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Preface

Many technical, environmental and economic problems have challenging optimizational as-
pects which require reliable and efficient solution methods. A substantial part of such problems
belongs to the class of nonlinear and nonconvex optimization problems where standard opti-
mization methods fail since local optima different from the global ones (which we aim to find)
exists (global optimization).

The workshop focuses on theoretical, modelling and algorithmic issues of global optimization
problems with special emphasis to their real-life applications. The workshop aims to discuss and
develop further most recent results in the wide range of the many diverse approaches to global
optimization problems.

After the first (1985) and the second (1990) Workshops held in Sopron, Hungary, we are
glad to announce the Third Workshop on Global Optimization. Since the earlier wokshops were
fully supported by ITASA, and this time ITASA could not help, the main problem seemed to be
how to help those who otherwise cannot afford to participate such a meeting. Thanks to our
sponsors and to the organizing OR societies, we could find sources to support those who needed
it most. This rises hope that future workshops can be organized in a similar basis.

One of the main problems was for many interested people the date of the workshop. The
organizers wanted to follow the tradition of the earlier workhshops with this december date. We
could also keep the five years period. All comments and suggestions are wellcome for the date,
place and other organizational details of the next workshop.

Having so many interesting papers submitted, over ten editors of the JOGO participating,
about 20 participants of earlier workshops and a number of young researchers, we look forward to
a meeting which is very likely to match or even surpass the very successful two earlier meetings.




Daily Schedule

12:00 — 20:00

Saturday, December 9

Registration in the hall of the Forras Hotel

Diner and get together party from 18:00

09:00 — 09:30
09:30 — 10:00
10:00 — 10:30
Coffeebreak
11:00 — 11:30
11:30 — 12:00
Lunchbreak
13:30 — 14:00
14:00 — 14:30
14:30 — 15:00
Coffeebreak
15:30 — 16:00
16:00 — 16:30

Diner from 18:00

Sunday, December 10

Opening of the ITIrd Workshop on Global Optimization

C.S. Adjiman, I.P. Androulakis, C.D. Maranas and Christodoulos A.
Floudas: A Global Optimization Method, «BB

K.G. Ramakrishnan, M.G.C. Resende and P.M. Pardalos: An LP-Based
Branch and Bound Algorithm for the Quadratic Assignment Problem

Immanuel M. Bomze: Evolution Towards the Maximum Clique
Victor Korotkich: On a Mechanism of Natural Formation and its Use in
Global Optimization

Wilfried Bollweg: Numerical Simulation of Crystal Structures by Simu-
lated Annealing

Inmaculada Garcia and P.M. Ortigosa: A Parallel Implementation of
the Control Random Search algorithm to optimize a reconstruction from
projection problem

Tale Geramitchioski and Ilios Vilos: Optimisation of the Reducing Gear
Box with Minimisation its Own Weight

Eligius Hendriz: Global Optimization and Decision Support
Donald Jones, William Baritompa and Yaroslav Sergeyev: The Pareto
Approach to Balancing Local and Global Search

Hungarian folk dance show from 20:00
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11:30 — 12:00
Lunchbreak
13:30 — 14:00
14:00 — 14:30
14:30 — 15:00
Coffeebreak
15:30 — 16:00
16:00 — 16:30

Monday, December 11

Jorge Moré and Zhijun Wu: Smoothing Transform and Continuation for
Global Optimization

Panos M. Pardalos: Continuous Approaches to Discrete Optimization
Problems

Emilio Carrizosa and Frank Plastria: Locating an Undesirable Facility
by Generalized Cutting Planes

Hisham Al-Mharmah and James Calvin: Average Performance of
Composite and Non-composite Algorithms for Global Optimization of
Stochastic Functions

Marco Locatelli: On Relaxing the Hypotheses for the Application of
Multi Level Single Linkage

Zoltin Kovacs, F. Friedler and L.T. Fan: Algorithmic Generation of the
Mathematical Programming Model for Process Network Synthesis
Andrds Pfening and Miklés Telek: Optimal Rejuvenation Policy for
Slowly Degrading Server Software

Andrew T. Phillips, J. Ben Rosen and Ken A. Dill: CGU: A Global
Optimization Algorithm for Protein Structure Prediction

Olga Yu. Polyakova: Reducing the Problem of Organization Structure
Adaptation to Optimization Problem in Boolean Space

Jean-Francois Pusztaszeri, Paul E. Rensing and Thomas M. Liebling:
Tracking Elementary Particles near their Primary Vertex: A Combina-
torial Approach

Reception given by the Rector of the Jézsef Attila University
(Central building of the university, Dugonics square 13, 2nd floor, Aula, from 19:00)
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11:00 — 11:30
11:30 — 12:00
Lunchbreak
13:30 — 14:00
14:00 — 14:30
14:30 — 15:00
Coffeebreak
15:30 — 16:00
16:00 — 16:30

Tuesday, December 12

Arnold Neumaier: NOP - a Compact Input Format for Nonlinear Opti-
mization Problems

Stephan Dallwig, Arnold Neumaier and Hermann Schichl: GLOPT - A
Program for Constrained Global Optimization

Alexander S. Strekalovsky and Igor L. Vasiliev: On Global Search in
Non-Convex Optimal Control Problem

Chris J. Price: A Multistart Linkage Algorithm Using First Derivatives
Marco Locatelli and Fabio Schoen: Analysis of Threshold Accepting
Global Optimization Methods

Kristina Holmguist, Athanasios Migdalas and Panos M. Pardalos:
Greedy Randomized Adaptive Search for a Location Problem with Econ-
omy of Scale

Baldzs Imreh, F. Friedler and L.T. Fan: Polynomial Algorithm for Im-
proving the Bounding Procedure in Solving Process Network Synthesis
by a Branch and Bound Method

Roman G. Strongin: Global Optimization (Systematic Approach Em-
ploying Peano Mappings)

Yaroslav D. Sergeyev: An Algorithm for Minimizing Functions with Lip-
schitzian Derivatives

Jonas Mockus, Audris Mockus and Linas Mockus: Bayesian Heuristic
Approach to Discrete and Global Optimization

Reception given by the Mayor of Szeged
(Szeged City Mayor’s Office, Széchenyi square 9, 1st floor, from 19:00)
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Diner from 18:00

Wednesday, December 13

Alexander S. Strekalovsky and Ider Tsevendorj: Reverse Convex Pro-
gramming. Theory and Algorithms.

Oleg V. Khamisov: To the Global Minimization of Functions with Con-
cave Minorant

Reiner Horst: Linearly Constrained Global Optimization of Functions
with Concave Minorants

Michael Nast: Subdivision of Simplices Relative to a Cutting Plane with
Applications in Concave Minimization and Volume Computation

E.S. Mistakidis and Panagiotu D. Panagiotopoulos: Hemivariational In-
equailies and Global Optimization. Numerical Search for the Optima.

Sonja Berner: Parallel Methods for Verified Global Optimization —
Practice and Theory

Andrds Erik Csallner and Tibor Csendes: Convergence Speed of Interval
Methods for Global Optimization and the Joint Effects of Algorithmic
Modifications

M.N. Vrahatis, D.G. Sotiropoulos and E.C. Triantafyllou: Global Opti-
mization for Imprecise Problems

Victor P. Gergel: Information Models and Methods to Support Global
Optimization Procedures
Janos D. Pintér: LGO - An Implementation of a Lipschitzian Global
Optimization Procedure
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Lunchbreak
13:30 — 14:00
14:00 — 14:30
14:30 — 15:00
Coffeebreak
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Thursday, December 14

Tamds Rapcsdk: An Unsolved Problem of Fenchel

Nguyen Van Thoai: A Method for Solving a Utility Function Program
in Multiple Objective Nonlinear Optimization

Gerardo Toraldo and Panos M. Pardalos: Quadratic Programming with
Box Constraints

Jens Hichert, Armin Hoffmann and H.X. Phu: The Computation of the
Essential Supremum by using Integral Methods
Zelda B. Zabinsky and Birna P. Kristinsdottir: Complexity Analysis
Integrating PAS, PRS and Simulated Annealing

Chris Stephens and William Baritompa: Global Optimization Requires
Global Information

Tibor Csendes: Global Optimization Methods for Process Network
Synthesis

Walter J.H. Stortelder and Jdnos D. Pintér: Numerical Approximation
of Elliptic Fekete Point Sets: A Global Optimization Approach

James M. Calvin: Average Convergence Rate of a Class of Adaptive
Optimization Algorithms for Brownian Motion

Donald Jones: DIRECT: a Global Optimization Algorithm for
Computer-Aided Engineering

Diner from 18:00

Friday, December 15

Check-out at the hotel till 12:00



Average Performance of Composite and Non-Composite Algorithms for
Global Optimization of Stochastic Functions

Hisham Al-Mharmah and James Calvin

An algorithm is called composite if it maintains its features when going form n to (n + 1) obser-
vations (see Zhigljavsky (1991)). In this paper we study the composite and the non-composite
algorithms for finding the global maximum of a continuous function on the unit interval. Many
algorithms have been proposed to optimize functions satisfying sufficient regularity conditions
such as convexity and differentiability. On the contrary, investigation of the problem in the
absence of these strong assumption is still relatively limited. This work compares the average
performance of different algorithms under quite general assumptions. The Wiener measure on
C(]0,1]) will be taken as the probability distribution on F; i.e., any f € F is taken to be a
sample path of a Brownian motion process, and the average convergence rate is the criterion
which we use to characterize the average performance of each algorithm.

We concentrate on two classes of algorithms; the random non-adaptive class where the obser-
vation sites are generated according to a certain probability distribution, and the deterministic
non-adaptive class where the function is observed at a sequence of fixed locations. Non-adaptive
algorithms make no use of any prior information to choose the next observation site and the
generated site sequence will not be changed by changing the optimized function. The random
non-adaptive algorithms are all composite, while the deterministic non-adaptive algorithms is
clearly not.

For the deterministic non-adaptive class we compare the average performance of three de-
terministic non-adaptive algorithms: the uniform grid algorithm, denoted by DY, that places
observations at equally spaced locations, (i.e., if the number of observations n is known in
advance, then they are placed at fixed locations 1/n,2/n,...,1), the one-sided deterministic
sequential algorithm, denoted by DY, that places the observations by always subdividing the
largest interval closest to the zero end point, (i.e., for n = 6, the observations sites will be
placed at 1, 1/2, 1/4, 3/4, 1/8, and 3/8 respectively), and the two-sided deterministic sequential
algorithm, denoted by D”', that keeps subdividing the largest subinterval closest to one of the
two end points and choosing the subinterval nearest to the zero endpoint in case of ties, (i.e.,
for n = 6, the observations sites will be placed at 1, 1/2, 1/4, 3/4, 1/8, and 7/8 respectively).
We show that D! has a better convergence rate than the uniform grid algorithm and we show
that D? has the best performance.

For random non-adaptive algorithms we discuss the distribution characteristics which im-
prove the average convergence rate and we compare the average performance of different ran-
dom algorithms. Placing the observations independently according to a Beta(2/3,2/3) density
function is shown to be the optimal random non-adaptive algorithm. This distribution gives
a slightly better convergence rate than choosing the sites according to the distribution of the
maximizer, which is the arcsine distribution. Denoting the errors after n observations chosen ac-
cording to the Beta(2/3,2/3), arcsine and uniform distributions by Abete, Adresine and Auniform
respectively, we show that
LB(Q/?, 2/3)%/? ~ 0.662281
™2 ’ ' ’

1
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Also, we compare the above results with the convergence rate for the uniform grid algorithm

VAE[AN)

VnE[ASresie] B(3/4,3/4) ~ 0.675978,



that places n points equally spaced. Calvin (1994) showed that for this algorithm,

where

1+C/2
E[A,] — ~ 0.5826,
VRE[A,] ors
_ =
C= | —ppdt = 0.9207.

Thus the convergence is significantly faster with deterministic uniform grid, and thus with
the one-sided and the two-sided sequential deterministic algorithms. However, the difference
in convergence rate between the different random non-adaptive algorithms is small compared
with the improvement gained by using a deterministic non-adaptive algorithm. An important
advantage of the random algorithms is that they are composite, unlike a deterministic algorithm.
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Parallel Methods for Verified Global Optimization — Practice and
Theory

Sonja Berner

The development of satisfying methods for global optimization is still a problem. Given a
continuously differentiable function f : D — IR, D C IR", and a set X° C D, one is searching
for the global minimum f* = min {f(z) : € X°} and for the set of all global minimum points
X ={zeX": fx) = f*}.

Interval methods are able to find reliably an enclosure of the global minimum and the global
minimum points. Here X is chosen as a box, i.e. an interval vector X% = [a1,b1] X - -+ X [an, by].
The solution is found by application of the branch and bound principle. The bound-step makes
use of an inclusion function F', computed by means of interval arithmetic (cf. next section), that
provides an inclusion F(Y) D {f(y) : y € Y} of the range of f for each subbox Y of X°.

Problems of global optimization are usually hard to solve. Thus the development of parallel
methods often is a must to make them solvable at all. Here a new parallel approach to paral-
lelization of branch and bound methods for validated optimization is presented. The efficiency
of this new method is shown by measurement on a CM5 parallel computer for a variety of test
problems. It is compared with other existing parallel methods that are briefly described. Further
some theoretical results for the parallel method are given.

Interval arithmetic

For a compact real interval A = [a, @] the bounds are denoted by inf(A) := a and sup(A) :=a,
w(A) := a—ais the diameter of A. The absolute value of an interval is defined by | A| := max{|a] :
a € A}. Interval vectors are termed bozes here. The sum, product etc. of intervals can easily by
obtained (cf. [1]).

Serial method

The serial algorithm works in the following way: The starting box X is successively sub-
divided. Subboxes X which reliably do not contain global minimum points are deleted by use
of the criterion inf(F(Y)) > f where f is an upper bound for the global minimum. All other
boxes X are stored as pairs (X, inf(F(X))) either in a working list L or in a list L of possible
solution boxes if w(F (X)) < ¢ for a chosen e.

Choice of the next box As long as L is not empty, one of the boxes of L is chosen for
the next subdivision. Various choices are possible:

oldest-first strategy: the oldest pair of L is chosen (queue);
best-first strategy: takes the pair (Y,y) with y minimal (sorted list);
depth-first strategy:  chooses the pair last inserted into L (stack).

One can show [2] that the best-first strategy, which was used for our algorithm, is the most
efficient, since only useful boxes, i.e. boxes with inf(F (X)) < f* 4 ¢ are considered for further
computations. Using the other two strategies, the number of investigated boxes depends highly
on the actual value of f and is normally higher.

Even if one restricts oneself to a division of boxes by several successive bisections there are
still various options:

Choice of the bisection direction Different strategies on how to choose the direction to
bisect a given box X have been examined (compare [3]). A box is always bisected in direction
i € {1,...,n} where a merit function D;(X) is maximal. Different strategies arise for different
choices of D;(X):

Strategy A: Di(X) := w(X;)
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Strategy B: Di(X) := w(F}(X)) - w(X;)
Strategy C: D;(X) := |F/(X)| - w(X;)

Numerical experiments show that for some problems, especially for very large ones, a con-
siderable amount of time (up to 92%) can be saved by using strategy C instead of A (similar for
B), thus strategy C was chosen for our algorithm.

Number of bisections It was tried to subdivide a box X by [ > 1 bisections in one step.
Experiments with [ = 1, 2, 3 showed that [ = 2 is a good choice. For all tested problems 20%
less time was needed to get the solution, with [ = 3 the time was sometimes higher than with
=1

Further, the monotonicity test, nonconvexity check and the interval Newton method (cf.
[3, 9]) were used for acceleration.

Parallelization

The general idea of parallelization is that each processor applies the algorithm to a box
assigned to it, independent of all others. There are three important goals:

1. Make all processors know a better upper bound f found by one processor as fast as possible
but with small amount of communication.

2. No processor should become idle prematurely, therefore dynamic load balancing is needed.

3. One should always try to work on the p “best” boxes, where p is the number of processors,
to avoid to work on boxes that are not considered in the serial case.

Existing parallelizations Parallel methods can be found in [4, 6, 7, 8]. A master-slave
model [6] does not seem to be very efficient, the master becomes a bottleneck. Better results are
obtained with a processor farm. In [8] a rather high superlinear speedup of 170 on 32 processors
was reached but it turns out that this was only possible due to an inefficient serial method using
the oldest-first strategy.

A new parallel approach The combination of master-slave model and processor farm
yields a new parallelization scheme. Each processor keeps its own sorted list, they work rather
independent of each other. A better value for f is distributed by an asynchronous broadcast.
The best-first strategy is used on each processor. Ome processor is chosen as a centralized
mediator (cf. [10]). It is responsible for the dynamic load balancing: It does not work on boxes.
Instead it waits for requests of idle processors to send them new boxes. It also keeps a limit
mazx that is changed dynamically. Processors with more than maz boxes send some of these to
the centralized mediator (Figure 1).

An advantage of this parallelization is that there is less work for the centralized mediator, thus
it will not become a bottleneck as long as the number of processors is not too high. Furthermore,
an idle processor knows whom to send a request to, it does not need to try to get boxes from
several processors.

Our parallel algorithm [2] starts with an initial phase. The starting box is partitioned, each
processor gets one subbox. A local optimization on each processor followed by a synchronous load
balancing often provides a good upper bound f and a good distribution of subboxes which is quite
important for problems that do not parallelize very well but need a large amount of computing
time. Further improvements of the algorithm are reached by some other modifications.

Results The new parallel algorithm [2] described above was implemented in Pascal-XSC
on a Connection Machine CM) with 32 nodes.

For large problems with high running time mostly slightly superlinear speedup is reached,
for small problems the speedup decreases (Figure 2).

A good speedup is reached especially for least squares problems with several global minimum
points or local minimum points with relatively small function value. The problems from geodesy
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Figure 1: Used communication structure with centralized mediator.
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Figure 2: Sometimes no linear speedup is reached for smaller problems (left picture), but it is
superlinear in most cases for larger problems (right picture).
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GEO1, GEO2 and GEO3 considered here are least squares problems for example. The same
is true for the Kowalik problem KOW and for the parameter estimation problems of Csendes
(CSEN) and Moore, Hansen and Leclerc (MHL). For problem MHL less than linear speedup is
reached, see the following for an explanation. HM1, HM2 etc. are test problems used in [6].

For some problems the improvement when using strategy C instead of A is higher in the
serial than in the parallel case, thus the speedup decreases, although the parallel program is
faster with strategy C. This is true e.g. for the problem MHL where the speedup decreases
from 40.6 to 20.0 on 32 processors using strategy C instead of A. With this observation in mind
a comparison by speedups with other parallelizations which all use strategy A for subdivision
shows that the new parallelization is more efficient in almost all cases.

Some theoretical results have also been proven in [2]. One can show that the parallel method
essentially provides the same enclosures for the global minimum and all global minimum points
as the serial one. Further it turns out that applying the best first strategy true superlinear
speedup cannot be expected.
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Numerical Simulation of Crystal Structures by Simulated Annealing

Wilfried Bollweg

Three dimensional structures of crystals, proteins and nucleic acids can be characterized by
energy potentials. From a numerical point of view appropriate structures appear when the
observed chemical system reaches a state of minimal internal energy. Recently, theoretical sim-
ulation methods which try to find suitable structures using optimization methods have become
more and more important [4, 5, 6, 10, 11]. Of particular interest is the topic of crystal structure
simulation.

Crystals distinguish themselves as three dimensional constructs of their modules (groups of
atoms, ions or molecules). Different modules form aequidistant rows or lattices of points, laying
side by side at fixed distances in the so called “space lattice” built up by the energetic interactions
of the lattice’s modules. The even arrangement of the modules effects a very characteristic
property of crystals, certain symmetries in their lattices. One of the most challenging questions
concerning crystal structures is, whether it is possible to find these symmetries by minimizing
an appropriate objective function using as little information as possible.

Most attempts at a mathematical generation of crystal structures presumed a knowledge of
symmetry information on the structure. Our talk presents the results of ab initio calculations
on different crystal structures based on a physical crystal model which combines short range
interactions [7, 12] with long range Coulomb interactions. This method does not require any
knowledge of internal symmetries.

The corresponding general nonconvex global optimization problem with an objective function
f+ R" — R can be written in the following form:

P'(z) = P(T(z)) : minf(T(x)) subject to
a<zi<bforie{l,...,n}

where T : R® — R" is a suitable linear transformation.

The first successful attempts to find chains and lattices of atoms by a minimization of this sys-
tem were mostly based on deterministic optimization strategies [9]. The major disadvantage
appeared in the fact, that starting with a fixed initial system state, always the next minimum in
descend direction was found. A deterministic strategy usually is not able to leave this minimum
again heading for a better one. The situation that an appropriate structure cannot be found with
a deterministic method is commonly known for problems of crystal structure determination.

A better way to find suitable structures by potential energy minimization was achieved with
a stochastic optimization strategy called “Simulated Annealing”.

The Optimization Strategy

Simulated Annealing is a general purpose optimization strategy proposed by Kirkpatrick et
al. [8] for discrete optimization problems. The basic idea of Simulated Annealing is derived from
an analogy to the annealing process of a molten solid. The method yields an efficient stochastic
algorithm for determining local and global solutions of nonlinear optimization problems and
extends the “Monte Carlo” method developed by Metropolis et al., to determine the equilibrium
states of a set of interacting atoms at a given Temperature 7.

In our presentation, we apply Simulated Annealing techniques to search for global and local
minimum energy structures of potential energy functions associated with crystal structures.
To improve the results, we introduce a variant of the algorithm which uses a modified state
transition procedure derived from the physics crystal model.
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Potential Energy Functions

The determination of an objective function for the crystal structure prediction is as yet a
large unsolved problem but the literature contains several attempts for suitable expressions for
special interactions [3]. One possible method is to find correct structures under the assumption
that all crystallographic parameters of the energy terms and the symmetries of the structure are
already known. In this field there exist some large program packages like CFF91_CZEQ [2] which
have been thoroughly tested.

However, we didn’t try to follow this path. We simply tried to invest as little information
as possible about the structure and didn’t prescribe details on the internal structure like bond
angles, torsion angles and structure symmetries. A first successful step in this direction was
given by Pannetier, Bassas—Alsina and Rodruiges— Carjaval in 1990 [11]. With a relatively
simple objective function using a Simulated Annealing technique they managed to find a couple
of structures like NaC'l and T%0s. Despite their success with ionic compounds, they found that
their method fails when it is applied to materials like silica which contain high valence atoms like
St that tend to form more directional bonds with oxygen. We recognized that it is possible to
extend their method which is based on Pauling’s valence [12] rule and an electrostatic potential
derived from the electrostatic coulomb law calculated by a spherical cutoff [1]. In our talk we
introduce the idea of Pannetier et al. [11] and present our extension of their method. With
these ideas it is possible to predict a greater class of crystal structures containing also silica
structures.

Though we could not find a potential energy function which incorporates all relevant bound
forces and electrostatic potentials without detailed structure information, we propose a function
which is suitable for determining the correct structure in a variety of ionic crystals only by using
some empirical rules from electrostatics and crystal chemistry. By using a Simulated Annealing
technique it is possible to generate symmetries in crystals without assuming a priori knowledge
of symmetry elements.

Examples

Beside the found optimal structures local minima shall be mentioned as well. They are
important in order to recognize energetic relations between different structures. These local
minima often are comparable with natural phenomena. In reality during a too quickly performed
annealing process a crystal gets stuck in such a “metastable phase” with a low but not optimal
energy because the atoms of the crystal cannot arrange themselves properly. Some examples of
predicted crystal structures like CsCl, NaCl, Ti0O2, SrTi03 and Si02 will be used to complete
our presentation.
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Evolution towards the maximum clique

Immanuel M. Bomze

As is well known, the problem of finding a maximum clique in a graph is NP-hard. Nevertheless,
NP-hard problems may have easy instances. This paper proposes a new, global optimization
algorithm which tries to exploit favourable data constellations, focussing on the continuous
problem formulation: maximize a quadratic form over the standard simplex. Some general
connections of the latter problem with dynamic principles of evolutionary game theory are
established. As an immediate consequence, one obtains procedure which consists (a) of an
iterative part similar to interior-path methods based on the so-called replicator dynamics; and
(b) a routine to escape from inefficient, locally optimal solutions. For the special case of escaping
from maximal cliques not of maximal size, part (b) uses efficient block pivoting techniques.

Consider an undirected graph G = (V, £) with n vertices. A clique o is a subset of the vertex
set V which corresponds to a complete subgraph of G (i.e., any pair of vertices in ¢ is an edge
in &, the edge set). A clique o is said to be maximal if there is no larger clique containing
o. A (maximal) clique is said to be a maximum clique if it contains the most elements of all
cliques. The search for such a maximum clique is an NP-hard problem, and can be formulated
as a special quadratic optimization problem: let A

aij = ef, (1)

O ol
—_ e
—-

—~
S5
[

Then it turns out that the maximal (maximum) cliques correspond to the local (global) maxi-
mizers of the problem
7' Ax — max! subject to z € S", (2)

where " = {z € R" : z; > 0 forall ¢ € V, > ,x; = 1}. The procedure proposed in this
paper consists of two parts. At first, a local solution of (2) will be generated very quickly; in
the second step we escape from an inefficient local maximizer in a way such that improvement
in the objective is guaranteed. Both parts work also for the general problem (2) where A is an
arbitrary (positive) symmetric n X n matrix, not necessarily of regularized adjacency form (1).
Empirical evidence suggests that the resulting procedure indeed has some merits.
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Average Convergence Rate of a Class of Adaptive Optimization Algorithms
for Brownian Motion

James M. Calvin

The purpose of this paper is to characterize the average performance of a class of adaptive global
minimization algorithms under the Brownian motion model for the objective function. The
object of a global minimization method is to approximate the global minimum f* of a function
f, and sometimes also a location t* where the minimum is attained. We take f to be a continuous
function defined on the unit interval, and adopt the framework that the approximation is based
on observation of the function value at sequentially selected points in the unit interval. That

is, the searcher chooses points t1,%2,... € [0, 1] and forms an approximation (f;,¢}) to (f*,t*)
based on {t;, f(t;) : i = 1,2,...,n}. An adaptive algorithm chooses each new point ;41 as
a function of {t;, f(¢;) : i = 1,2,...,n}, while a non-adaptive algorithm chooses each point

independently of the function values. We allow the possibility that the algorithm uses auxiliary
randomness in the choice of observation sites.

We consider a class of adaptive algorithms that use only limited past information. For
any & > 0, we construct an algorithm for which the error converges to 0 at rate n—(1=9)
in contrast to the n~'/2 rate characteristic of non-adaptive algorithms. We also identify the
limiting distribution of the normalized error. The improved efficiency relative to non-adaptive
algorithms comes from using information from past observations to concentrate the search in
decreasing sub-regions of the minimizer.

Several methods have been used to compare the performance of different global optimization
algorithms. In this paper we will be concerned with the average performance criterion. The
idea is to regard f as the sample path of a stochastic process and then classify algorithms
based on the average error in their approximations. This method has been used to study the
average performance of non-adaptive algorithms in the case where f is taken to be a sample
path of a Brownian motion process. Ritter (1990) showed that for any non-adaptive method, the
average error decreases at rate n~ /2 in the number of observations n. Calvin (1994) compared
the average error for deterministic uniformly spaced observations with the expected error with
random uniform sampling. Al-Mharmah and Calvin (1994) show that the optimal non-adaptive
sampling density for approximating the error for Brownian motion is a Beta distribution. Calvin
and Glynn (1994) extend many of these results to a more general class of diffusions.

Let (B(t) : 0 < t < 1) be a standard Brownian motion defined on a probability space
(Q1,F1, P1), and let {U1,Us, ...} be a sequence of independent, uniform (0, 1) random variables
defined on a probability space (Q9, Fo, P»). Set (2, F,P) = (91 x Qo,F1 X Fa, P X P,). Let
B* denote the global minimum of the Brownian motion, and ¢* the (first) location where B*
is attained. Denote by w the value U; (1 < i < n) such that B(U;) < B(U;),1 < j < n, and
U; is the smallest value with this property. Let A,, denote the difference between the smallest
value seen in the first n observations and the global minimum, and let I';; denote the difference
between the global minimizer and the minimizer of the first n observations.

We are concerned with algorithms constructed according to the following general framework.
On the (n+1)st iteration, with probability 1/2 we choose the observation site uniformly over the
entire unit interval, and with probability 1/2 we choose the site uniformly over a small subinterval
centered at ¢, where £ is the location of the smallest observed value over those points chosen
uniformly over the entire interval. The width of the interval of the local search decreases over
time, so that the local searches become more concentrated as the search progresses.

