode model to calculate the objectivefunction and its gradient for approximately twice the computational cost of calculating theobjective function alone. The following algorithm is designed to exploit the cheap gradientinformation, and for convenience is recast in the following form: maximize f(x), over x 2 F ,where F � Rn. Herein f 2 C2, and F is of the form ` � x � u.The algorithm is a variant of multistart, using a clustering process called Stochastic ProcessSingle Linkage (SPSL) which is similar to Multi-Level Single Linkage (MLSL) [3]. SPSL uses astochastic model together with the gradient of the objective function to assign a reliability valueto each link. Unlike MLSL, SPSL does not put a link between every pair of points that aresu�ciently close together. This suggests that SPSL's performance will not degrade when usedwith non-uniform distributions of sample points. An adaptive method for generating samplepoints is described next, followed by a description of SPSL.The sample points are generated in batches. The �rst batch consists of random or quasi-random points. Points in subsequent batches are generated by perturbing existing sample points(referred to as branch o� points). The perturbations are drawn from a uniform distribution on[�1; 1]n and scaled to produce small perturbations most of the time.The branch-o� points are chosen using a statistical model. The existing sample points are�rst grouped into m layers L1; : : : ; Lm, where x 2 Li i� `i�1 < f(x) � `i. Here `0 < `1 � � � � �`m�1 < `m, `0 = �1, and `m = 1. A transition matrix T is then formed, where Tij is theperceived probability that perturbing a randomly chosen sample point in layer j will produce apoint in layer i. Each branch-o� point is chosen randomly from within each layer, and the layeris chosen according to the probabilities given in the vector q, where the ith element of q is theprobability of choosing layer i, and where q is parallel to the solution ofmax� eTmT� such that � � 0 and �TW�1� = 1:Here W = diag(w1; : : : ; wm) and wi is the number of sample points in Li. Thus q is a vectorwhich increases the probability that the next sample point will be in Lm.The advantage of a scheme of this form for generating sample points is that it allows thealgorithm to automatically vary between randomly chosen sample points, and sample pointsgenerated by perturbing existing sample points which are regarded as better than average. Theformer would be more e�ective on a function with many widely spaced maxima which are nearlyglobal maxima, whereas the latter would be preferable on, say, a hump shaped function withsmall ripples which create many local maxima.It can be shown that the sequence of points is dense in F with probability 1, and thatprovided the maximum permitted link length `max goes to zero as the number of sample pointsincreases inde�nitely, the algorithm will �nd all global maxima with probability 1.It can be shown that if the layer structure and T eventually remain �xed, but W continuesto be updated, then at any iteration an a priori distribution for the sample points exists inthe limit N ! 1, and is independent of the sample points already generated. The limiting88



distribution's mean is strictly positive, and if the branch o� points are always chosen randomlyfrom the existing sample points, then this mean is constant over F .The stochastic process based single linkageLet x0 and x1 be sample points. A link from x0 to x1 exists i� the objective function ismonotonically increasing along the line segment from x0 to x1. Let F (t) = f(x0 + t(x1 � x0)).The second derivative of the objective function on the line segment is modelled by a stochasticprocess B(t) t 2 [0; 1]. This model is �rst constructed without reference to the known functionand gradient values at the end points; these are included afterwards. By assumption, F 00 iscontinuous, but no other information is known about it. Hence, any model for F 00 should beinvariant under translations, and under an interchange of the endpoints. It is reasonable tomake the following assumption:Assumption 1 8t1; t2; t3; t4 2 [0; 1] satisfying t1 < t2 � t3 < t4, the random variables B(t2) �B(t1) and B(t4)�B(t3) are independent.Under these assumptions it can be shown that B = B0 + B1 + D where D is a randomvariable, and where B0 and B1 are independent Brownian motion processes rooted at 0 and 1respectively. B0 and B1 have zero mean and a variance constant �2. If D is independent of B0and B1 then the covariance function for B0 + B1 + D is translation invariant inside the unitinterval. From now on this independence will be assumed.Let F0, F1, F 00, and F 01 be the known function values and �rst derivatives of F at t = 0 andt = 1 respectively. F (t) is modelled by the stochastic processS(t) = F0 + F 00t+ Z ts=0 Z su=0B(u) du dsInformation about �2 is obtainable from F1 and F 01 by consideringF 01 = F 00 +D + �1 and F1 = F0 + F 00 + 12D + �2where �1 = Z 1u=0B0(u) +B1(u) du and �2 = Z 1s=0 Z su=0B0(u) +B1(u) du dsDe�ning Qerr = 2F1 � 2F0 �F 00 �F 01 = 2�2 ��1, this Gaussian random variable is independentof D, has zero mean, and a variance of �2=15. It can be used to yield a crude estimate of �2 onits own, or combined with estimates from other links under the assumption that there is somesort of uniformity between the covariance constants for di�erent links.The link's reliability is calculated by estimating the probability that a line local minimumexists along the line segment between the two sample points. This estimate is formed by �rstestimating the probability distributions for S0(1=3) and S0(2=3) using the estimate of �2. Thereliability of each link can then be computed as follows:1. If F1 < F0, if F 00 < 0, or if kx1� x0k > `max then stop as there is no link. Here `max is themaximum permitted link length given by equation (35) in [2].2. Calculate the probabilities p1 and p2 that S0(1=3) > 0 and S0(2=3) > 0 respectively.3. Estimate the reliability of the link as follows: If F 01 � 0 then the reliability is 1�(1�p1)p2,otherwise the reliability is p1p2. The link exists only if the reliability exceeds a minimumvalue.The global optimisation algorithm can now be stated:1. Generate initial batch of sample points. 89



2. Set the number of layers as min(N=20; 5) and choose the layer boundaries so that thereare approximately an equal number of points in each layer. Calculate q.3. Find all points in the top layer which are not linked to any higher point.4. If the stopping conditions are satis�ed, do a local search from each unlinked sample pointin the top layer, otherwise generate the next batch of points, adjust `max, adjust theperturbation scale factor, and go to step 2.Preliminary numerical results and discussionThe algorithm was tested on a number of standard test functions (see eg [4]), where allsample points were generated randomly in each run. All global maxima were located for eachproblem and results for these are listed in table 1.Two additional test functions were also used. For these two problems the number of samplepoints was kept small in order to simulate what happens in a small part of a large feasible region.The �rst has a unique global maximum surrounded by a ring of connected local maxima:maxx f(x) subject to x 2 [0; 1]nwhere f(x) = ( cos(4�kx � 12k)� kx� 12k2 if kx� 12k � 12�kx� 12k2 otherwiseThe number of successes out of 10 trials were: for n = 2 and 50 sample points, MLSL (9), SPSL(10); for n = 2 and 13 sample points, MLSL (0), SPSL (10); and for n = 3 and 50 sample points,MLSL (1), SPSL (10). In all of these runs all sample points were linked.The second test problem has two global maxima close together, and is designed to test analgorithm's ability to resolve two close maxima.Problem T: maxx �kx� 12 � 0:15e1k2kx� 12 + 0:15e1k2(1 + kxk2)2 subject to x 2 [0; 1]2The results for this problem are listed in table 2. In each run a �xed number of samplepoints were generated randomly. The results show that SPSL achieves the same resolution asMLSL with half as many sample points. Results for the Rastrigan function also support this:using 250 random sample points MLSL found the global maximum on 4 runs out of 10, whereasSPSL succeeded 8 times out of 10 using 125 random sample points.The results show that SPSL is a viable method. If the gradients are only calculated for pointsin the top layer, then the results for problem T and the Rastrigan function show that SPSL canbe more e�cient than MLSL, especially if the gradient is signi�cantly cheaper than the worstcase for reverse automatic di�erentiation. The results for the acoustic parameter estimation,and other problems will be included in the �nal paper.References[1] Brekhovskikh, L. M. and Yu. P. Lysanov, Fundamentals of ocean acoustics 2nd edition,Springer-Verlag, c1991.[2] Rinnooy Kan, A. H. G. and G. T. Timmer, Stochastic global optimization methods part I:clustering methods, Math. Prog. 39, pp 27{56, 1987.[3] Rinnooy Kan, A. H. G. and G. T. Timmer, Stochastic global optimization methods part II:multi level methods, Math. Prog. 39, pp 57{78, 1987.90



problem local searches local maxima sample pointsBranin 3 3 250Goldstein-Price 2 2 150Camel 5 3 350Hartman 3 2 2 50Hartman 6 8 2 500Shekel 5 3 3 150Shekel 7 5 4 450Shekel 10 11 8 500Rastrigan 27 27 500Table 1: Numerical results for the standard test problems.sample points 50 75 100 125 150 175 200MLSL 0 2 8 6 7 9 10SPSL 6 8 10 10 10 10 10Table 2: Results for problem T.[4] T�orn A. and A. Ẑilinskas, Global Optimization, Lecture notes in Computer Science no. 350,Springer Verlag, 1989.
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Tracking Elementary Particles near their Primary Vertex: A CombinatorialApproachJean-Fran�cois Pusztaszeri, Paul E. Rensing and Thomas M. LieblingWe report on the successful implementation of a discrete optimization algorithm to reconstructtracks generated by charged elementary particles produced by the LEP accelerator at CERN.This method solves a �ve-dimensional assignment problem, and is now used to reconstruct dataproduced by the ALEPH collaboration. It is shown to perform substantially better than thelocal search methods it is replacing. We believe this represents one of the �rst successful attemptat applying a combinatorial optimization method to tracking in High Energy Physics.Problem de�nitionMost of High Energy Physics is devoted to the study of fundamental interactions produced bycolliding beams of elementary particles, as provided by the LEP storage ring located at CERN,near Geneva. These interactions are observed by means of large detectors which are made ofconcentric cylindrical shells of electronic arrays, such as the ALEPH compound detector. Theinner shells are made of ionization chambers and solid-state devices whose purpose is to recordspace-points along the ight path of every charged particle produced by the interaction (generallya Z0 decay). Only when such a track is fully reconstructed from its distribution of space-pointscan the properties of the particle which generated the track be known.To determine this distribution, one traditionally uses discrete linear �ltering methods [5].These methods return insu�ciently precise results if the hit density is large enough and theseparation between tracks decreases. We This situation is more commonly encountered near thepoint of origin (or vertices) of these curves, where the precision in track parameters is neededmost. This paper presents an algorithm which improves the precision of the track �t in ALEPH,by solving a global assignment of tracks to hits produced by the detector nearest to the pointof collision, the Vertex Detector (VDET).The latter is made of two concentric layers of silicon wafers inlayed with aluminium triggerstrips. Wafers overlaps ensure that the entire vertex region (i.e., the collision region) is sur-rounded. The wafer ideally generates two orthogonal hits for each charge particle which crossesit. From these two hits, a three-dimensional point can be reconstructed.The detector is immersed in a magnetic �eld of constant magnitude along the beam (cylinder)axis, which deect charged particles along a helical path towards the end plates of the cylindricalassembly. The track �tting part of the reconstruction is done by means of a discrete linear �ltermethod (a Kalman �lter with a spatial dependence of the track parameters). Dense materialpresent in the detector (walls or wires) often induce perturbations on the tracks however, whichrequires an increase in extrapolation error in the vertex region.Throughout this paper, we rely on the availability of a set of outer partial tracks reconstructedfrom outer tracking devices, where tracks are better separated, and where the pattern recognitionproblem is solved without ambiguities. We perform a global assignment of outer partial tracksto an equal number of VDET signals in two layers (inner and outer) and in two views (the zdirection, along the beam axis, and the r � � direction, perpendicular to it).Track extrapolation errors are represented as cones which cover more than one cross-hitassociation, and which may overlap each other, hence the intransic ambiguity of this problem.The elliptic intersection of the cones with the wafer planes, together with the hits they cover,are the inputs to a global assignment. In this formulation, a given track may be assigned no hit(when it misses the detector altogether) and up to eight hits, when its extrapolation footprintcovers overlap regions in the two layers of the detector, de�ning a set partioning problem.92



Combinatorial FormulationInputEach element of a set I of outer partial tracks is associated to elements of four disjoint setsof hits in either view and either direction of the VDET, denoted by J , K, L and M . Thepulse-height of a hit (equivalent to the amplitude of its signal) is used to determine whether thathit may be used more than once in a track assignment. Those which cannot are called singlehits.To reduce the dimension of this problem, we fuse pairs of real hits which lie in the same viewand in the same layer, but lie on di�erent wafers, and consider them as a single candidate forassignment to a track. Doing so allows us to bring the formulation down from a generalized setpartioning problem, with each set containing exactly one track and from one to eight hits, to a�ve-dimensional assignment problem. This requires a formalism to account for null assignments(i.e., noise and ine�ciencies). We introduce therefore a "null" hit (denoted by zero) for eachview and each layer. Likewise, we de�ne a noise track (track "0") to collect hits which may havebeen left unused by the association. The input to our problem is therefore a set of (ni+1) outertracks, together with (nj+1) ��� hits and (nk+1) z hits on the outer layer, and (nl+1) ���hits and (nm + 1) z hits on the inner layer.If UVj , UWk, LVl and LWm represent two orthogonal pairs of hits on the outer and lowerlayers of the vertex detector respectively, and Ti is the track which is to be matched to thesehits, the following decision variablexijklm = ( 1 if Ti ! f UVj ; UWk; LVl; LWmg0 otherwisewill determine the association of every outer track Ti.Further reduction in problem size has proved to be experimentally unwieldy: in the absenceof correlation between the sets, we may be tempted to formulate our problem as four instancesof a two-dimensional assignment problem (i.e., a track and a hit in either layer and view), anduse polynomial algorithms to solve each one. As experience showed us, we lost our most usefulcriterion for assignment in doing so, namely the angular comparison between a segment made oftwo VDET cross-hits on di�erent layers and the angle of incidence of the tracks. For the samereason, a three-dimensional assignment for each layer is uninteresting. A plausible alternativewould be a three-dimensional assignment formulation across the views. Angular information ispreserved.The cost of assignment of each combination is calculated by �nding the optimal estimatorsof the track parameters found by adding the VDET hit candidates to the hit distribution of theouter track. These optimal estimators are found by what amounts to a least square minimizationand a goodness-of-�t test for which a �2 value may be calculated, but due to the presence ofdense material (silicon wafers and their support frames) in the region of interest, it is likely thatthe particle trajectories undergo substantial local deviations from their ideal helix model. Thedynamics of these interactions is modeled by a discrete linear dynamic system, and a Kalman�lter algorithm is used to calculate recursively the individual costs of assignment of each pattern.This is expressed in terms of the �ltered residuals ~rk and their covariance matrix Rk, and therandom variable, �2k = �2k�1 + ~rTk R�1k ~rk (1)will follow a �2k distribution (�20 = 0). Given n data points in our original distribution, equation1 yields the �2n value for the �t. The �2 value of the �t corresponding to some xijklm = 1assignment is denoted by C�2;ijklm 93



Objective functionWe consider here a linear analog to the nonlinear objective function obtained from a normal-ized �2 test. Given the simpli�ed case where the probabilities of the xijklm = x�ijklm assignmentsare assumed to be independent, the hypothesis xijklm = x�ijklm, for a real track i, will have aprobability pcond;ijklm =Z 1C�2;ijklm p�2;NDOFvdet(i)(t)dt (2)where NDOFvdet(i) is the number of hits in the Vertex Detector which have been assigned to i.This probability is conditional to having observed Nnull;ijklm missing hits in this pattern (one ormore indices di�erent from i is equal to zero), so if we assume the local ine�ciency of the detectorto follow a binomial distribution with probability �, we obtain the individual costs of assignmentcijklm = � log pcond;ijklm � log(null;�)(Nnull;ijklm) . Likewise, considering detector noise as aPoisson process, we may write c0jklm = � log ppoisson(INT(�)) where � is the expected numberof noise hits in the event. These cost coe�cients de�ne the following objective functionZ( ~X) = niXi=0 njXj=0 nkXk=0 nlXl=0 nmXm=0 cijklmxijklm (3)which needs to be minimized.ConstraintsTracks and hits may not be used freely in the AP5 assignment: having introduced null hitsin our formulation, the tracks must always be assigned to some hit pattern which can be madeof real hits and null hits alike. This givesnjXj=0 nkXk=0 nlXl=0 nmXm=0 xijklm = 1; 8i 2 f1; : : : ; nig (4)The noise track is subject to an inequality constraint. The constraints which apply to real hitsin the vertex detector are symmetric in each layer and each view. We take, as an example, allreal hits in the � � � view of the outer layer, which are indexed by j. Hit constraints in otherviews and other layers are identical to those found below, save for the order of the indices. Forevery real hit UVj , we know an integer Mj � 0 which indicate how many times that hit is partof a fused "logical" hit located on the overlap region of the wafers. If that number is non-zero,the vector Gj(Mj) contains the indices of the logical overlap hits (in general, one real hit maybelong to more than one overlap pair).We want single hits to be used exactly once, whether assigned to a real or a noise track. Ifa hit is part of an overlap combination, we require a mutual exclusion between the hit and itsoverlap parent in the assignment. We have therefore,niXi=0 nkXk=0 nlXl=0 nmXm=00@xijklm + MjXm=1 xiG(m)j klm1A = 18j 2 f1; : : : ; njreal;singlegInequality constraints which apply to undecided real hits are expressed in a similar fashion:keeping in mind that it is extremely rare for a hit to be used more than twice, given the �ne94



resolution of the Vertex Detector, we set the right-hand side of the inequality to two. Hence,1 � niXi=0 nkXk=0 nlXl=0 nmXm=00@xijklm + MjXm=1xiG(m)j klm1A � 28j 2 fnjreal;single + 1; : : : ; njrealgThe overlap hits are subject to the constraints which apply to their components. No con-straints have been placed on the null hits, which are used freely.AlgorithmsPreprocessingTracks tend to bunch together in subsets which are themselves well separated, so one maysuccessfully apply a partitioning to the main assignment in order to produce several logicallyindependent subproblems of smaller sizes. This is tantamount to �nding all connected compo-nents in a graph constructed with the tracks as nodes, connected by edges of non-zero weights ifand only if any two track are in competition for at least one hit. Together with this component-generation step, we remove entirely diagonal subproblems, i.e., those for which the set of localoptimal patterns of each track is in fact the global optimal solution.This is followed by a heuristic to remove from the component tracks with an extrapolationerror which is much larger with respect to other elements of the set. Such tracks, which havebeen either poorly �tted in the outer tracking region, or have undergone a large smearing dueto multiple scattering, may produce patterns with an excellent �2, and are therefore more likelyto contribute to an optimal solution with little physical signi�cance. By simply removing suchtracks from the component, we render this algorithm more robust while reducing componentsize. Edge weights are calculated usingwij = �(jAi �Aj j)max(Ai; Aj) (5)where Ai and Aj are the average area of intersection between the detector wafer and the ex-trapolation cones of tracks Ti and Tj respectively, and perform an iteration over the edges inorder of non-decreasing length. If the successor of the edge being considered is less than half ofits own, we remove this edge from the list and check whether the graph has been disconnected.This latter step is in O(n), where n is the number of nodes in the graph [1]. Once the graph hasbeen disconnected, we reapply the algorithm to the independent components until we are leftwith a set of dense subproblems. If the end problems are all singletons, then we have a purelysequential assignment algorithm.Main algorithmOnce preprocessing has completed, the irreducible AP5 subproblems are solved by meansof a branch & bound algorithm using linear programming relaxation. This scheme follows theconventional structure of commercial mixed integer programming solver, with some problem-speci�c steps implemented into the generic structure. Among these is the use of track momentumto generate partial lists of variables while selecting branching variables. If, for a given activenode, any two variables with di�erent track indices are in competition, the variable correspondingto the track with the higher momentum, and therefore the smaller extrapolation error, will bebranched upon �rst. Because the footprint of this track will be relatively small with respect toothers, so will in general be the number of patterns available for it. For variables all involvingthe same track index, the ordering will put priority on patterns which involve two pairs of realcross-hits (all four hit indices are greater than zero), and if this is not available, only then one95



pair (corresponding to the cases where either hits j,l or hits k,m are non-zero). Ordering withinthese categories is arbitrary. If no cross-hit pairs can be found, then the next candidate in thelist is the fully null variable, Xi0000. The goal of this ordering is to set as early as possible inthe algorithm the assignment of tracks for which very little ambiguity exist.Node ordering among the list of active nodes follows a depth-�rst search plus backtrackingscheme, with an arbitrary left son selected �rst, as described in Nemhauser & Wolsey [4]. Ifthe node is pruned, the next active node is determined by �nding the node for which the lowerbound is minimal.ResultsComputationThe application of the logical partitioning and clustering steps accounted for a decrease inthe average number of tracks per event from 32 to 6, for a sample of a thousand events. Thiscame with no major increase in the number of problems to solve, mainly because disconnectingthe component graph generated in turn diagonal problems which were solved by a linear timealgorithm.Remaining subproblems of non-trivial size were directed to the branch & bound algorithm.The average number of variables and constraints in the sample were 160 and 31 respectively,for an average component density (node to edge ratio) of 0.5. While these problems are smallin average, it is important that the algorithm solves all problems encountered, as the largerproblems contain generally di�erent physics information than the small ones. Most noticeableare the multiple-prongs tau decay interactions, which consistently reach a thousand variables.To date, all problems could be solved to optimality by the branch & bound algorithm de-scribed earlier, interfaced with a public domain, dual simplex-based linear programming solvercalled LP SOLVE, written by Michel Berkelaar from the Eindhoven University of Technology[2]. Compute time for these problems never exceeded a second of CPU time on a DEC ALPHA3000/300 RISC workstation. The compute time of the entire procedure was in fact dominated byits initialization phase, and most noticeably by the several smoothing iterations required by theKalman �lter while generating the cost matrix. Time spent in preprocessing and post-optimalhit interchange was negligible. No event observed so far has taken more than ten seconds tosolve on our computer platform, all phases included.Physics resultsThe method described above has been implemented into the main reconstruction algorithmused by ALEPH. Since it started running at the end of May 1995, this program has reconstructed10'000 hadronic Zo events from the 1994 year of production. This section provides a comparisonof results obtained by this algorithm and the method it has replaced, called JULIA, which isusing a Kalman �lter and a greedy search.We considered instead the physics problem of identifying events which contain b-quarks.This so-called \hadron tagging" is performed by identifying the signature of the event, the longlifetime and large mass of the hadron containing b-quarks, and is fully described in [3]. Thismethod uses what is known as the impact parameter of the tracks in the event, de�ned as thedistance of closest approach between a track and the primary vertex. The probability thata measured impact parameter is consistent with zero is computed using a resolution functionwhich can be measured directly from the data. Then, probabilities from the tracks are combinedin a two step process to generate a probability that the event contains a long-lived hadron.Fig. 1 shows the resolution histogram based on the events reprocessed thus far by ALEPHwith the help of our algorithm. This plot shows the impact parameter divided by its error forboth the old sequential (JULIA) and the new branch & bound based method. The peak of96



this distribution represents an error-free pattern recognition, while the tail area reveal a poorresolution of the pattern recognition algorithm. The log scale used for this histogram tends toamplify the measurement errors, but also reveals that the method presented in this paper isdoing substantially better when compared to a greedy sequential assignment.ConclusionThe method presented in this paper is currently being used to reprocess the 4.5 million eventswhich have been collected by ALEPH since 1990. Improvement observed following this imple-mentation, �rst on simulated events and later on real data, provided the incentive for startingthis e�ort. An online implementation of this method should follow in early 1996, requiring sub-stantial improvements in the combinatorial algorithms, to accommodate both the near-real-timerequirements on compute-time bounds, and an expected tenfold increase in problem size. Thiswork may serve as a base to broaden the use of combinatorial method to other experiments inHigh Energy physics.References[1] Ahuja R.K., Magnanti T.L., Orlin J.B., Network Flows, Prentice Hall, 1993.[2] Berkelaar M.R.C.M., LP SOLVE 2.0, Eindhoven University of Technology, Eindhoven,The Netherlands. Package available via anonymous ftp at ftp.es.ele.tue.nl/pub/lp solve/[3] Brown D., Tagging b Hadrons using Track Impact Parameters, ALEPH Note 92-135, CERN,1992.[4] Nemhauser G.L., Wolsey L.A., Integer and Combinatorial Optimization, Wiley, 1988.[5] Particle Data Group, Review of Particle Properties, Phys. Lett. B, 239, 1990.