Formally, let {; : ¢ > 1} be a sequence of independent Bernoulli(1/2) random variables
defined on (22, F2, %), independent of the {U;}. Let {a,} be a decreasing (deterministic)
sequence of positive numbers, with a, | 0. The algorithms have the following form:
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Set t; = i3 = ¥ « Uy, Bf = Bf «+ B(t1);
For k=1,2,...,n—1,
If Bg11 =0,
Set tgr1 < Upa;
If B(tk+1) < Bf;, then set tAerl — tk+17Bil>ck+1 — B(tk+1);
If B(try1) < BZ, then set terl — tk+1,BZ+1 + B(tgy1);
Else if 811 =1,
Set tpr1  tk + app1 (U1 — 5);
If B(tgs1) < Bz, then set tZ—H — tk+1,B;€k+1 — Btgy1)-

After the last step, B} is our approximation to B* and ¢ is our approximation to t*. We are
interested in the quality of the approximations produced by the algorithm as the number of
steps n — o00. Is is easy to see that this algorithm is consistent (for any choice of sequence
{an}) in the sense that the error converges to zero P,—a.s. for any Brownian path. The only
information from the past maintained by the algorithm consists of £, B, ¢, and BZ.

To complete the description of the algorithm, it remains to determine a choice of the sequence
{an}. If ay, goes to 0 too fast relative to the speed at which  — ¢* goes to 0, then the local
search will tend to concentrate in subregions away from £*. On the other hand, if «,, goes to 0
too slowly, then the performance gain relative to uniform sampling will be small. To determine
an appropriate rate, it is necessary to know the rate at which ! — ¢* converges to 0. We
will show that n(u} — ¢*) converges in distribution, thus giving the convergence rate needed to
determine the {a,} sequence for our adaptive algorithm. In fact, we will derive the limiting
joint distribution of (y/n(B) — B*),n(u} —t*)) as n — oo.

Let R; and Rs be two independent 3-dimensional Bessel processes, and define a “two-sided
Bessel process” R by

R(t) = {Rl(t), t>0,
Ry(—t), t<O0.

Let {7;} be an enumeration of the points of a Poisson point process on the line with unit intensity,
independent of R, and set A = inf; R(7;), I'=inf{|r;|: R(7;) = A}. We will establish that the
joint Laplace transform of (A,T') is given by

x o
/ / e PP e dt, A € dy)
t=0 Jy=0

VIFa e fo/V2 sinh(z)

= 2/ dz.
=0 /1 + « cosh (:E\/l + a) + /a sinh ((I,‘\/l + 04) cosh? ()

It follows that n(t: — t*) converges in distribution as n — oc.

We now turn our attention to the class of adaptive algorithms we set out to construct. Let ¢
will denote a fixed (small) positive number. We will use the sequence a,, = [2(2 — §)]~'n=(1=9)
in the definition of the algorithm. Since n( — t*) converges in distribution, this choice of ay,
ensures that the distance between f;‘l (the center of the local search) and ¢* will be asymptotically
negligible compared to the scope of the local search.

Our main result is that under the adaptive algorithm for any 0 < § < 1,

(n1_5/2An,n2_5Fn) LA (A,T)
as n — oo. In particular, the marginal limiting distribution of the function approximation error

is given by
P(nlf(s/QAn < y) — tanh? (y\/§) ,
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and the corresponding normalized mean is

n' O 2E(A,) —

9~
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Locating an Undesirable Facility by Generalized Cutting Planes

Emilio Carrizosa and Frank Plastria

In this paper we address the problem of locating an undesirable facility within a compact set
S by minimizing a strictly decreasing boundedly lower subdifferentiable function of the squared
Euclidean distances to a set of fixed points.

Particular instances are the following optimization problems:

min 3 fa(llz - af®)

acA

where each f, is strictly decreasing and convex.

min > fa(llz - al)),

zeS\A aeA

where each f, is strictly decreasing and convex, with limy o f,(t) = 0 for each a € A.

. o 2
min max fo(||z — o),

where each f, is strictly decreasing and Lipschitz.
Using (generalized) cutting planes, the resolution of this problem is reduced to solving a
sequence of maxmin problems. These maxmin problems have a clear geometrical interpretation

as generalized power diagrams, which enables to solve them sequentially by means of an on-line
enumeration of the vertices of polyhedra in higher dimensions.
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Convergence Speed of Interval Methods for Global Optimization and the
Joint Effects of Algorithmic Modifications'

Andris Erik Csallner and Tibor Csendes

Interval subdivision methods involve robust and reliable algorithms for global optimization.
Their usefulness hinges mainly on their convergence speed.

A substantial amount of effort (e.g. [1 — 4]) has been invested to improve the efficiency of
these methods. The most of the algorithms tested can be reduced to a single model algorithm.
In this algorithm the place and the way of the modifications are easy to describe. The most
of the studies investigate the properties of the model algorithm when using different interval
selection and subdivision direction selection rules.

This presentation deals mainly with two things. The first part gives a survey on the theo-
retical results and shows some numerical tests to support these results.

The second part of the talk studies the modifications themselves. Some possible versions for
the interval selection rule and the subdivision direction selection rule are listed. Subsequently
the cross-effects of these modifications and the cut-off test are investigated by numerical testing.

The proper combinations of different modifications can influence the behaviour of the sub-
division methods significantly, and thus they can show new ways how to increase the efficiency
of these algorithms.
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Global Optimization Methods for Process Network Synthesis!

Tibor Csendes

Process network design problems (e.g. [4, 6]) form an important application field for nonlinear
optimization algorithms. The problems range from basically bound constrained ones to heavily
constrained ones, where the set of feasible points is of much lower dimension than the search
space. The reliability and the sharpness of the results play an indispensable role. We discuss
three classes of algorithms: interval techniques [3, 5], convex underestimator methods [1, 6] and
traditional penalty function approaches (in a clustering framework) [2].

A substantial part of the talk is devoted to the advantages and drawbacks of interval meth-
ods. Much efficiency improvement reserves are still in the proper tuning of the interval global
optimization algorithms. We discuss also the problem how to find suboptimal intervals in the
search domain containing exclusively feasible points for constrained global optimization prob-
lems [5]. The suboptimal solutions with preset tolerances can be very useful in production level
applications.

The numerical experiences with the three approaches will be discussed on the basis of several
chemical network design problems. According to the early results, no single algorithm can be
suggested for the whole class — each method has problems for which it is optimal. Better a
sensible combination of the studied algorithms can serve as an efficient procedure that provides
meaningful results. The talk will review these real life applications together with theoretical
background and numerical efficiency figures.

References

[1] Androulakis, I.LP., C.D. Maranas and C.A. Floudas: aBB: a global optimization method for
general constrained nonconvex problems, manuscript, 1995.

[2] Csendes, T.: Nonlinear parameter estimation by global optimization — efficiency and relia-
bility, Acta Cybernetica, 8 (1988), pp. 361-370.

[3] Csendes, T. and D. Ratz: Subdivision direction selection in interval methods for global
optimization, to appear in STAM Journal of Numerical Analysis.

[4] Kovécs, Z., F. Friedler, L.T. Fan: Recycling in a separation process structure. AIChE J.,
39(1993) 1087-1089.

[5] Kristinsdottir, B.P., Z.B. Zabinsky, T. Csendes, M.E. Tuttle: Methodologies for tolerance
intervals. Interval Computations, 3(1993) No. 3, 133-147.

[6] Quesada, I. and I.LE. Grossmann: Global optimization algorithm for heat exchanger networks,
Industrial and Engineering Chemistry Research, 32 (1993), pp. 487-499.

'The work was supported in part by the Grants OTKA-T016413 and OTKA-T017241

24



GLOPT — A Program for Constrained Global Optimization

Stefan Dallwig, Arnold Neumaier and Hermann Schichl

GLOPT finds the global minimizer of a block-separable objective function subject to bound
constraints and block-separable constraints of the form

ka($fk) € lg], or
k
ka($]k)+b:$j.
k

where . is a subvector indexed by a one- or two-dimensional index list Jj, and [¢] is a
possibly unbounded interval.

GLOPT is written in Fortran 77; since it does not use directed rounding, its reliability is
that expected of other numerically stable floating point calculation; i.e., because of rounding
errors, we find a nearly globally optimal point that is near a true local minimizer. Unless there
are several nearly global local minimizers, we thus find a good approximation to the global
minimizer.

GLOPT uses a branch and bound technique to split to problem recursively into subproblems
which are either eliminated or reduced in their size. This is done by an extensive use of the
block separable structure of the optimization problem.

For processing with GLOPT, constrained optimization problems are coded in the input
format NOP [4] that explicitly displays the internal structure of the problem with very little
overhead.

As in a method by JANSsON & KNUPPEL [2] for bound constrained global optimization, no
derivative information is used in GLOPT for problems where the feasible domain has a nonempty
(and not too tiny) interior. For problems where the feasible domain has empty interior, local
optimization techniques are used to locate feasible points.

At the time of writing (Sept. 15th), the algorithm solves successfully most problems from
Chapter 2 of the problem collection by FLOUDAS & PARDALOS [1], and all problems considered
by JANSSON & KNUPPEL [2].

Our present implementation does not yet implement some features supported by the NOP
format (integer or threshold constraints, multiobjective optimization), but this might change
SOOI
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A Global Optimization Method, BB

C.S. Adjiman, I.P. Androulakis C.D. Maranas and C.A. Floudas

Optimization problems abound in diverse areas of chemical engineering such as process design
and control, operations planing, product design. Except for a few special instances (i.e., convex
problems), optimization problems are characterized by the presence of multiple local minima
whose number increases rapidly with the size of the problem. Locating the global minimum point
despite the presence off a plethora of local minima is of particular importance. This is because
the global minimum point typically describes a unique state of the system being optimized.

In this paper, the deterministic global optimization algorithm, aBB, (a-based Branch and
Bound) is presented. This algorithm offers mathematical guarantees for convergence to a point
arbitrarily close to the global minimum. The key idea is the construction of a converging
sequence of upper and lower bounds on the global minimum through the convex relaxation
of the original problem. A convex relaxation of the original nonconvex problem is obtained
by (i) replacing all nonconvex term of special structure i.e. bilinear, univariate concave) with
customized tight convex lower bounding functions and (ii) by utilizing the « parameter as
defined by Maranas and Floudas (1994), to underestimate nonconvex terms of generic structure.
In most cases, the calculation of the exact value of the parameter « in order to construct valid
convex underestimating is a challenging task. A novel approach which generates a valid bound
on « is proposed. It has the advantage being computationally tractable while preserving the
global optimality guarantees of the algorithm. This method relies on the generation of the
interval Hessian matrix of the function being investigated, or an enclosure of that matrix. The
extremal eigenvalues of an appropriate subset of its vertex matrices are then calculated, based
on a Kharitonov-like theorem and thus yielding a guaranteed bound on the value of «.

The implementation of the aBB algorithm includes a user-friendly parser, which facilitates
problem input and provides flexibility in he selection of a suitable underestimating strategy. In
addition, the package features both automatic differentiation and interval arithmetic capabilities.

The proposed approach is illustrated with a large number of process systems examples in-
volving design problems of various sizes, distillation sequencing and reactor design.
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Polynomial Algorithm for Improving the Bounding Procedure in Solving
Process Network Synthesis by a Branch and Bound Method

B. Imreh, F. Friedler and L.T. Fan

The MIP model of process network synthesis (PNS) contains a large number of binary variables
associated with operating units. This renders the model difficult to solve by any available
method without exploiting the specific features of process structures. The branch and bound
method has various advantages in solving MIP problems over other methods. Nevertheless, the
general branch and bound method is far from efficient in solving the MIP model of PNS because
it tends to give rise to a large number of partial problems, each of which contains unnecessarily
large number of variables. Combinatorial analysis of the MIP models of PNS and that of feasible
process structures have yielded mathematical tools for exploiting the unique characteristics of
PNS (Friedler et al., 1995). These tools accelerate the branch and bound search for the optimal
solution by minimizing the number of partial problems to be solved and by reducing the size of
an individual partial problem.

The present work is concerned with the bounding procedure for further acceleration of the
branch and bound search under the assumption that the cost function of an operating unit
includes a positive fixed charge in addition to a linear or nonlinear variable charge cost. The
conventional bounding procedures, e.g., LP relaxation of a MILP problem, do not consider the
fixed charges of the operating units not included in a partial problem; however, if the partial
problem is not a solution of the PNS problem, it must be extended with some operating units.
Thus, the conventionally generated lower bound can be increased with the sum of the fixed
charges of these operating units. This sum should be the minimum among the sums of the
fixed charges of such sets of operating units that can extend the partially defined structure to
a feasible structure of the PNS problem. This minimal sum can only be generated by available
algorithms in exponential time. The present work introduces a combinatorial algorithm that
gives a sharp lower estimation for this minimal sum in polynomial time.
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A Parallel Implementation of the Controlled Random Search Algorithm to
Optimize an Algorithm for Reconstruction from Projections!

Inmaculada Garcia, P.M. Ortigosa, L..G. Casado, G.T. Herman and S. Matej

A parallel implementation of a global optimization algorithm is described in this paper. The
algorithm is based on a probabilistic random search method. Computational results are illus-
trated through application of the algorithm to a time consuming problem which arises from the
field of image reconstruction from projections.

In areas such as tomography and electron microscopy the reconstruction from projections
problem is solved by several kinds of methods. One of the problems in these fields is to determine
which method is the best approach. Also the question for a particular method is: what are the
values for the free parameters that optimize the quality of the reconstructed images?. An answer
can be obtained by the application of a global optimization algorithm on a function (Figure Of
Merit) that estimates the quality of the reconstructed image compared to the original image. The
reconstruction method used in this work is a particular implementation of the well known ART
(Algebraic Reconstruction Techniques) algorithm [1] and the objective function to be minimized
is the distance between the original and the reconstructed images. Briefly the problem can be
posed as: Given a set of projection data (g1, ...,¢gmn), which have been obtained from an image
(F1,...,Fp), and the reconstructed image (Xg,...,X,), obtained by the application of ART,
find the minimum value of the function:

P (F— X (A, .., A0))2
@(}\17”.7>\T):\/Zzl( 7 7,( 1, > 7‘)) 7 (1)
n
where vector A = A1,..., A, is a set of free parameters used in the reconstruction algorithm. In

our application we have chosen a fixed relaxation parameter of the ART method as the variable
for the optimization problem. ART is an iterative algorithm that at the jth iteration updates
the vector X7 by applying m times the following equation:

Xkl _ ik g 9kt — (g1, XTF)]

T hgy1; E=0,1,....m—1 (2)

The convergence and performance of this general algorithm have been studied by Herman et
al. (see for example [2, 3] and their references). They point out that ART using blobs may be
the most efficacious algorithm for reconstruction from projection and also that the value of the
relaxation parameters is likely to have a large influence on the quality of the reconstructions.

In the selection of a global optimization method for our particular application we have
taken into account the fact that the computational cost of the function to be evaluated is
enormous (15-20 minutes on a Sparc 10, 50Mhz). As a consequence, a parallel algorithm for
global optimization seems to be the most appropriate. In this work we propose a parallel
algorithm which is based on the Controlled Random Search (CRS) algorithm of Price [4, 5]. Some
parallel approaches have been proposed by McKeown [6], Sutti [7], Ducksbury [8], Price [9] and
Woodhams and Price [10] using various kind of parallel computers and strategies. Our proposal,
described in the next section, makes little modifications to the original sequential version of
CRS. These modifications are aimed at estimating the objective function on several processors
simultaneously. Nevertheless, the general strategy used in CRS remains in our parallel version
(PCRS).

!This work was supported by the Ministry of Education of Spain (DGICYT PR94-357), by the Consejeria de
Educacién de la Junta de Andalucia (07/FSC/MDM), and by the National Institutes of Health (HL28438 and
CA54356).
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In Section 3 we show some results obtained from the application of PCRS to a classical set
of test functions [12]. Results of the PCRS algorithm for image reconstruction from projections
are shown in Section 4.

The PCRS algorithm and its parallel implementation

The Parallel Controlled Random Search (PCRS) algorithm is based on a master-worker
communication model. In this strategy the master processor executes the PCRS algorithm and
a worker processor only evaluates the objective function at the trial points supplied by the
master processor. After every evaluation it sends the result back to the master. PCRS starts
with the evaluation at N trial points chosen at random from the search domain V' over which
the objective function ® : R — R is to be optimized. In our description the coordinates of a
trial point j are stored in a vector A7,..., A), and A} = ®(AJ,..., A}). The objective function
at the N trial points is computed in parallel by the worker processors. Two procedures, called
SEND and RECEIVE, are used by the master and worker processors to exchange a real vector
Ag, ..., Ay (see the algorithmic description of PCRS in the Appendix at the end of the paper).
The master processor chooses randomly n+1 points (R?,..., R") from the set A°, ..., AN~ and
determines their centroid G and a trial point P. If P is in the domain V, then P is sent to one of
the idle worker processors, otherwise a new random choice of (R’,..., R") is made. In order to
get the best efficiency of the parallel implementation, this procedure is repeated N P times (NP
is the number of worker processors). As a consequence every processor in the parallel system
is doing useful work and the workload of the parallel system is balanced. At this moment, a
procedure is executed by the master processor iteratively until a stopping criterion is satisfied.
During an iterative step the greatest value A7* in the set A, ..., AY ! is determined. If a value
By smaller than Aj" is received from a worker processor, then A™ is replaced by this new trial
point B(DBy,...,B,). The stopping criterion is based on the maximum distance between any
two points in the set A, ..., AN~ and on the maximum difference of the objective function in
the set AJ, ... ,Aév_l.

Results on a set of test functions

Some results are given in Tables 1 and 2 for the problems of Goldstein/Price, Hartman
and Shekel. For each problem the same series of five random sequences were used. Data in
Table 1 are the maximum number of evaluations over the series (the sum totals for all NP
worker processors). The index of success for finding the global minimum was 100% for every
test functions. The percentage of increasing (or decreasing) in the number of function evaluations
using N P processors, relative to the sequential case, is represented in parentheses. The results
suggest that the number of function evaluations does not increase with the number of worker
processors; it seems to depend on the specific function within a range of +20% as compared to
the sequential version.

Table 1: Maximum number of function evaluations for a set of test functions versus the number
of worker processors (N P)

NP Gold/Price Hartman-6 Hartman-3 Shekel-5 Shekel-7 Shekel-10
1 338 2904 852 1419 1270 1190
2 384 (+13.6) 2845 (-2.0) 853  (40.1) 1215 (-14.4) 1242 (-2.2) 1258 (+5.7)
4 388 (+148) 2781 (4.2) 865 (+1.5) 1218 (-12.8) 1240 (-2.4) 1250 (45.0)
8 395 (+16.9) 2869 (-1.2) 943 (4+10.7) 1254 (-11.6) 1236 (-2.7) 1245 (+4.6)
16 376 (+11.2) 2784 (-4.1) 983 (+15.3) 1157 (-18.5) 1155 (-9.1) 1254 (+5.4)

The performance of a parallel algorithm is usually measured by the speed-up. Speed-up is
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7
NP processors, respectively. It is clear that 1 and ¢yp depend on the number of evaluations

in a particular execution of the algorithm and ¢xp is also a function of the delay introduced in
the parallel system because of the interprocessor communications. Let ¢; and ¢. be the CPU
times for evaluating once the objective function and for the interprocessor communication delay,
respectively. Let ny and nyp be the number of evaluations for a uniprocessor system and for a
multiprocessor system with NP worker processors. Then t; = ny X ty, tnp = nyp X (tf + te),

defined as the ratio %, where {; and ¢y p are the times spent by the algorithm using one and

and

o tl - il 1
speed—up = = X 7
tnp nnp 1+ i

(3)

There are two terms in the speed-up equation; the ratio n”ﬁ and that due to the delay for

communicating data in the parallel system. Table 2 provides the ratio NP x n?\llp for the set of

test functions of Table 1. From Table 2 it can be concluded that, when f—; < 0.1, almost a linear

speed-up and sometimes a super speed-up can be achieved.

Table 2: Values for speed-up considering that f—; << 1

NP  Goldstein/Price Hartman-6 Hartman-3 Shekel-5 Shekel-7 Shekel-10

2 1.8 2.0 2.0 3.4 2.1 1.9
4 3.5 4.2 3.9 4.6 4.1 3.8
8 6.9 8.1 7.2 9.1 8.2 7.6
16 14.4 16.7 13.9 19.7 17.6 15.2

PCRS for reconstruction from projections

In image reconstruction from projections the input data are noisy. Consequently, the result
of optimization based on only one data set may not be reliable. For this reason we have used
four data sets. The PCRS optimization algorithm has been applied to the image reconstruction
problem for the unidimensional case when the relaxation parameter is the free variable and
the objective function is the average root mean squared error over the reconstructed images.
Figure 1 presents the values of the objective function for the four sets of projection data and
for their average. Clearly, the noise introduced in the projections data does not greatly modify
the solution (the maximum difference of the objective function is 5 x 1075 which is 0.1% of the
average value.

This work, presenting results for unidimensional optimization, can be considered to be our
first step towards multidimensional optimization for image reconstruction from projections. We
are know testing PCRS and other optimization algorithms in multidimensional spaces (n =
4,n = T) using several reconstruction algorithms.
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Appendix: PCRS algorithm

Begin PCRS(N,n,V, NP)
Choose N points at random over V — A%, ... AV 7L,
doj=0:min(N—-1,NP—1)

k

SEND A7 to PE; ( PE; compute Ag = ®(A1,..., Ay))
=0

it N> NP

doj=NP—-1:N-1
RECEIVE (4,1DP)
A — AF
SEND A7 to PEipp
k=k+1

doj=0:min(N—-1,NP—1)

RECEIVE (4, IDP)
A — AP
k=k+1

doj=0:NP—1

Choose randomly n + 1 points R’,..., R™ from the set A° ..., AV~"
Determine the centroid G for R!,... R"

F =2 X 6 — Eo

if P € V SEND P to PE;

else j=75-1

flag=0
while until convergency

Determine the stored point m which has the greatest function value Ag
Choose randomly n + 1 points R°,..., R" from the set A% ... AV "L
if flag=0

Determine the centroid G for R!,..., R"

P=2xG-FR
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else P = G“‘QRO
flag=0
itPeV
RECEIVE (B, IDP)
SEND P to PEipp
if Bo < Ay’ then B — A™ and compute success rate (succ)
else if (succ < 50%) then flag =1
End while
End PCRS
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Optimization of the Reducing Gear Box with Minimization its Own Weight

Tale Geramitchioski and Ilios Vilos

One access for thick sheet metal optimisation of the reducing gear box construction with the
principal of gear box mass minimization is given.

The reducing gear box has a multiplex significance in reduce gears functions. All loads
concentrated in bearings are accepting and transiting to the platform by gear box, it ensure
respective mutually position of the reduce gear parts, it ensures physical separating of the
atmosphere space and the inner gear box space where exists the driving gears, shafts, bearings
where the inner space is using as a lubricant container too.

The gearing box construction has two parts - upper and lower. The gear box must have
appropriate ultimate strength and stiffness, but also the simplicity and easy for construction
and production because of the cost price reducing

Reducing gear box are producing most often by cast iron or by welding sheets metals. The
first proceeding is priority for the complex geometrical constructions, and the other is most
acceptable for the cases when the gear box weight minimization is the priority condition.

The Function of Minimization

The first step to solving the problems is to compose the function of all influence construction
weight parameters. As a variables in this problem we are using the gear box fundament thick,
the thick of the length and transversal walls where the resultant bearing loads are accepts, and
finally, the strengthening ribs thick using under the bearings, on the gear box lower part.

In finite shape, the function of the purpose which valye minimizing is given with this formu-
lation.

FC = (L+H1%(B—DB,)+2%By+xH)+ (By* (L —2)) %6, + (2% L+ H2—T1/2 % (D1* +
D2*) — 2% B,) %6y — (2% L+ H1 +T1/2 % D1? + D2?) — 4« H1 + D2 + D1) * 03 +
(4% L —6)* dy 03

The parameters using in upper formulation are specified at the end of the paper, and on fig
2. we can see the graphical presentation of the gear box cross section with using variables.

The Function of Limitations
The first criterion - necessary warping of transversal and length walls

H1-D1/2 —2%6
222500 _ o (1)

i
- cross section radius of inertia with necessary satisfied the buckling strength

R1
<
25 % 02 + 09 * 63

for the wall under the biggest bearing hole with diameter and load .

oD (2)

H1—D2/2 —2%6
[222500 _ o (3)

i
with satisfied the buckling strength
R2 <
o
25 % 02 + 0y * 03 —

D (4)
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Second criterion - limitation of surface pressure on the bearing holes

R1 < (5)
T+ D1 (0, +03) — 1¢
R2
< 6
T+ D1 (5, + 03) — D¢ (6)
The third criterion - limitation of walls strength
MC
T * Ymnaz—c < Ocd (7)
T—Tc
M2
T * Ymaz—2 < Ocd (8)
T—1T2
The fourth criterion - constructive limitations
2%do +2% 03+ By, < B5 < d; >50;5 < d; >50;5 < >50 (9)

Mathematical Solving the Problem with One Example

Complex method by M.J.Box [3] was used for solving the existing nonlinear problem. That
method is a kind of modification of the simplex Nelder-Mead method [4]. One example of the
gear box optimization using the method of minimization it’s own weight, and input parameters
of the solving problem is given.

OPTIMIZATION OF THE REDUCING GEAR BOX CONSTRUCTION INPUT PARAM-
ETERS FOR SOLVING

The total high of the gearing box H(mm)=212. The total length of the gearing box L(mm)=315.
Axle base A(mm)=100. High of the gearing box lower part Hl(mm)=112. High of the gearing
box upper part H2(mm)=100. The first bearing hole diameter D1(mm)=32. The second bear-
ing hole diameter D2(mm)=40. The first bearing reaction R1(N)=1500. The second bearing
reaction R2(N)=2000. Diameter of the smaller gear Dz1(mm)=60. Diameter of the bigger gear
Dz2(mm)=110. The critical normal strength of the material SIGD(N/mm?)=60. Number of
the variable’s in function N=3. Number of the limiting function’s M=9. Constructive limit’s
number : 3.

5< X(1) 50,5 < X(2) < 50,5 < X(3) <50
THE MINIMIZATION FUNCTION:

FC=K1+K2xX(1)+ K3 X(2)+KdxX(3)+ K5 X(1) x X(3)

With the constants:
Kl=LxHlx(B—By)+2«B,«xH

K2 = (B, * (L —2))
K3=2%LxH2—11/2+ (D1% + D2%) — 2« B,
K4 =2%L+H1+11/2+ D1?> 4 D2%) —4x H1+4 D2+ D1
K5=4%L—6
THE LIMITS The first initial solutions: X(1)=20 X(2)=20 X(3)=20

(H1—D1/2—2x X(1))/i <25

R1/(25+ X(1)2 4+ X(2) * X(3)) < op
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(H1—=D2/2 -2x X(1))/i <
R2/(25 % X(1)2 + X(2) * X (3
R1/(Il« D1« (X(2) + X(3))
R2/(I1 « D1 « (X(2) + X(3))

MC/(Iy—s.) * Ymaz—c < Ocd
M2/(I;z,) * Ymaz—2 < Tcd

|/\[\3
U

| A

)
)
) <

RESULTS

THE OPTIMAL VALUES OF THE VARIABLES:

X1(mm)=29.24120 X2(mm)=24.09092 X3(mm)=23.10294 THE MINIMUM OF THE FUNC-
TION (MINIMUM VOLUMEN mm ) IS: 3503045 THE MINIMUM WEIGHT OF THE GEAR-
ING BOX SHEET METAL T(kg) IS: 269.7643 NUMBER OF THE ITERATIONS TO THE
FINITE SOLUTION ARE: 7

A-A

B-B

I T j‘:“
Z
- & 2+53 b o3
S R Q_L
T T st T
v &
e 3
(s b IIES : =
e 53 I s 18.] <]
B 0310%‘ b '})Zl(\3 N
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Information Models and Methods to Support Global Optimization
Procedures

Victor P. Gergel

In our lecture we intend to discuss some problems of collecting, storing and processing search
information obtained in the course of global optimization. Within the framework of our discus-
sion we shall propose a number of new models for the presentation of this information. These
models make it possible to apply effective methods to process search data. As we expect, such
results can be used for obtaining numerical solutions to the problems of global optimization,
pattern recognition and etc.

1. Consider the N-dimensional problem

min f(y),y € D(1) (1)
where the search domain
D=yeR":a0; <y; <b,1<i<N,

IR"™ is the N-dimensional Euclidean space and the objective function f(y) to be minimized may
be multiextremal. We suppose also that evaluating values of f(y) at any point y € D may
require extensive computing efforts.

Let us make two assumptions about the nature of how a global optimization method selects
iteration points to solve the problem (1).