97



An LP-Based Branch and Bound Algorithm for the Quadratic AssignmentProblemK.G. Ramakrishnan, M.G.C. Resende and P.M. PardalosThe quadratic assignment problem (QAP), �rst proposed by Koopmans and Beckmann [5], canbe stated as minp2� nXi=1 nXj=1 aijbp(i)p(j);where � is the set of all permutations of f1; 2; : : : ; ng, A = (aij) 2 IRn�n, B = (bij) 2 IRn�n.Though a wide range of heuristics has been applied to �nd approximate solutions of largequadratic assignment problems, exact solution approaches have been limited to instances ofdimension n � 20.Most exact methods for the QAP are based on branch and bound. Lower bounds are key tothe computational e�ciency of branch and bound algorithms. Recently, Resende, Ramakrishnan,and Drezner [11] used an e�cient implementation of an interior point algorithm to compute lowerbounds for the QAP by solving the linear programming (LP) relaxation of a classical integerprogramming formulation of the QAP. The linear program, that has n2(n� 1)2=2+n2 variablesand 2n2(n�1)+2n constraints, is large-scale, by today's standards, even for quadratic assignmentproblems of small dimension. The linear programs were solved with ADP, an implementationof a dual interior point algorithm, with centering, that uses a preconditioned conjugate gradientalgorithm to compute the directions taken at each iteration by the interior point method [4].Attempts at using the simplex and (direct factorization based) interior point codes of CPLEX 1were successful only for the smallest instances. That study also showed that the quality of thelower bounds produced was good, suggesting that they be incorporated in a branch and boundalgorithm. Pardalos, Ramakrishnan, Resende, and Li [9] describe a branch and bound algorithmused to study the e�ectiveness of a variance reduction based lower bound [7].In this paper, we use an extension of the branch and bound algorithm described in [7] inconjunction with the LP-based lower bound described in [11]. We report on preliminary resultsthat show how this lower bound performs when implemented in a branch and bound algorithmfor the QAP.ImplementationWe next outline the branch and bound implementation used in this study. The system iscomposed of four components: a branch and bound control module; a greedy randomized adap-tive search procedure (GRASP) module to produce the initial upper bound; an AMPL modelinglanguage [2] module to manage the linear programming models; and the linear programmingsolver ADP to produce the lower bounds for the branch and bound algorithm.The branch and bound control module controls the solution process. It inputs the problemdata, calls the GRASP to produce an initial upper bound, and manages the search of the branchand bound tree. At each node of the tree, it spawns an AMPL process that generates the linearprogram to be solved at that node. The linear program, along with the current best upperbound and the �xed cost associated with the partial assignment of the node, are passed to theLP solver ADP. The optimal permutation is output by the branch and bound module.The GRASP [8, 10] is called before any search of the branch and bound tree begins so thatan initial upper bound can be produced. The branch and bound module passes to the GRASPthe problem data and the number of GRASP iterations and gets back the best permutationfound over the GRASP iterations and its corresponding cost (the upper bound).1CPLEX is a Registered Trademark of CPLEX Optimization, Inc.98



At each node of the branch and bound tree ADP iterates on the LP, producing a sequence oflower bounds, until the dual objective function is greater than the current upper bound minusthe �xed cost of the partial assignment, in which case the branch rooted at the current node ofthe branch and bound tree can be pruned, or if the relative improvement of the dual objectivefunction falls below a speci�ed tolerance, in which case the branch needs to be further explored.If the data is integer, as is the case for all of the QAPLIB instances considered in this paper,the dual interior solution can be rounded up to check for termination. This is done in our code.A detailed description of the ADP code as used in this application is given in [11].Computational ResultsIn this section, we present preliminary experimental results with our code. The new branchand bound algorithm is tested on a set of standard QAP instances from the QAPLIB. Wecompare the new algorithm with an algorithm that is identical, except that it uses the Gilmore-Lawler lower bound in place of the LP-based bounds.The experiments were conducted on a Silicon Graphics (SGI) Challenge (150 MHz MIPSR4400 processor, 1920 Mbytes of main memory, 16 Kbytes of data cache, and 16 Kbytes ofinstruction cache). The branch and bound control module and the GRASP are implementedin Fortran and compiled with the f77 compiler using compiler ags -O2 -Olimit 800. Theinterior point solver ADP is written in C and was compiled with the cc compiler using compilerags -O2 -Olimit 800.We tested the codes on several instances from the QAP library QAPLIB. Table 1 summarizesthe runs on both algorithms. For each instance it displays the name and dimension of theproblem, as well as the solution times and number of branch and bound search tree nodesexamined by each of the algorithms. The ratio of CPU times is also displayed.The number of GRASP iterations was set to 100,000 for all runs.We make the following remarks regarding the computational results.� The code solved all 24 instances of QAPLIB of dimension less than or equal to 15.� Compared with the branch and bound algorithm using the Gilmore-Lawler lower bound,the number of branch and bound search tree nodes examined by the algorithm is smalland grows slowly as a function of the dimension n of the QAP.� Because no level 0 nodes (the QAP linear programming relaxation for the original problem)were done, the minimum number of nodes examined by the algorithm is n, the numberof level 1 nodes in the tree. Level 0 nodes were solved for all the instances solved in thispaper in [11]. In 10 of the 24 problems solved in this paper (nug05, nug06, nug07, esc08c,esc08f, chr12a, chr12b, chr12c, chr15b, and chr15c) the level 0 lower bound producedwas tight and thus all but one of the problems could be solved at level 0, since the initialupper bounds produced were optimal. The only exception is nug05 for which the GRASPupper bound initially produced is not optimal.Concluding RemarksIn this paper, we presented implementation details and computational results of a new branchand bound algorithm for solving the quadratic assignment problem.Our implementation successfully solved to optimality all instances of QAPLIB [1] with di-mension n � 15. The main observation is that the lower bounds are good, resulting in the searchof very few branch and bound search tree nodes compared to the same branching scheme usingthe classical Gilmore-Lawler lower bound [3, 6, 9]. The number of nodes scanned grew less thana cubic function of n, the dimension of the QAP. The instance with the largest number of nodes99



Table 1: QAP test instances: LP-based vs. GLB-based B&B algorithmsLP-based B&B GLB-based B&B time nodesproblem dim nodes time nodes time ratio rationug05 5 12 11.7 44 0.1 117.0 3.7nug06 6 6 9.5 82 0.1 95.0 13.7nug07 7 7 16.6 115 0.1 166.0 16.4nug08 8 8 35.1 895 0.2 175.5 111.9nug12 12 220 5238.2 49063 14.6 358.8 223.0nug15 15 1195 87085.7 1794507 912.4 95.4 1501.7scr10 10 19 202.1 1494 0.6 336.8 78.6scr12 12 252 5118.7 12918 4.8 1066.4 51.3scr15 15 228 3043.3 506360 274.7 11.1 2220.9rou10 10 52 275.7 2683 0.8 344.6 51.6rou12 12 152 2715.9 37982 12.3 220.8 249.9rou15 15 991 30811.7 4846805 2240.3 13.8 4890.8esc08a 8 8 37.4 57464 7.0 5.3 7183.0esc08b 8 208 491.1 7352 0.7 701.6 35.3esc08c 8 8 42.7 2552 0.3 142.3 319.0esc08d 8 8 38.1 2216 0.3 127.0 277.0esc08e 8 64 251.0 10376 1.0 251.0 162.1esc08f 8 8 37.6 1520 0.3 125.3 190.0chr12a 12 12 312.0 672 0.7 445.7 56.0chr12b 12 12 289.4 318 0.6 482.3 26.5chr12c 12 12 386.1 3214 1.5 257.4 267.8chr15a 15 15 1495.9 413825 235.5 6.4 27588.3chr15b 15 15 1831.9 396255 217.8 8.4 26417.0chr15c 15 15 1908.5 428722 240.0 8.0 28581.5(nug15 of dimension n = 15) required the solution of 1195 linear programs. Other instancesof the same size required much fewer (as few as 15) nodes. As the size of the QAP grew theCPU time ratio of the time taken by the new code to the time taken by the GLB based codedecreased dramatically. However, for problems of the dimensions considered, it is still faster touse the GLB-based branch and bound algorithm.The aim of our ongoing research on branch and bound algorithms for the quadratic assign-ment problem is to make extensions to the algorithm to produce examples for which the newapproach, besides scanning much fewer nodes than Gilmore-Lawler lower bound based methods,is also faster than those methods. Since linear programs on di�erent branches of the search treeare essentially independent of each other, it is possible to solve them in parallel. We are im-plementing a distributed algorithm that solves di�erent linear programs on di�erent processors,broadcasting the value of a new upper bound whenever one is found. In the version of the ADPcode used in this paper, the algorithm does not have the capability to do warm starts, i.e. startfrom an advanced solution. The linear programs are always solved from the start, even whenone LP varies from the other by a single column in the dual program. We are implementinga version of ADP that can start from a warm solution. With this, we expect to speed up thesolution process signi�cantly. During the tree search small instances of QAPs are induced. Thecode described in this abstract computes the lower bounds associated with these QAPs withlinear programming. The new code will enumerate or use dynamic programming to solve smalldimension QAPs. Finally, stronger LP formulations can be derived, producing better lower100



bounds.References[1] R. Burkard, S. Karisch, and F. Rendl, QAPLIB { A quadratic assignment problemlibrary, European Journal of Operational Research, 55 (1991), pp. 115{119. Updated version{ Feb. 1994.[2] R. Fourer, D. Gay, and B. Kernighan, AMPL { A modeling language for mathematicalprogramming, The Scienti�c Press, South San Francisco, CA, 1993.[3] P. Gilmore, Optimal and suboptimal algorithms for the quadratic assignment problem, J.SIAM, 10 (1962), pp. 305{313.[4] N. Karmarkar and K. Ramakrishnan, Computational results of an interior point algo-rithm for large scale linear programming, Mathematical Programming, 52 (1991), pp. 555{586.[5] T. Koopmans and M. Beckmann, Assignment problems and the location of economicactivities, Econometrica, 25 (1957), pp. 53{76.[6] E. Lawler, The quadratic assignment problem, Management Science, 9 (1963), pp. 586{599.[7] Y. Li, P. Pardalos, K. Ramakrishnan, and M. Resende, Lower bounds for thequadratic assignment problem, Annals of Operations Research, 50 (1994), pp. 387{410.[8] Y. Li, P. Pardalos, and M. Resende, A greedy randomized adaptive search proce-dure for the quadratic assignment problem, in Quadratic assignment and related problems,P. Pardalos and H. Wolkowicz, eds., vol. 16 of DIMACS Series on Discrete Mathematicsand Theoretical Computer Science, American Mathematical Society, 1994, pp. 237{261.[9] P. Pardalos, K. Ramakrishnan, M. Resende, and Y. Li, Implementation of a vari-ance reduction based lower bound in a branch and bound algorithm for the quadratic assign-ment problem, tech. rep., AT&T Bell Laboratories, Murray Hill, NJ 07974, 1994.[10] M. Resende, P. Pardalos, and Y. Li, FORTRAN subroutines for approximate solutionof dense quadratic assignment problems using GRASP, ACM Transactions on MathematicalSoftware, (To appear).[11] M. Resende, K. Ramakrishnan, and Z. Drezner, Computing lower bounds for thequadratic assignment problem with an interior point algorithm for linear programming, Op-erations Research, (To appear).
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An unsolved problem of Fenchel1Tam�as Rapcs�akFenchel (1953, p. 115, Roberts and Varberg, 1973, p. 271) drew up the following problem of levelsets: "What "nice" conditions on a nested family of convex sets will ensure that it is the familyof level sets of a convex function?" Rapcs�ak (1991) gave an explicit formulation of the gradientof the class of the smooth pseudolinear functions (both pseudoconvex and pseudoconcave). Thisresult means an extension of the Cauchy functional equation and the solution of the Fenchel'sproblem in the case of a nested family of convex sets whose boundaries are hyperplanes whichde�ne an open convex set, and where this family of convex sets corresponds to the equality levelsets of pseudolinear functions. We have to point out, however, that the pseudolinear functionsare more general than the convex functions. The following theorem was proved for characterizingthe gradient of the smooth pseudolinear functions:Theorem 1 [2] Let a three times continuously di�erentiable function f be de�ned on an openconvex set A � Rn and assume that rf(x) 6= 0, x 2 A. Then, f is pseudolinear on A i� thereexist continuously di�erentiable functions l(x), �i(f(x)), i = 1; : : : ; n, x 2 A, such that thefollowing conditions are satis�ed:@f(x)@xi = l(x)�i(f(x)); i = 1; : : : ;n; x 2 A:In order to construct pseudolinear functions, the next theorem can be useful.Theorem 2 [2] If the functions l(x), �i(f(x)), i = 1; : : : ; n, x 2 A; have continuous derivativesin all arguments on an open set A � Rn and if they satisfy the compatibility conditions@l(x)@xj �i(f(x)) + l2(x)d�i(f(x))df �j(x) = @l(x)@xi �j(f(x)) + l2(x)d�j(f(x))df �i(x);i; j = 1; : : : ; n; x 2 A, then a uniquely determined solution of the system@f(x)@xi = l(x)�i(f(x)); i = 1; : : : ;n; x 2 A;exists in a neighbourhood of every point of A as soon as the value of the function f is prescribedat some point of the neighbourhood.The purpose of the paper is to solve Fenchel's problem if the boundaries of the nested familyof convex sets are given by n-dimensional di�erentiable manifolds which determine an openconvex set with nonempty interior in Rn+1.References[1] Fenchel, W., Convex cones, sets and functions, (mimeographed lecture notes), PrincetonUniversity Press, Princeton, New Jersey, 1953.[2] Rapcs�ak, T., On pseudolinear functions, European Journal of Operational Research 50 (1991)353-360.[3] Roberts, A. W. and Varberg, D. E., Convex functions, Academic Press, New York, London,1973.1This research was supported in part by the Hungarian National Research Foundation, Grant No. OTKA-T016413 and OTKA-T017241 102