As we suppose, for many well-known global search techniques a procedure for selecting a
new iteration point y**! after making k, k£ > 1, search iterations at the points y',42,...,4" can
be described as the mapping (the decisive rule)

yk+1:Gk(ylﬁyQ""7yk;Z17Z27"'7zk)7 (2)

where 2,1 < i < k, are the values of the function f(y) at the points 3*, 1 < i < k. That is,
when a new iteration point is selected the method uses function values calculated in previous
iterations. It is important to note that reducing the number of iteration points taken into
account in (2) may deteriorate the convergence properties of the method.

We suppose also, that when the method selects y/*! from (2) it estimates possible function
values at points from D. To do that, for instance, at some point y € D the method takes into
account mainly function values 2%, 1 < i < k, calculated at the nearest points, i. e. at the points

y' i1 <i<kpy,y) <6,

where p is the metric in the N-dimensional Fuclidean space. As a rule, the value of ¢ is
unknown which requires to sort points y*,1 < i < k in accordance with the distance to the
point . The complexity of such operation can be evaluated as O(Nklogk). Let us suppose
that the number of neighbourhoods estimated in the course of selecting a new iteration point
is directly proportional to the number of previous iterations and the number of iteration points
are inversely proportional to a required accuracy e of the global minimum estimate, viz. we
suppose that k = (1/¢)". In this case the total complexity of making optimization iteration can

be evaluated as
T) = O(NE?logk) = O(N?(1/€)*Nlog(1/€)). (3)

This dependence demonstrates that even for the small dimensions (e.g. N = 4) and for the
rough accuracy (e.g. € = 0.1), executing the optimization iterations requires hard computations.
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As a result we can conclude that the problem of search information processing is one of the main
problems of global search implementation.

2. Search information can be very useful also for solving optimization problems which can
be transformed in the course of global search. For instance, solving a multicriteria problem can
be performed as solving a sequence of scalar multiextremal problems [1]

min F(y), F(y) = max A;f;(y),y € D, (4)
with various values of the weight coefficients A;, 1 < j < s, of the partial criteria f;,1 < j < s. If
in this case we store values z},1 < j < 5,1 < < k, of the partial criteria f;,1 < j < s, calculated
at previous iteration points y;, 1 < i < k, then for any A we can calculate values Z;,1 <14 < k,
of the aggregated criterion F'(y) at the same points y;,1 < i < k, by the expression

Z' = max A\jzh,1<i <k
1<j<s
without repeating time-consuming computations of the values fj(yi). As a result the method
can start to solve the problem (4) with a new value A having known values of F(y) at previous

iteration points. This, undoubtedly, will speed up the problem solution.
3. The search information obtained in the course of optimization can be presented as the set

Q=2 1<i<k, (5)

where y*,1 < i < k, are points of previous iterations, 2%, 1 < i < k, are function values calculated
at these points (in general z%,1 <4 < k, may be vector values - see Section 2).
A possible way to decrease the complexity of search information operations is based on
employing the set of joint space-filling curves [2-4] for reducing multidimensional data.
Consider the plural mapping

Y (x) =y ™z — [2]),z € (0,L +1) (6)

where ¢! (x),0 <1 < L, is the partial mapping that maps the segment [I,]+ 1] of real axes = onto
the N-dimensional search domain D from (1), [z] is the integer part of . This mapping p(x) can
be formed in such a way that for any two close points 3, y” from D will exist a partial mapping
y!(x),0 < | < L, which produces close preimages 2/,z” for the points 3,3 [2-4]. Therefore
the procedure of searching "nearest neighbours” among multidimensional iteration points can
be replaced by a search among scalar preimages.
Using the mapping Y (z) from (6) we can transform the search information set € from (5)
to the form
wk:((I)Z’,Zi)ZlS’ZSKZ(L-Fl)k‘,(IIl<(L‘2<...<(L‘k, (7)

which contains all the preimages of previous iteration points y*,1 < 4 < k, in accordance with
the mapping Y (z). As it can be noted preimages in wy, are placed in the ascending order.

Search information presented in the form (7) can be supplied with effective procedures for
searching ”nearest neighbours” for any point y € D:

1. indicate the value ,1 < 5 < L, that determines the neighbourhood of y
D(y,n) =y € D: |y —yi| < (bj —a;)/2",yi =y;, 1 <i < Nyi#j
where the vectors a = (aq,...,an), b = (b1, ...,by) from (1);

2. calculate the preimages z;,0 < j < L, of the point y in accordance with Y (z) from (6),
ie. y=Y(z;),0<j <L
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3. form the set
which keeps the number of iteration point preimages located near with some preimages of
Y;

4. select the numbers
J=41<j<k:3iel,3,0<I<La =z

which indicate the points 3%, 1 < i < k, having at least one preimage whose number belongs
to the set I.

The complexity of the presented procedure can be evaluated as
Ty = O(2N (logy(1/€))?).

This dependence demonstrates that the complexity depends linearly on the dimension of the
problem and as a binary logarithm on the number of previous iterations. As a result, the
computational efforts needed for processing the search information decrease substantially (see
(3) for comparison).

In particular for global optimization it can be added that we can construct multiextremal
methods which don’t require "nearest neighbours” search procedures at all. Instead of it these
methods analyze one-dimensional intervals (z;_1,2;),1 < i < K, from (7) directly (see, for
instance, [4]).

To illustrate proposed approach we intend to present suitable optimization software.
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Global Optimization and Decision Support

Eligius Hendrix

Global optimization methods is the name for a group of algorithms with the purpose to find
the global optimum of a real valued continuous function over a feasible set, defined by a set of
inequalities. Until recently most literature on global optimization focused on theoretical prop-
erties of the methods. At the moment we are working on a monograph based on the experience
on finding answers for Global Optimization questions in the past five years. The central theme
of this work is, what global optimization has to offer to a group of potential users. At one side
there exists literature on global optimization, which mainly focuses on theoretical achievements
of the methods, see Handbook on Global Optimization (Horst and Pardalos, 1995). At the
other side there are potential users. The target group of our study uses mathematical modelling
for research, though it does not exist of experts in optimization. In the work, stimulated by
experience at the Agricultural University, the following categories of modellers and potential
users of global optimization methods are distinguished:

— Researchers in agricultural and environmental studies
— designers

— OR decision scientists of environmental and agricultural planning problems.

In all the categories, mathematical modelling and optimization are used to get a better
understanding of a practical problem, an object system. When the answers of the optimization
are satisfactory for practical planning problems, the optimization routines can be build into
Decision Support Systems to generate suggestions for the decisions to be made. In contrast to
methods from linear programiing and combinatorial optimization, the GLOP methods have
hardly reached this level. This inability motivates our study.

An important question is, how the modeller can use his knowledge to select global opti-
mization methods and to apply the knowledge further interactively during the solution process.
Reversely, which useful information do the algorithms generate, which may help the modeller
to get a deeper understanding of the practical problem which has been modelled and to speed
up the solution process. An important notion is the division of GLOP methods in two groups.
On one side there are deterministic methods such as Branch-and-Bound, which require special
structure or at least analytical expressions (interval methods) of the model feeding the optimiza-
tion problem. At the other side there are methods based on random search and/or local search
which do not require any special structure. The choice of using a particular method depends on
the information in the head of the modeller of one of our target groups who poses the question.
This can be structure information e.g. bilinearity, or value information such as amount of op-
tima, promising regions and bounds on first or second derivatives. The Oracle structure where
a criterion value is provided by a (sub)program e.g. performing numerical integration, occurs
very frequently. Bounds on the parameter values may be available, but we cannot make use of
any information on the criterion function to be optimized. We will use the opportunity of the
presentation at the workshop to enumerate globally the global optimization related questions
we have worked on in the past few years since the last workshop and to report on the results.
At the rest of the workshop there is the possibility to discuss the central theme and to discuss
individual topics more thoroughly. A list of the reports which appeared on paper is added. Some
topics follow here.

We start where we left five years ago. At the 1990 workshop we presented an algorithm for
a design question which mathematically translated to ”Find a feasible point of a set defined by
quadratic inequalities” (Hendrix and Pinter, JOGO)
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What happened with the practical implementation? Confronted with interior point so-
lutions, the designers where very pleased as they could allow mistakes in the production
process without the product being out of its specifications. They called this a robust
design.

How can we optimise the robustness of the design? (Hendrix, Mecking and Hendriks,
EJOR)

Biologists applying population dynamics models derived criteria describing the develop-
ment of a population depending on the ability for animals to travel from one living place
(patch) to another.

Given a budget for infrastructural improvements for a certain species, which improvements
should be carried out?

Technologists applying systems control came with the following mathematical question.
Given a set of points in Rn, find a hyperrectangle (axes to be chosen freely) with minimum
volume containing the set of points.

Researchers applying farm management models came across some nasty nonlinear envi-
ronmental restrictions.

How to cope with the specific bilinear restrictions in a further linear model? (Bloemhof
and Hendrix, EJOR)

In 1993 we invested in the implementation of a derivative free local optimization routine
and a graphical user interface for experimental purposes on questions with a typical Oracle
structure.

What does it look like?

A firm producing metal filters used in sugar refiners offered a nice opportunity to use the
optimizer for Oracle structured design problems.

Create designs for filters which are strong and have a high throughput.

For an ecological model builder fitting some 8 parameters to a ’sophisticated’” model a
local optimizer generated infinitely many ’optima’, which after all appeared to be caused
by numerical reasons, which we called ill conditioning.

Develop heuristical methods which deliver the real optimum. (Hendrix, Mous, Roosma
and Scholten, technical note)

Ecological model builders are sometimes interested in the specific shape of a level set of a
(oracle) goodness of fit function.

Develop a method which generates a sample of a uniform distribution over a level set.
(Klepper and Hendrix, Ecological modelling, Environmental Toxicology and Chemistry)

Many random based global optimization methods guarantee to reach the optimum in limit.
A typical question however is: Give me the best result you can obtain before tomorrow
9.00 a.m.

What are good strategies allocating the budget of calculation time to local search and to
global (random) search?

When is it useful to do a global search anyway? (and other questions in Hendrix and
Roosma, technical note)

When science is rather a matter of questions than of answers, we are really proceeding.
The topics mentioned here leave many questions open for research and discussion.
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The Computation of the Essential Supremum by using Integral Methods

Jens Hichert!', Armin Hoffmann and H.X. Phi

We give an equivalence between the tasks of computing the essential supremum of a summable
function and of finding a special zero of a one-dimensional convex function. Interpreting the
integral method as NEWTON-type method we show that the algorithm can work very slowly.
For this reason we propose an idea of a faster version of the algorithm which is in some respect
similar to the method of AITKEN/STEFFENSEN.

Introduction

In many practical problems a global optimum of a real-valued objective function is needed.
Therefore, global optimization became an important field of research in optimization. On the
other hand, with some practical problems the global optimum can be an unsuitable solution,
namely in such cases in which the global optimizer is an unstable state in the system investigated.
This can happen if, for instance, the objective function has a jump on the location of the
global optimum, or if there is a very narrow peak in a neighbourhood of this location, and
so, from a numerical point of view, any small perturbation of the state parameters of the
system will imply a significant worsening of the objective function. Therefore, it is sometimes
more convenient to compute the essential supremum (or infimum) instead of the global one.
Some global optimization methods work under certain conditions guaranteeing the equality
of the essential supremum and the global supremum, such as continuity, robustness ([2], [3]),
density([1]). Other methods try to find the global supremum even if it is much larger than the
essential one. The first aim of our paper is to present an algorithm that really computes the
essential supremum whenever the objective function is an Ly, function. This will be done in
the next section. Secondly, in Section 3 we investigate the convergence speed of the algorithm
depending on different types of the objective. In Section 4 we present a faster version of this
algorithm in order to decrease the amount of computing time using more information about the
function.

An integral method

Consider a measurable function f : D — IR defined on a measurable set D of IR" with
respect to the Lebesgue measure p, where 0 < pu(D) < +o00. Throughout this paper we assume
f € Loo(D). We use the abbreviation

[f >a]:={xeD: f(z)>a}.

In order to develop an algorithm for computing esssup { f(z) : € D} we investigate the volume
function F : IR — IR defined by

Fle)= [ [f() - aldu
[f>a]

which is motivated by the following properties (see [1]):

Theorem 1 F is Lipschitzian, non-negative, non-increasing and convez for any f € Loo(D).
Furthermore, F has almost everywhere the derivative F'(a) = —pu[f > a].

!This work was partially supported by the Deutsche Forschungsgemeinschaft within the Graduiertenkolleg
” Automatisierung des Entwurfs analoger und gemischt analog-digitaler Strukturen”
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Theorem 2
o :=sup{a € R: F(a) >0} =esssup f

and
plf >a] >0 Va > o*.

Based on these two theorems we state a NEWTON algorithm for finding the smallest zero a* of
the function F which equals the essential supremum of f. We assume that one initial value «q
with oy < o was found. Then, the algorithm generates an increasing level sequence (ay) by
the rule

Fog)

Qpy1 = Qp+

Proposition 1 ([1], [2]) The sequence (o) generated by (1) converges monotonously to o*.

Due to the special structure of F, for every number o € IR with F(a) = 0 there is not any
information about the distance |a — o*|. However, Proposition 2.1 states that this situation
does not occur within the NEWTON algorithm, apart from the situation a = «o* for any k,
which means that the algorithm has been terminated after a finite number of steps.

Proposition 2 ([2]) The set sequence ([f > ay]) generated by (1) converges monotonously to
[f = aF], the set of the locations of the essential supremum of f.

The iteration rule (1) is equivalent to the mean value level set method in [2]. But by considering
the convex function F' we can easily come to other stopping conditions and further interesting
aspects concerning the convergence speed and its acceleration. In connection with convergence
investigations, some smoothness properties of F' are of interest.

Proposition 3 The function m : IR — IR with m(«) := ulf > ] is left-hand continuous.

Proposition 4 F is continuously differentiable in an open set U C IR iff p[f = ] =0 for all
acU.

A connection between the smoothness of the objective function f and the volume function F'
provides the

Proposition 5 Let D C IR" an open set and f € C'(D).
IfVf(z) #0 a.e. on D, then u[f =a]=0 Vae€ R.

We do not know whether the statement of Proposition 5 is reversible.

Convergence speed of the level sequence

The practicability and effectiveness of the integral method stated above mainly depends
on the way of evaluating the functions F'(a) and m(a). Until now, there has been just one
appropriate method based on Monte Carlo models, computing both F(a) and m(«a) in one
procedure. Nevertheless, in every practical realization of the theoretical NEWTON algorithm one
function evaluation will be very expensive. Therefore both the convergence order and speed of
the level sequence («y) are of interest. In order to investigate this convergence order we are
going to distinguish between two ”types” of objective functions f. We want to consider f to be
of the type A if pu[f > o*] > 0 holds. Otherwise, we consider f to be of type B.

If f is a function of type A, the well-known theory of the NEWTON algorithm is available and
provides satisfactory statements about the speed of the convergence of the algorithm:
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Theorem 3 Let f be a function of type A and there exists an o € IR with F € C'(a, a*). Then,
either the algorithm stops after finite steps or the convergence of the sequence (ay) generated
by (1) is Q-superlinear. If F' satisfies a Lipschitzian condition in a neighbourhood of o* the
convergence is (Q-quadratic.

However, a function of type A is not so typical for problems arising in practice. A more usual
situation is given if the essential supremum of a function f is only reached on a set of measure
zero. In this case, due to Theorem 1 and Proposition 3, F is differentiable in o* and F'(a*) = 0.
Therefore, the zero o* of the function F' has a higher order. This means that the NEWTON
algorithm for computing the essential supremum of a type B function converges in general only
Q-linearly. The order of the zero increases with the dimension n of the problem. This means
that an increasing dimension implies a decreasing convergence speed (see also Proposition 6). To
avoid this drawback we propose an appropriate and faster algorithm useful for type B functions
f using more information about the order of the zero o™ of F.

Speeding up the level sequence

Let ¢ : IR — IR and o* a zero of ¢ of the order 3 (this means that ¢ € C%t! and ¢(a*) =
(o) = ... = B D(a*) =0, o!®(a*) # 0). Under this condition it is well-known fact that
the modified NEWTON algorithm

5 p(ak)

k=0,1,...
@' (ag)

Op+1 = Qf —

converges locally Q-quadratically to a*. In order to apply this improvement in NEWTON’s
algorithm to our situation of type B functions, we consider at first a ”prototype” of the function

f.
n
Proposition 6 Let f(z) = — > aj|lz; —x|P+y*, a; >0 Vi=1,...n with some p > 1. Then,
i=1
for each ag < o™ the iteration
n

(67NN} :Oék;+ (1"‘ _>
p

F (o)
m(a)

k=0,1,...

leads to o« in one iteration step, that is, a1 = a* = y*.

Note that in Proposition 6 no information is needed about z* and y*. We now assume that
functions

n
g(@) = =D ailzi — =z +y*
=1
n
§x) = =Y bz Pyt an b >0 Vi
=1

exist being a lower and upper bound of f respectively, that is,

an(z) < f(z) < g™ (x) a.e.on D. (2)

. N\ 1/p .
Then with ¢ :=[}%,; (Z—Z) < 1 we can choose a stepsize

n
p=(1+2)a 3)
p
(again independent of z* and y*) having the following properties:
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Proposition 7 1. Using formula (3)

2. Furthermore,

a

u <1—¢ Va < o.

|al

In other words, if the inclusion (2) of f is sufficiently sharp, the (theoretical) stepsize 3 guarantees
an increasing sequence () converging monotonously to a*, but faster than the sequence ()
generated by (1). The values g and p are, of course, not known. But under certain conditions
we might assume that ¢ tends to 1, and an ideal stepsize § = 1 + % with some p > 1 will be
reached. In our algorithm we update the stepsize by assuming f to be a prototype function as
in Proposition 6:

n S n+
B = (14 ) | (4)
Pk Sk—1 1
where s, := ZEZ’Z)) One way to update p; can be chosen by

o)

Our algorithm contains additional considerations in order to ensure a monotonously increasing
sequence (ay) by
opt+1 = o + Bisi k=0,1,...

with updates (4) and (5). Nevertheless, if such an iteration step works without any problems,

(4) and (5) lead to
o = + 73%
k+1 -

which is similar to one step of the method of AITKEN/STEFFENSEN (see [4]) to speed up the
convergence of an iteration method.
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Greedy Randomized Adaptive Search for a Location Problem with
Economies of Scale

Kristina Holmqvist!, Athanasios Migdalas and Panos M. Pardalos

One of the most central problems in continuous location theory requires the generation of optimal
sites for m new facilities to serve the demands from a set of n customers. In distribution systems,
the facilities typically represent warehouses or depots. The optimal locations of the new facilities
are those which result in a minimum of total transportation and warehousing costs. In planning
of real distribution systems, the number of new facilities to add is a key decision variable. The
optimal value of m is determined by considering the trade-off between warehousing costs, which
include investment and operating costs, and transportation costs. Clearly, as warehousing costs
are increased by adding new facilities to the system, the transportation costs will decrease since
the average travel distance between warehouses and customers will be decreasing.

Obviously, this is a problem with great importance in planning shipment of goods. The
concave costs implies that the more we ship through facility 4, the cheaper it is per unit.

Problem Definition

There are n customers each with demand b; which should be fulfilled by facilities out of
a given set of m candidate locations. At facility ¢ the total amount of goods that is shipped
away from the facility is defined as the throughput level y;. The cost for shipping one unit from
facility ¢ to customer j is denoted by ¢;; and the amount of goods that is transported the same
way is denoted by x;;. Thus, we can describe the location problem as:

m m n
min_gi(yi) + Y Y cijTij
i=1 i=1j=1
subject to

n
Z(I,‘Z'j = Y, izl,...,m
=1

m
inj = b, j=1,...,n
=1

Yi

AVAAYS

0, 2=1,....m, 7=1,...,n

In this paper g is a concave function and we chose to consider the following form of warehousing

costs
gi(yi) = { ali + a2yi + azi/yi ity >0

where a1;, ag; and as; are given non-negative parameters. The constant term aj; represents a
fixed investment cost, while the remaining terms provide a variable operating cost that depends
on the throughput of the facility. The square root results in concavity of the g function and
accommodates economies of scale in the operation of the facility. Economy of scale is a normal
phenomenon, since larger facilities can operate more efficiently and can utilize automated tech-
nologies in cost effective manner. Whenever the facilities are homogeneous, the cost parameters
do not vary with 1.

The problem is thus to determine the throughput level y; for each facility and the amount
z;; of goods to be transported from facility 4 to customer j, so as to satisfy all demands with
minimum total warehousing-transportation cost.

'Research partially supported by CENIIT (Center for Industrial Information Technology).
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Problem Size
cap’1,72,73,74 16 x 50
capl101,102,103,104 25 x 50
capl31,132,133,134 50 x 50
capa,b,c 100 x 1000

Table 1: Problem sizes

Greedy Randomized Adaptive Search Procedure

The Greedy Randomized Adaptive Search Procedure (GRASP) [1] is an iterative process.
This randomized sampling technique provides a feasible solution within every iteration. The
final result is simply the best solution found over all iterations. Each iteration consists of
two phases, a construction phase and a local search procedure. In the construction phase a
randomized greedy function is used to build up an initial solution. This solution is then exposed
for improvement attempts in the local search phase.

When implementing a GRASP for a particular problem the procedure for constructing the
initial (feasible) solution must be decided. Briefly, the construction phase can be described as
iteratively adding one element to the incumbent (incomplete) solution. The strategy for choosing
the next element is based on randomly choosing the element from a list which is built up with
regard to a greedy function. The heuristic is adaptive in the sense that the effect of already
chosen elements are regarded.

Also, the neighbourhood function used in the local search phase must be defined. Of course,
different problems require different construction and local search strategies but the advantage of
GRASP before other heuristics is that when these strategies are defined, there are only a couple
of parameters to tune (the size of the candidate list and the number of GRASP iterations.)

Test Problems

We have used test problems from the OR-library, available on the world wide web at
http://mscmga.ms.ic.ac.uk/. However, these problems are not including economies of scale
and therefore we have to add some values for the variables in the concave cost function g. The
problems have similar structures but different number of facilities and customers. There is also
a distance matrix for the distances between each facility and customer. This distance matrix
is used to evaluate the objective function value, since we use the distance as transportation
cost. In Table 1 the problem sizes (number of facilities x number of customers) are given. The
values used for the variables in the concave function are the same for all locations in all problem
instances. We have chosen to set the parameter values of ao; = 20 and a3; = 100. The fix cost
for allocating facility ¢ gives us the ay; values. This fixed cost is given in the test problems. The
values of ag; and aj; should ensure that the transportation cost will not be dominating.

Numerical Results

The measurements presented in this section were done on an unloaded Sun SPARCstation
20/50. We compiled the C program with the SunSoft C compiler version 3.0.1 using the option
-x02 and the Fortran 90 program with the Cray Fortran 90 compiler version 1.0.3 using the
option -02. Timing was done with the routines clock_gettime (3R) and TIMEF (3F) respectively.

Conclusions

The GRASP we present is capable of solving large problems in acceptable time.
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Linearly Constrained Global Optimization of Functions with Concave
Minorants

Reiner Horst
(based on different joint work with M. Nast and N.V. Thoai)

1. Functions with concave minorants

A common property of Lipschitz functions, d.c. functions and some other function classes of
interest in global optimization is that, at every point of the domain, one can construct a concave
function which coincides with the given function at this point, and underestimates the function
on the whole domain (concave minorant, cf. Khamisov (1995)). We present a new branch and
bound algorithm for minimizing such a function over a polytope which, when specialized to
Lipschitz or d.c. functions, yields improved lower bounds as compared to the bounds in pre-
vious branch and bound methods. Moreover, the linear constraints will be incorporated in a
straightforward way so that “deletion-by—infeasibility” rules can be avoided. Finally, we show
that these bounds can be improved further then the algorithm is applied to solve systems of
inequalities.

Definition 1.1. (Khamisov (1995)) A function f : S — IR, defined on a nonempty convex
set S C IR" is said to have a concave minorant on S if, for every y € S, there exists a function
F,: S — IR satistying

(i)  Fy(xz) is concave on S,
(i)  f(z)>F(z)Vz €S,
(i) f(y) = Fy(y)-
The functions F,(x) are called concave minorants of f(z) (at y € S) and the class of func-

tions having a concave minorant on S will be denoted by CM(S).

Example 1.2. Examples of functions on CM(S) include Lipschitz continuous functions (and
more general certain Hoelder continuous functions), functions representable as differences of
convex functions (d.c. functions), weakly convex functions on IR".

Lemma 1.3. Let {zy} and {y;} be sequences in S such that lim z; = lim y, = s € S.
k—ro00 k—o0

Then, for each of the concave minorants given in Example 1.2, we have

Tim By, (52) = f(s).

2. Branch and Bound Approach

We consider the problem

minimize (z), (1)
z€eD

where D is a polytope in IR" with nonempty interior, and f € CM(S) for some n-simplex
S2OD.

A lower bound for f over the intersection of an n—simplex S with the feasible set is obtained
by the following result:
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Proposition 1.4. Let S = [vg,...,v,] be an n—simplex with vertices vy,...,v,, D be
a polytope in IR", T' be a nonempty finite set of points in S, and f € CM(S) with concave
minorants Fy. For each y € T, let ¢, denote that affine function which is uniquely defined by
the system of linear equations

‘Py(“i):Fy(Ui)a 7':07777'
Then, the optimal value (S N D) of the linear program
minimize t
S.t. pylz) <t,yeT, zeSND

is a lower bound for min{ f(x): z € SN D}.
Notice that, while solving the LP for S(SND) a finite set Q(S) of feasible points is detected.

Algorithm
Initialization:

Determine an initial n-simplex S O D, the lower bound (SN D), and the set Q(5).
Set 5(S) = B(SND), Q = Q(S), a = min{f(z) : z € Q} and choose z € @ satisfying
f(z) = a. Define M = {S}, set 5= p((S5), k=1.

Iteration k:

If a = B3, then stop; z is an optimal solution, and « is the optimal objective function
value of Problem (1).
Otherwise, choose

SeM satisfying ((S) = p.

Bisect S into the simplices S7 and Ss.
Compute 5(S; N D), i =1,2; and
B(S;) = max{p(S); p(S;ND)} (i=1,2).

Set @ = QU {Q(S1),Q(S2)}, update @ = min{f(z) : z € @}, and choose z € @
satisfying f(z) = a.
Set

M = (M\{S}) U{S1,S>},

= M\{S:5(5)>a},

B {min{ﬁ(S):SEM} if M #£0
o= Y a if M =0

and go to iteration &k + 1.

Proposition 1.5. In Problem (1), let f € CM(S) be continuous on the initial simplex S.
Moreover, for each pair of sequences {zy}, {yx} C S such that klim Tp = klim yp = S assume
— 00 — 00
that klim Fy, (xz) = f(s). Then, if the algorithm does not terminate after a finite number of
—00
iterations, we have
lim By = lim f(zx) = lim oy,
k—o0 k—oc k—o0

and every accumulation point zx of the sequence {zy} is an optimal solution of Problem (1).
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3. Systems of Inequalities and Numerical Results

Probably the most interesting application of the approach is in solving systems of inequalities
where all of the functions involved are in CM(S). Here we obtain a drastical further improvement
of earlier bounds. Details on this and on numerical experiments and comparisons are reported
in the talk.
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The Pareto Approach to Balancing Local and Global Search

Donald R. Jones, William Baritompa and Yaroslav D. Sergeyev

For an algorithm to be truly global, some effort must be allocated to what may be called
global search—search done primarily to ensure that potentially good parts of the space are not
overlooked. On the other hand, to achieve efficiency, some effort must also be placed on local
search-—search done in the area of the current best solution(s). In fact, one can argue that the
essence of a global search procedure lies in how it balances these competing objectives.

In this paper, we show that Lipschitzian optimization, interval analysis, and Bayesian
optimization—however different they may be conceptually—all balance global and local search in
essentially the same way. We then reduce this common technique for global/local balance to its
bare essentials, and use this simplified technique as the basis of a new heuristic called DIRECT.
This heuristic turns out to be truly remarkable, and with small modifications can be applied
problems that are continuous, discrete, smooth, nonsmooth, constrained, or unconstrained.

The origin of DIRECT goes back four years, when the first author was simultaneously work-
ing in the areas of Lipschitzian optimization, Bayesian optimization, and interval analysis. These
methods have many similarities. For one thing, all of them are space-partitioning algorithms.
That is, they all work with a partition of the search space into regions and, in each iteration, they
select a region, subdivide it, and sample new points within the resulting subregions. But there
is a deeper similarity: in all three methods, the criterion for selecting regions can be divided into
two terms. The first term depends only on the goodness of the sampled points in a region. By
itself, this term would cause us to do local search. The second term, on the other hand, depends
only on the size of the region. By itself, this term would lead us to do global search. The three
methods combine the two terms in different ways, but every combination has the following key
property: the attractiveness of a region increases as the sampled function values get better or
as the size gets bigger.

Once the above similarities were apparent, all the heavy theoretical baggage of stochastic
processes, Lipschitz constants, and so on, began to seem like nothing more than very elaborate
ways to justify particular formulas for balancing global and local search. But if our goal is
merely to select those regions which do well on sampled function values and size, why not just
select those regions that are Pareto optimal with respect to these two criteria? That is, why not
select all those regions that are not dominated by another region on the two criteria of sampled
function values and size. Now a region is said to “dominate” another on two criteria if it is
strictly better on both criteria, or the same on one criterion and strictly better on the other.
Thus a nondominated region has the property that all regions of the same size or larger have
worse sampled function values. This Pareto idea was the key insight that led to DIRECT and
all its variants.

The Pareto selection criteria is extremely clean. One of its nicest properties is the lack of
any parameters (Lipschitz constants, convergence tolerances, etc.) that determine the balance
between local and global search. Instead of using such parameters to fiz the global/local balance
and then select a single region, the Pareto method identifies several regions in each iteration
(the Pareto optimal set). Some regions in the Pareto set are good for local search and some are
good for global search. Another attractive feature of Pareto selection is that it is nonmetric.
Whether or not one region dominates another depends only on relative function values. As a
result, we get exactly the same sequence of iterates whether we are minimizing f, log(f), or
exp(f).

The DIRECT algorithm is nothing but a space-partitioning heuristic that uses an easy-to-
manage partitioning strategy together with this Pareto selection rule or intuitive variations of
the rule. On the traditional Dixon-Stiglitz test suite, DIRECT works about the same as, and
often much better than, the best existing black-box heuristics. In our opinion, it is simply
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amazing that a deterministic algorithm with no tuning parameters, one that relies entirely on
the Pareto criterion, even works, let alone works so well.

The present paper makes significant extensions to the original version of DIRECT that was
published in 1993. One of the most interesting extensions is to discrete problems such as 0-
1 programming and permutation problems (scheduling, etc.). We also show how the method
can be extended to incorporate gradient information (if it is available) and to handle general
nonlinear inequality constraints. The details of these extensions are given in the paper. Here
we will here limit ourselves to a few comments.

With respect to discrete problems, notice that when we discussed the idea of dividing the
“search space” into “regions,” nothing we said implied that the search space was Euclidean or
that the regions were rectangles (as in the original DIRECT algorithm). This is why DIRECT
applies to discrete problems. To apply DIRECT, one only need be able to devise a way of
partitioning the discrete space into subsets, measuring the size of these subsets, and sampling
points within subsets.

With respect to using gradient information, the reader may wonder why we even bother.
After all, using gradient information seems to be against the spirit of general-purpose black-box
heuristics. The reason we have considered using gradient information is that using gradients
tends to focus the search, allowing the optimum to be found in fewer iterations. In low di-
mensions, the savings in iterations may be swamped by the high cost of performing numerical
derivatives, and so the value of gradients is doubtful. But in higher dimensions, the use of
gradients can allow the optimum to be found before the search tree explodes exponentially and
the search becomes hopelessly bogged down. So the true value of using derivatives lies in the
way it helps DIRECT stretch into higher dimensions.

Extending DIRECT to handle constraints was the most difficult part of this research. In
fact, we have only succeeded so far in handling inequality constraints. The technique we use for
handling these constraints is fairly novel, as it does not involve penalty or Lagrangian functions.
At an intuitive level, the technique amounts to developing a criterion function that is related to
the likelihood that further search in a region will reveal a feasible point that beats our current
best solution by €. We then select all those rectangles that have the property that, for some
particular € > 0, they have the best value of this criterion. This constrained version is less
simple than the unconstrained version, but it is the natural generalization of it.

In its constrained version, DIRECT has been used at General Motors for solving small to
medium (5 to 20 variable) problems in which the goal is to optimize the parameters of a me-
chanical design. These mechanical design problems are hard enough to confuse local optimizers,
but they are far from pathological, and DIRECT has proven to be quite effective. So far the
applications include optimizing the design of piston shapes, crankshaft counterweights, heat
exchangers, blanking dies, and advanced shock absorbers.
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To the global minimization of functions with concave minorant!

Oleg V. Khamisov

Let a set R C E™ and a real valued function f(z), f:R — E' be given.

Definition 1 A function f(z) is said to have a concave minorant or concave support function
on R if there exists function ¢(z,y), ¢ : E™ x R — E', continuous in = for any fized vy, such
that

1. ¢(z,y) is concave in x;
2. f(x) Z p(a,y) V(z,y) € RXR; (1)
3. fly)=ely.y) VyeR (2)

The function ¢(z,y) is called a concave minorant or concave support function of f(z),
constructed at the point y € R. A set of all functions f(z), f: R — E' which has a concave
minorant on R is denoted by CM(R) and each function f € CM(R) is called a c.m. function on
R ("c.m.” is an abbreviation of ” function with a concave minorant”). The function f € CM(E™)
is called a c.m. function.

Below we assume that R € E™ is a compact set. The functional class CM(R) is quite large,
since it is not difficult to see that any Lipschitzian function f(x) is also a c.m. function with

o(z,y) = f(y) — Lllz —yll,

where L is a Lipschitz constant. Main properties of c.m. functions and comparison with other
classes of functions are given in [1]. Let us shortly describe some properties of c.m. functions.

Proposition 1 Each function f € CM(R) is a l.s.c. function on R.

Definition 2 Let D C E™ be a convex set. A function f: D — E' is called d.c. on D if there
are two convex functions p: D — E'. q: D — E' such that

f(z) =p(z) — q(z), Vo € D.
A function that is d.c. on E™ will be called a d.c. function.
Proposition 2 A function f: E® — E' is a d.c. function if and only if

f(z) = sup(z,y),

yey

where
P(,y) = c(y) (z —y) +r(y) — qlz),

cly) € E™,r(y) € EY, y €Y, Y is some nonempty set and q(x) is a continuous convex function.

The next proposition follows directly from Definition 1.

Proposition 3 Let c.m. functions f(x), fi(x),i =1,...,m be given. Then the following state-
ments are true.

(1)  Any nonnegative combination of functions f;(x) is a c.m. function;
(11)  maxi<i<m fi(z) and mini<;<p, fi(x) are c.m. functions;

(112)  f1(z) = max{0, f(z)} , f () = min{0, f(z)} are c.m. functions.

!Supported partialy by the Russian Fund of Fundamental Investigations
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Proposition 1 describes quite general properties of c.m. functions. If we have some (nonconvex)
function how to recognize whether this function is a c.m. function and, moreover, if yes, then
how to construct its concave minorant 7 We give a description of rather a wide subclass of the
class of c.m. functions and give rules for the constructing the concave minorant for a function
from this subclass.

Definition 3 If function f : R — E', R C E" satisfies
f € CM(R),—f € CM(R), (3)
then f is called a c.m. symmetric function on R.

A set of all c.m. symmetric functions on R is denoted by CM S(R). If f € CMS(E™), then f is
called a c.m. symmetric function. It follows from (3) that for every f € CMS(R) there exists
the function ¢~ (z,y),¢ : E® x R — E' that is continuous and concave in z and the function
o1 (z,y),¢: E" x R — E' that is continuous and convex in z, such that

o (2,y) < flz) < ot (2,1),

o (y,y) = fly) =" (¥, 9),y € R.

Function ¢ (z,y) is called a convex majorant and ¢~ (z,y) is called a concave minorant of the
function f(z). By virtue of Proposition 1.1 a c.m. symmetrical function is continuous.

Proposition 4 Let f € CMS(R) and f; € CMS(R),i=1,...,m, m > 1, R be a compact set.
Then

(Z) Zf’; Aifi € CMS(RL)\Z‘ S El;

(ii) f? € CMS(R);

(#57) fix fo € CMS(R);

(vi) if f(xz)>0,Yz € R, then ﬁ € CMS(R);
Consider the following mathematical programming problem

min / (z),
z € R,

where R C E™ is a compact convex set., f € CM(R). We call this problem the c.m. program-
ming problem.
Let 2, 22,..., 2" be some points in R. Then

[(z) > Joax, o(z,27) = fi(x),Vz € R

where ¢(z,y) is a concave minorant of f(x). We call the problem
min fi(z), (4)
T€R (5)
an approximating c.m. problem since
* — s > : — *.
f*=min f(z) > min fy(2) = f¢

Problem (4)-(5) is again a c.m. programming problem and, therefore, multiextremal, but here
we have the advantage in the special form of the objective function. More exactly, it was shown
in [2] that fi(z) is a d.c. function since

fe(@) = fi (@) = [ (@),
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where

k
fi(@)=—min{ > ¢(z,2")},

R
k
fi (@)= =) wl(z,a")
=1

and both f; (z) and f, (z) are convex. Introducing now an additional variable z,.1 we can
reduce the approximation c.m. problem to the following one

min{z, 1 — f, (z)}, (6)
f,;"(x) < Tpyi, (7)
z € R. (8)

The feasible domain in problem (6)-(8) is convex and the objective function is concave. Hence,
(6)-(8) is a concave programming problem. Thus, the problem of global minimization of a
c.m. function over a convex set can be approximated by the sequence of concave programming
problems. This fact seems to be the natural generalization of the approximation of a convex
programming problem by a sequence of linear programs. Therefore, we can say that in general
almost each mathematical programming problem can be approximated by a sequence of auxiliary
problems which are not more complicated than the concave programming problem.

We used term ”approximation” to emphasize that in this way we obtain only bounds of the
global minimum since, strictly speaking, we have to prove some convergence conditions.

Essential part of the contribution is devoted to the numerical testing of the described ap-
proach in global optimization and discrete and stochastic programming.
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On a Mechanism of Natural Formation and its Use in Global Optimization

Victor Korotkich

Molecular conformation and protein folding have been subjects of considerable recent in-
terest in global optimization [1], [2]. The development of efficient algorithms calls for further
investigation on the laws governing these processes of formation in nature which still have many
questions unanswered. It is becoming clear that what happens in biochemical systems is not a
thermodynamical but dynamical problem which is not explainable by extremum principles but
by the laws of spacetime dynamics [3]. In this sense simulated annealing which is based on an
extremum principle has limits to simulate formation in nature.

In this paper we propose and address a model of formation in nature in an attempt to
determine a mechanism which can be used for the algorithms development, i.e. to make the
artificial dynamics of algorithms to reproduce formation in nature. A new approach to provide a
way to deal with the problem is put forward. The main concepts of the approach are structural
complexity and symmetry. There are many concepts of complexity which appear as different
manifestations of intuitive notions of what the word ought to mean [4]-[9]. A concept of structural
complexity is introduced in an attempt to provide a measure of complexity for global description
of a particular sequence [10]. The concept is expressed in terms of relationships between integers
and can be viewed as a measure of relationships between sequence components. A concept of
structural symmetry is defined to formally capture a symmetry which underlies the relationships.

In section 1 a short account of the foundations upon which our study rests is provided,
namely: the concepts of structural complexity and symmetry. Of necessity, we concentrate on
background material giving first a brief description of the concepts and afterwards sketch how
they come together. As well as summarizing the concepts we take the opportunity to introduce
some notation and terminology.

At the heart of the approach is the idea that structural complexity and symmetry can be used
to study formation in nature. In particular, structure-forming with the maximum in structural
symimetry is suggested as a decisive criterion for its modeling. This statement becomes a formal
definition after we specify the concepts involved in the formulation.

To provide a context in which to explore the idea a model of structures formation is intro-
duced in section 2. It is employed in an indirect effort to get insight into formation in nature.
The model ignores many complex effects and is a simple tool that gives a way to describe struc-
tures formation in terms of the spacetime symmetry only, i.e. structural symmetry. Symmetry
is one of the most fundamental concepts in describing nature the emphasis on which has led to
many impressive successes in a variety of fields and it arises naturally to use structural symmetry
as a guiding principle in describing formation in nature.

Specifically, in the model a formation of a structure is represented by a certain spacetime
pattern emerging from interactions with the environment. Structural symmetry is brought
into focus when the performance of a formation is characterized by the structural symmetry
of the pattern. To assess the total performance all patterns produced by a formation in terms
of structural symmetry are considered. A formation is called optimal if it has the highest
total performance with respect to all formations. In such a manner a concept of optimality is
introduced without appeal to any explicit criterion of goodness and becomes rooted only in the
spacetime symietry, i.e. structural symmetry.

The problem of fundamental importance is to propose a model of structures formation which
is relevant to formation in nature. We attempt to approach this problem by the proposal that
the optimal formation of the model imitates formation in nature. In a search for the optimal
formation we exploit a connection between structural complexity and symmetry [11], [12] and
use it to represent the optimal formation in terms of structural complexity.
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It turns out that the model under the proposed definition of optimality exhibits many of new
phenomena encountered in biochemical systems. In particular, the optimal formation operates
at 7the edge of chaos” and is in agreement with the recent experimental finding of long-range
correlations in the human noncoding sequences, which are very likely to be general characteristic
feature of nucleotide organization in DNA [13] - [17]. More importantly, the fact that a natural
phenomena formation appears to be optimal under the model definition seems to indicate that
the model is indeed related to formation in nature.

Having established in section 2 the concept of optimality, we consider in section 3 a mech-
anism, which constructs rules of the optimal formation. It is important that the mechanism
admits two different descriptions.

The first description, called structural complexity, is expressed in terms of the structural
complexity machinery and allows to discover explicitly principles that are at work in the optimal
formation. The description sheds light on the optimal formation rules construction, in particular
it shows how they change as a result of interacting with the environment.

The second description, called natural phenomena, is based on using causal powers of natural
phenomena processes. This description arises from the properties of the first one and turns out
to be connected with self-organizing processes of formation in nature. Figuratively, it equates
the computational powers of computing devices with the causal powers of natural phenomena
processes and offers a means to propose a ”super-Turing” model in computer science, whose
computational power can surpass that of the Turing model(for more details see [18], [19]).

This mechanism description gives a way to use these processes for the development of global
optimization algorithms which can reproduce formation in nature. In particular, at the end of
section 3 the natural phenomena description of the mechanism is extended to be used in global
optimization and a global optimization algorithm represented in its terms is proposed.
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Algorithmic Generation of the Mathematical Programming Model for
Process Network Synthesis

Z. Kovacs, F. Friedler and L. T. Fan

Process network synthesis (PNS) is involved in the design of any process system for producing
desired products from available materials. A process system is a network of operating units where
a specified number of input materials with known quality are transformed in an operating unit
into a specified number of output materials by altering their physical, chemical or biological
properties. The importance of PNS arises from the fact that essentially every product of the
chemical and allied industries, including the petrochemical industry, is manufactured by such
a network; moreover, the profitability of the same product from different networks may vary
widely. Therefore, the generation of the globally optimal solution of PNS is indeed essential.

The capability of PNS methods has expanded due to the recent development of high per-
formance computers and effective mathematical programming methods. Thus, optimal or near
optimal solutions can often be generated for mathematical programming models of PNS prob-
lems. Nevertheless, little fundamental information is available on the relation between the
optimal solutions of a PNS problem and its model. New questions, therefore, have arisen: (i)
what form should the mathematical model take to have a consistently valid optimal solution of
the PNS problem modeled? (ii) how can the model be generated algorithmically? Unexpected
answers to these questions for simple classes of PNS problems have indicated that it is indeed
not trivial to resolve these questions.

Traditionally, PNS has been viewed as involving three major tasks: representation, evalua-
tion, and search. This division has been useful in establishing the theory of PNS. To facilitate
the resolution of the new questions, it has been divided into two major steps: (i) the generation
of a mathematical programming model of a given class of PNS problems, and (ii) the solution
of the resultant model. While the first step is the true ”synthesis” part, the second, in reality,
is the "analysis” part of PNS. The majority of the available methods, in fact, deals only with
the second step, i.e., analysis. So far, the first step is essentially performed manually in an ad
hoc manner.

The present work focuses on the model generation step, i.e., the first step, of PNS from
the mathematical point of view. It proposes the basic definitions and introduces fundamental
theorems for solving this step of PNS. The result is illustrated with the exact solution of a simple
class of PNS problems.
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On relaxing the hypotheses for the application of multi level single linkage

Marco Locatelli

We consider the global optimization problem:

: d
;Iél)I(lf({E), X C R

Multi Level Single Linkage (MLSL) is one of the most well known stochastic global optimization
methods. The main idea is based on the will of doing clever local searches, improving upon
methods like Multistart, where a local search is started from every sampled point. In order to
avoid useless and expensive local searches, i.e. local searches which take to already detected
minima, MLSL analyzes chains of descending and "close” sampled points and starts a local
search from any point such that it has no ”close” points with function value not greater than its
function value. The meaning of ”close” is related to a parameter ¢y which is decreased, slowly
enough, at any step. The algorithm can be described as follows:

1. let N >0 and y € (0,1] be fixed and oy, := 7~ ¥2(T'(1 + d/2)o%)l/d;
2. at step k generate a uniform random sample of size N in X;

3. sort the whole sample of KN points in order of increasing function value, and select the
~vkN best of them; the resulting sample is called reduced sample;

4. apply a local search to the points of the reduced sample which satisfy the following condi-
tions:

e have not any point with lower function value at a distance smaller or equal than «ay;
e are not within a distance d; > 0 from an already detected minimum;

e are not within distance ds > 0 from the border;
5. check some stopping rule and if it says of going on repeat the whole procedure.
A part from its good practical performance, it has also nice theoretical properties:

e almost sure convergence of the record (the best point observed till the current step) to the
global optimum;

e finite expected number of local searches for ¢ > 4;

e every local minimum is detected in finite time with probability 1.
The preceding results are obtained under the following assumptions:

1. feC?

2. X compact, convex and with non empty interior;

3. finite number of stationary points;

4. stationary points in the interior of X.
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In this paper we relax all these hypotheses except the second one. The reason is that a lot
of functions which can occur in global optimization do not enjoy the properties given above.
For instance, the fourth hypothesis excludes all concave functions whose minima belong to the
border of X. A simple function as:

Hany) = z? —1<z<1 0<y<l1
TYZY 224 (y—1)? —1<2<1 1<y<2

violates both the first and the third hypothesis. We now introduce some definitions, which are
generalizations of the classical definitions of maximum and minimum points:

Definition 1 Let A C X be a set of points such that:
1. A is connected and mazimal (with respect to the inclusion);
2.VzeA, flx)=f(A)= const.

Then we define A as a:
e minimum set if 3e>0: Vye X\ A,dy,A) <e f(y)> f(A);

e saddle set if it contains more than one element and Ye > 0 3 y1,y2 € X \ 4, d(y;, A) <
6 i =1,2: f(y) < f(A) < flya);

e mazimum set if 3e>0: Vye X\ A,d(y,A) <e, fly) < f(4)

(d(x, A) denotes the distance of the point x from the set A). A set which is a minimum, saddle
or mazimum set is called a stationary set.

Now we are ready to substitute the original hypotheses with some weaker ones:

1. f lipschitzian with a constant L that we can assume, without loss of generality, greater
than 1;

2. X compact, convex and with non empty interior;
3. there exist a finite number of stationary sets.

We can finally introduce the following algorithm, which is inspired, but not equal to MLSL:
e at step k generate a random point X from the uniform distribution on X;

e a chain is defined as a sequence of points z; = X,;, v; < k starting from zg = X, with
the following characteristics:

lz; — izl < o, 7 >1
(1)

where «ay is a parameter corresponding to the one present in MLSL and G is a further
parameter;

e we stop the sequence in the point z f;,,; if at least one of the following conditions is satisfied:

1. another point satisfying (1) can not be found;
2. from xfinq a local search has already been started;

3. Tpina is at a distance not greater than oy from an already detected minimum (in
the case of minimum sets with more than one element by this we mean an already
detected point which represents the whole set);
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e in the first case we start a local search from z f;5q/;

e we check a stopping rule and if it says of continuing we go to step k + 1.
We outline here the differences with classical MLSL.

1. the "batchsize” N in MLSL is set to 1;

2. we do not reconsider every point at any step to decide from which points starting a new
local search (actually at any step we can not start more than one local search);

3. the value v of MLSL is set to 1;

4. the rule to decide whether to start or not a local search is different: we can possibly
consider even not ”too worse points” compared with the current one.

While the first three differences do not seem to be crucial, and we are confident that the same
development which will follow can be applied also to algorithms which are more similar to
classical MLSL, the fourth difference is very important. The main difference with MLSL is the
fact that also some non monotonic chains of sampled points are considered when it has to be
decided whether to start or not a local search, while MLSL considers only monotonic chains.
This modification is inspired to non monotonic methods for local searches.
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Bayesian Heuristic Approach to Discrete and Global Optimization

Jonas Mockus, Audris Mockus and Linas Mockus

Different Approaches to Numerical Techniques, Different Ways to Regard Heuris-
tics: Possibilities and Limitations

General ideas

We call ”heuristics” a formally expressed subjective expert knowledge about a problem of
discrete and global optimization. The main goal is to describe different ways to apply heuristics.
The different ways represent different degrees of formalization. We start from the traditional
Bayesian Approach (BA), where heuristics are included by a choice of an a priori distribution, see
[5] We extend the formal BA to semi-formal Bayesian Heuristic Approach (BHA), see [4], where
heuristics might be included more flexibly. We finish by the description of informal Dynamic
Visualization Approach (DVA), see [3]. Using DVA we may include heuristics directly by-passing
formal mathematical framework.

All the theoretical results are applied to some real-life or test problems. All application exam-
ples illustrates some theoretical results. One of the real life application examples- the scheduling
of batch operations- is described in details, see [7], because this single example illustrates most
of the theoretical results.

Different Formalization Degrees

The maximal deviation is traditionally used while developing various numerical techniques.
We call that a Minimax Approach (MMA) or the worst case analysis.

The advantage of MMA is the complete formalization. Everything is well defined, and we get
the results with guarantee. The disadvantage is the high price we have to pay for the guarantee.
Often the price is an algorithin of exponential complexity.

In this paper we consider an average deviation as a criterion when designing numerical
optimization techniques and algorithms. We call that a Bayesian Approach (BA).

The disadvantage of BA is a degree of uncertainty while defining an a priori distribution on
a set of problems to be optimized. Thus we get no guarantee. The advantage is the possibility
to include some elements of the expert knowledge while defining an a priori distribution. By
involving the expert knowledge we may tailor the algorithm to the specific problems. This way
we may increase algorithms efficiency.

We may involve the expert knowledge by defining the a priori distribution on a set of random-
ized heuristic decision rules, too. We call this extension of traditional BA a Bayesian Heuristic
Approach (BHA). Thus we get less formalization but more flexibility.

Both BA and BHA help the algorithm developers to include the expert knowledge by a
regular mathematical framework.

The dynamic visualization helps the decision makers to include the expert knowledge directly.
We denote that as a Dynamic Visualization Approach (DVA)

The objective of this paper is to discuss the possibilities and limitations of different ap-
proaches, different techniques of optimization, using heuristics. From a strictly formal BA, to a
semi-formal BHA, to an informal DVA. Therefore, in addition to BA and BHA algorithms we
discuss various visualization techniques considering the case studies of optimal decision making.

We start the description from the application of the BA to the continuous global optimization.
Then we show how to extend the results to the BHA, namely, to the optimization of parameters
of randomized heuristic techniques of global continuous and discrete optimization.

A new theoretical idea of this research is to define an a priori distribution on a set of
randomized heuristic. The usual way is to define it on a set of functions to be minimized. The
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definition of the a priori distribution on the set of heuristic decision rules helps to include the
expert knowledge more flexibly and to speed up the search.

We show the advantages and disadvantages of BA and BHA applying those approaches in
different problems of global and discrete optimization.

Application List
We apply BA to the following problems, see [5, 6], of global continuous optimization:
¢ modeling and yield maximization of electrical circuits
e optimization of the sock-absorber
e estimation of parameters of an immunological model
e estimation of parameters of bilinear time series

e estimation of parameters of fractionally integrated time series describing the exchange
rates

e search for the equilibrium in a competitive economic model
e optimization of composite laminates

e minimization of molecule potential energy

e optimization of thermostable polymeric composition

We apply BHA to these discrete optimization problems, see [6]:
e knapsack

o flow-shop

e travelling salesman

e parameter grouping

e scheduling of batch operations.

We describe the dynamic visualization techniques which could be useful while solving the
ill-defined optimization problems. We call an optimization problem ”ill-defined” if we update
the objective and the model during the optimization process. It means that we have to define
the objective and the model interactively. Considering various real life optimization problems
we see that many of them are ”ill-defined”.

We illustrate the dynamic visualization techniques by the following examples:

e smooth dynamic representation of data collected at fixed locations, see [1] (we want to
minimize the deviations from a constant temperature over space and time)

e dynamic representation of observations in the form of averages over regions in space and
time, exemplified by epidemiological data, see [2] (we are looking for spatial-temporal
patterns that can suggest the most efficient ways of prevention and control)

e visual indexing, a dynamic index to a collection of 30,000 images, see [2] (we search for
the "most interesting” subsets of images by visual inspection of the index)
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We describe most of the examples as some illustrations that show how to apply the techniques

developed in this research. We consider in detail one example. That is the scheduling of batch
processes. A reason is that the batch scheduling can be considered either as a continuous or as
a discrete optimization problem. Besides, the batch scheduling is an important and well known
engineering problem so we may conveniently compare BHA with the results of other approaches.

We describe the software for UNIX and DOS platforms, see [6].
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Subdivision of Simplices Relative to a Cutting Plane with Applications in
Concave Minimization and Volume Computation

Michael Nast

Subdivision of simplices relative to a cutting plane

Let S = [v%,...,v"] be an n-simplex with vertex set V (S) = {v°,...,v"}, v* € R", 0 <
i <n,and for a € R",b € R let H = {x € R" : az — b =0} be a hyperplane generating the
half-spaces
HS={z€R":azx —b<0}, H> = {z € R" : azx — b > 0}.

Define the corresponding open half-spaces H~ := HS\ H, Ht := HZ \ H the vertex sets
V(S =V S)NH V(S =V (S NH" V- (S):=V(S)NH
and their cardinalities n~ (S) := [V~ (9)|, n™ (S) := |V (S)], n=(S) := |V (S)].
Definition 1 The hyperplane H is called irredundant for S, iff
SNHS #S#SNH2.

Lemma 1 H is irredundant for S <= min{n™ (S),n~ (S)} > 1.

Now let S be an n—simplex, H a hyperplane irredundant for S. Then S can be written as
S = conv(V (SYUVT(S)UV=(S)) where V~ (S) # 0 # VT (S). For any pair of vertices

u €V~ (S), veVT(S) there exists a unique intersection point h = e N H of the edge e = [u, ]
with the hyperplane H, which is given by

h=h(u,v,H) = Au~+ (1 — A)v,

where A = (av — b) / (av — au) € (0, 1). The radial subdivision (see, e.g., [8], [10]) of the simplex
S with respect to the point h yields the two n—simplices

S1 = conv (V (S) \ {u} U{h}) and S5 = conv (V (S)\ {v} U{h})
satisfying S1 U So = 5, intS; N intSy = 0.

Definition 2 The radial subdivision of S in h is called a bisection of S with respect to u, v and
H, or short a bisection with respect to h.

The following Algorithm 1 applies bisections on a given n —simplex S, until a given hyper-
plane H redundant or irredundant for S is redundant for every generated subsimplex:

Iteration 0: Set I + {S}, M3 < 0, ME « 0, || «

Tteration k:

k.1: If £ =0, then stop.
k.2 : Choose Si € L and set L + L\ {SH}.

k.3: Ifnt(S;) =0, set Mg Mg U {SH} and go to step k.6.

k4: If n=(Sk) =0, set ML+« MEU {SH} and go to step k.6.
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k.5: Choose v € V™ (Sg), v € VT (Sk) and bisect Sy with
respect to h (u,v, H) generating two n-simplices Sk,, Sk,,
and set £+ LU {5H007 SHG}'

k.6: Set k+ k+ 1 and go to Iteration k.
Proposition 1 Let nt :=n"(S), n" :=n" (S), n= :=n~ (S). Then we have:

i) Algorithm 1 stops after a finite number of iterations ig. If K := |M< U MZE| is the number
g /4 S S
of simplices generated, then ig = 2K + 1.

ii) Mg := M3 UME forms a simplicial partition of S, ME forms a simplicial partition o
s S S
SNH* and Mg forms a simplicial partition of SN H~.

coo + + -—— _ + -——
(ili) K = Ms|=(" ), Ky = ‘M:’g‘ =("tn Y and K := ‘MS‘ =("n 1), where
we understand () = 0 for k > n.

It is an easy task to derive from Algorithm 1 a small recursive procedure, which builds for
a given pair (S, H) the simplicial partition M of the polytope P< := SN H-. Regarding the
number of simplices, we get the following result:
Theorem 1 Let D = {S> ) € I} be any simplicial partition of P<. IfV (S;) CV (PS) Vi€ I,
then |I| = ‘Mg‘ Moreover,

7‘ is the minimal cardinality of any simplicial partition of P<.