Techniques for Gap-Treating and Box-Splitting in Interval NewtonGauss-Seidel Steps for Global OptimizationD. RatzFor a twice continuously di�erentiable function f : D ! IR and D � [x] 2 IIRn, we address theproblem of �nding all points x� in the interval vector [x] such thatf(x�) = minx2[x] f(x):We are interested in both the global minimizers x� and the minimum value f� = f(x�).We use the interval branch-and-bound method described in [2] and [3] with several modi�-cations. The method subdivides the initial box [x], stores the subboxes in a list L, and discardssubintervals which are guaranteed not to contain a global minimizer, until the desired accu-racy of the intervals in the list is achieved. The tests we use to discard or to prune pendingsubboxes are cut-o� test, monotonicity test, concavity test, and the extended interval NewtonGauss-Seidel step.The latter we apply to the nonlinear system rf(y) = 0 with y 2 [y]. The subbox [y] isa candidate box for enclosing a minimizer x�, for which we assume rf(x�) = 0. One step ofthe extended interval Newton Gauss-Seidel method shall improve the enclosure [y] by formallysolving the system b = [A] � (c� y);where b = R �rf(c), [A] = R �r2f([y]), c = m([y]), and R 2 IRn�n is some preconditionermatrix. Then, we compute N 0GS([y]) according to[z] := [y][z]i := �ci � �bi + nXj=1j 6=i [A]ij � ([z]j � cj)� . [A]ii� \ [z]i; i = 1; : : : ; nN 0GS([y]) := [z]
9>>>>>=>>>>>; :If 0 2 [A]ii for some i, extended interval arithmetic is applied, which allows division by aninterval containing zero. In this case, a gap can be produced in the corresponding component[z]i of [z]. Therefore, if 0 2 [A]ii for several components i, the extended interval Newton Gauss-Seidel step possibly produces several gaps in the actual box [y] and it may result in the union ofseveral boxes N 0GS([y]) = [V ]1 [ : : : [ [V ]p, where [V ]i 2 IIRn, i = 1; : : : ; p, that is [V ] 2 IIRp�n.We investigate the impact of di�erent techniques for gap-treating and box-splitting whichcan be applied resulting in di�erent values for [V ] and p.In the main optimization algorithm, di�erent subdivision direction selection rules can beapplied to determine \optimal" components for bisection of the current box [y] (see [1] and [4]).Each of these rules selects a direction k with D(k) = maxni=1D(i), where D(i) is determined bythe given rule.We investigate some of these rules in connection with the interval Gauss-Seidel step, where weuse them to compute a sorting vector s = (s1; s2; : : : ; sn) with si 2 f1; : : : ; ng and si 6= sj for i 6= j,which satis�es D(si) � D(si+1), i = 1; : : : ; n � 1 for the corresponding direction selection ruleD(: : :). Then, we study the performance of a sorted interval Newton Gauss-Seidel step given by[z] := [y][z]si := �csi � �bsi + nXj=1j 6=si [A]sij � ([z]j � cj)� . [A]sisi � \ [z]si ; i = 1; : : : ; nN 0GS([y]) := [z]
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incorporating di�erent splitting techniques.We propose strategies which improve the overall e�ciency of the interval Newton Gauss-Seidel step and therefore of global optimization methods. We present results of computationalexperiments with standard global optimization problems.References[1] Csendes, T., Ratz, D.: Subdivision Direction Selection in Interval Methods for GlobalOptimization. SIAM Journal of Numerical Analysis, accepted for publication, 1995.[2] Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Veri�ed Com-puting I { Basic Numerical Problems. Springer-Verlag, Heidelberg, New York, 1993.[3] Ratz, D.: Box-Splitting Strategies for the Interval Gauss-Seidel Step in a Global Optimiza-tion Method. Computing 53, 337{353, Springer-Verlag, Wien, 1994.[4] Ratz, D., Csendes, T.: On the Selection of Subdivision Directions in Interval Branch-and-Bound Methods for Global Optimization. Journal of Global Optimization, accepted forpublication, 1995.
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Analysis of threshold accepting global optimization methodsMarco Locatelli and Fabio SchoenAmong the best performing algorithms for global optimization of reasonably smooth multimodalfunctions over simple feasible sets (e.g. hypercubes) there are quite a few approaches in whicha proper mix of random sampling and local search is performed. One quite well known such anapproach is Multi-level Single-Linkage ([3], [4]), where local searches are started from selectedpoints in a random uniform sample of the feasible region. Although there exist many otherapproaches based upon the idea of mixing random sampling and local searches, (one of the mostinteresting of which being [2]), it is felt by the authors (and con�rmed by numerical experiments),that the criterion used in Multi-level Single-linkage (MLSL for short) is a particularly sensibleone. The basic idea of MLSL is that of starting a local search from a sampled point whenever thedistance between such a point and the nearest higher-valued point (in case of maximization) isgreater than a threshold. As the threshold used in MLSL is decreasing, points which are judged\near" in the early stages of the algorithm, might become \far" later on; this fact precludes thepossibility of sequential sampling, being the process of revising previous decisions on sampledpoints too costly from a computational point of view. The authors of MLSL thus propose abatch sampling strategy, by which at each stage of the algorithm a bunch of points, say N > 0,is sampled and the decision whether to start or not a local search from points in the sample istaken once every stage.In this paper we present and analyze a new class of stochastic global optimization algorithmswhich� possess all of the theoretical characteristics of MLSL { namely:1. almost sure convergence to the global optimum;2. observation of the global optimum after a �nite number of iterations with probability1;3. probability of starting a local search decreasing to 0;4. expected number of local searches performed, even if the algorithm is never stopped,�nite with probability 1;� samples sequentially { thus avoiding the necessity of pre-specifying a batch size N ;� enables the start of local searches only from the most recently sampled point { thus avoidingthe time-consuming analysis of the whole sample needed in MLSL in order to take accountof the decreasing threshold;� di�erently from what is required in the theoretical analysis of MLSL, lets local searchesstart even from points sampled on the boundary of the feasible region { which becomesparticularly interesting for problems of concave minimization.Simple LinkageIn [1] a family of algorithms all possessing the above properties was introduced, where thedecision whether to start or not a local search from the current point was based on a randomizedcriterion. Here we restrict the attention to threshold based methods in which we decide to starta local search at iteration k, based on a sample X1; : : : ;Xk, if�k � minj fkXk �Xjk : f(Xk) � f(Xj) + �g105



where f is a real valued function from [0; 1]d in R to be maximized, � is a small positive constant,�k is a non-negative sequence.It was proven in [1] that the probability of starting a local search decreases to 0 if and onlyif �kk1=d !1:Let �k := 1p� � ��(1 + d=2) log kk �1=dwhere, � is a constant to be chosen by the user. It was proven in [1] that, provided that � > 1 andthat no local search is started from within a prescribed distance from the boundary of the feasibleregion, then the algorithm, while being able to �nd with probability 1 the global optimum, willperform a number of local searches whose expectation is �nite even if the algorithm were neverstopped.Actually, threshold accepting algorithms may be much more general than this one, both byusing more general thresholds and by letting local searches start from the boundary, but here,in order to be able to make signi�cant comparisons, we will restrict the analysis to this specialinstance. We adopt the convention of calling \Simple Linkage" this algorithm.For what concerns MLSL, a positive constant �M and an integer constant N > 0 are given,and sampling proceeds in batches. The decisions about starting or not local searches can betaken only after N points have been drawn | so that the decision epoches are N , 2N , : : :. Ateach decision epoch, say h � 1, a threshold is computed�hN = 1p� � �M�(1 + d=2) log hNhN �1=d : (1)Given this threshold, the whole sample of hN points is reconsidered and a local search isstarted from Xi, i 2 f1 : : : ; hNg if and only ifminj�hN;j 6=ifkXi �Xjk : f(Xj) � f(Xi)g � �hN (2)Let us briey denote with Y (i)k := minfkXi � Xjk : j � k; j 6= ig the random variablecorresponding to the minimum distance between a sample point Xi and the �rst k points in thesample. Then a local search from Xi is started in SL if and only if Y (i)i > �iwhile it is started in MLSL from the same point if and only if 9h � l iN m : Y (i)hN > �hN .Theoretical comparison between MLSL and SLWe plan to compare the behaviour of the proposed algorithm and MLSL when the sample isthe same. We assume that there exists a constant � > 1 such that �M� = �: In the applicationsthis is the most common situation: it has been proven in fact that a �nite expected number oflocal searches in MLSL is obtained for �M > 4, while the same holds for SL when � > 1. It isthus sensible, for comparison to choose, for example, � = 4. In a forthcoming paper results willbe given for the general case.Let us denote with Si and Mi the events that, respectively, SL and MLSL decide to start alocal search from Xi. We look for bounds onP (Si jMi) P (:Si j :Mi)i.e. on the probability that a local search is started in SL given that, sometimes after the i{thiteration also MLSL has decided to start a local search from the same point and the probabilitythat, if MLSL decides never to start a local search from some point, then also SL decides thesame. 106



The main results can be stated as follows:P (Si jMi) >� ��� � 1����1 + � P (:Si j :Mi) � 1Here the symbol >� is used to denote \asymptotic minorization", i.e., if ak >� bk then, forevery � > 0 9 �k such that k � �k impliesConclusionsSimple Linkage seems to be an extremely simpli�ed version of MLSL which, while retainingall of the good theoretical properties of the latter, is much easier to implement and order ofmagnitude faster. It is also to be noticed that SL is one out of an in�nite family of algorithmsall possessing the same strong theoretical properties. It is a subject of current research to tryto understand which algorithm in the family can be proposed as the \best" one.It is to be observed also that all of the properties enjoyed by MLSL (and by SL) are asymp-totic ones. The analysis carried out in [1] shows that, asymptotically, there is no advantagein building \chains" of improving points (as MLSL does); moreover, since the publication ofMLSL, apparently it was never explicitly noticed that, asymptotically, function values becomeirrelevant, all of the decisions being taken only the basis of relative distances between points inthe sample. This is the key point for being able to derive accurate asymptotic results. But whathappens in the �rst stages? The analysis carried out both for MLSL and for SL tells nothingabout the �nite time behaviour of those algorithms; it seems plausible to assume that results inthis direction, although much welcome, will be very hard to obtain.In conclusion, we know very little on the actual behaviour of both MLSL and SL (althoughcomputational experiments tend to support the evidence that they perform the same in termsof number of function evaluations and local searches performed). Asymptotically, MLSL and SLbehave the same: SL, being much easier and more e�cient, seems to be a practical alternativeto MLSL.References[1] Locatelli, M. and Schoen, F., \Random Linkage: a family of acceptance/rejection algo-rithms for global optimisation", submitted, 1995 (available in pre-print form through thewww page of the second author: http://www-dsi.ing.unifi.it/�schoen/home.html).[2] Lucidi, S. and Piccioni, M., \Random Tunneling by Means of Acceptance-Rejection Sam-pling for Global Optimization"I, J.O.T.A., 62, 255{276, 1989.[3] Rinnooy Kan, A. H. G. and Timmer, G.T., \Stochastic Global Optimization Methods. PartI: Clustering Methods", Mathematical Programming, 39, 27{56, 1987.[4] Rinnooy Kan, A. H. G. and Timmer, G.T., \Stochastic Global Optimization Methods. PartII: Multi Level Methods", Mathematical Programming, 39, 57{78, 1987.
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An Algorithm for Minimizing Functions with Lipschitz DerivativesYaroslav D. SergeyevA new algorithm for minimizing one-dimensional functions having Lipschitz �rst derivatives ispresented. The method does not require a priori knowledge of the exact Lipschitz constantbut adaptively estimates the local ones in di�erent sectors of the search region in the course ofminimization. Convergence conditions of the method are investigated. Some numerical examplesare also presented.Let us consider the following global optimization problemx� = argminff(x) : x 2 [a; b]g; (1)Many algorithms have been proposed for solving this problem under di�erent assumptions (see[1]{[11]). In this paper it is supposed that the objective function has a �nite number of the localminima and its �rst derivative f 0(x) satis�es the Lipschitz condition, i.e.j f 0(x1)� f 0(x2) j� L j x1 � x2 j;8x1; x2 2 [a; b]; (2)where the constant 0 < L <1 is called the global Lipschitz constant.For solving the problem (1) under assumption (2) two methods have been proposed inde-pendently. In the �rst one Breiman & Cutler [2] (see also [1]) consider the case the constant Lfrom (2) is a priori known. Gergel [5] proposes another approach estimating L in the course ofoptimization. Both the methods use the global Lipschitz constant L (or its upper estimate) toconstruct support functions for f(x) over the interval [a; b].The algorithm proposed here constructs an auxiliary function '(x) also. The di�erencewith the previous approaches consists in the fact that '(x) is constructed using estimates �iof the local Lipschitz constants Li of intervals [xi�1; xi] � [a; b] where xi; 1 � i � k, are trialpoints previously produced by the algorithm (the term trial means evaluating f(x) and itsderivative f 0(x) at a point x). Thus, the method executes a local tuning on the behavior of theobjective function over di�erent subintervals in [a; b]. It has been demonstrated [10] for someglobal optimization algorithms (which do not use derivatives) that using local information canaccelerate the search signi�cantly.The algorithmTwo initial trials are performed at the points x1 = a and x2 = b. The point xk+1; k � 2, ofthe current (k + 1)th iteration is chosen by the following rules.Step 1. Order the points x1; : : : ; xk of previous k trials by increasing their coordinates, i.e.a = x1 < x2 < : : : < xi < : : : < xk = b: (3)Underline, that the record xk means that this point has been produced in the course of thekth iteration of the method. On the other hand the equality xk = xi shows the positionof xk in the series (3).Step 2. Calculate the auxiliary values vi being low bounds for the local Lipschitz constants Liof the intervals [xi�1; xi], where xi; 1 < i � k, are from (3)vi = maxf�(x) : x 2 [xi�1; xi]g; (4)�(x) = 2 j zi � zi�1 + z0i(x� xi)� z0i�1(x� xi�1) j(x� xi)2 + (x� xi�1)2and zi�1 = f(xi�1); zi = f(xi); z0i�1 = f 0(xi�1); z0i = f 0(xi).108