Application to Concave Minimization

In this section, we will derive a finite Branch and Bound algorithm for the problem

min f(x) (1)

xzeP

of minimizing a function f : ID — IR concave on a suitable set ID C IR", where dim P = n and
P C D, based on the subdivision procedure of Section . Assume

P={zcR":alzc<b;,icl}, (2)
where I is a finite index set, and a; € R™, b; € IR, ¢ € I.

Lower Bounds

Let S = [v°,...,v"] be an n-simplex, P a polytope given in the form (2) and let f : § — R
be concave on S. Then to calculate a lower bound for f*(S) := min{f(z):2z€ SN P}, we
propose to compute either

— i
p(S) = min f(v’) (3)
or, at the expense of solving a linear program,
pa(9) == nﬁl%lg“ {ZA fW): x>0, e"X=1, al VA< b, i€ IS} , (4)
where in (4), e:= (1,...,1)7 € R" V := (u,...,0") € R""1 is the matrix containing the

vertices of § a columns,
IS;Z{ie[;ﬂje{o,...,n}:afvj>bi}, (5)

and po(S) = oo if (4) has no feasible solution.
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Proposition 2 Both ;11(S) and pi2(S) as defined above define valid lower bounds for f*(S). If

S is an n-simplex containing S, then p;(S) > pi(S), j =1,2. Moreover, u2(S) > p1(S) and, if
Is =0, then (11(S) = p2(S) = f*(5).

Upper Bounds

For any simplex S generated in the course of solving problem (1), let Q(S) := V(S) N P be
the set of feasible vertices of S . If using (4) for lower bounding, then add the feasible optimal
solution obtained when calculating u2(S) < oo to Q(S). Obviously, the (possibly infinite)
number (S) := min {f(z) : z € Q(S)} yields an upper bound for f*(S5), and

7 = miny(S) (6)
is an upper bound for min f(P), if S denotes the set of all generated simplices.

Subdivision of Simplices, Deletion by Infeasibility

Let S = [v°,...,v"] be an n-simplex with ;(S) < 7, where u(S) is given by either (3) or
(4). Then u(S) < v(S) and Is # ). Choose i € Is and subdivide S with respect to the cutting
plane H; := {m ER":alx—b; = 0} into the n-simplices contained in the set Mg = Mg (H,)).
Let Mg = {Sw,-..,S¢}, where £ = K_ is given by Proposition ( 1)(iii). Then we propose to
replace S by {S1,...,S¢}. Note that, if for some iy € Is one has V(S) C HZ%, the corresponding
set Mg is empty. In this case, we have £ = 0, and we propose to eliminate S from the set of

simplices under consideration without any further subdivision. Applying this (implicit) deletion
rule, one eliminates partition sets S with SN P C 9P, i.e. one cuts off at most randpoints of P.

Algorithm 2:

Iteration 0: Determine an initial n —simplex Sy O P, the lower bound p(Sp) and the set Q(Sp)
. Set Qo <+ Q(So), Yo < min{f(z): z € Qo} and choose yy € Qo satisfying f(yo) = o, if
Qo # 0. Set P, {8}, o + u(So), k « 1.

Tteration k:

k.1: If yp_1 = pg—1, then stop. (yx—1 is an optimal solution to Problem (1) with optimal
function value ;1)

k.2 : Select Sy, € P)|_o satisfying u(Sk) = prg—1-

k.3 : Choose i, € Ig, and compute the set ./\/lg” with respect to the cutting plane H;, (as
described in ). Let £ := ‘Mgn ) ./\/lg” = {SHOO, e 78Hz}' Compute the lower bounds
p(Sk;) for 1 <j < L.

kA Set Qp = QU Q(Sk))s Py Ploo\{ S| JUULLoo {8} } - 16  min {f(2) : 2 € Q1)
and py < min {M(S) : S e 73”}. If v, < 00, choose y;, € Qi satisfying f(yx) = Y-

k5 Set P PN{S € Pyiu(S) =y b TPy =0, set g+
k.6: Set k+ k+ 1 and go to Iteration k.

Theorem 2 In Problem (1), let f be continuous on P, where the polytope P is given in the

form (2) with |I| = m. Then algorithm 2 stops in iteration K + 1 yielding an exact solution yx

with px = vk = flyx). An upper bound for the iteration steps is given by K < %, the total

ML
M—1

Py is bounded by "PH‘ <M™ L4+ M —1, where M := (ng)

number N of simplices generated satisfies N < , and the maximal size of any partition
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Application to Volume Computation

If $ = [v%...,v"] is an n—simplex, then the volume of S can be computed by
1
vol(S) = o ‘det (vl —o% " — UO)‘ . (7)

Therefore, perhaps the most natural approach to the problem of computing the volume of a
polytope P is to generate a simplicial partition P of P, what is often called a triangulation of
P. Then compute the volumes of the individual n—simplices S € P and add them up to find
the volume of P. In fact, besides computing V(.S) for all S € P, the problem is how to find the
triangulation P of a polytope. The following Algorithm 3 does both tasks simultaneously:

Iteration 0: Determine an initial n —simplex Sy O P, and its volume vol (Sp). Set P, + {S/}
k<« 1.

Iteration k:

k.1: If Is =0 VS € P|_y then compute vol (P) = Y 5ePy_o, VOL(S) and stop.

k.2 : Select Sy, € Pj_o satisfying Is, # 0.

k.3 : Choose iy € Ig, and compute the set MEH with respect to the cutting plane H;, . Let
MEH = {SHOO, e 75Hz}' Derive the volumes rmuvol(S;) for 1 < j < ¢ from vol(Sy).
Set P < P—oo \ {SH} U Uf:oo {SH\} , k< k+1 and go to Iteration k.

The crucial step is the computation of vol(Sk;) given vol(Sk) in step k.3. Here, this becomes a
simple calculation which avoids the evaluation of (7). It can be incorporated into the subdivision
procedure, since for every bisection of a simplex S with respect to a point on an edge of S it is
possible to calculate the volumes of the generated subsimplices by a multiplication.
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NOP - a compact input format for nonlinear optimization problems

Arnold Neumaier

This paper defines a compact format NOP for specifying general constrained nonlinear opti-
mization problems. The proposed format is a nonlinear analogue of an explicit representation of
sparse matrices by means of index lists and values of the corresponding matrix entries. Thus the
format abstracts from the meaning of the problem and hence does not allow names for variables
or parameters, but it explicitly displays the internal structure of the problem. This is a very
useful feature for global or large scale local optimization.

In contrast to the SIF input format proposed by Conn, Gould, and Toint [1] for their
LANCELOT package, the amount of overhead in the formulation of smaller problems is very
slight: For example, problems like Rosenbrock’s function can be represented in a few lines in
such a way that the least squares structure is visible in the representation. In general, partially
group separable problems are as easy to code in NOP as in SIF format.

Together with an interface to GLOPT [4], a global constrained optimization code developed
in Vienna, and with planned interfaces to the local optimization package MINOS (Murtagh &
Saunders [3]) for large scale problems and to the modeling language AMPL (Fourer, Gay &
Kernighan [2]) to allow the automatic structuring of input on a higher level, this is a promising
tool for the formulation and solution of nonlinear optimization problems.

Each NOP file consists of a sequence of records describing a constrained optimization problem
of the form

min w,
st. o' <z <2,
E,(z), v=1,...,N,

possibly with additional integer or threshold constraints. The bound constraints ' < z < z”
may have infinite bounds to allow for one-sided bounds and free variables.

The so-called elements E,(z) are constraints of one of the forms

Zf(a'v bk’xJk) € [q],
k

Zf(a7bk7$Jk) +b= L,
k

where f is a so-called element function, a,by,b are parameters or parameter vectors, zj,
is a subvector indexed by the index list Ji, and [g] is a possibly unbounded interval, possibly
restricted to integers or with zero adjoined. The contributions f(a,by,zs,) are referred to as
the pieces of the element. (Elements containing a single piece only are, of course, permitted.)

The NOP format supports block structure and multiobjective optimization by allowing vector-
valued components z; and element functions f.
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Hemivariational Inequalities and Global Optimization. Numerical Search for
the Optima

E.S. Mistakidis and Panagiotu D. Panagiotopoulos

Nonconvex nonsmooth energy functions lead to a new type of variational expressions, the
hemivariational inequalities. They characterize all the solutions of the general type inclusion
0 € 0®(u) where 0 is the generalized gradient and @ is a nonconvex and nonsmooth global
(super)potential. We consider here hemivariational inequalities of the type: Find v € V such
that

alu,v —u) + ®(v) — ®(u) > (f,v —u)Vv €V,

where a(.,.) is a bilinear function, ® is nonconvex and nonsmooth energy function, f € V' is a
linear function and V' is an appropriately defined Banach space. A method is proposed for the
numerical treatment of the problem consisting in the replacement of the nonconvex problem by a
sequence of quadratic energy problems. These subproblems are effectively treated by quadratic
programming algorithms. Finally a method is presented for the classification of all solutions
of the equilibrium equations which are e.g. local and global minima and saddle points. The
method of the paper is illustrated by numerical applications.
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Continuous Approaches to Discrete Optimization Problems

Panos M. Pardalos

Discrete (or combinatorial) optimization problems, that is, problems with a discrete feasible
domain and/or a discrete domain objective function, model a large spectrum of applications in
computer science, operations research and engineering.

Solution methods for discrete optimization problems can be classified into combinatorial
and continuous approaches. A typical combinatorial approach generates a sequence of states,
which represent a partial solution, drawn from a discrete finite set. Continuous approaches
for solving discrete optimization problems are based on different equivalent characterizations
in a continuous space. These characterizations include equivalent continuous formulations, or
continuous relaxations, that is, embeddings of the discrete domain in a larger continuous space

There are many ways to formulate discrete problems as equivalent continuous problems or to
embed the discrete feasible domain in a larger continuous space (relaxation). The surprising va-
riety of continuous approaches reveal interesting theoretical properties which can be explored to
develop new algorithms for computing (sub)optimal solutions to discrete optimization problems.

We are going to discuss continuous approaches to several discrete problems, including the
maximum clique problem, graph coloring and the satisfiability problem.
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Optimal Renewal Policy for Slowly Degrading Systems

Andrés Pfening and Miklés Telek

Preventive maintenance is considered to be one of the key strategies to increase system avail-
ability and performance. In general, preventive maintenance consists of periodically stopping
the system, and restarting it after doing proper maintenance, that reduces the probability of
failure and increases system performance. Some cost is unavoidable since the system has to
be stopped and it is unavailable during the maintenance. The arising research problem is to
find the optimal maintenance policy, the policy that minimizes a certain cost function. While
preventive maintenance concepts have been usually applied to mechanical systems, they can also
be effectively applied to the field of software reliability. Thus fault tolerant software can became
an effective alternative to virtually impossible fault-free software.

Huang et. al. have suggested a technique which is preventive in nature. It involves periodic
maintenance of the software so as to prevent crash failures, they call it Software Rejuvenation [2].
Garg et. al. [1] have improved Huang’s model by allowing deterministic regeneration time and
provided an optimal rejuvenation policy for the studied class of systems, regarding crash failures.

But monitoring real applications showed that software “ages” when it is run, i.e. its per-
formance decreases and the probability of failure increases instead of suffering crash failures.
Memory bloating, unreleased file-locks, data corruption are the typical causes of slow degrada-
tion which could lead to crash failure as well if it is not taken care of. Software rejuvenation
involves periodically stopping the system, cleaning up, and restarting it from its peak perfor-
mance level. This “renewal” of software prevents (or in the least postpones) a crash failure and
increases performance.

Problem Statement

In the paper we address the problem of soft failures of a server software, i.e. the preventive
maintenance is done to increase system performance, while crash failures are not considered.
The server software serves jobs arriving to the system with slowly degrading performance. The
problem is to determine the rejuvenation time interval, if the probability distribution of the
interarrival times and the service times are known. It should be performed to optimize the
cost of the rejuvenation, consisting of the costs paid for the lost jobs that arrived during the
rejuvenation and costs paid for the jobs that were queued waiting for service when rejuvenation
started, since these jobs are lost. We also take into account the run time of the system, since
the same cost paid in case of a longer run is preferred.

In the paper two systems are analyzed, they differ in the applied queuing policy. The first
studied system does not allow buffer overflow (we will refer to it as no buffer overflow case)
by stopping and rejuvenating the system when the buffer is full and a new job arrives to the
system. It may be the case when the buffer is supposed to be large enough to accommodate all
the arriving jobs, or when the system operator does not want to loose jobs during the system
operation. The second scenario (buffer overflow case) allows buffer overflow during operation,
however the cost caused by the lost jobs must be reflected in the overall cost function.

No Buffer Overflow Case

In the first studied system Poisson arrival process of jobs is assumed with parameter A, and
the service rate is decreasing with time: tlg(r)lo p(t) = poo and u(t) > p(t+ A) if A > 0. With the
above assumptions the system states can be described by two variables for the no buffer overflow
case, the time spent since the last rejuvenation, and the number of jobs waiting for service in
the system. Our goal is to find a policy, that determines for each state of the system whether
to stop the system and rejuvenate it, or to continue the service.

76



If we discretize the system variable that describes the time spent since the last rejuvenation,
we arrive to a Markov Decision Process (MDP). In the framework of MDP theory an algorithm
(we will refer to it as MDP algorithm) is provided to approximate the optimal policy, the policy
that yields the minimum expected cost [3].

In the paper we derive a condition for the cost function (the function that defines the cost
of stopping the system in the current state) when the optimal policy can be approximated by
applying the results for MDPs.

In addition to the general results we investigated the special case when the cost function has
the simple form of
b+ X'
t+Tg’
where b is the number of jobs waiting in the queue, £ is the time spent since the last rejuvenation,
and T'r is the rejuvenation time. If Poisson arrivals are assumed, ATg is the mean value of
number of jobs arrived during the rejuvenation period, i.e. this cost function is simply the
average number of lost jobs per time unit. We show that the MDP algorithm converges to the
optimal policy. T'wo simple rules are also derived determining a buffer content dependent upper
limit of time ¢ (b), for which if ¢ < typ(b), the optimal policy will continue the service, and
a buffer independent lower time limit {75, for which if ¢ > ¢7p the optimal policy will choose
system rejuvenation (t;p > typ(b)).

In practical applications if the cost differences in the time interval (typ(b),trp) are not
significant, it is not necessary to use the MDP algorithm. The applied policy can be simply
based on the derived upper and lower time bounds.

C(b,t, stop) =

Buffer Overflow Case

In the buffer overflow case the system can be characterized by three variables, since we have
to consider the number of lost jobs to find the minimal cost decision.

Similar analysis steps are accomplished like in the no buffer overflow case. The concern-
ing MDP algorithm is defined, and conditions for the cost function are derived to assure the
convergence to the optimal policy.

The analyzed simple cost function is modified to

T L
C(b,t, L, stop) = b_’_t/\#
R

where L r.v. denotes the number of lost jobs in [0,¢]. The convergence of the MDP algorithm
is not guaranteed, however a simple rule for t;7p(b, L) can be derived also for this case.

?

Numerical Example

The theoretical results are illustrated by numerical examples. The MDP algorithm is imple-
mented in Mathematica 2.0 for the no buffer overflow case, and the results of the MDP algorithm
and the derived simple rules are compared in some figures.
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CGU: A Global Optimization Algorithm for Protein Structure Prediction

Andrew T. Phillips, J. Ben Rosen and Ken A. Dill

This talk will discuss the CGU (convex global underestimator) algorithm which is a global
optimization algorithm designed to predict the native state of protein molecules, given their
primary amino acid sequences. Computing the native state of a protein requires: (1) a suitable
potential energy function, and (2) a conformational search method that can find the global
minimum of the energy function. Neither of these problems is yet solved. Finding the global
minimum is difficult because reasonable physical energy functions typically have many local
minima, the number of which grows exponentially with polymer size. We have a reasonable
energy function, described below, for which we know that the bottleneck is the search strategy
rather than the energy function. In this talk, we focus on the global optimization rather than
on the potential function problem.

We have developed a global optimization method that we have already tested on finding
global optima of homopolymer conformations. For that purpose we have used the energy func-
tion:

U=Uy+Up, +U; + Uy

where U, = bond stretching energy, U, = bond angle energy, U; = torsion angle dependent
energy, U, = non-local pairwise interaction energy. The first three terms are explicitly given
in terms of internal coordinates, but U,; is given in terms of the pairwise distances between
amino acids a; and a;. A major part of the computational effort in the energy minimization is
devoted to computing U,;, and its derivatives, in terms of the internal coordinates. We used
a Lennard-Jones potential for U,,; in our initial investigation of the new global optimization
algorithm [1].

Our algorithm for computing the global minimum of a polymer potential energy function
is based on the iterative use of global underestimators to localize the search in the region of
the global minimum. This new method, developed and implemented by J. Ben Rosen and
Andrew T. Phillips [1], is designed to fit all known local minima with a convex function which
underestimates all of them, but which differs from them by the minimum possible amount in the
discrete L1 norm. The minimum of this underestimator is used to predict the global minimum
for the function, allowing a localized conformer search to be performed based on the predicted
minimum. A new set of conformers generated by the localized search then serves as a basis
for another convex underestimation. This new algorithm combines some aspects of both quasi-
Newton methods and genetic algorithms. The effectiveness of this algorithm has been shown by
its ability to compute global minima for n-mer chains, as summarized next.

The use of an underestimating function allows the translation of a very complex function
into a simple underestimator. If the underestimator is well suited to the problem (i.e. provides
accurate predictions for the global minimum), the global solution can be found in very few itera-
tions. This new technique has already been successfully used to determine the three dimensional
molecular structures for n-mer hydrocarbon homopolymer chains with as many as n = 30 beads.
While there are estimated to be O(3™) local minima for a chain of length n, this method requires
only O(n*) computing time on average. In fact, for all hydrocarbon chains of length n < 12,
the predicted structures obtained by applying this algorithm have been confirmed as the global
energy minimizers of the potential function used. Moreover, it has also been shown that the
global energy minimum values, as a function of chain length n, lie on a smooth curve that can
be approximated very closely by a simple concave quadratic function. This important property
of the very complicated function U, which seems not to have been observed previously, permits
estimation of the global minimum energy for larger molecular chains, and can also be used to
accelerate the global minimization algorithm.
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While the algorithm developed has been shown to require O(n*) time on average, it is also
highly amenable to massively parallel computation. In fact, for homopolymers ranging in size
from n = 14 through n = 22, the results show that the algorithm is scalable with increased
problem size using a parallel heterogeneous computer system involving the Cray Y-MP C90 and
128 node Cray T3D at the University of Minnesota Supercomputer Institute. Furthermore, it
is expected that as the problem size increases, this new method will continue to make full use
of the computational power of this system. The solution to the 22 bead hydrocarbon problem
required approximately 36 minutes (wall clock time using only 8 processors).

Based on the success of the homopolymer tests described above, we have already begun
the process of applying the CGU method to more realistic protein-like models. This same
iterative global underestimating algorithm can be used with a potential function corresponding
to the more complicated chain of residues in a realistic model of proteins. Ken Dill’s group
at the University of California, San Francisco, has developed simple lattice models to better
understand the physics of protein folding ([2],[3],[4]). These models are based on evidence
that the hydrophobic interaction is the dominant force in protein folding, and that, to first-
order approximation, a protein can be modeled as a specific sequence of hydrophobic (H) and
hydrophilic (P) monomers. While such simple models show many of the secondary and tertiary
structural features of real folded proteins (including a-helices and b-sheets), the restriction to
lattices is too artificial to allow realistic folding, but the Dill group has recently developed a
more realistic off-lattice model.

An even more realistic, yet still simplified, potential function has been developed by S. Sun
[5]. It is an off-lattice model in which the mainchain is represented by spherical beads centered
at C alpha carbons, and sidechains are also single spherical beads. In that work, interactions
are modelled based on protein database derived potentials. However Sun, now working in Dill’s
group, has developed a much simpler potential function that has been used in a restricted
search problem. Their new potential function is simple but physical, and does not derive from
a protein database. Sun and Dill [6] have shown that the use of the Sun chain representation,
along with only a hydrogen bond energy term and a single hydrophobic interaction energy term,
when searched using simulated annealing and genetic algorithms, reproduces relatively well the
chain folds of 10 small proteins, provided helices and strands are fixed in their known native
conformations (to limit the conformational searching time). Remarkably, despite the simplicity
of the potential function, the limiting problem is again found to be the conformational search
strategies, not the potential function: the energies of the true known native structures are lower
than the best computed structures in 9 out of 10 cases. Hence the aim of this joint work is to
apply the CGU global optimization strategy can do better, using the same potential function.
Results from this most recent work will be presented.
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LGO: An Implementation of a Lipschitzian Global Optimization Procedure

Janos D. Pintér

Decision problems are frequently modelled by optimizing the value of an objective function under
stated feasibility constraints. Specifically, we shall consider the following global optimization
problem (GOP)

min f(xz) subjectto z€ D CR" (1)

It is supposed that in (1) f : D — R is a continuous function, and D is a bounded, robust
subset (‘body’) in the Euclidean n-space IIR". In addition, the Lipschitz-continuity of f on D
will also be postulated, when appropriate.

The above assumptions define a fairly general class of optimization problems. Essentially,
they reflect a decision paradigm in which a rather vaguely defined, possibly quite ‘large’ and/or
‘complicated’ search region is given on which a (potentially) multiextremal—possibly ‘black
box’—objective function is minimized. For reasons of analytical tractability, it will also be
supposed that the (non-empty) set of global solutions X* C D is, at most, countable. We shall
apply the notation f* = f(z*), for z* € X*.

To solve (1), a general family of branch-and-bound type adaptive partition strategies can be
introduced: for comprehensive discussions, consult, e.g., Horst and Tuy (1990), Pintér (1992a,
1995), Hansen and Jaumard (1995), with extensive lists of additional references. Necessary and
sufficient convergence conditions can be established: these lead to a unified view of numerous GO
algorithms, permitting their straightforward generalizations and various extensions, to handle
specific cases of the general GOP (1).

An implementation of LGO, a Lipschitzian global optimization procedure (integrated with
other solvers) is discussed briefly below. PC and workstation related experience, numerical test
results and several applications are highlighted. Application areas include, among others, the
following (Pintér, 1992b, 1995):

e general (Lipschitzian) nonlinear approximation

e systems of nonlinear equations and inequalities

e calibration (parametrization) of descriptive system models
¢ data classification

e generic hierarchical configuration design

e aggregation of negotiated expert opinions

e product/mixture design

e optimized design/operation of ‘black box’ (engineering, environmental, etc.) systems.

The LGO Program System
Scope of Application

The LGO program system serves for finding—that is, numerically approximating—the best
solution, or (theoretically) all solutions, of the possibly multiextremal optimization problem in
its standardized, box-constrained form:

min f(z). (2)

a<zx<b

80



In (2) @, z, b, are finite n-vectors, and f is Lipschitz-continuous on [a, b]. Note that Lipschitz-
continuity is an obvious ‘minimal’ requirement, in order to assure a guaranteed approximation
of the optimal objective function value f*, on the basis of a finite set of sample points from D.
Notwithstanding, GOPs having a purely continuous structure are also of practical interest, and
can be numerically handled within the framework of LGO.
Let us observe that a significantly more general class of (continuous or Lipschitz) GOPs of
the form
min fo(z) fi(z) <0, i=1,...,m a<z<b (3)

(in which fy := f, fi, 1 =0,...,m are continuous or Lipschitz) can be numerically approximated
in the form (2), following a penalty transformation based incorporation of the constraints f;, i =
1,...,m into the objective function. (Consult, e.g., Fletcher’s (1983) review on such techniques.)
The penalty multipliers associated with the constraints can be adaptively chosen, to enforce the
(approximate) feasibility and optimality of the solution found.

Other solver options to handle the general GOP (3)—in the framework of LGO—are under
elaboration.

Solution Methodology
The current program system includes—in an integrated fashion—the following optimization

procedure options:

e Lipschitz global optimization by adaptive partition and search (LGO)
e pure random search on the interval [a,b] (RS)
e local search (Fletcher-Reeves-Polak-Ribieére method, FRPR)

e local search (Powell-Brent method, PB).

A few comments related to these solvers are in order. As known, RS is a very simple,
‘folklore’ approach to solve GOPs. In the present context, it can be applied, for instance,
by novice users who want to explore the feasible set, and/or as a preliminary search phase
for possibly reducing the initially chosen search interval. The Lipschitzian solver is far more
sophisticated, and—enabled with proper parametrization—it should provide a reasonably close
approximation of the global solution(s), before the LGO system is switched to local search
(solution refinement). The classical local optimization approaches FRPR and PB (for a more
recent practical discussion, consult Press, Teukolsky, Vetterling and Flannery, 1992) have been
modified for this implementation. Further implementation details are discussed by Pintér (1995);
additional options to solve (2) are under development.

Structure of LGO Application Programs

The following abbreviations will be used (reflecting a Fortran environment on PCs):

e NAME — name of LGO application (given by user)

e NAME-DR.FOR - source code of main driver (prepared/adapted by user)

NAME-OF.FOR - source code of objective function f (by user)

NAME.IN — input parameter file (by user)

USERSRC.FOR — additional source code (optional, by user)

LGOSBRS.OBJ - object file of LGO program system
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¢ NAME.OUT — more detailed output file generated by LGO

e NAME.SUM — summary output file generated by LGO.

Commented templates of NAME-DR.FOR, NAME-OF.FOR and NAME.IN are provided,
to assist users. The principal structure of LGO application program systems is shown below.

NAME-DR.FOR

!

NAME.IN—/ LGOSBRS.0OBJ «+—> NAME-OF.FOR «— USERSRC.FOR

v v

NAME.OUT NAME.SUM

Observe that USERSRC can also be given as an object file, hence enabling the operation of
LGO on true ‘black box’ applications.

Current System Requirements and Problem Size Limitations

Hardware and Software Requirements
PC Environment

e IBM PS/2 Intel 386 & 387, 486 or Pentium processor based computer (or compatible)
e minimum 4 Mbyte (recommended: 8 Mbyte, or more) RAM

e appropriate hard drive space (when running LGO in virtual memory mode)

e professional Fortran development environment

e appropriate memory management tools.

Workstation Environment
No special restrictions (most systems, on which a professional Fortran is installed, are appropri-
ate). Installation of LGO in other environments and programming languages is also possible.
Problem Size Limitations

e The present (explicitly declared) array structure in LGO supports the formulation and
solution of GOPs up to 50 variables.

e Up to 10000 (currently active) partition subintervals can be simultaneously present in the
LGO solution mode.

Note that both of these limitations can be easily relaxed—if necessary—but memory require-
ments and computational times will correspondingly increase.

Using LGO in an Interactive Environment

The current PC version of LGO can be activated and used in an interactive fashion, using
a menu-based interface under DOS. (A Windows version is also under development; on work-
stations X-Windows readily provides an interactive multitasking environment.) The application
menu includes the following integrated options:

e introduction (general LGO information)
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e demonstration program information
e edit application files

e compile LGO application programs
e run LGO applications

e view optimization output files

e view graphical summary of results

e quit (return to operating system).

Numerical Experience and Applications

Test problems of realistic complexity (up to 50 variables) have been solved using LGO; a few
examples are presented in Pintér (1995). Additionally, problems in numerical analysis, indus-
trial and environmental engineering—having one to over 60 variables—have been solved, using
different versions of LGO. For details on several more recent numerical studies and applica-
tions, consult, e.g., Pintér (1990a,b, 1991), Pintér and Pesti (1991), Hendrix and Pintér (1991),
Pintér (1992b), Csendes and Pintér (1993), Van der Molen and Pintér (1993), Finley, Pintér and
Satish (1994), Pintér, Fels, Lycon, Meeuwig and Meeuwig (1995), Stortelder and Pintér (1995).
Numerous further prospective applications are collected in Pintér (1995).
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Numerical Approximation of Elliptic Fekete Point Sets: A Global
Optimization Approach

Walter J.H. Stortelder and Janos D. Pintér

The objective of this work is to provide a numerical approximation of elliptic Fekete point
sets, applying Lipschitz global optimization. This problem is of obvious practical interest in
scientific modelling; consult, for instance, [1, 3, 4].

Let us consider an n—tuple = (x1,...,%,) in which z; € IR?; we are interested in the
global maximum of

fa@)= I lei—zjll, st Jzll=1 ie{l,....,n} (1)

1<i<j<n

in which || - || denotes the Euclidean norm. It is known that problem (1) has a non-polynomially
increasing number of local optima and saddle points; its analytical solution is unknown, and it
apparently poses a nontrivial numerical challenge. The points z1,...,x, which give the global
maximum of (1) are called the elliptic Fekete points of order n.

In order to solve this problem efficiently, first we will discuss a straightforward transformation
to spherical coordinates. After briefly discussing some analytical results concerning the prob-
lem, we shall apply the Lipschitzian global optimization strategy LGO (consult [2]) to provide
numerical approximations to elliptic Fekete point sets. LGO is a combination of Lipschitzian
adaptive search, pure random search, and gradient-free local optimization.

Acknowledgments: This research has been supported by the Dutch Technology Foundation
(STW) and the Hungarian Scientific Research Fund (OTKA).

References

[1] P.M. Pardalos, An open global optimization problem on the unit sphere, Journal of Global
Optimization, 6, 1995, p. 213.

[2] J. Pintér, Global Optimization in Action (Continuous and Lipschitz Optimization: Algo-
rithms, Implementations and Applications), Kluwer Academic Publishers, Dordrecht, 1995.

[3] M. Schub and S. Smale, Complexity of Bezout’s theorem. I1I: Condition number and packing,
Journal of Complexity, 9, 1993, 4-14.

[4] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Tokyo, 1959.

85



Reducing the Problem of Organization Structure Adaptation to
Optimization Problem in Boolean Space

Olga Yu. Polyakova

The situation which is considered is: there is a hierarchical structure S which describe the nature
and the state of production system. When hindrances influence on system or the environment
of the system have changed the structure of system must be changed too. So the structure
adaptation problem become the actual one.

Let the structure S is described by such set of parameters:

S = (X7Y7FX7FY)'

Here, X is the set of structure elements, Y is the set of connections between elements, Fx is
the set of elements’ characteristics, F'y is the set of connections’ characteristics.

The problem formulation of structure adaptation problem considered in some literature is
based on the set of possible variants of structure and possibility of looking over all those variants.
However such approach isn’t expedient one for production system structure because of large
dimension of the set of elements. It doesn’t allow to synthesise an effective algorithm for suluting
this problem.

From the other side the clustering algorithms which are used for synthesis of organization
structure of production system allow to solve a large-dimensioned problem. Minimum of clusters
number (when a threshold value is fixed) is the criterion for structure synthesis problem. This
criterion describe management characteristics of structure, not it’s stability characteristics.

To study the stability quality of synthesized structure the stability function is used. It may
be used as a criterion for the synthesis problem or as an additional criterion. However the
stability function describe static characteristics of structure and tell nothing about it’s potential
changing possibilities when environment is changing.

Another stability function can be proposed as a criterion which allow to study the dynamic
stability of structure. Let assumpt that the single-elements cluster is absolutely stable one. Such
partitioning may be considered for each problem when no another criterion used. Let define the
freedom degree of cluster as a value which depend on number of elements included in cluster,
stability of each element, degree of connections between elements and cluster’s diameter.

-1

N,
N, d .
F = Nl > ui|  diam(Qy), (1)
t,j=1

where

e — degree of connection between elements 4,5
Y ] stability of the element ¢

N; is the number of elements included in cluster ();, N is the number of all elements.
Let for absolutely stable partitioning stability function (II) is equal 1 and for any other
partitioning stability of it’s cluster:

U=—,1=1,....M
l -Fl7 )y

M is the number of clusters. (We suppose that all elements are in unit cube).
When hierarchical structure is considered the beginning elements for next level synthesis are
clusters of the previous level.
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Now the synthesis problem for the organisation structure of production system can be rep-
resent as a two-criterion optimization problem:

U(S max
(S) — @

dim(X) — min

with restrictions:
X=XxXux?u..uxm,

XFnXxy =0,
1, XFeXxitt
Tij = 0

m is the number of hierarchy level. The stability function (IT) U(S) can be represented in the
form:

1 m-1 4 Nit1 Ny p
U(s) = m_1 Z N, Z Z U; Ly (4)
k=0 'k | j=1 j=1

The complexity of using this function as a criterion is that neither number of hierarchy level no
number of obtained clusters are known. However the nature of problem let suppose that the
function has a global maximum when it is considered in boolean space B,. The dimension of
the space is unknown for the synthesis problem but we consider a restriction for the structure
adaptation problem

n < dim(X)

and take n = dim(X) as a beginning value.
The structure adaptation problem is transformed to the form

U(S*) — max
dim(S™) — min (5)
with restrictions
U(s) > U(s) (6)
Restriction (6) is like restriction (3)
|5*=S<d (7)

S is the known structure, S* - unknown structure, ¢ - the assumed measure of difference between
structures. It is suppose that

dim(Xo N X3) > dim(XoAXy)

in other case the solving adaptation problem is unexpedient.

The speed of solving adaptation problem will depend on choice of beginning point. The
beginning vector in boolean space must ensure the condition (7) and let save a part of previous
structure. Such vector is easy found.

The synthesis of algorithm is based on the assumption about existence of global maximum
and the one-to-one correspondence between some components of vector from boolean space
which describe a new structure.

An algorithm of soluting structure adaptation problem will allow to get a new structure with
the more little expenditures then it is need for solving production system synthesis problem
because of saving a part of old structure.
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A Multistart Linkage Algorithm Using First Derivatives

Chris J. Price

This paper describes an optimization algorithm for estimating various acoustic parameters of
an ocean environment. The parameter estimation proceeds as follows: a continuous wave single
frequency source in the ocean generates a sound field. This field is measured at a number of
points in the ocean. A normal mode model (see eg. [1]) incorporating various sea floor parameters
such as density, sound speed, and attenuation is used to predict the measured field values. The
parameters are chosen to minimise the 2-norm of the difference between the measured and
predicted field values. It is possible to modify the normal mode model to calculate the objective
function and its gradient for approximately twice the computational cost of calculating the
objective function alone. The following algorithm is designed to exploit the cheap gradient
information, and for convenience is recast in the following form: maximize f(z), over z € F,
where F C R". Herein f € C?, and F is of the form ¢ < z < w.

The algorithm is a variant of multistart, using a clustering process called Stochastic Process
Single Linkage (SPSL) which is similar to Multi-Level Single Linkage (MLSL) [3]. SPSL uses a
stochastic model together with the gradient of the objective function to assign a reliability value
to each link. Unlike MLSL, SPSL does not put a link between every pair of points that are
sufficiently close together. This suggests that SPSL’s performance will not degrade when used
with non-uniform distributions of sample points. An adaptive method for generating sample
points is described next, followed by a description of SPSL.

The sample points are generated in batches. The first batch consists of random or quasi-
random points. Points in subsequent batches are generated by perturbing existing sample points
(referred to as branch off points). The perturbations are drawn from a uniform distribution on
[—1,1]" and scaled to produce small perturbations most of the time.

The branch-off points are chosen using a statistical model. The existing sample points are
first grouped into m layers L1, ..., Ly,, where x € L; iff ;_1 < f(x) < ¥¢;. Here 3 < {1 <--- <
b1 < by, g = —o0, and £, = oo. A transition matrix T is then formed, where Tj; is the
perceived probability that perturbing a randomly chosen sample point in layer 5 will produce a
point in layer 7. Each branch-off point is chosen randomly from within each layer, and the layer
is chosen according to the probabilities given in the vector ¢, where the "' element of ¢ is the
probability of choosing layer ¢, and where ¢ is parallel to the solution of

mﬁtx efan such that 7 >0 and o'W lp=1.

Here W = diag(wy,...,wy,) and w; is the number of sample points in L;. Thus ¢ is a vector
which increases the probability that the next sample point will be in L,,.

The advantage of a scheme of this form for generating sample points is that it allows the
algorithm to automatically vary between randomly chosen sample points, and sample points
generated by perturbing existing sample points which are regarded as better than average. The
former would be more effective on a function with many widely spaced maxima which are nearly
global maxima, whereas the latter would be preferable on, say, a hump shaped function with
small ripples which create many local maxima.

It can be shown that the sequence of points is dense in F with probability 1, and that
provided the maximum permitted link length ¢,,,x goes to zero as the number of sample points
increases indefinitely, the algorithm will find all global maxima with probability 1.

It can be shown that if the layer structure and 7" eventually remain fixed, but W continues
to be updated, then at any iteration an a prior: distribution for the sample points exists in
the limit N — oo, and is independent of the sample points already generated. The limiting
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distribution’s mean is strictly positive, and if the branch off points are always chosen randomly
from the existing sample points, then this mean is constant over F.

The stochastic process based single linkage

Let zo and z1 be sample points. A link from zy to 1 exists iff the objective function is
monotonically increasing along the line segment from zg to z1. Let F(t) = f(zg + t(z1 — z0))-
The second derivative of the objective function on the line segment is modelled by a stochastic
process B(t) t € [0,1]. This model is first constructed without reference to the known function
and gradient values at the end points; these are included afterwards. By assumption, F” is
continuous, but no other information is known about it. Hence, any model for F" should be
invariant under translations, and under an interchange of the endpoints. It is reasonable to
make the following assumption:

Assumption 1 Vi, to,t3,t4 € [0,1] satisfying t1 < to < t3 < t4, the random variables B(ty) —
B(t1) and B(t4) — B(ts) are independent.

Under these assumptions it can be shown that B = By + B1 + D where D is a random
variable, and where By and B are independent Brownian motion processes rooted at 0 and 1
respectively. By and B; have zero mean and a variance constant o2. If D is independent of By
and Bj then the covariance function for By + By + D is translation invariant inside the unit
interval. From now on this independence will be assumed.

Let Fy, Fi, F{, and F| be the known function values and first derivatives of F at ¢t = 0 and
t = 1 respectively. F(t) is modelled by the stochastic process

t s
S(t) = Fy +F6t+/ / B(u) duds
5=0 Ju=0
Information about o? is obtainable from F} and F| by considering

Fl=F,+D+ao and Fi=Fy+Fj+ 1D+ ay

1 1 ]
where a1 = / Bo(u) + Bi(u)du and ay = / Bo(u) + Bi(u) duds
u=0 s=0 Ju=0

Defining Qe = 2F1 — 2Fy — F, — F| = 2ay — aq, this Gaussian random variable is independent
of D, has zero mean, and a variance of 62/15. It can be used to yield a crude estimate of o2 on
its own, or combined with estimates from other links under the assumption that there is some
sort of uniformity between the covariance constants for different links.

The link’s reliability is calculated by estimating the probability that a line local minimum
exists along the line segment between the two sample points. This estimate is formed by first
estimating the probability distributions for S’(1/3) and S’(2/3) using the estimate of 02. The
reliability of each link can then be computed as follows:

1. If Fy < Fy, if F} <0, or if ||z1 — 2¢|| > fmax then stop as there is no link. Here £y is the
maximum permitted link length given by equation (35) in [2].

2. Calculate the probabilities p; and po that S’(1/3) > 0 and S'(2/3) > 0 respectively.

3. Estimate the reliability of the link as follows: If F| < 0 then the reliability is 1 — (1 —p1)p2,
otherwise the reliability is p1ps. The link exists only if the reliability exceeds a minimum
value.

The global optimisation algorithm can now be stated:

1. Generate initial batch of sample points.
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2. Set the number of layers as min(N/20,5) and choose the layer boundaries so that there
are approximately an equal number of points in each layer. Calculate ¢.

3. Find all points in the top layer which are not linked to any higher point.

4. If the stopping conditions are satisfied, do a local search from each unlinked sample point
in the top layer, otherwise generate the next batch of points, adjust £nax, adjust the
perturbation scale factor, and go to step 2.

Preliminary numerical results and discussion

The algorithm was tested on a number of standard test functions (see eg [4]), where all
sample points were generated randomly in each run. All global maxima were located for each
problem and results for these are listed in table 1.

Two additional test functions were also used. For these two problems the number of sample
points was kept small in order to simulate what happens in a small part of a large feasible region.
The first has a unique global maximum surrounded by a ring of connected local maxima:

max f(z) subject to z € [0,1]"

cos(dml|z — 3|I) — llz — 51> if [l — 3] <
—|lz — 112 otherwise

1
where f(z) = { 2
The number of successes out of 10 trials were: for n = 2 and 50 sample points, MLSL (9), SPSL
(10); for n = 2 and 13 sample points, MLSL (0), SPSL (10); and for n = 3 and 50 sample points,
MLSL (1), SPSL (10). In all of these runs all sample points were linked.
The second test problem has two global maxima close together, and is designed to test an
algorithm’s ability to resolve two close maxima.

|z — & — 0.15¢1 |||z — 3 + 0.15¢1 |2

subject to z € [0, 1)?
(ERE J 0.1]

Problem T: max—
x

The results for this problem are listed in table 2. In each run a fixed number of sample
points were generated randomly. The results show that SPSL achieves the same resolution as
MLSL with half as many sample points. Results for the Rastrigan function also support this:
using 250 random sample points MLSL found the global maximum on 4 runs out of 10, whereas
SPSL succeeded 8 times out of 10 using 125 random sample points.

The results show that SPSL is a viable method. If the gradients are only calculated for points
in the top layer, then the results for problem T and the Rastrigan function show that SPSL can
be more efficient than MLSL, especially if the gradient is significantly cheaper than the worst
case for reverse automatic differentiation. The results for the acoustic parameter estimation,
and other problems will be included in the final paper.
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‘ problem H local searches local maxima sample points ‘

Branin 3 3 250
Goldstein-Price 2 2 150
Camel 5 3 350
Hartman 3 2 2 50
Hartman 6 8 2 500
Shekel 5 3 3 150
Shekel 7 5 4 450
Shekel 10 11 8 500
Rastrigan 27 27 500

Table 1: Numerical results for the standard test problems.

sample points || 50 75 100 125 150 175 200
MLSL 0 2 8 6 7 9 10
SPSL 6 8 10 10 10 10 10

Table 2: Results for problem T.

[4] Térn A. and A. Zilinskas, Global Optimization, Lecture notes in Computer Science no. 350,
Springer Verlag, 1989.
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Tracking Elementary Particles near their Primary Vertex: A Combinatorial
Approach

Jean-Francois Pusztaszeri, Paul E. Rensing and Thomas M. Liebling

We report on the successful implementation of a discrete optimization algorithm to reconstruct
tracks generated by charged elementary particles produced by the LEP accelerator at CERN.
This method solves a five-dimensional assignment problem, and is now used to reconstruct data
produced by the ALEPH collaboration. It is shown to perform substantially better than the
local search methods it is replacing. We believe this represents one of the first successful attempt
at applying a combinatorial optimization method to tracking in High Energy Physics.

Problem definition

Most of High Energy Physics is devoted to the study of fundamental interactions produced by
colliding beams of elementary particles, as provided by the LEP storage ring located at CERN,
near Geneva. These interactions are observed by means of large detectors which are made of
concentric cylindrical shells of electronic arrays, such as the ALEPH compound detector. The
inner shells are made of ionization chambers and solid-state devices whose purpose is to record
space-points along the flight path of every charged particle produced by the interaction (generally
a Z° decay). Only when such a track is fully reconstructed from its distribution of space-points
can the properties of the particle which generated the track be known.

To determine this distribution, one traditionally uses discrete linear filtering methods [5].
These methods return insufficiently precise results if the hit density is large enough and the
separation between tracks decreases. We This situation is more commonly encountered near the
point of origin (or vertices) of these curves, where the precision in track parameters is needed
most. This paper presents an algorithm which improves the precision of the track fit in ALEPH,
by solving a global assignment of tracks to hits produced by the detector nearest to the point
of collision, the Vertex Detector (VDET).

The latter is made of two concentric layers of silicon wafers inlayed with aluminium trigger
strips. Wafers overlaps ensure that the entire vertex region (i.e., the collision region) is sur-
rounded. The wafer ideally generates two orthogonal hits for each charge particle which crosses
it. From these two hits, a three-dimensional point can be reconstructed.

The detector is immersed in a magnetic field of constant magnitude along the beam (cylinder)
axis, which deflect charged particles along a helical path towards the end plates of the cylindrical
assembly. The track fitting part of the reconstruction is done by means of a discrete linear filter
method (a Kalman filter with a spatial dependence of the track parameters). Dense material
present, in the detector (walls or wires) often induce perturbations on the tracks however, which
requires an increase in extrapolation error in the vertex region.

Throughout this paper, we rely on the availability of a set of outer partial tracks reconstructed
from outer tracking devices, where tracks are better separated, and where the pattern recognition
problem is solved without ambiguities. We perform a global assignment of outer partial tracks
to an equal number of VDET signals in two layers (inner and outer) and in two views (the z
direction, along the beam axis, and the r — ¢ direction, perpendicular to it).

Track extrapolation errors are represented as cones which cover more than one cross-hit
association, and which may overlap each other, hence the intransic ambiguity of this problem.
The elliptic intersection of the cones with the wafer planes, together with the hits they cover,
are the inputs to a global assignment. In this formulation, a given track may be assigned no hit
(when it misses the detector altogether) and up to eight hits, when its extrapolation footprint
covers overlap regions in the two layers of the detector, defining a set partioning problem.
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Combinatorial Formulation

Input

Each element of a set I of outer partial tracks is associated to elements of four disjoint sets
of hits in either view and either direction of the VDET, denoted by J, K, L and M. The
pulse-height of a hit (equivalent to the amplitude of its signal) is used to determine whether that
hit may be used more than once in a track assignment. Those which cannot are called single
hits.

To reduce the dimension of this problem, we fuse pairs of real hits which lie in the same view
and in the same layer, but lie on different wafers, and consider them as a single candidate for
assignment to a track. Doing so allows us to bring the formulation down from a generalized set
partioning problem, with each set containing exactly one track and from one to eight hits, to a
five-dimensional assignment problem. This requires a formalism to account for null assignments
(i.e., noise and inefficiencies). We introduce therefore a "null” hit (denoted by zero) for each
view and each layer. Likewise, we define a noise track (track ”0”) to collect hits which may have
been left unused by the association. The input to our problem is therefore a set of (n; + 1) outer
tracks, together with (n; +1) p— ¢ hits and (nj + 1) z hits on the outer layer, and (n;+1) p—¢
hits and (n,, + 1) z hits on the inner layer.

It UV;, UWy, LV, and LW,, represent two orthogonal pairs of hits on the outer and lower
layers of the vertex detector respectively, and T; is the track which is to be matched to these
hits, the following decision variable

)T = { UV, UW,, LV, LWy, }
Tijkm =10 otherwise
will determine the association of every outer track Tj.

Further reduction in problem size has proved to be experimentally unwieldy: in the absence
of correlation between the sets, we may be tempted to formulate our problem as four instances
of a two-dimensional assignment problem (i.e., a track and a hit in either layer and view), and
use polynomial algorithms to solve each one. As experience showed us, we lost our most useful
criterion for assignment in doing so, namely the angular comparison between a segment made of
two VDET cross-hits on different layers and the angle of incidence of the tracks. For the same
reason, a three-dimensional assignment for each layer is uninteresting. A plausible alternative
would be a three-dimensional assignment formulation across the views. Angular information is
preserved.

The cost of assignment of each combination is calculated by finding the optimal estimators
of the track parameters found by adding the VDET hit candidates to the hit distribution of the
outer track. These optimal estimators are found by what amounts to a least square minimization
and a goodness-of-fit test for which a x? value may be calculated, but due to the presence of
dense material (silicon wafers and their support frames) in the region of interest, it is likely that
the particle trajectories undergo substantial local deviations from their ideal helix model. The
dynamics of these interactions is modeled by a discrete linear dynamic system, and a Kalman
filter algorithm is used to calculate recursively the individual costs of assignment of each pattern.
This is expressed in terms of the filtered residuals 7, and their covariance matrix Ry, and the
random variable,

Xk = Xi—1 + T Ry T (1)
will follow a x2 distribution (x3 = 0). Given n data points in our original distribution, equation
1 yields the x2 value for the fit. The x? value of the fit corresponding to some Tijktm = 1
assignment is denoted by C\2 jjkim
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Objective function

We consider here a linear analog to the nonlinear objective function obtained from a normal-
ized x? test. Given the simplified case where the probabilities of the Tijkim = w%‘j flm ASSignments
are assumed to be independent, the hypothesis z;;x, = x;‘jklm, for a real track ¢, will have a
probability

DPcond,ijkim =

o0
/ pXQ’NDOFVdet(i) (t)dt (2)

CX2,z'jk’lm

where NDOF 3¢ (¢) is the number of hits in the Vertex Detector which have been assigned to i.
This probability is conditional to having observed Ny jkim missing hits in this pattern (one or
more indices different from i is equal to zero), so if we assume the local inefficiency of the detector
to follow a binomial distribution with probability €, we obtain the individual costs of assignment
Cijklm = _Ingcond,ijklm — log(Vnuit,e) (Nnuitijeim) - Likewise, considering detector noise as a
Poisson process, we may write cyjim = — log ppOiSSOH(INT(A)) where X is the expected number
of noise hits in the event. These cost coefficients define the following objective function

ng My ng N nm

ZX) =333 cojpmijrim 3)

i=0 j=0 k=0 =0 m=0
which needs to be minimized.

Constraints

Tracks and hits may not be used freely in the AP5 assignment: having introduced null hits
in our formulation, the tracks must always be assigned to some hit pattern which can be made
of real hits and null hits alike. This gives

g Np Nyp Ny

220D wijum =1, Vi€ {l,...,n;} (4)

§=0k=0[=0 m=0

The noise track is subject to an inequality constraint. The constraints which apply to real hits
in the vertex detector are symmetric in each layer and each view. We take, as an example, all
real hits in the p — ¢ view of the outer layer, which are indexed by j. Hit constraints in other
views and other layers are identical to those found below, save for the order of the indices. For
every real hit UV}, we know an integer M; > 0 which indicate how many times that hit is part
of a fused "logical” hit located on the overlap region of the wafers. If that number is non-zero,
the vector G;(M;) contains the indices of the logical overlap hits (in general, one real hit may
belong to more than one overlap pair).

We want single hits to be used exactly once, whether assigned to a real or a noise track. If
a hit is part of an overlap combination, we require a mutual exclusion between the hit and its
overlap parent in the assignment. We have therefore,

ng N N N M;

Z Z Z Z Tijklm + 21 xiG§m)klm =1
m=

=0 k=01=0 m=0
Vj € {17 s 7njreal,single}

Inequality constraints which apply to undecided real hits are expressed in a similar fashion:
keeping in mind that it is extremely rare for a hit to be used more than twice, given the fine
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resolution of the Vertex Detector, we set the right-hand side of the inequality to two. Hence,

n; Ng N; Nm Mj
1< Z Z Z Z Tijkim + Z Ty i | =2
i=0 k=0 1=0 m=0 m=1 J

Vj € {njreal,single +1,... 7njreal}

The overlap hits are subject to the constraints which apply to their components. No con-
straints have been placed on the null hits, which are used freely.

Algorithms

Preprocessing

Tracks tend to bunch together in subsets which are themselves well separated, so one may
successfully apply a partitioning to the main assignment in order to produce several logically
independent subproblems of smaller sizes. This is tantamount to finding all connected compo-
nents in a graph constructed with the tracks as nodes, connected by edges of non-zero weights if
and only if any two track are in competition for at least one hit. Together with this component-
generation step, we remove entirely diagonal subproblems, i.e., those for which the set of local
optimal patterns of each track is in fact the global optimal solution.

This is followed by a heuristic to remove from the component tracks with an extrapolation
error which is much larger with respect to other elements of the set. Such tracks, which have
been either poorly fitted in the outer tracking region, or have undergone a large smearing due
to multiple scattering, may produce patterns with an excellent y?, and are therefore more likely
to contribute to an optimal solution with little physical significance. By simply removing such
tracks from the component, we render this algorithm more robust while reducing component
size. Edge weights are calculated using

A4 - Ay
Wij = m (5)

where A; and A; are the average area of intersection between the detector wafer and the ex-
trapolation cones of tracks T; and T} respectively, and perform an iteration over the edges in
order of non-decreasing length. If the successor of the edge being considered is less than half of
its own, we remove this edge from the list and check whether the graph has been disconnected.
This latter step is in O(n), where n is the number of nodes in the graph [1]. Once the graph has
been disconnected, we reapply the algorithm to the independent components until we are left
with a set of dense subproblems. If the end problems are all singletons, then we have a purely
sequential assignment algorithm.

Main algorithm

Once preprocessing has completed, the irreducible AP5 subproblems are solved by means
of a branch & bound algorithm using linear programming relaxation. This scheme follows the
conventional structure of commercial mixed integer programming solver, with some problem-
specific steps implemented into the generic structure. Among these is the use of track momentum
to generate partial lists of variables while selecting branching variables. If, for a given active
node, any two variables with different track indices are in competition, the variable corresponding
to the track with the higher momentum, and therefore the smaller extrapolation error, will be
branched upon first. Because the footprint of this track will be relatively small with respect to
others, so will in general be the number of patterns available for it. For variables all involving
the same track index, the ordering will put priority on patterns which involve two pairs of real
cross-hits (all four hit indices are greater than zero), and if this is not available, only then one
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pair (corresponding to the cases where either hits j,1 or hits k,m are non-zero). Ordering within
these categories is arbitrary. If no cross-hit pairs can be found, then the next candidate in the
list is the fully null variable, X;p000. The goal of this ordering is to set as early as possible in
the algorithm the assignment of tracks for which very little ambiguity exist.

Node ordering among the list of active nodes follows a depth-first search plus backtracking
scheme, with an arbitrary left son selected first, as described in Nemhauser & Wolsey [4]. If
the node is pruned, the next active node is determined by finding the node for which the lower
bound is minimal.

Results

Computation

The application of the logical partitioning and clustering steps accounted for a decrease in
the average number of tracks per event from 32 to 6, for a sample of a thousand events. This
came with no major increase in the number of problems to solve, mainly because disconnecting
the component graph generated in turn diagonal problems which were solved by a linear time
algorithm.

Remaining subproblems of non-trivial size were directed to the branch & bound algorithm.
The average number of variables and constraints in the sample were 160 and 31 respectively,
for an average component density (node to edge ratio) of 0.5. While these problems are small
in average, it is important that the algorithm solves all problems encountered, as the larger
problems contain generally different physics information than the small ones. Most noticeable
are the multiple-prongs tau decay interactions, which consistently reach a thousand variables.

To date, all problems could be solved to optimality by the branch & bound algorithm de-
scribed earlier, interfaced with a public domain, dual simplex-based linear programming solver
called LP_SOLVE, written by Michel Berkelaar from the Eindhoven University of Technology
[2]. Compute time for these problems never exceeded a second of CPU time on a DEC ALPHA
3000/300 RISC workstation. The compute time of the entire procedure was in fact dominated by
its initialization phase, and most noticeably by the several smoothing iterations required by the
Kalman filter while generating the cost matrix. Time spent in preprocessing and post-optimal
hit interchange was negligible. No event observed so far has taken more than ten seconds to
solve on our computer platform, all phases included.

Physics results

The method described above has been implemented into the main reconstruction algorithm
used by ALEPH. Since it started running at the end of May 1995, this program has reconstructed
10’000 hadronic Z° events from the 1994 year of production. This section provides a comparison
of results obtained by this algorithm and the method it has replaced, called JULIA, which is
using a Kalman filter and a greedy search.

We considered instead the physics problem of identifying events which contain b-quarks.
This so-called “hadron tagging” is performed by identifying the signature of the event, the long
lifetime and large mass of the hadron containing b-quarks, and is fully described in [3]. This
method uses what is known as the impact parameter of the tracks in the event, defined as the
distance of closest approach between a track and the primary vertex. The probability that
a measured impact parameter is consistent with zero is computed using a resolution function
which can be measured directly from the data. Then, probabilities from the tracks are combined
in a two step process to generate a probability that the event contains a long-lived hadron.

Fig. 1 shows the resolution histogram based on the events reprocessed thus far by ALEPH
with the help of our algorithm. This plot shows the impact parameter divided by its error for
both the old sequential (JULIA) and the new branch & bound based method. The peak of
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this distribution represents an error-free pattern recognition, while the tail area reveal a poor
resolution of the pattern recognition algorithm. The log scale used for this histogram tends to
amplify the measurement errors, but also reveals that the method presented in this paper is
doing substantially better when compared to a greedy sequential assignment.

Conclusion

The method presented in this paper is currently being used to reprocess the 4.5 million events
which have been collected by ALEPH since 1990. Improvement observed following this imple-
mentation, first on simulated events and later on real data, provided the incentive for starting
this effort. An online implementation of this method should follow in early 1996, requiring sub-
stantial improvements in the combinatorial algorithms, to accommodate both the near-real-time
requirements on compute-time bounds, and an expected tenfold increase in problem size. This
work may serve as a base to broaden the use of combinatorial method to other experiments in
High Energy physics.
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An LP-Based Branch and Bound Algorithm for the Quadratic Assignment
Problem

K.G. Ramakrishnan, M.G.C. Resende and P.M. Pardalos

The quadratic assignment problem (QAP), first proposed by Koopmans and Beckmann [5], can

be stated as
n n
min > > aijbyip();
i=1j=1

where II is the set of all permutations of {1,2,...,n}, A = (a;;) € R™", B = (b;;) € R™™".