Step 3. Calculate estimates �i of the local Lipschitz constants Li for the intervals [xi�1; xi]; 1 <i � k: �i = rmaxf�i; i; �g; (5)where r > 1; � > 0 are parameters of the method and the values �i; i are computed usingthe values vi; 1 < i � k, from (4):�i = maxfvj : 1 < j � k; i� 1 � j � i+ 1g; (6)i =M(xi � xi�1)=Xmax; (7)M = maxfvi : 2 � i � kg; Xmax = maxfxi � xi�1 : 2 � i � kg:Step 4. Compute for each interval [xi�1; xi]; 1 < i � k, the characteristicR(i) = minfzi�1; zi; zi�1 + z0i�1(x̂i � xi�1)� 0:5�i(x̂i � xi�1)2g; (8)where �i is from (5) andx̂i = �zi + zi�1 + z0ixi � z0i�1xi�1 + 0:5�i(x2i � x2i�1)�i(xi � xi�1) + z0i � z0i�1 (9)Step 5. Find among the intervals [xi�1; xi]; 1 < i � k, an interval [xt�1; xt] such thatR(t) = minfR(i) : 1 < i � kg; (10)Step 6. Execute the new trial at the point xk+1 = x̂i, where t is from ( 10) and x̂t is calculatedaccording to ( 9).A complete theoretical basis of the algorithm will be presented in the full paper. Here weonly note that the value �i estimates the local Lipschitz constant Li over the interval [xi�1; xi].The values �i and i spy respectively on the local and the global information obtained in thecourse of the previous k iterations. When the interval [xi�1; xi] is small then due to (7) i issmall also and we use the local information represented by �i. When the interval [xi�1; xi] isvery wide reliability of the local information is low and the global estimate i plays the mainrole. Taking in consideration the local estimates �i permits to construct an auxiliary function'(x) (the characteristic R(i) is its minimum over [xi�1; xi]) which is closer to f(x) than thatones which use only global Lipschitz constant L or its estimates. Underline, that the localinformation is used over the wholeTheorem. Let x� be a global minimizer of f(x) and [xi�1; xi]; i = i(k), be an interval containingthis point in the course of the k-th iteration of the algorithm. If there exists an iteration numbers such that for all k � s for the value �i from (5) the inequality�i � Liis true then, the point x� is a limit point of the sequence of trial points generated by the algorithm.Theorem demonstrates that to have the global convergence it is not necessary to estimatecorrectly the global Lipschitz constant (it may be underestimated) but it is enough to have acorrect notion only about the local Lipschitz constant for the subinterval containing the pointx� in the course of the kth iteration.
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Numerical examplesTo illustrate performance of the new algorithm (NA) in Tab.1 we compare it with the methodsof Breiman & Cutler (BC) and Gergel (GM) on that test functions from [6] where there existsubregions with local Lipschitz constants less than the global one. The parameters of thealgorithms have been chosen as follows : r = 1:1 for GM and NA. The parameter � for NAhas been taken equal to 10�9. We have used the exact values of global Lipschitz constants forf 0(x) in BC. We stopped our experiments when the interval to place a new trial was less than� = 10�4(b� a), where a; b are from (1). Global minima have been found by all the methods forall the functions.Table 1: Number of trials done by the methods before satisfaction of the stopping rule.Problem BC GM NA3 103 98 9013 264 89 4715 80 47 2916 88 75 3417 67 65 46Average 120.4 74.8 49.2References[1] Baritompa W. (1994), Accelerations for a variety of global optimization methods, J. ofGlobal Optimization, 4(1), 37{45.[2] Breiman, L. and A. Cutler (1993), A deterministic algorithm for global optimization, Math.Programming, 58, 179{199.[3] Csendes, T. (1989), An interval method for bounding level sets of parameter estimationproblems, Computing, 41, 75{86.[4] Evtushenko, Yu.G., M.A. Potapov and V.V. Korotkich (1992), Numerical methods forglobal optimization, Recent Advances in Global Optimization, ed. by C.A. Floudas andP.M. Pardalos, Princeton University Press, Princeton.[5] Gergel, V.P. (1992), A global search algorithm using derivatives, Systems Dynamics andOptimization, N.Novgorod University Press, N.Novgorod, 161{178.(In Russian).[6] Hansen, P., B. Jaumard and S.-H. Lu (1992), Global optimization of univariate Lipschitzfunctions: 1{2, Math. Programming, 55, 251{293.[7] Horst, R. and P.M. Pardalos, (1995), Handbook of Global Optimization, Kluwer AcademicPublishers, Dordrecht.[8] Kostrowicki J. and H.A. Scheraga (1995), Simple global minimization algorithm for one{variable rational functions, J. Global Optimization, 6, 293{311.[9] Pint�er, J. (1992), Convergence quali�cation of adaptive partition algorithms in global op-timization, Math. Programming, 56, 343{360.[10] Sergeyev, Ya.D. (1995), An information global optimization algorithm with local tuning, toappear in SIAM J. Optimization.[11] Strongin, R.G. (1989), The information approach to multiextremal optimization problems,Stochastics & Stochastics Reports, 27, 65{82.110



Global Optimization Requires Global InformationChris Stephens and William BaritompaThere are many global optimization algorithms which use global information. For instance, Lip-schitz algorithms, bounded second derivative algorithms, interval methods, pure adaptive searchand simulated annealing. All of these algorithms share the properties that they require globalinformation in the form of a parameter (e.g. Lipschitz constant, bound on second derivative,functional form, level sets or a cooling schedule) and they are guaranteed to �nd the globaloptimum. One criticism of these algorithms is that this information, being of a global nature,is hard to obtain (or simply may not be available).Thus there is a desire to design algorithms which avoid the need for global information. Anumber of algorithms have been proposed with this in mind. For example, the direct algorithmof Jones, Perttunen and Stuckman, Strongin's algorithm, algorithms of Gergel and Sergeyev,adaptive search and simulated annealing as used in practice. These algorithms often performvery well in empirical tests, and can even outperform their global counterparts. However theydo have inherent theoretical limitations.Hansen, Jaumard and Lu [1] found a class of functions for which Strongin's algorithm failsto converge. T�orn and �Zilinskas [2] showed all deterministic algorithms which use only functionvalues at sample points converge to the global optimum on all continuous functions if and onlyif they search a dense set.Introducing a stochastic element into algorithms is often seen as a way to overcome theselimitations, (so that no function can be found that will de�nitely fail). In this paper we extendT�orn and �Zilinskas's results to include stochastic algorithms, as well as to algorithms which useother local information, such as derivatives, in addition to function values. We describe otherclasses of functions for which these algorithms will fail.Our results show that any algorithm, including stochastic algorithms, using only local infor-mation will succeed frequently on all functions (in certain classes) if and only if all points in thedomain are frequently seen. That is, all algorithms which use local information only, must usebrute force if convergence is guaranteed.Furthermore, we show that attempts to localize the global optima on all functions with suchalgorithms will always fail. Given any algorithm (including stochastic algorithms) we show theexistence of a function for which the probability of the sample points converging to the globaloptima (or a subset of them) is arbitrarily small.An important example is simulated annealing. \Standard" simulated annealing localizesif the cooling schedule is slow enough. It has been shown (in the deterministic setting) anecessary and su�cient condition on the cooling schedule depends on the depth of the lowestlocal minimum. This is clearly a global parameter. In the continuous case where gradients areused, our results show the cooling schedule must also depend on global properties. So, attemptsto �nd a suitable (or optimize an existing) cooling schedule by pre-sampling or adjusting thecooling schedule on the run using the new sample points are doomed to failure. Our resultsshow that there are always functions for which the probability of success of such a scheme isarbitrarily small.In practice algorithms must stop after a �nite time and hence do not look everywhere. So,if no global information about the problem is utilized, the function tried may be one on whichthe algorithm fails. We cannot have mathematically justi�ed con�dence in the results.However, many of these algorithms do have empirical and heuristic justi�cation. They areoften designed for certain real-world problems and perform well when tested on these and similarproblems. Indeed, these global optimization heuristics are often far more practical than generalalgorithms run until the mathematically proven stopping criteria are satis�ed. These real-world111



and test functions must have nicer characteristics, than \randomly chosen" functions from aformal class.There are two areas for future work, which may prove fruitful. Firstly, by our results, the\niceness" of real-world and test functions (when it exists) must be a global characteristic. Thisillustrates the need to quantify this \niceness" into a useful global parameter. Success of such anundertaking would result in algorithms with the practical usefulness of current heuristics withthe addition of mathematically justi�ed con�dence in the results.The second area is to design algorithms which use both local and global information withoutlosing guaranteed convergence. Lipschitz and second derivative methods su�er when there arelarge �rst or second derivatives remote from the global optima. Algorithms which use localinformation only can often adapt to local conditions as they progress. Meewella and Maynewere able to obtain local Lipschitz constants adaptively by using interval arithmetic and theglobal functional form. It is hoped that similar modi�cations to second derivative methods willyield an e�cient guaranteed algorithm.References[1] P. Hansen, Jaumard B., and Lu S-H. On using estimates of Lipschitz constants in globaloptimization. Journal of Optimization Theory and Applications, 75:195{200, 1992.[2] Aimo T�orn and Antanas �Zilinskas. Global Optimization, volume 350 of Lecture Notes inComputer Science. Springer-Verlag, Berlin Heidelberg, 1989.
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On Global Search in Non-Convex Optimal Control ProblemAlexander S. Strekalovsky and Igor L. VasilievWe consider non-convex (w.r.t. the state) optimal control problems. A global search algorithmbased on global optimality conditions is proposed. Several test problems are solved.It is known, the su�cient optimality conditions as the dynamic programming and the Kro-tov's conditions have some disadvantages which are not characteristically of the Pontryaginmaximum principle. First of all it refers to the numerical methods constructed on their basis[1], [2],[3].In this paper we propose an algorithm allowing to transcend stationary, i.e. to escape fromthe process (x (�) ; u (�)) verifying Pontryagin maximum principle, if (x (�) ; u (�)) is not globalsolution.The approach proposed here is based on global optimality conditions presented in [4], [5]and develops the results from [6], [7].Problem FormulationConsider the following control system:_x(t) = A(t)x(t) + f(u(t); t);x(t0) = x0; t 2 ]t0; t1[ 4= T;�1 < t0 < t1 < +1; u(�) 2 U ;U = fu 2 Lr1(T ) : u(t) 2 U 08 t 2 Tg; 9>>>>=>>>>; (1)where x(t) = (x1(t); :::; xn(t))T ; u(t) = (u1(t); :::; ur(t))T ; x0 2 Rn | an initial state, U isa compact from Rr, and the designation 08 means "for almost every in the sense of Lebesquemeasure". Other assumptions are usual for optimal control. Denote by x (t; u) the solution ofthe di�erential equations system (1) corresponding to a control u (�) 2 U :Let we have to maximize the functionalJ (u) 4= g (x (t1))! max; (2)where g : Rn ! R is a convex function.It can be readily seen that the problem (1)-(2) is non-convex, and this nonconvexity isgenerated by the objective functional.Hence, Pontryagin maximum principle is not su�cient condition for a control to be globaloptimal.Global Search AlgorithmFirst of all let us describe the algorithm step by step. Suppose a control �u1 (�) belong to U .Let a control �uk (�) 2 U and a sequence f�kg ; �k > 0; k = 1; 2; :::; �k # 0 (k !1) ; be given.Step 1 Let �xk (�) ; uk (�)� ; xk (�) = x ��; uk� be �k- stationary process obtained by a local searchalgorithm beginning at the control �uk (�) :J ��uk� 4= g �x�t1; �uk�� � J �uk� 4= g �xk (t1)� = �k:Step 2 Construct an approximation<k = < �uk; �k� = n�y1; :::; �yNk= g (�yi) = g �x�t1; uk��o113