Though a wide range of heuristics has been applied to find approximate solutions of large
quadratic assignment problems, exact solution approaches have been limited to instances of
dimension n < 20.

Most exact methods for the QAP are based on branch and bound. Lower bounds are key to
the computational efficiency of branch and bound algorithms. Recently, Resende, Ramakrishnan,
and Drezner [11] used an efficient implementation of an interior point algorithm to compute lower
bounds for the QAP by solving the linear programming (LP) relaxation of a classical integer
programming formulation of the QAP. The linear program, that has n?(n — 1)2/2 +n? variables
and 2n?(n—1)+2n constraints, is large-scale, by today’s standards, even for quadratic assignment
problems of small dimension. The linear programs were solved with ADP, an implementation
of a dual interior point algorithm, with centering, that uses a preconditioned conjugate gradient
algorithm to compute the directions taken at each iteration by the interior point method [4].
Attempts at using the simplex and (direct factorization based) interior point codes of CPLEX !
were successful only for the smallest instances. That study also showed that the quality of the
lower bounds produced was good, suggesting that they be incorporated in a branch and bound
algorithm. Pardalos, Ramakrishnan, Resende, and Li [9] describe a branch and bound algorithm
used to study the effectiveness of a variance reduction based lower bound [7].

In this paper, we use an extension of the branch and bound algorithm described in [7] in
conjunction with the LP-based lower bound described in [11]. We report on preliminary results
that show how this lower bound performs when implemented in a branch and bound algorithm
for the QAP.

Implementation

We next outline the branch and bound implementation used in this study. The system is
composed of four components: a branch and bound control module; a greedy randomized adap-
tive search procedure (GRASP) module to produce the initial upper bound; an AMPL modeling
language [2] module to manage the linear programming models; and the linear programming
solver ADP to produce the lower bounds for the branch and bound algorithm.

The branch and bound control module controls the solution process. It inputs the problem
data, calls the GRASP to produce an initial upper bound, and manages the search of the branch
and bound tree. At each node of the tree, it spawns an AMPL process that generates the linear
program to be solved at that node. The linear program, along with the current best upper
bound and the fixed cost associated with the partial assignment of the node, are passed to the
LP solver ADP. The optimal permutation is output by the branch and bound module.

The GRASP [8, 10] is called before any search of the branch and bound tree begins so that
an initial upper bound can be produced. The branch and bound module passes to the GRASP
the problem data and the number of GRASP iterations and gets back the best permutation
found over the GRASP iterations and its corresponding cost (the upper bound).

!CPLEX is a Registered Trademark of CPLEX Optimization, Inc.
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At each node of the branch and bound tree ADP iterates on the LP, producing a sequence of
lower bounds, until the dual objective function is greater than the current upper bound minus
the fixed cost of the partial assignment, in which case the branch rooted at the current node of
the branch and bound tree can be pruned, or if the relative improvement of the dual objective
function falls below a specified tolerance, in which case the branch needs to be further explored.
If the data is integer, as is the case for all of the QAPLIB instances considered in this paper,
the dual interior solution can be rounded up to check for termination. This is done in our code.
A detailed description of the ADP code as used in this application is given in [11].

Computational Results

In this section, we present preliminary experimental results with our code. The new branch
and bound algorithm is tested on a set of standard QAP instances from the QAPLIB. We
compare the new algorithm with an algorithm that is identical, except that it uses the Gilmore-
Lawler lower bound in place of the LP-based bounds.

The experiments were conducted on a Silicon Graphics (SGI) Challenge (150 MHz MIPS
R4400 processor, 1920 Mbytes of main memory, 16 Kbytes of data cache, and 16 Kbytes of
instruction cache). The branch and bound control module and the GRASP are implemented
in Fortran and compiled with the £77 compiler using compiler flags -02 -01imit 800. The
interior point solver ADP is written in C and was compiled with the cc compiler using compiler
flags -02 -01imit 800.

We tested the codes on several instances from the QAP library QAPLIB. Table 1 summarizes
the runs on both algorithms. For each instance it displays the name and dimension of the
problem, as well as the solution times and number of branch and bound search tree nodes
examined by each of the algorithms. The ratio of CPU times is also displayed.

The number of GRASP iterations was set to 100,000 for all runs.

We make the following remarks regarding the computational results.

e The code solved all 24 instances of QAPLIB of dimension less than or equal to 15.

e Compared with the branch and bound algorithm using the Gilmore-Lawler lower bound,
the number of branch and bound search tree nodes examined by the algorithm is small
and grows slowly as a function of the dimension n of the QAP.

e Because no level 0 nodes (the QAP linear programming relaxation for the original problem)
were done, the minimum number of nodes examined by the algorithm is n, the number
of level 1 nodes in the tree. Level 0 nodes were solved for all the instances solved in this
paper in [11]. In 10 of the 24 problems solved in this paper (nug05, nug06, nug07, esc08c¢,
esc08f, chri12a, chri12b, chri2c, chribb, and chribc) the level 0 lower bound produced
was tight and thus all but one of the problems could be solved at level 0, since the initial
upper bounds produced were optimal. The only exception is nug05 for which the GRASP
upper bound initially produced is not optimal.

Concluding Remarks

In this paper, we presented implementation details and computational results of a new branch
and bound algorithm for solving the quadratic assignment problem.

Our implementation successfully solved to optimality all instances of QAPLIB [1] with di-
mension n < 15. The main observation is that the lower bounds are good, resulting in the search
of very few branch and bound search tree nodes compared to the same branching scheme using
the classical Gilmore-Lawler lower bound [3, 6, 9]. The number of nodes scanned grew less than
a cubic function of n, the dimension of the QAP. The instance with the largest number of nodes
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Table 1: QAP test instances: LP-based vs. GLB-based B&B algorithms

LP-based B&B | GLB-based B&B time nodes

problem dim | nodes time nodes time ratio ratio
nug05 5 12 11.7 44 0.1 117.0 3.7
nug06 6 6 9.5 82 0.1 95.0 13.7
nug07 7 7 16.6 115 0.1 | 166.0 16.4
nug08 8 8 35.1 895 0.2 175.5 111.9

nugl2 12 220  5238.2 49063 14.6 | 358.8 223.0
nugld 15| 1195 87085.7 | 1794507 9124 95.4 1501.7
scrl0 10 19 202.1 1494 0.6 | 336.8 78.6
scrl2 12 252 5118.7 12918 4.8 | 1066.4 51.3
scrld 15 228  3043.3 | 506360  274.7 11.1 2220.9
roulO 10 o2 275.7 2683 0.8 | 344.6 0l.6
roul?2 12 152 2715.9 37982 12.3 | 220.8 249.9
roulb 15 991 30811.7 | 4846805 2240.3 13.8  4890.8

esc08a 8 8 37.4 07464 7.0 9.3 7183.0
esc08b 8 208 491.1 7352 0.7 | 701.6 35.3
esc08c 8 8 427 2552 0.3 | 1423 319.0
esc08d 8 8 38.1 2216 0.3 | 127.0 277.0
esc08e 8 64 251.0 10376 1.0 | 251.0 162.1
esc08f 8 8 37.6 1520 0.3 | 125.3 190.0
chrl2a 12 12 312.0 672 0.7 | 445.7 56.0
chr12b 12 12 289.4 318 0.6 | 482.3 26.5
chrl2c 12 12 386.1 3214 1.5 | 2574 267.8

chrlba 15 15 14959 | 413825  235.5 6.4 27588.3
chrldb 15 15 1831.9 | 396255  217.8 8.4 26417.0
chrlbc 15 15 1908.5 | 428722  240.0 8.0 28581.5

(nug15 of dimension n = 15) required the solution of 1195 linear programs. Other instances
of the same size required much fewer (as few as 15) nodes. As the size of the QAP grew the
CPU time ratio of the time taken by the new code to the time taken by the GLB based code
decreased dramatically. However, for problems of the dimensions considered, it is still faster to
use the GLB-based branch and bound algorithm.

The aim of our ongoing research on branch and bound algorithms for the quadratic assign-
ment problem is to make extensions to the algorithm to produce examples for which the new
approach, besides scanning much fewer nodes than Gilmore-Lawler lower bound based methods,
is also faster than those methods. Since linear programs on different branches of the search tree
are essentially independent of each other, it is possible to solve them in parallel. We are im-
plementing a distributed algorithm that solves different linear programs on different processors,
broadcasting the value of a new upper bound whenever one is found. In the version of the ADP
code used in this paper, the algorithm does not have the capability to do warm starts, i.e. start
from an advanced solution. The linear programs are always solved from the start, even when
one LP varies from the other by a single column in the dual program. We are implementing
a version of ADP that can start from a warm solution. With this, we expect to speed up the
solution process significantly. During the tree search small instances of QAPs are induced. The
code described in this abstract computes the lower bounds associated with these QAPs with
linear programming. The new code will enumerate or use dynamic programming to solve small
dimension QAPs. Finally, stronger LP formulations can be derived, producing better lower
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bounds.
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An unsolved problem of Fenchel

Tamas Rapcsik

Fenchel (1953, p. 115, Roberts and Varberg, 1973, p. 271) drew up the following problem of level
sets: "What "nice” conditions on a nested family of convex sets will ensure that it is the family
of level sets of a convex function?” Rapcsdk (1991) gave an explicit formulation of the gradient
of the class of the smooth pseudolinear functions (both pseudoconvex and pseudoconcave). This
result means an extension of the Cauchy functional equation and the solution of the Fenchel’s
problem in the case of a nested family of convex sets whose boundaries are hyperplanes which
define an open convex set, and where this family of convex sets corresponds to the equality level
sets of pseudolinear functions. We have to point out, however, that the pseudolinear functions
are more general than the convex functions. The following theorem was proved for characterizing
the gradient of the smooth pseudolinear functions:

Theorem 1 [2] Let a three times continuously differentiable function f be defined on an open
convex set A C R™ and assume that Vf(x) #0, x € A. Then, [ is pseudolinear on A iff there
exist continuously differentiable functions l(x), n;(f(x)), i =1,...,n, x € A, such that the
following conditions are satisfied:

0f (%)
ox;

=Il(x)n(f(x)), i=1,...,n, x€A.

In order to construct pseudolinear functions, the next theorem can be useful.

Theorem 2 [2] If the functions [(x), n;(f(x)), i =1,...,n, x € A, have continuous derivatives
in all arguments on an open set A C R™ and if they satisfy the compatibility conditions

0l(x) 2. dni(f(x)) ol(x) 2, dn; (f(x))
e 1 00) 41200 S ) = G Eg(8(0) + 1260 ),
1,7 =1,...,n, x €A, then a uniquely determined solution of the system
O _yym(ex)),  i=1,...m  xcA,
0%

exists in a neighbourhood of every point of A as soon as the value of the function f is prescribed
at some point of the neighbourhood.

The purpose of the paper is to solve Fenchel’s problem if the boundaries of the nested family
of convex sets are given by n-dimensional differentiable manifolds which determine an open
convex set with nonempty interior in R"+!.
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Techniques for Gap-Treating and Box-Splitting in Interval Newton
Gauss-Seidel Steps for Global Optimization

D. Ratz

For a twice continuously differentiable function f: D — IR and D D [z] € IIR", we address the
problem of finding all points z* in the interval vector [z] such that
f(z") = min f(z).
z€[x]
We are interested in both the global minimizers z* and the minimum value f* = f(z*).

We use the interval branch-and-bound method described in [2] and [3] with several modifi-
cations. The method subdivides the initial box [z], stores the subboxes in a list L, and discards
subintervals which are guaranteed not to contain a global minimizer, until the desired accu-
racy of the intervals in the list is achieved. The tests we use to discard or to prune pending
subboxes are cut-off test, monotonicity test, concavity test, and the extended interval Newton
Gauss-Seidel step.

The latter we apply to the nonlinear system V f(y) = 0 with y € [y]. The subbox [y] is
a candidate box for enclosing a minimizer z*, for which we assume V f(z*) = 0. One step of
the extended interval Newton Gauss-Seidel method shall improve the enclosure [y] by formally
solving the system

b=[A]-(c—y),
where b = R -V f(c), [A] = R- V%f([y]), ¢ = m([y]), and R € IR™™ is some preconditioner
matrix. Then, we compute N(;4([y]) according to

[2] == [y]
[#)i = (i — (bi+i[,4]ij-([z]j —c)) J1Ahi) Nl i=1,...m
Niss([9]) = [ ”

If 0 € [A]; for some i, extended interval arithmetic is applied, which allows division by an
interval containing zero. In this case, a gap can be produced in the corresponding component
[2]; of [z]. Therefore, if 0 € [A];; for several components 7, the extended interval Newton Gauss-
Seidel step possibly produces several gaps in the actual box [y] and it may result in the union of
several boxes Nig([y]) = [V]1 U... U[V],, where [V]; € IIR", i =1,...,p, that is [V] € IIRP*".

We investigate the impact of different techniques for gap-treating and box-splitting which
can be applied resulting in different values for [V] and p.

In the main optimization algorithm, different subdivision direction selection rules can be
applied to determine “optimal” components for bisection of the current box [y] (see [1] and [4]).
Each of these rules selects a direction k with D(k) = max] | D(¢), where D(i) is determined by
the given rule.

We investigate some of these rules in connection with the interval Gauss-Seidel step, where we
use them to compute a sorting vector s = (s1, s2,...,s,) withs; € {1,...,n}and s; # s; for i # j,
which satisfies D(s;) > D(s;j41), i = 1,...,n — 1 for the corresponding direction selection rule
D(...). Then, we study the performance of a sorted interval Newton Gauss-Seidel step given by

=[]
= (en = (b + Sy (=) /Ml ) Ve = 1om
Niys(l) =1 %

103



incorporating different splitting techniques.

We propose strategies which improve the overall efficiency of the interval Newton Gauss-
Seidel step and therefore of global optimization methods. We present results of computational
experiments with standard global optimization problems.

References

[1] CsENDES, T., RATz, D.: Subdivision Direction Selection in Interval Methods for Global
Optimization. SITAM Journal of Numerical Analysis, accepted for publication, 1995.

[2] HAMMER, R., Hocks, M., KuLiscH, U., RATz, D.: Numerical Toolboz for Verified Com-
puting I — Basic Numerical Problems. Springer-Verlag, Heidelberg, New York, 1993.

[3] RATZ, D.: Boxz-Splitting Strategies for the Interval Gauss-Seidel Step in a Global Optimiza-
tion Method. Computing 53, 337-353, Springer-Verlag, Wien, 1994.

[4] RaTz, D., CSENDES, T.: On the Selection of Subdivision Directions in Interval Branch-
and-Bound Methods for Global Optimization. Journal of Global Optimization, accepted for
publication, 1995.

104



Analysis of threshold accepting global optimization methods

Marco Locatelli and Fabio Schoen

Among the best performing algorithms for global optimization of reasonably smooth multimodal
functions over simple feasible sets (e.g. hypercubes) there are quite a few approaches in which
a proper mix of random sampling and local search is performed. One quite well known such an
approach is Multi-level Single-Linkage ([3], [4]), where local searches are started from selected
points in a random uniform sample of the feasible region. Although there exist many other
approaches based upon the idea of mixing random sampling and local searches, (one of the most
interesting of which being [2]), it is felt by the authors (and confirmed by numerical experiments),
that the criterion used in Multi-level Single-linkage (MLSL for short) is a particularly sensible
one. The basic idea of MLSL is that of starting a local search from a sampled point whenever the
distance between such a point and the nearest higher-valued point (in case of maximization) is
greater than a threshold. As the threshold used in MLSL is decreasing, points which are judged
“near” in the early stages of the algorithm, might become “far” later on; this fact precludes the
possibility of sequential sampling, being the process of revising previous decisions on sampled
points too costly from a computational point of view. The authors of MLSL thus propose a
batch sampling strategy, by which at each stage of the algorithm a bunch of points, say N > 0,
is sampled and the decision whether to start or not a local search from points in the sample is
taken once every stage.

In this paper we present and analyze a new class of stochastic global optimization algorithms
which

e possess all of the theoretical characteristics of MLSL — namely:

1. almost sure convergence to the global optimum;

2. observation of the global optimum after a finite number of iterations with probability
L

3. probability of starting a local search decreasing to 0;

4. expected number of local searches performed, even if the algorithm is never stopped,
finite with probability 1;

e samples sequentially — thus avoiding the necessity of pre-specifying a batch size N;

e enables the start of local searches only from the most recently sampled point — thus avoiding
the time-consuming analysis of the whole sample needed in MLSL in order to take account
of the decreasing threshold;

o differently from what is required in the theoretical analysis of MLSL, lets local searches
start even from points sampled on the boundary of the feasible region — which becomes
particularly interesting for problems of concave minimization.

Simple Linkage

In [1] a family of algorithms all possessing the above properties was introduced, where the
decision whether to start or not a local search from the current point was based on a randomized
criterion. Here we restrict the attention to threshold based methods in which we decide to start
a local search at iteration %, based on a sample Xq,..., X}, if

o < mjin{lle — Xjll - f(XR) < f(Xj) + ¢}
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where [ is a real valued function from [0, 1]d in R to be maximized, € is a small positive constant,
oy 1s a non-negative sequence.
It was proven in [1] that the probability of starting a local search decreases to 0 if and only
if
ozkkl/ 45 00.

Let

1 o log k 1/d
W= Um <F(1 a2 k )
where, o is a constant to be chosen by the user. It was proven in [1] that, provided that o > 1 and
that no local search is started from within a prescribed distance from the boundary of the feasible
region, then the algorithm, while being able to find with probability 1 the global optimum, will
perform a number of local searches whose expectation is finite even if the algorithm were never
stopped.

Actually, threshold accepting algorithms may be much more general than this one, both by
using more general thresholds and by letting local searches start from the boundary, but here,
in order to be able to make significant comparisons, we will restrict the analysis to this special
instance. We adopt the convention of calling “Simple Linkage” this algorithm.

For what concerns MLSL, a positive constant ojs and an integer constant N > 0 are given,
and sampling proceeds in batches. The decisions about starting or not local searches can be
taken only after N points have been drawn — so that the decision epoches are N, 2N, .... At
each decision epoch, say h > 1, a threshold is computed

1 ( oM logh,N>1/d
Ohn = —=
Va\I'(1+d/2) hN

Given this threshold, the whole sample of hIN points is reconsidered and a local search is
started from X;, i € {1...,hN} if and only if

(1)

jomin H1Xa = Xl F(X5) 2 (X)) = On (2)
Let us briefly denote with Yk(i) = min{||X; — Xj|| : j < k,j # ¢} the random variable
corresponding to the minimum distance between a sample point X; and the first k£ points in the
sample. Then a local search from Xj is started in SL if and only if Yi(l) > o
while it is started in MLSL from the same point if and only if 34 > [ﬁ-‘ : Yh(;), > OpN-

Theoretical comparison between MLSL and SL

We plan to compare the behaviour of the proposed algorithm and MLSL when the sample is
the same. We assume that there exists a constant 3 > 1 such that 2 = 3. In the applications
this is the most common situation: it has been proven in fact that a finite expected number of
local searches in MLSL is obtained for ojs > 4, while the same holds for SL when o > 1. It is
thus sensible, for comparison to choose, for example, § = 4. In a forthcoming paper results will
be given for the general case.

Let us denote with S; and M; the events that, respectively, SL. and MLSL decide to start a
local search from X;. We look for bounds on

P(S; | M;)  P(=S;| ~M;)

i.e. on the probability that a local search is started in SL given that, sometimes after the i—th
iteration also MLSL has decided to start a local search from the same point and the probability
that, if MLSL decides never to start a local search from some point, then also SL decides the
same.
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The main results can be stated as follows:

o _ 1
P(S; | M;) > b

> 11 P(=8; | =M;) ~ 1

Here the symbol > is used to denote “asymptotic minorization”, i.e., if a; > b then, for

every € > 0 3k such that k& > k implies

Conclusions

Simple Linkage seems to be an extremely simplified version of MLSL which, while retaining
all of the good theoretical properties of the latter, is much easier to implement and order of
magnitude faster. It is also to be noticed that SL is one out of an infinite family of algorithms
all possessing the same strong theoretical properties. It is a subject of current research to try
to understand which algorithm in the family can be proposed as the “best” one.

It is to be observed also that all of the properties enjoyed by MLSL (and by SL) are asymp-
totic ones. The analysis carried out in [1] shows that, asymptotically, there is no advantage
in building “chains” of improving points (as MLSL does); moreover, since the publication of
MLSL, apparently it was never explicitly noticed that, asymptotically, function values become
irrelevant, all of the decisions being taken only the basis of relative distances between points in
the sample. This is the key point for being able to derive accurate asymptotic results. But what
happens in the first stages? The analysis carried out both for MLSL and for SL tells nothing
about the finite time behaviour of those algorithms; it seems plausible to assume that results in
this direction, although much welcome, will be very hard to obtain.

In conclusion, we know very little on the actual behaviour of both MLST: and SL (although
computational experiments tend to support the evidence that they perform the same in terms
of number of function evaluations and local searches performed). Asymptotically, MLSL and SL
behave the same: SL, being much easier and more efficient, seems to be a practical alternative
to MLSL.
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An Algorithm for Minimizing Functions with Lipschitz Derivatives

Yaroslav D. Sergeyev

A new algorithm for minimizing one-dimensional functions having Lipschitz first derivatives is
presented. The method does not require a priori knowledge of the exact Lipschitz constant
but adaptively estimates the local ones in different sectors of the search region in the course of
minimization. Convergence conditions of the method are investigated. Some numerical examples
are also presented.

Let us consider the following global optimization problem

¥ = argmin{ f(z) : = € [a, ]}, (1)

Many algorithms have been proposed for solving this problem under different assumptions (see
[1]-[11]). In this paper it is supposed that the objective function has a finite number of the local
minima and its first derivative f'(x) satisfies the Lipschitz condition, i.e.

| F(z1) — f'(z2) IS L | 21 — 32 |, V21,29 € [0, ], (2)

where the constant 0 < L < oo is called the global Lipschitz constant.

For solving the problem (1) under assumption (2) two methods have been proposed inde-
pendently. In the first one Breiman & Cutler [2] (see also [1]) consider the case the constant L
from (2) is a priori known. Gergel [5] proposes another approach estimating L in the course of
optimization. Both the methods use the global Lipschitz constant L (or its upper estimate) to
construct support functions for f(z) over the interval [a, b].

The algorithm proposed here constructs an auxiliary function ¢(x) also. The difference
with the previous approaches consists in the fact that ¢(x) is constructed using estimates p;
of the local Lipschitz constants L; of intervals [z; 1,2;] C [a,b] where z;,1 < i < k, are trial
points previously produced by the algorithm (the term trial means evaluating f(z) and its
derivative f’(z) at a point z). Thus, the method executes a local tuning on the behavior of the
objective function over different subintervals in [a,b]. It has been demonstrated [10] for some
global optimization algorithms (which do not use derivatives) that using local information can
accelerate the search significantly.

The algorithm

Two initial trials are performed at the points z! = @ and 22 = b. The point z**!, k > 2, of
the current (£ + 1)th iteration is chosen by the following rules.

Step 1. Order the points z',...,z* of previous k trials by increasing their coordinates, i.e.
a=11 <2< ...<7;<...<zp =0 (3)

Underline, that the record z* means that this point has been produced in the course of the
kth iteration of the method. On the other hand the equality z¥ = z; shows the position
of 2¥ in the series (3).

Step 2. Calculate the auxiliary values v; being low bounds for the local Lipschitz constants L;
of the intervals [z;_1, z;], where z;,1 < i <k, are from (3)

v; = max{7(z) : x € [mi_1, ]}, (4)

| zi —zia+zi(e —z) — 2 (3 — i) |
(x — )2 + (z — 2i-1)?
and zj—1 = f(zi—1), 2 = f(2i), 2,1 = f'(zic1), 2; = f'(z3).

T(z) =2
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Step 3. Calculate estimates pu; of the local Lipschitz constants L; for the intervals [z;_1, z;],1 <
7 < k:
pi = rmax{\;, v, Y, (5)

where r > 1,£ > 0 are parameters of the method and the values A;,~y; are computed using
the values v;,1 < i <k, from (4):

ANi=max{v; : 1 <j<k,i—-1<j<i+1}, (6)

Vi = M(z; — zi—1)/ XM, (7)
M =max{v; : 2 <i <k}, X" =max{z;—z,-1:2<i<k}.

Step 4. Compute for each interval [z; 1, z;],1 < i < k, the characteristic

R(Z) = min{zi_l, ZisZi—1 + Zé_l(lﬁi — xi—l) — 0.5/%((2] — xi_1)2}, (8)
where p; is from (5) and
—zi+ 21+ 2w — 2h w1+ 0.5u (22 — 12 )

& = 9
' pix — i) + 2 — 2z )

Step 5. Find among the intervals [z;_1,%;],1 < i < k, an interval [z;_1,z;] such that
R(t) = min{R(7) : 1 <i < k}; (10)

Step 6. Execute the new trial at the point 2**!

according to ( 9).

= I, where ¢ is from ( 10) and #; is calculated

A complete theoretical basis of the algorithm will be presented in the full paper. Here we
only note that the value u; estimates the local Lipschitz constant L; over the interval [z;_1, z;].
The values \; and +; spy respectively on the local and the global information obtained in the
course of the previous k iterations. When the interval [z;_1, ;] is small then due to (7) ; is
small also and we use the local information represented by A;. When the interval [z; 1, ;] is
very wide reliability of the local information is low and the global estimate ~; plays the main
role. Taking in consideration the local estimates p; permits to construct an auxiliary function
@(x) (the characteristic R(7) is its minimum over [z;_;,z;]) which is closer to f(z) than that
ones which use only global Lipschitz constant L or its estimates. Underline, that the local
information is used over the whole

Theorem. Let z* be a global minimizer of f(x) and [x;—1,x;],i = i(k), be an interval containing
this point in the course of the k-th iteration of the algorithm. If there exists an iteration number
s such that for all k > s for the value p; from (5) the inequality

wi > L

is true then, the point £* is a limit point of the sequence of trial points generated by the algorithm.

Theorem demonstrates that to have the global convergence it is not necessary to estimate
correctly the global Lipschitz constant (it may be underestimated) but it is enough to have a
correct notion only about the local Lipschitz constant for the subinterval containing the point

z* in the course of the kth iteration.
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Numerical examples

To illustrate performance of the new algorithm (NA) in Tab.1 we compare it with the methods
of Breiman & Cutler (BC) and Gergel (GM) on that test functions from [6] where there exist
subregions with local Lipschitz constants less than the global one. The parameters of the
algorithms have been chosen as follows : r = 1.1 for GM and NA. The parameter £ for NA
has been taken equal to 107°. We have used the exact values of global Lipschitz constants for
f'(z) in BC. We stopped our experiments when the interval to place a new trial was less than
e = 107%(b — a), where a,b are from (1). Global minima have been found by all the methods for
all the functions.

Table 1: Number of trials done by the methods before satisfaction of the stopping rule.

Problem BC GM NA
3 103 98 90
13 264 89 47
15 80 47 29
16 88 75 34
17 67 65 46
Average 120.4 74.8 49.2
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Global Optimization Requires Global Information

Chris Stephens and William Baritompa

There are many global optimization algorithms which use global information. For instance, Lip-
schitz algorithms, bounded second derivative algorithms, interval methods, pure adaptive search
and simulated annealing. All of these algorithms share the properties that they require global
information in the form of a parameter (e.g. Lipschitz constant, bound on second derivative,
functional form, level sets or a cooling schedule) and they are guaranteed to find the global
optimum. One criticism of these algorithms is that this information, being of a global nature,
is hard to obtain (or simply may not be available).

Thus there is a desire to design algorithms which avoid the need for global information. A
number of algorithms have been proposed with this in mind. For example, the DIRECT algorithm
of Jones, Perttunen and Stuckman, Strongin’s algorithm, algorithms of Gergel and Sergeyev,
adaptive search and simulated annealing as used in practice. These algorithms often perform
very well in empirical tests, and can even outperform their global counterparts. However they
do have inherent theoretical limitations.

Hansen, Jaumard and Lu [1] found a class of functions for which Strongin’s algorithm fails
to converge. Torn and Zilinskas [2] showed all deterministic algorithms which use only function
values at sample points converge to the global optimum on all continuous functions if and only
if they search a dense set.

Introducing a stochastic element into algorithms is often seen as a way to overcome these
limitations, (so that no function can be found that will definitely fail). In this paper we extend
T6rn and Zilinskas’s results to include stochastic algorithms, as well as to algorithms which use
other local information, such as derivatives, in addition to function values. We describe other
classes of functions for which these algorithms will fail.

Our results show that any algorithm, including stochastic algorithms, using only local infor-
mation will succeed frequently on all functions (in certain classes) if and only if all points in the
domain are frequently seen. That is, all algorithms which use local information only, must use
brute force if convergence is guaranteed.