of the level surface S (g; �k) = fy 2 Rn : g (y) = �kg :Step 3 8 i = 1; :::; Nk �nd a control vi (�) 2 U s.t.Dg0 ��yi� ; x�t1; vi�E � supu2U Dg0 ��yi� ; x (t1; u)E� �k:Step 4 8i = 1; :::; Nk construct points yi; g �yi� = �k s.t.Dg0 �yi� ; x �t1; vi�� yiE+ �k � supy nDg0 (y) ; x�t1; vi�� yE = g (y) = �ko : (3)Step 5 Set �k := Dg0 �yj� ; x�t1; vj�� yjE = max1�i�Nk Dg0 �yi� ; x�t1; vi�� yiE :Step 6 If �k > 0, then set �uk+1 (t) := vj ; t 2 T; k := k + 1;and loop to Step 1.Step 7 If �k � 0, where �k > �, is a given tolerance, then stop. If �k > �; loop to Step 1, with�uk+1 := uk; k := k + 1: ]Remark 1 When � > 0 (Step 6) we have due to the convexity of g (�)0 < 
g0 �yj� ; x �t1; vj�� yj� � g �x �t1; vj��� g �yj� == g �x �t1; vj��� g �x �t1; uk�� :Thus, the control vj (�) 2 U is better than the stationary control uk (�) 2 U , so that we havetranscended stationary.Test ExamplesConsider the norm maximization kx (t1)k2 ! max (4)for the following simplest control system:Example 1 _xi = ui; xi (0) = 0; i = 1; :::; n; �2 � ui (t) � 1; t 2 [0; 1] : Each vertex of thereachable parallelogram (xi = xi (t1; u))P = fx 2 Rn : �2 � xi � 1; i = 1; :::; ng is stationary._x1 = x2; x1 (0) = �1; _x2 = �x1 + u; x2 (0) = 0; �1 � u (t) � 1;t 2 [0; �] : There are two stationary controls, but only one is global.Example 3 _x1 = x2 + u1; x1 (0) = 3; _x2 = u2; x2 (0) = �1; t 2 [0; 2] ; �1 � u (t) � 1: Thereexist three control u (t) � (1; 1)T ; û (t) � �~u (t) � (1;�1)T , verifying maximum principle, butonly u (�) is global optimal.
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Numerical TestWe present here the numerical result of solving the above examples by global search algorithmfrom Sect.2. The global search was beginning after solving the linear problem:hc; x (t1; u)i ! max; u 2 U ; (5)with a vector c 2 Rn.Let J �u0� and J (u�) be the initial and �nal values of objective functional, St be the numberof stationary controls obtained, LP { the number of linearized problems solved during thenumerical experiments and �nally Time is the solving time in min:sec:subsec. All numericaltests were implemented using IBM PC/AT-386.Table 1c J(U0) J(U�) St LP TimeExample 2(1; 1)T 6.5396 8,9987 2 18 1:18:36(�1; 1)T 1.00 8.9899 1 10 1:05:80Example 3(1;�3)T 10.00 26.00 3 12 0:39:25(1; 1)T 26.00 26.00 1 6 0:31:25(�1;�1)T 18.00 26.00 2 10 0:32:12For Example 1 we took c = (1; 1)T and the following results have been obtained.Table 2n J(U0) J(U�) St LP Time5 5 20 6 27 0:11:2110 10 40 11 77 1:20:4620 20 80 21 252 12:24:95References[1] Pontryagin L.S. and al. Mathematical Theory of optimal processes. Moscow, Nauka, 1976.[2] Moiseev N.N. Numerical methods in optimal system theory. Moscow, Nauka, 1971.[3] Krotov V.F., Gurman V.I. Methods and Problems of Optimal Control. Moscow, Nauka, 1973.[4] Strekalovsky A. Extremal problems on complements of convex sets. Translated from Kiber-netika i Sistemmyi Analis. No. 1, pp. 113-126, 1993 Plenum Publishing Corporation.[5] Strekalovsky A. On non-convex optimal control problems. Vestnik of Moscow University, seria"Computational Mathematics and Cybernetics". 1993, No 1, pp. 9-13.[6] Strekalovsky A. On Global Maximum of a Convex Terminal Functional in Optimal ControlProblems. Journal of Global Optimization (to appear).[7] Strekalovsky A. The Search for a Global Maximum of a Convex Functional on an AdmissibleSet. Comput. Mathematics and Math. Physics, vol. 33, No. 3, pp. 315-328, 1993, PergamonPress Ltd.
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Global Optimization (Systematic Approach Employing Peano Mappings)Roman G. StronginThe approach under consideration is based on reducing multidimensional multiextremal opti-mization problems to those of one dimension by applying space-�lling curves mapping a unitinterval on the real axis onto a multi-dimensional hyperinterval. The scheme employs severalsomehow conjugate (joint) Peano-type scannings which conduct the metric property of nearnessof points in many dimension su�ciently better than in a case with a single Peano curve.Following this approach a single multidimensional nonlinear program with Lipschitz (multi-extremal) left-hand sides of constraints and of an objective function is reduced to a system ofsomehow connected one-dimensional problems admitting Holder continuations in a unit interval.The proposed technique for these one-dimensional constrained problems does not make useof penalties and less tedious. Each iteration in the suggested scheme involves the successivecalculation of left-hand sides of the constraints. This calculation either interrupted by theoccurrence of the constraint violation, or terminated with the objective function estimation (inthe case of an admissible point).The unknown Holder coe�cients are adaptively estimated using the computed running lowerbounds for the divided di�erences (with some idemfactor).In the case when multiprocessor system is available, each one-dimensional problem is solvedon a separate processor and the processors exchange the results of iterations. This correspondsto parallelization of the main problem.A new method for scalarizing a multicriteria problem is also proposed so that the set ofpoints of the absolute minimum of the scalar problem is identical to the Slater set of the initialproblem.Convergence conditions for all above cases are examined.
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A Method for Solving an Utility Function Program in Multiple ObjectiveNonlinear OptimizationNguyen Van ThoaiLet U : IRk ! IR be an utility function according to a multiple objective programming problemof the form max ci(x) = zi (i = 1; � � � ; k); s.t. x 2 X � IRn: Consider the utility functionprogram maxfU(z) : ci(x) = zi (i = 1; � � � ; k); x 2 Xg. Assuming that the utility function Uhas the monotonocity property in a sense that U(z1) � U(z2) for z1 � z2; z1; z2 2 A, where Ais a suitably large set containing the feasible region in criterion space of the multiple objectiveprogramming problem, we establish an algorithm of branch and bound type for solving the aboveutility function program. The algorithm is implemented for several types of objective functionsci and feasible set X of the multiple objective programming problem under consideration.
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Quadratic Programming with Box ConstraintsGerardo Toraldo and Panos M. PardalosQuadratic programming problems with box constraints have the following form:minx2IRn 12xTQx+ cTx s:t: l � x � u: (1)Here Q is an n � n symmetric matrix, c, l and u are known n-vectors. Problems of thisform have numerous applications in engineering and include as special cases binary quadraticprogramming and linear complementarity problems. In addition, quadratic programming withbox constraints is a fundamental subroutine in many nonlinear optimization packages (such asthe LANCELOT package).In the nonconvex case, several types of algorithms have been proposed. Nonconvex prob-lems may have an exponential number of local solutions and stationary points, and from thecomplexity point of view are NP-hard.Since every nonconvex quadratic function can be decomposed as a sum of a convex anda concave function, algorithms for the convex case can be used for computing approximatesolutions of the general case. Two main approaches have been proposed for the problem (1)when Q is positive semide�nite, the projected-gradient active set approach, and the interiorpoint approach. Both of these methods seem to be more e�cient than the classical active setmethod and are suitable for sparse and large scale problems.In this talk we will review some of the more recent theoretical results and computationalalgorithms for the general (concave and inde�nite) box constrained quadratic programmingproblem.
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Reverse Convex Programming. Theory and Algorithms.A.S. Strekalovsky and Ider TsevendorjWe consider a non-convex mathematical programming problem with a reverse convex constraint.A global search algorithms based on global optimality conditions is proposed. One test problemof high dimension is solved.Global Optimization (GO) has remained marginal for a long time, this is still the case to acertain extend (Horst and Tuy 1990). On the other hand Optimality Conditions are one of thecornerstones in Convex and Local Optimization Theory and of paramount importance in theconstruction of corresponding algorithms. But in GO the situation with Global Optimality Con-ditions (GOC) was hopeless until the works J.-B. Hiriart-Urruty (1989) and of the Strekalovsky(KiSA 1993, IFIP 1993). Now the crucial question is how to use the obtained GO Conditionsfor constructing GO Algorithms. This paper deals with so called reverse convex problem (Horstand Tuy 1990):f(x)! min; x 2 S; g(x) � 0 (P)where g(�) is a convex function over Rn, f : Rn ! R and S may also be convex. It is clear,that feasible region of (P ) is not convex, even in the case S is convex. As a result, problemswith such constraints generally have local optima, which are not the global ones.Having a wide class of applications (Horst and Tuy 1990) the problem (P ) remains unsolvedtill now.Here we display the results of using the approach based on Global Optimality Condi-tions (Strekalovsky KiSA 1993), and the R-algorithm for (P ), presented for the �rst time in(Strekalovsky IFIP 1993).R�AlgorithmsThis algorithms is based on the notion of resolving set (Strekalovsky IFIP 1993, CMaMP1993), which is related to using the level surfaceLS(g) = fy 2 Rn : g(y) = 0gin the (GOC) for (P ) (Strekalovsky KiSA 1993).Let an admissible point x0 2 S; g(x0) � 0; k := 0:1. Beginning from xk obtain a "k�stationary point zk 2 S; g(zk) = 0:2. In order to decide whether a "k�stationary point zk is a global solution, take a �nitenumber of points from LS(g) ("k # 0) :Rk = fv1; :::; vN =g(vi) = g(zk); i = 1; ::; N; N = N(zk)ginstead of using all points from LS(g), what is obviously impossible.3. Solve 8i = 1; ::; N , following linearized problems:hg0(vi); xi ! max; x 2 S; f(x) � f(zk); (Pi)which are convex, when f and S are convex, while the problem (P ) remains non-convexeven under the assumptions above. Let ui be a �k-solution of (Pi)(�k # 0).119



4. Solve so-called level problem (8i = 1; ::; N)hg0(v); ui � vi ! max; g(v) = g(zk); (PLi)Let wi be a �k-solution of (PLi):5. Consider the number�k = hg0(wj); uj � wji = maxifhg0(wi); ui � wii = i = 1; ::; Ng:6. If �k > 0 , then set xk+1 := uj. And go to step 1.7. If �k � 0 and "k; �k � � ,where � is suitable tolerance, then stop.The global convergence of the algorithm has been proved for example for the case of quadraticg(�) under assumption that Rk is resolving set 8k = 0; 1; 2:::;i.e. if the inequalityf(zk) > f� + "k(where f� = infff(x) = x 2 S; g(x) � 0g) implies two following inequalities:(i) �k > 0;(ii) �k + �k � supx;vfhg0(v); x � vi = x 2 clcoS; f(x) � f(zk); g(v) = g(zk)gNumerical TestsNow consider the problem similar to this one from (Gurlitz and Jacobsen 1991) (in order toobtain a comparative example):f(x) 4= 12 kx� yk2 ! min; (1)x 2 � 4= fx 2 Rn = � 1 � xi � 1; i = 1; ::; ng (2)g(x) 4= kxk2 � (n� 0:5); (3)y = (�0:25; 1; :::; 1)> 2 Rn:It's easy to see that x� = (�p0:5; 1; :::; 1)> is the solution of the problem with the valuef(x�) = 0:104. The worse initial point is x0 = (1;�1; :::;�1)>. As displayed in (Gurlitz andJacobsen 1991) the H. Tuy cuts method is not able to solve this problem beyond the dimension10, what is not practical.We present here the �rst results of numerical solving the problem (1)-(3) of the dimensiontill 400.But before it should be said, that the stationary search and the solving the problem (Pi)have been done by the simplest procedure of optimization, taking into account the data natureof the problem (1)-(3).We intend to ameliorate this part of the programme. It was not very simple, while thesolution of the level problem (PLi) has been obtained analytically (Strekalovsky CMaMP 1993).Since it is not yet proved the resolving set for (1)-(3), during the tests we used the followinglevel set approximations:R1 = fvi = (z1; :::; zi�1;�zi; zi+1; :::; zn)> ; i = 1; :::; ng;120



R20 = ( vi = (z1; :::; zi�1;�zi;�zi+1; zi+2; :::; zn)> ; i = 1; :::; n � 1;vn = z � 2 � f 0(z) � hf 0(z); zi = kf 0(z)k2 ) :Let n be dimension of the problem, f(x0) the initial value of the function, R-the choice of levelset approximation, f(xm)-the obtained function value, St-the number of obtained stationarypoints, from what we managed to exit, LP -the number of the linearized problem (Pi) solvedduring the process, and �nally T be the time of solving (min:sec). The tests have been doneusing the PC/AT IBM-386.n f(x0) R f(xm) St LP T20 38.781 R1 0.104 21 230 00:14.01R20 0.104 11 120 00:08.6840 78,781 R1 0.104 41 860 01:01.36R20 0.104 21 440 00:37.3060 118.781 R1 0.104 61 1890 02:39.45R20 0.104 31 960 01:35.8980 158.781 R1 0.104 81 3320 05:27.30R20 0.104 41 1680 03:18.23100 198.781 R1 0.104 101 5150 09:33.97R20 0.104 51 2600 05:47.46150 298.781 R20 0.104 76 5775 16:27.12200 398.781 R20 0.104 101 10200 34:02.52300 598.781 R20 0.104 151 22800 1hr:44:34.80400 798.781 R20 0.104 201 25136 3hr:58:18.65References[1] Gurlitz, T.R. and Jacobsen, S.E. (1991) On the use of Cuts in Reverse Convex Programs.,Journal of Optimization Theory and Applications, v. 68,pp.257-274.[2] Hiriart-Urruty, J.-B. (1989) From convex optimization to non-convex optimization. Part 1:Necessary and su�cient conditions for global optimality, in Nonsmooth Optimization andRelated Topics. Plenum Press, pp. 219-239.[3] Horst, R. and Tuy, H. (1990) Global Optimization (Deterministic Approach), Springer-Verlag.[4] Strekalovsky, A.S.(1993) Extremal problems on complements of convex sets., Translated fromKibernetika i Sistemnyi Analiz, 1, pp. 113-126. (KiSA)[5] Strekalovsky, A.S. (1993) The search for a global maximum of a convex functional on anadmissible set, Comput. Math. and Math Physics, vol. 33, No 3, pp. 315-328, Pergamonpress Ltd.(CMaMP) bibitem6 Strekalovsky, A.S. (1993) Global Optimization Algorithmscorresponding Global Optimality Conditions. 16th IFIP Conference on System Modellingand Optimization, July 5-9, 1993, Compiegne, France, Collection of Abstracts, vol 2, pp.825-828, (IFIP)
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Global Optimization for Imprecise ProblemsM.N. Vrahatis, D.G. Sotiropoulos and E.C. TriantafyllouSeveral methods for �nding the extrema of a function f :D � IRn ! IR, where D is open andbounded, have been proposed with many applications in di�erent scienti�c �elds (mathematics,physics, engineering, computer science etc.). Most of them require precise function and gradientvalues. In many applications though, precise values are either impossible or time consuming toobtain. For example, when the function and gradient values depend on the results of numericalsimulations, then it may be di�cult or impossible to get very precise values. Or, in other cases,it may be necessary to integrate numerically a system of di�erential equations in order to obtaina function value, so that the precision of the computed value is limited, [8, 15, 14]. On the otherhand, it is necessary in many applications to use methods which do not require precise values[4, 15], as for example in neural networks training [9, 10].In this paper a new method is presented for the computation of the global minimum x� inthe box X such that : f(x�) = minx2X f(x); (1)where f has continuous �rst and second derivatives. This method can be applied to problemswith imprecise function and gradient values and it is composed of two parts.In the �rst part, interval arithmetic [2, 11] is implemented for a \rough" isolation of allthe extrema of f in various boxes (not necessarily too small). So, although this phase of ouralgorithm uses extended interval arithmetic, it can be applied to problems with unavoidableinaccuracies.Our method starts with an initial box X(0) 2 IIn and it is based on the branch and boundprinciple. When the total number of the extrema is known, our algorithm is more e�cient.One way to estimate this number is by using degree computational techniques [5]. For thispurpose one can apply Picard's theorem and compute the value of the topological degree of theextended Picard's function [4]. For the computation of this value Aberth's method [1], which isan adaptation of Kearfott's method [7], can be utilized to boxes with interval arithmetic.The stationary points of a function f(x) in the box X(0) are the zeros of the set of equations :rf(x) = O = (0; 0; : : : ; 0); (2)where rf = � @f@x1 ; : : : ; @f@xn� denotes the gradient of f . Thus, using the information about thetotal number of extrema as an upper bound of how many sub{boxes must be investigated, theinitial box is divided into smaller sub{boxes. In this way the given region is covered by a set ofsmall boxes where the range of values of f(x) is more precise [11].Also our algorithm is based on Kearfott's root inclusion test [6], which assigns to each box thevalues \true", \false" or \unknown". Speci�cally, we perform one step of the extended intervalNewton Gauss{Seidel method to the nonlinear system (2). When we apply the test to eachsub{box three cases can be distinguished. First, if the test result is \true", then this sub{boxcontains a unique stationary point and is stored in a new list L (which is initially empty). Ifthe test result is \false", this indicates that the sub{box contains no stationary points and wemay discard it. When the test result is \unknown", we bisect this box or not, according to thelength of its diameter.In the second phase of the algorithm, a new criterion is used in order to characterize theisolated stationary points as minima, maxima or saddle points. Speci�cally, the concept of thecharacteristic n{polyhedron (CP) is implemented. Let us de�ne a characteristic polyhedron byconstructing the 2n � n matrices Mn whose rows are formed by all possible combinations of�1; 1. The n{polyhedron �n = h�1; �2; : : : ; �2ni in IRn is called a characteristic polyhedron122



(CP) relative to rf if the matrix of signs associated with rf and �n, S(rf ; �n), is identicalwith the n{complete matrix Mn, [16]. In other words, the signs of the components of rf atthe 2n vertices of �n obtain every combination of �1.If �n is a CP then, under suitable assumptions on the boundary of �n, the value of thetopological degree ofrf at O relative to�n is nonzero which implies the existence of a stationarypoint inside �n, [12, 13, 16].The previous characterization of each stationary point is done according to the orientationof the characteristic n{polyhedron [17]. The above procedure makes use only of the algebraicsign of rf , while derivatives of rf or approximations of them are not required.Next the algorithm chooses those points characterized as minima and computes all of them toobtain the global one. To this end it uses a generalized bisection method which requires only thesigns of the gradient values to be correct and thus it can be applied to imprecise problems. Alsoit is globally convergent method and can be applied to non{di�erentiable continuous functions[12, 13, 16].This generalized bisection method, used in combination with the CP{criterion outlinedabove, bisects a CP, in such a way that the new re�ned n{polyhedron is also a CP. To dothis, one computes the midpoint of a proper 1{simplex (edge) of �n and uses it to replacethat vertex of �n for which the vectors of their signs are identical (see [12, 13, 16] for details).Finally, the number B of characteristic bisections of the edges of a �n required to obtain a newre�ned CP, �n? , whose longest edge length, �(�n? ); satis�es �(�n? ) � ", for some " 2 (0; 1), isgiven by : B = llog2(�(�n) "�1)m ; (3)where the notation d�e refers to the smallest integer, which is not less than the real numberquoted (see [12] for a proof).References[1] Aberth O., Computation of topological degree using interval arithmetic, and applications,Math. Comp., 62, 171{178 (1994).[2] Alefeld G. and Herzberger J., Introduction to Interval Computations, Translated by J.Rokne, Academic Press, New York (1983).[3] Hansen E.R., Global Optimization using Interval Analysis, Marcel Dekker, Inc., New York(1992).[4] Kavvadias D.J. and Vrahatis M.N., Locating and computing all the simple roots and ex-trema of a function, SIAM J. Sci. Comput., in press.[5] Kearfott R.B., An e�cient degree{computation method for a generalized method of bisec-tion, Numer. Math., 32, 109{127 (1979).[6] Kearfott R.B., Some tests of generalized bisection, ACM Trans. Math. Software, 13, 197{220 (1987).[7] Kearfott R.B. and Novoa M., INTBIS, a portable Interval Newton/bisection package, ACMTrans. Math. Software, 16, 152{157 (1990).[8] Kupferschmid M. and Ecker J.G., A note on solution of nonlinear programming problemswith imprecise function and gradient values, Math. Program. Stud., 31, 129{138 (1987).[9] Magoulas G.D., Vrahatis M.N., Grapsa T.N. and Androulakis G.S., Neural network super-vised training based on a dimension reducing method, Ann. Math. Artif. Intel., in press.123



[10] Magoulas G.D., Vrahatis M.N., Grapsa T.N. and Androulakis G.S., An e�cient trainingmethod for discrete multilayer neural networks, Ann. Math. Artif. Intel., in press.[11] Moore R., Hansen E. and Leclerc A., Rigourous methods for global optimization, in: Re-cent Advances in Global Optimization, Ch.A. Floudas and P.M. Pardalos eds., PrincetonUniversity Press, Oxford, pp. 321{342, (1992).[12] Vrahatis M.N., Solving systems of nonlinear equations using the nonzero value of the topo-logical degree, ACM Trans. Math. Software, 14, 312{329 (1988).[13] Vrahatis M.N., CHABIS: A mathematical software package for locating and evaluatingroots of systems of non{linear equations, ACM Trans. Math. Software, 14, 330{336 (1988).[14] Vrahatis M.N., A generalized bisection method for large and imprecise problems, in: Sci-enti�c Computing and Validated Numerics, G. Alefeld and A. Frommer eds., AkademieVerlag, to appear.[15] Vrahatis M.N., Androulakis G.S. and Manoussakis G.E., A new unconstrained optimizationmethod for imprecise function and gradient values, J. Math. Anal. Appl., in press.[16] Vrahatis M.N. and Iordanidis K.I., A rapid generalized method of bisection for solvingsystems of nonlinear equations, Numer. Math., 49, 123{138 (1986).[17] Vrahatis M.N. and Triantafyllou E.C., Locating, characterizing and computing the station-ary points of a function, in: Scienti�c Computing and Validated Numerics, G. Alefeld andA. Frommer eds., Akademie Verlag, to appear.
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Smoothing Transform and Continuation for Global OptimizationJorge Mor�e and Zhijun WuWe discuss the smoothing techniques for global optimization and their applications in macro-molecular modeling and simulation. We focus on issues associated with the solution trajectoriesdetermined by the smoothing transform, and discuss some of our recent theoretical and compu-tational studies that lead to better understanding of the smoothing techniques and developmentof more e�cient global continuation algorithms.
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Complexity Analysis Integrating PAS, PRS and Simulated AnnealingZelda B. Zabinsky and Birna P. KristinsdottirThe complexity of random search algorithms has been studied for global optimization with thehope of understanding their behaviour and hence developing more e�cient algorithms. Pureadaptive search (PAS) has been analyzed for both continuous and discrete �nite global opti-mization [2, 4, 5, 6]. The complexity of PAS has been shown to be \linear" in the dimension of acontinuous global optimization problem satisfying a Lipschitz condition [6] and has an analogousresult for a �nite global optimization problem [5]. Pure adaptive search is an idealistic algorithmbecause it is de�ned to generate a sequence of feasible points that are sampled according to aprobability distribution that is restricted to the region of improving objective function values.This stipulation makes the method impractical at this point in time to implement e�ciently. Incontrast, pure random search (PRS) samples points according to a �xed probability distributionwith no such restriction on improving points and is readily implementable. As shown in [4] thecomplexity of PRS is exponentially greater than PAS to solve an equivalent problem.To attempt to analyze a more realistic algorithm, in this paper we examine a combination ofPAS with PRS to allow the algorithm to generate both improving points as well as non-improvingpoints. We also add a probability of accepting a non-improving point, as is commonly done insimulated annealing algorithms. We use a Markov chain analysis for a general analysis and thenevaluate some special cases to gain insight into the value of generating improving points and thetradeo�s of accepting non-improving points.Markov Chain AnalysisWe consider the following �nite global optimization problem:minimize f(x) (1)subject to x 2 X (2)where f(x) is a real valued function on a �nite set X. We let y1 < y2 < : : : < yM be distinctobjective function values. Notice that there may be more than M points in X. In keeping withthe notation in [5], for m = 0; 1; : : :, let the random variable Ym be the objective function valueon the mth iteration of PRS. Note that Y0; Y1; : : : are independent and identically distributed.Pure random search samples the domain according to �xed probability distribution, � on X.Given this sampling distribution, we de�ne a probability measure � = (�1; : : : ; �M ) on the rangeof f as follows. Let �j be the probability that any iteration of pure random search attains avalue of yj. That is �j = P (Y0 = yj) = �(f�1(yj)) for j = 1; 2; : : : ;M . Throughout this paperpj denotes Pji=1 �i the probability that PRS attains a value of yj or less.The algorithm analyzed here has a probability p of sampling according to PAS and probability1� p of sampling according to PRS, 0 � p � 1, both based on the same arbitrary distribution.This paper always refers to \weak PAS" as stated in [5]. A similar development is possible for\strong PAS", but is not included here. In addition, we include a probability of accepting anon-improving point which is intended to be similar to simulated annealing. We de�ne tij asthe probability of accepting a point with objective function value yj when sampled from yi, fori; j = 1; : : : ;M . If j � i, we assume tij = 1 because we always want to accept an improvingpoint. We also assume t1j = 0 for j = 2; : : : ;M such that we never leave the global minima.We can now de�ne the Markov chain to model the optimization algorithm. The states ofthe Markov chain represent the objective function values, y1; : : : ; yM , where state y1 representsthe global optimum. The initial probability distribution for the initial state is given by �. Instandard Markov chain terminology [3], y1 is the absorbing state of this chain and all other statesare transient. We say the algorithm converges when the chain reaches the absorbing state.126



We let S be the one-step transition matrix that models the algorithm, so sij is the probabilitythat the algorithm moves from state yi to state yj. This transition probability incorporates theprobability of sampling according to PAS or PRS, as well as the probability of accepting thesampled point even if it is not improving. The matrix S has the following entries:sij = 8><>: (1� p)�jtij if i < j(1� p)�j + p(�j=pi) +PMk=i+1(1� p)�k(1� tik) if i = j(1� p)�j + p(�j=pi) if i > jThe expected number of iterations to absorption can be expressed in terms of the transitionmatrix of the Markov chain. This expected number of iterations to absorption indicates theaverage computational e�ort to sample the global optimum but not necessarily to con�rm it.Let vi be the expected number of iterations until absorption, starting in state i, i = 1; : : : ;M .Then the expected number of iterations until absorption v, can be found by solving the systemof equations v = (I �Q)�1ewhereQ consists of the �rst (M�1) rows and (M�1) columns of S, I denotes an (M�1)�(M�1)identity matrix and e is an M � 1 vector of ones. The variance of the number of iterations untilabsorption is also obtainable from the fundamental matrix (I �Q)�1 (see [3] page 49).Special CasesThe previous section provided the expression for the expected number of iterations untilconvergence for a combination of PAS and PRS with an arbitrary distribution, and generalacceptance probability. We now turn to two special cases. Both cases assume a uniform distri-bution, with �j = 1=M and pi = i=M . The �rst case never accepts a non-improving point, whilethe second case allows non-improving points to be accepted according to a probability similarto that used in simulated annealing.Uniform distribution and only improving points accepted:We now consider the special case where we only accept improving points, and thereforetij = 1 if the point is improving, i � j, and 0 otherwise. This assumption coupled with uniformsampling leads to a simpli�ed transition matrix. This allows us to derive an analytical expressionfor the expected number of iterations, and provide some simple bounds. The results are statedbelow without proofs.Theorem 1 The expected number of iterations to converge to the global optimum starting instate yM is vM = MM � 1 +M M�2Xj=1 1(M � 1� j)(M � j(1 � p)) : (3)Corollary 1 The expected number of iterations to converge to the global optimum starting instate yM is bounded above byvM � 1 + qMM + (q � 1)(1 + log(M � 1)) (4)where q = 1=p.Theorem 1 gives the exact number of iterations required to solve the global optimizationproblem from the worst state in terms of p andM . An upper bound on the number of iterationsrequired to solve the global optimization problem is stated in Corollary 1.127



PAS and PRS are two extreme algorithms. PAS is the best possible algorithm we could hopeto have and PRS is an ine�cient \blind" algorithm. An algorithm that is a mixture of these twowould have a complexity somewhere in between. The expression in Theorem 1 agrees with theexpression given in [2] when b(y) is chosen to reect the combination of PAS and PRS, which isdone by choosing b(y) = (1�p)pj�1+p(pj�1pj ). Figure 1 shows the expected number of iterations,plotted against the number of states for various values of p. When p = 0:0 we have PRS, andwhen p = 1:0 we have PAS. From the �gure we can see how the expected number of iterationsrequired to converge to the global optimum changes as the probability we sample according toPAS changes. It is interesting to see that the expected number of iterations changes slowly asp changes. This shows that one needs only a small probability of sampling in the improvingregion in order to dramatically improve performance. Also there is a diminishing return as pexceeds 0.5 and gets closer to 1. Many practical algorithms have some probability of samplingin the improving region, which is analogous to sampling according to PAS. We hope that thisanalysis will be helpful in understanding why many such algorithms have good performance.In [6] it is proven that the complexity of PAS is linear in dimension, and an analogouscomplexity result for �nite PAS is developed in [5] on an m-dimensional lattice f1; : : : ; kgm withdistinct objective function values. The domain for the lattice has M = km number of states.The following corollary give an upper bound on the expected number of iterations to solve thelattice optimization problem with the combination of PAS and PRS, and proves that the numberof iterations to solve the global optimization problem is proportional to the dimension of theproblem m by a constant 1=p.Corollary 2 For an m-dimensional lattice f1; : : : ; kgm with distinct objective function values,the expected number of iterations to converge to the global optimum is bounded above byvM � 1 + (1=p) + (m=p) log k: (5)Uniform distribution and accept non-improving points:The second special case again assumes a uniform sampling distribution and also allows anon-improving point to be accepted. We introduce the acceptance probability tij as follows:tij = ( e�(j�i)=T if i < j not improving1 if i � j improvingwhere the constant T denotes the temperature as in a standard acceptance probability forsimulated annealing [1]. The transition matrix for the Markov chain analysis simpli�es in thiscase, and we numerically solve for the expected number of iterations until convergence.In �gure 2, the expected number of iterations until absorption is graphed for �xed tempera-ture values and p = 0:25. The graph illustrates how the probability of accepting a non-improvingpoint compares to the ideal PAS situation. It is interesting that when T is very close to zero,then this special case is essentially the same as the previous special case because it is neveraccepting a non-improving point. And as T grows without bound, the complexity will also growdramatically as compared with the ideal of PAS. Our research is continuing to explore the e�ectsof temperature on the complexity of this type of random search algorithm. To bridge the gapto analyze more realistic algorithms, we are generalizing the framework to modify the samplingdistribution, � as a function of temperature and objective function value.Summary/ConclusionsWe have presented a Markov chain analysis for a random search algorithm over �nite globaloptimization problems. The random search algorithm is a combination of PAS and PRS with128



a probability of accepting a non-improving point that is motivated by simulated annealing.Two special cases are examined, which provide some insight into the behaviour of this type ofalgorithm.References[1] Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines: A Stochastic Ap-proach to Combinatorial Optimization and Neural Computing, John Wiley and Sons, NewYork, 1989.[2] Bulger, David, and Wood, G.R., Hesitant Adaptive Search for Global Optimisation. Technicalreport from Central Queensland University, Australia, March 1995.[3] Kemeny, J.G., and Snell, J.L., Finite Markov Chains, Springer-Verlag, New York, 1976.[4] Patel, N.R., Smith, R.L., and Zabinsky, Z.B., \Pure adaptive search in Monte Carlo opti-mization," Mathematical Programming 43 (1988) 317-328.[5] Zabinsky, Z.B., Wood, G.R., Steel, M.A., and Baritompa, W.P., \Pure adaptive search for�nite global optimization", forthcoming in Mathematical Programming.[6] Zabinsky, Z.B., and Smith, R.L., \Pure adaptive search in global optimization", Mathemat-ical Programming 53 (1992), 323-338.

Figure 1: Expected number of iterations to converge to the global optimum, where p is theprobability of picking a point according to PAS.129



Figure 2: Expected number of iterations to converge to the global optimum using p=0.25 andvarying the temperature T .
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Global optimization and visualisation of multidimensional dataAntanas �ZilinskasMultidimensional scaling in Euclidean space means �tting distances to given dissimilarities byweighted least squares. The corresponding objective function called STRESS is generally non-di�erentiable and has many local minima. On the other hand STRESS is de�ned by a rathersimple analytical formula as well as the gradient of STRESS (where it exists). We start with thegeneral discussion on the possibilities of minimization of STRESS by various global optimizationtechniques. The conclusion: global technique should include a local descent subalgorithm. It isproved that local descent trajectories never cross the subsets of nondiferentiability of STRESS.Therefore, for local search it is reasonable to choose a gradient based method. A local mini-mization method is proposed taking into account the speci�c features of the constraints to thelocal subproblem. The global algorithm controlling the local searches is a version of evolutionstrategy. The pros and cons of two- and three-dimensional scaling are discussed. The use ofstereoscopic techniques to visualize the results of three dimensional scaling is demonstrated.There is twofold relations between scaling and global optimization. We have discussed the ap-plication of global optimization in constructing of scaling methods. But two/three dimensionalscaling is important to visualization of the global search as well.
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The Graph Partitioning Problem and the Nodal Properties of theEigenvectors of the LaplacianPatrizio Cintioli, Pierluigi Maponi, Donatella Ponziani and Francesco ZirilliIn recent years there has been a great deal of interest in using methods and results of continuousmathematics in discrete mathematics. The work presented here belongs to this set of ideas. Weconsider the Graph Partitioning problem and its formulation as a (0,1) constrained quadraticprogramming problem. It is well known that estimates on the Graph Partitioning problem canbe obtained from the knowledge of the eigenvalues of the laplacian associated to the graph.We deal with the problem of computing these eigenvalues. First of all we generalize to thegraph contest some properties that hold for the eigenvalue problem associated to the classicallaplacian on a bounded domain of IRn with Neumann boundary conditions. These propertiesinclude some monotonicity properties of the eigenvalues and some \nodal properties" of theeigenvectors. Using these properties some special techniques to compute the eigenvalues of thelaplacian associated to the graph are proposed and tested on a signi�cant set of test problems.
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Additional informationE-mail A modest telnet facility will be built for the participants. This will allow to makecharacter (i.e. not graphical or x-terminal) telnet connections to their home machines. Inthis way, they will be able to read their new e-mails, and to answer them. You can usecharacter oriented mailer programs (such as mail, elm or pine). The connection will beopen after the sections (16:30 { 20:00), in this way the workshop will not be disturbed.thermal bath The hotel has its own indoor thermal bath that is available for the guests freeof charge (7:00 { 20:00). Its temperature is about 32 centigrade.sauna There is also a sauna available in the hotel, it costs 250 HUF (about 2 USD).swimming There is a 4-pool indoor swimming facility in the neighbourhood (100 meters) ofthe hotel.phone Each room of the hotel is equipped with a phone. You can use it also for distance calls.The costs of the calls are not covered by the participation fee (neither other services likelaundry or mini bar in the rooms)| you must pay these services when you leave the hotel.public transportation The city center is in walking distance (about 1.5 km) to the hotel. Theold bridge is being repaired, yet open for pedestrians and for public transportation. Touse the buses, trolleys or trams you can buy a ticket before the travel (36 HUF, about 0.3USD each), and you must punch it on the bus. You can also buy ticket from the driverfor a larger price (50 HUF, about 0.4 USD).taxi The best is to ask the at the reception desk for a taxi. A trip within Szeged should notcost more than 600 HUF (5 USD).Distribution of the participants:Australia 1Austria 3Canada 1Denmark 1Germany 8Greece 3Hungary 10Italy 5Jordan 1Lithuania 2Macedonia 1The Netherlands 1New Zeeland 2Russia 6Spain 3Sweden 1Switzerland 1Ukraine 1USA 960 136
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Figure 1: Values for the objective function at the trial points tested during an execution ofPCRS using four di�erent set of projection data. (b) is an enlargement window of (a) aroundthe optimum value
ALEPH: > 60000 qqbar events. Real data
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Figure 1: Impact parameter/error distributions for 10'000 hadronic Z0 events (60'000 tracks),obtained with the old sequential code (JULIA) and the new combinatorial method. The newmethod produces a sharper peak about the impact parameter value (bin zero) and atter tailsin the outlying area
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