Furthermore, we show that attempts to localize the global optima on all functions with such
algorithms will always fail. Given any algorithm (including stochastic algorithms) we show the
existence of a function for which the probability of the sample points converging to the global
optima (or a subset of them) is arbitrarily small.

An important example is simulated annealing. “Standard” simulated annealing localizes
if the cooling schedule is slow enough. It has been shown (in the deterministic setting) a
necessary and sufficient condition on the cooling schedule depends on the depth of the lowest
local minimum. This is clearly a global parameter. In the continuous case where gradients are
used, our results show the cooling schedule must also depend on global properties. So, attempts
to find a suitable (or optimize an existing) cooling schedule by pre-sampling or adjusting the
cooling schedule on the run using the new sample points are doomed to failure. Our results
show that there are always functions for which the probability of success of such a scheme is
arbitrarily small.

In practice algorithms must stop after a finite time and hence do not look everywhere. So,
if no global information about the problem is utilized, the function tried may be one on which
the algorithm fails. We cannot have mathematically justified confidence in the results.

However, many of these algorithms do have empirical and heuristic justification. They are
often designed for certain real-world problems and perform well when tested on these and similar
problems. Indeed, these global optimization heuristics are often far more practical than general
algorithms run until the mathematically proven stopping criteria are satisfied. These real-world
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and test functions must have nicer characteristics, than “randomly chosen” functions from a
formal class.

There are two areas for future work, which may prove fruitful. Firstly, by our results, the
“niceness” of real-world and test functions (when it exists) must be a global characteristic. This
illustrates the need to quantify this “niceness” into a useful global parameter. Success of such an
undertaking would result in algorithms with the practical usefulness of current heuristics with
the addition of mathematically justified confidence in the results.

The second area is to design algorithms which use both local and global information without
losing guaranteed convergence. Lipschitz and second derivative methods suffer when there are
large first or second derivatives remote from the global optima. Algorithms which use local
information only can often adapt to local conditions as they progress. Meewella and Mayne
were able to obtain local Lipschitz constants adaptively by using interval arithmetic and the
global functional form. It is hoped that similar modifications to second derivative methods will
yield an efficient guaranteed algorithm.
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On Global Search in Non-Convex Optimal Control Problem

Alexander S. Strekalovsky and Igor L. Vasiliev

We consider non-convex (w.r.t. the state) optimal control problems. A global search algorithm
based on global optimality conditions is proposed. Several test problems are solved.

It is known, the sufficient optimality conditions as the dynamic programming and the Kro-
tov’s conditions have some disadvantages which are not characteristically of the Pontryagin
maximum principle. First of all it refers to the numerical methods constructed on their basis

11, [2),3].

In this paper we propose an algorithm allowing to transcend stationary, i.e. to escape from
the process (z(-),u(:)) verifying Pontryagin maximum principle, if (z (), (:)) is not global
solution.

The approach proposed here is based on global optimality conditions presented in [4], [5]
and develops the results from [6], [7].

Problem Formulation

Consider the following control system:

i(t) = A(t)z(t) + f(u(?). 1),
2(to) = 2% t € o, [ 2T,
—00 < tp < t1 < +oo; u(-) €U, (1)

0
U={ue Ll (T):u(t)eU VvteT}
where z(t) = (z1(t), ...z, ()7, u(t) = (u1(t),...,u.(t))", 2° € R — an initial state, U is
0

a compact from R", and the designation ¥V means ”for almost every in the sense of Lebesque
measure”. Other assumptions are usual for optimal control. Denote by z (¢,u) the solution of
the differential equations system (1) corresponding to a control u (-) € U.

Let we have to maximize the functional

J(u) £ g (x (1)) — max, 2)

where g : R" — R is a convex function.

It can be readily seen that the problem (1)-(2) is non-convex, and this nonconvexity is
generated by the objective functional.

Hence, Pontryagin maximum principle is not sufficient condition for a control to be global
optimal.

Global Search Algorithm

First of all let us describe the algorithm step by step. Suppose a control %' (-) belong to U.
Let a control @* () € U and a sequence {¢;}, e >0, k=1,2,..., ¢ | 0 (k = o), be given.

Step 1 Let (xk (), uk ()) b () =z <-, uk> be €y, stationary process obtained by a local search

algorithm beginning at the control @ (-) :

7 () 29 (e (n5)) < 7 () S0 (o () =

Step 2 Construct an approximation
R =R (uk,ek) = {gjl, ...7ng’“/ 9(yi) =g (x (tl,uk))}
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of the level surface
S(9:¢) ={y € R": g(y) = G}

Step 3 Vi=1,...,N; find a control v* (-) €U s.t.

(o (7). (t:v)) 2 sup (o' (7)o (00) — e

ueld

Step 4 Vi =1, ..., N}, construct points y', g (y’) = (p s.t.
(o () (010') = 0) + ez 5w {(g' ) (1,0") = w) ) 9 (0) = G} (3)
Step 5 Sei

o (o ()2 (1) ) = g (0 4) () o)
Step 6 If ny > 0, then set
@t () =, teT, k:i=k+1,
and loop to Step 1.
Step 7 If np <0, where € > x, is a given tolerance, then stop. If e > x, loop to Step 1, with
gl =k E=k 410
Remark 1 When 1> 0 (Step 6) we have due to the convezity of g (-)

0<{g" () 2 (tr,v) —¢)) < g (z (t1,07)) — g (/) =

=gz (t1,v')) —g (‘” (tl’“k)) '

Thus, the control v3 (-) € U is better than the stationary control v (-) € U, so that we have
transcended stationary.

Test Examples

Consider the norm maximization
|l (t1)]|* — max (4)

for the following simplest control system:

Example 1 &; = u;, 2;(0) =0, i = 1,..,n, =2 < u; (t) < 1, ¢t € [0,1]. Each vertex of the
reachable parallelogram (z; = z; (t1,u))P ={z € R": -2 <z; <1, i =1,...,n} is stationary.
Tl = X, X1 (0) =—1, 29 =—x1 +u, 2 (0) =0, -1 Su(t) <1,

t € [0, 7] . There are two stationary controls, but only one is global.

Example 3 &1 = z9 + u1, 21 (0) =3, &2 =u9, z2(0) =—1, t€[0,2], —1 <wu(t) <1. There
exist three control u (t) = (1,1)7, 4 (t) = —a (¢) = (1,-1)7, verifying maximum principle, but
only u () is global optimal.
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Numerical Test

We present here the numerical result of solving the above examples by global search algorithm
from Sect.2. The global search was beginning after solving the linear problem:

(¢, z (t1,u)) = max, u €U, (5)

with a vector ¢ € R™.

Let J (u%) and J (u*) be the initial and final values of objective functional, St be the number
of stationary controls obtained, LP — the number of linearized problems solved during the
numerical experiments and finally Time is the solving time in min:sec:subsec. All numerical
tests were implemented using IBM PC/AT-386.

Table 1
c | JW°) | JW) | St | LP | Time

Example 2
(1,07 165396 | 8,9987 | 2 | 18 | 1:18:36
(-1, 1) | 1.00 [8.9899 | 1 | 10 | 1:05:80
Example 3
(1,-3)T | 10.00 | 26.00 | 3 | 12 [ 0:39:25
(1, )T 26.00 | 26.00 6 | 0:31:25
(—1,-1)T | 18.00 | 26.00 | 2 | 10 | 0:32:12

—

For Example 1 we took ¢ = (1,1)7 and the following results have been obtained.

Table 2
n | JU®) | JWU*) | St | LP | Time
5 5 20 6 | 27 | 0:11:21
10| 10 40 | 11| 77 | 1:20:46
20 | 20 80 |21 ] 252 | 12:24:95

References

[1] Pontryagin L.S. and al. Mathematical Theory of optimal processes. Moscow, Nauka, 1976.
[2] Moiseev N.N. Numerical methods in optimal system theory. Moscow, Nauka, 1971.

[3] Krotov V.F., Gurman V.I. Methods and Problems of Optimal Control. Moscow, Nauka, 1973.

[4] Strekalovsky A. Extremal problems on complements of convex sets. Translated from Kiber-
netika i Sistemmyi Analis. No. 1, pp. 113-126, 1993 Plenum Publishing Corporation.

[5] Strekalovsky A. On non-convex optimal control problems. Vestnik of Moscow University, seria
”Computational Mathematics and Cybernetics”. 1993, No 1, pp. 9-13.

[6] Strekalovsky A. On Global Mazimum of a Convex Terminal Functional in Optimal Control
Problems. Journal of Global Optimization (to appear).

[7] Strekalovsky A. The Search for a Global Mazimum of a Convex Functional on an Admissible
Set. Comput. Mathematics and Math. Physics, vol. 33, No. 3, pp. 315-328, 1993, Pergamon
Press Ltd.

115



Global Optimization (Systematic Approach Employing Peano Mappings)
Roman G. Strongin

The approach under consideration is based on reducing multidimensional multiextremal opti-
mization problems to those of one dimension by applying space-filling curves mapping a unit
interval on the real axis onto a multi-dimensional hyperinterval. The scheme employs several
somehow conjugate (joint) Peano-type scannings which conduct the metric property of nearness
of points in many dimension sufficiently better than in a case with a single Peano curve.

Following this approach a single multidimensional nonlinear program with Lipschitz (multi-
extremal) left-hand sides of constraints and of an objective function is reduced to a system of
somehow connected one-dimensional problems admitting Holder continuations in a unit interval.
The proposed technique for these one-dimensional constrained problems does not make use
of penalties and less tedious. Each iteration in the suggested scheme involves the successive
calculation of left-hand sides of the constraints. This calculation either interrupted by the
occurrence of the constraint violation, or terminated with the objective function estimation (in
the case of an admissible point).

The unknown Holder coefficients are adaptively estimated using the computed running lower
bounds for the divided differences (with some idemfactor).

In the case when multiprocessor system is available, each one-dimensional problem is solved
on a separate processor and the processors exchange the results of iterations. This corresponds
to parallelization of the main problem.

A new method for scalarizing a multicriteria problem is also proposed so that the set of
points of the absolute minimum of the scalar problem is identical to the Slater set of the initial
problem.

Convergence conditions for all above cases are examined.
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A Method for Solving an Utility Function Program in Multiple Objective
Nonlinear Optimization

Nguyen Van Thoai

Let U : IR¥ — IR be an utility function according to a multiple objective programming problem
of the form max ¢j(z) = 2z; (i = 1,---,k), s.t. z € X C R™. Consider the wtility function
program max{U(z) : ¢;(x) =z (i = 1,---,k), = € X}. Assuming that the utility function U
has the monotonocity property in a sense that U(z') < U(z?) for 2! < 2%; 2',2? € A, where A
is a suitably large set containing the feasible region in criterion space of the multiple objective
programming problem, we establish an algorithm of branch and bound type for solving the above
utility function program. The algorithm is implemented for several types of objective functions
¢; and feasible set X of the multiple objective programming problem under consideration.
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Quadratic Programming with Box Constraints

Gerardo Toraldo and Panos M. Pardalos

Quadratic programming problems with box constraints have the following form:

xrglllgl %xTQx +cz st 1<z <u. (1)

Here () is an n X n symmetric matrix, ¢, [ and v are known n-vectors. Problems of this
form have numerous applications in engineering and include as special cases binary quadratic
programming and linear complementarity problems. In addition, quadratic programming with
box constraints is a fundamental subroutine in many nonlinear optimization packages (such as
the LANCELOT package).

In the nonconvex case, several types of algorithms have been proposed. Nonconvex prob-
lems may have an exponential number of local solutions and stationary points, and from the
complexity point of view are NP-hard.

Since every nonconvex quadratic function can be decomposed as a sum of a convex and
a concave function, algorithms for the convex case can be used for computing approximate
solutions of the general case. Two main approaches have been proposed for the problem (1)
when (@ is positive semidefinite, the projected-gradient active set approach, and the interior
point approach. Both of these methods seem to be more efficient than the classical active set
method and are suitable for sparse and large scale problems.

In this talk we will review some of the more recent theoretical results and computational
algorithms for the general (concave and indefinite) box constrained quadratic programming
problem.
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Reverse Convex Programming. Theory and Algorithms.

A.S. Strekalovsky and Ider Tsevendorj

We consider a non-convex mathematical programming problem with a reverse convex constraint.
A global search algorithms based on global optimality conditions is proposed. One test problem
of high dimension is solved.

Global Optimization (GO) has remained marginal for a long time, this is still the case to a
certain extend (Horst and Tuy 1990). On the other hand Optimality Conditions are one of the
cornerstones in Convex and Local Optimization Theory and of paramount importance in the
construction of corresponding algorithms. But in GO the situation with Global Optimality Con-
ditions (GOC) was hopeless until the works J.-B. Hiriart-Urruty (1989) and of the Strekalovsky
(KiSA 1993, IFTIP 1993). Now the crucial question is how to use the obtained GO Conditions
for constructing GO Algorithms. This paper deals with so called reverse convex problem (Horst
and Tuy 1990):

f(z) > min, z€S8, g(z)>0 (P)

where g(-) is a convex function over R", f : R” — R and S may also be convex. It is clear,
that feasible region of (P) is not convex, even in the case S is convex. As a result, problems
with such constraints generally have local optima, which are not the global ones.

Having a wide class of applications (Horst and Tuy 1990) the problem (P) remains unsolved
till now.

Here we display the results of using the approach based on Global Optimality Condi-
tions (Strekalovsky KiSA 1993), and the R-algorithm for (P), presented for the first time in
(Strekalovsky IFIP 1993).

R—Algorithms

This algorithms is based on the notion of resolving set (Strekalovsky IFIP 1993, CMaMP
1993), which is related to using the level surface

LS(g) ={y € R": g(y) =0}

in the (GOC) for (P) (Strekalovsky KiSA 1993).
Let an admissible point 2° € S, ¢(z°) >0, k := 0.

1. Beginning from z* obtain a ej,—stationary point 2* € S, g(#*) = 0.

k

2. In order to decide whether a e;—stationary point 2% is a global solution, take a finite

number of points from LS(g) (e 4 0) :

Ry ={v',.,o™ [g(v) = g(z"), i=1,.,N, N=N(z")}
instead of using all points from LS(g), what is obviously impossible.

3. Solve Vi = 1,.., N, following linearized problems:
(¢'(v'),2) » max, zeS, [f(z)<f(2"), (P)

which are convex, when f and S are convex, while the problem (P) remains non-convex
even under the assumptions above. Let u’ be a dg-solution of (P;)(dg | 0).
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4. Solve so-called level problem (Vi =1,..,N)
(g (v),u" —v) = maz, g(v) = g(z"), (PL;)
Let w' be a dj-solution of (PL;).
5. Consider the number
e = (g (w), v’ —w?) = maz{{¢g'(w'),u’ —w') /i=1,. N}
6. If m, > 0, then set 2"t := w’. And go to step 1.

7. Ity <0and e, 0 <x ,where x is suitable tolerance, then stop.

The global convergence of the algorithm has been proved for example for the case of quadratic
g(+) under assumption that Ry is resolving set Yk = 0, 1,2...,i.e. if the inequality

JEE) > fo+ep

(where f, =inf{f(z) /z €S, g(x)>0}) implies two following inequalities:
(#) me >0,

() mk+ 0k > supsp{{g'(v),z —v) [ x € cleoS, f(z) < f(F), g(v) = g(zF)}

Numerical Tests

Now consider the problem similar to this one from (Gurlitz and Jacobsen 1991) (in order to
obtain a comparative example):

F#) 2 5 Nl =yl - min ()
s€MN2{z€R") —1<z;<1,i=1,..n} 2)
g(z) 2 ||z|* — (n - 0.5), (3)

y=(-0251,..,1)" € R™.

It’s easy to see that z, = (—+/0.5,1,...,1)" is the solution of the problem with the value
f(z,) = 0.104. The worse initial point is z° = (1, —1,...,—1)T. As displayed in (Gurlitz and
Jacobsen 1991) the H. Tuy cuts method is not able to solve this problem beyond the dimension
10, what is not practical.

We present here the first results of numerical solving the problem (1)-(3) of the dimension
till 400.

But before it should be said, that the stationary search and the solving the problem (P;)
have been done by the simplest procedure of optimization, taking into account the data nature
of the problem (1)-(3).

We intend to ameliorate this part of the programme. It was not very simple, while the
solution of the level problem (FPL;) has been obtained analytically (Strekalovsky CMaMP 1993).

Since it is not yet proved the resolving set for (1)-(3), during the tests we used the following
level set approximations:

S A
R1 = {v" = (21, s Zi—1, = Zis Zit1s s Zn



R20 =

Let n be dimension of the problem, f(z°) the initial value of the function, R-the choice of level
set approximation, f(z)-the obtained function value, St-the number of obtained stationary
points, from what we managed to exit, LP-the number of the linearized problem (F;) solved
during the process, and finally T be the time of solving (min:sec). The tests have been done

,U’L

_ T
= (Zl, ceey Zi—1y TRy TRi+15 242, ---,Zn)

o=z =2 f'(2) - (f'(2),2) | I ()

using the PC/AT IBM-386.

n f@)) | R | f(@™) | St | LP T
20 | 38.781 | R1 0.104 21 230 00:14.01
R20 | 0.104 11 120 00:08.68
40 | 78,781 | R1 0.104 41 860 01:01.36
R20 | 0.104 21 440 00:37.30
60 | 118.781 | R1 0.104 61 | 1890 02:39.45
R20 | 0.104 31 960 01:35.89
80 | 158.781 | R1 0.104 81 | 3320 05:27.30
R20 | 0.104 41 | 1680 03:18.23
100 | 198.781 | R1 0.104 | 101 | 5150 09:33.97
R20 | 0.104 51 | 2600 05:47.46
150 | 298.781 | R20 | 0.104 76 | 5775 16:27.12
200 | 398.781 | R20 | 0.104 | 101 | 10200 34:02.52
300 | 598.781 | R20 | 0.104 | 151 | 22800 | 1hr:44:34.80
400 | 798.781 | R20 | 0.104 | 201 | 25136 | 3hr:58:18.65
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Global Optimization for Imprecise Problems

M.N. Vrahatis, D.G. Sotiropoulos and E.C. Triantafyllou

Several methods for finding the extrema of a function f:D C IR" — IR, where D is open and
bounded, have been proposed with many applications in different scientific fields (mathematics,
physics, engineering, computer science etc.). Most of them require precise function and gradient
values. In many applications though, precise values are either impossible or time consuming to
obtain. For example, when the function and gradient values depend on the results of numerical
simulations, then it may be difficult or impossible to get very precise values. Or, in other cases,
it may be necessary to integrate numerically a system of differential equations in order to obtain
a function value, so that the precision of the computed value is limited, [8, 15, 14]. On the other
hand, it is necessary in many applications to use methods which do not require precise values
[4, 15], as for example in neural networks training [9, 10].

In this paper a new method is presented for the computation of the global minimum z* in
the box X such that :

f(z") = min f(z), (1)

reX

where f has continuous first and second derivatives. This method can be applied to problems
with imprecise function and gradient values and it is composed of two parts.

In the first part, interval arithmetic [2, 11] is implemented for a “rough” isolation of all
the extrema of f in various boxes (not necessarily too small). So, although this phase of our
algorithm uses extended interval arithmetic, it can be applied to problems with unavoidable
inaccuracies.

Our method starts with an initial box X(® € I™ and it is based on the branch and bound
principle. When the total number of the extrema is known, our algorithm is more efficient.
One way to estimate this number is by using degree computational techniques [5]. For this
purpose one can apply Picard’s theorem and compute the value of the topological degree of the
extended Picard’s function [4]. For the computation of this value Aberth’s method [1], which is
an adaptation of Kearfott’s method [7], can be utilized to boxes with interval arithmetic.

The stationary points of a function f(z) in the box X () are the zeros of the set of equations :

Vfz)=0=/(0,0,...,0), (2)

Ox1? " Oz
total number of elxtrema as an upper bound of how many sub—boxes must be investigated, the
initial box is divided into smaller sub—boxes. In this way the given region is covered by a set of
small boxes where the range of values of f(z) is more precise [11].

Also our algorithm is based on Kearfott’s root inclusion test [6], which assigns to each box the
values “true”, “false” or “unknown”. Specifically, we perform one step of the extended interval
Newton Gauss—Seidel method to the nonlinear system (2). When we apply the test to each
sub—box three cases can be distinguished. First, if the test result is “true”, then this sub—box
contains a unique stationary point and is stored in a new list £ (which is initially empty). If
the test result is “false”, this indicates that the sub—box contains no stationary points and we
may discard it. When the test result is “unknown”, we bisect this box or not, according to the
length of its diameter.

In the second phase of the algorithm, a new criterion is used in order to characterize the
isolated stationary points as minima, maxima or saddle points. Specifically, the concept of the
characteristic n—polyhedron (CP) is implemented. Let us define a characteristic polyhedron by
constructing the 2" x n matrices M, whose rows are formed by all possible combinations of
—1, 1. The n-polyhedron IT" = (11,75,...,Ton) in IR" is called a characteristic polyhedron

where Vf = (ﬁ R/ ) denotes the gradient of f. Thus, using the information about the
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(CP) relative to V f if the matrix of signs associated with V f and I, S(V f; II™), is identical
with the n—complete matrix M, [16]. In other words, the signs of the components of Vf at
the 2™ vertices of II™ obtain every combination of £1.

If II" is a CP then, under suitable assumptions on the boundary of 11", the value of the
topological degree of V f at O relative to II™ is nonzero which implies the existence of a stationary
point inside I7T™, [12, 13, 16].

The previous characterization of each stationary point is done according to the orientation
of the characteristic n—polyhedron [17]. The above procedure makes use only of the algebraic
sign of V f, while derivatives of V f or approximations of them are not required.

Next the algorithm chooses those points characterized as minima and computes all of them to
obtain the global one. To this end it uses a generalized bisection method which requires only the
signs of the gradient values to be correct and thus it can be applied to imprecise problems. Also
it is globally convergent method and can be applied to non—differentiable continuous functions
[12, 13, 16].

This generalized bisection method, used in combination with the CP—criterion outlined
above, bisects a CP, in such a way that the new refined n—polyhedron is also a CP. To do
this, one computes the midpoint of a proper 1-simplex (edge) of II"™ and uses it to replace
that vertex of IT" for which the vectors of their signs are identical (see [12, 13, 16] for details).
Finally, the number B of characteristic bisections of the edges of a II" required to obtain a new
refined CP, IT}, whose longest edge length, A(IT}), satisfies A(IT}) < e, for some € € (0,1), is
given by :

B = [logy(A(IT") e )], (3)

where the notation [-] refers to the smallest integer, which is not less than the real number
quoted (see [12] for a proof).
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Smoothing Transform and Continuation for Global Optimization

Jorge Moré and Zhijun Wu

We discuss the smoothing techniques for global optimization and their applications in macro-
molecular modeling and simulation. We focus on issues associated with the solution trajectories
determined by the smoothing transform, and discuss some of our recent theoretical and compu-
tational studies that lead to better understanding of the smoothing techniques and development
of more efficient global continuation algorithms.
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Complexity Analysis Integrating PAS, PRS and Simulated Annealing

Zelda B. Zabinsky and Birna P. Kristinsdottir

The complexity of random search algorithms has been studied for global optimization with the
hope of understanding their behaviour and hence developing more efficient algorithms. Pure
adaptive search (PAS) has been analyzed for both continuous and discrete finite global opti-
mization [2, 4, 5, 6]. The complexity of PAS has been shown to be “linear” in the dimension of a
continuous global optimization problem satisfying a Lipschitz condition [6] and has an analogous
result for a finite global optimization problem [5]. Pure adaptive search is an idealistic algorithm
because it is defined to generate a sequence of feasible points that are sampled according to a
probability distribution that is restricted to the region of improving objective function values.
This stipulation makes the method impractical at this point in time to implement efficiently. In
contrast, pure random search (PRS) samples points according to a fixed probability distribution
with no such restriction on improving points and is readily implementable. As shown in [4] the
complexity of PRS is exponentially greater than PAS to solve an equivalent problem.

To attempt to analyze a more realistic algorithm, in this paper we examine a combination of
PAS with PRS to allow the algorithm to generate both improving points as well as non-improving
points. We also add a probability of accepting a non-improving point, as is commonly done in
simulated annealing algorithms. We use a Markov chain analysis for a general analysis and then
evaluate some special cases to gain insight into the value of generating improving points and the
tradeoffs of accepting non-improving points.

Markov Chain Analysis
We consider the following finite global optimization problem:

minimize  f(z) (1)
subject to z € X (2)

where f(z) is a real valued function on a finite set X. We let y; < y2 < ... < yps be distinct
objective function values. Notice that there may be more than M points in X. In keeping with
the notation in [5], for m =0, 1,..., let the random variable Y;,, be the objective function value
on the mth iteration of PRS. Note that Yp, Y7, ... are independent and identically distributed.
Pure random search samples the domain according to fixed probability distribution, p on X.
Given this sampling distribution, we define a probability measure = = (1,...,ms) on the range
of f as follows. Let m; be the probability that any iteration of pure random search attains a
value of y;. That is mj = P(Yy = y;) = p(f (y;)) for j = 1,2,..., M. Throughout this paper
pj denotes 25:1 m; the probability that PRS attains a value of y; or less.

The algorithm analyzed here has a probability p of sampling according to PAS and probability
1 — p of sampling according to PRS, 0 < p < 1, both based on the same arbitrary distribution.
This paper always refers to “weak PAS” as stated in [5]. A similar development is possible for
“strong PAS”, but is not included here. In addition, we include a probability of accepting a
non-improving point which is intended to be similar to simulated annealing. We define #;; as
the probability of accepting a point with objective function value y; when sampled from y;, for
iy =1,...,M. If j <1, we assume ¢;; = 1 because we always want to accept an improving
point. We also assume £1; = 0 for j = 2,..., M such that we never leave the global minima.

We can now define the Markov chain to model the optimization algorithm. The states of
the Markov chain represent the objective function values, y1,...,ys, where state y; represents
the global optimum. The initial probability distribution for the initial state is given by 7. In
standard Markov chain terminology [3], 1 is the absorbing state of this chain and all other states
are transient. We say the algorithm converges when the chain reaches the absorbing state.
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We let S be the one-step transition matrix that models the algorithm, so s;; is the probability
that the algorithm moves from state y; to state y;. This transition probability incorporates the
probability of sampling according to PAS or PRS, as well as the probability of accepting the
sampled point even if it is not improving. The matrix S has the following entries:

(1 —p)ﬂ‘jtl‘j if i<y
sij =14 (L—p)mj +p(mj/pi) + Thtipi(L —p)mi(l — tig) if i=j
(1 —p)m; + p(mj/pi) if >

The expected number of iterations to absorption can be expressed in terms of the transition
matrix of the Markov chain. This expected number of iterations to absorption indicates the
average computational effort to sample the global optimum but not necessarily to confirm it.
Let v; be the expected number of iterations until absorption, starting in state ¢, ¢ = 1,..., M.
Then the expected number of iterations until absorption v, can be found by solving the system
of equations

v=1T-Q) e

where () consists of the first (M —1) rows and (M —1) columns of S, I denotes an (M —1)x(M—1)
identity matrix and e is an M — 1 vector of ones. The variance of the number of iterations until
absorption is also obtainable from the fundamental matrix (I — Q)~! (see [3] page 49).

Special Cases

The previous section provided the expression for the expected number of iterations until
convergence for a combination of PAS and PRS with an arbitrary distribution, and general
acceptance probability. We now turn to two special cases. Both cases assume a uniform distri-
bution, with 7; = 1/M and p; = i/M. The first case never accepts a non-improving point, while
the second case allows non-improving points to be accepted according to a probability similar
to that used in simulated annealing.

Uniform distribution and only improving points accepted:

We now consider the special case where we only accept improving points, and therefore
t;; = 1 if the point is improving, ¢ > j, and 0 otherwise. This assumption coupled with uniform
sampling leads to a simplified transition matrix. This allows us to derive an analytical expression
for the expected number of iterations, and provide some simple bounds. The results are stated
below without proofs.

Theorem 1 The expected number of iterations to converge to the global optimum starting in
state ypr 4
M = 1
M -1 le (M —1—35)(M—j(1-p)

Corollary 1 The expected number of iterations to converge to the global optimum starting in
state yur is bounded above by

qM

<l4 —
U VP

(1 +log(M —1)) (4)
where ¢ = 1/p.
Theorem 1 gives the exact number of iterations required to solve the global optimization

problem from the worst state in terms of p and M. An upper bound on the number of iterations
required to solve the global optimization problem is stated in Corollary 1.
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PAS and PRS are two extreme algorithms. PAS is the best possible algorithm we could hope
to have and PRS is an inefficient “blind” algorithm. An algorithm that is a mixture of these two
would have a complexity somewhere in between. The expression in Theorem 1 agrees with the
expression given in [2] when b(y) is chosen to reflect the combination of PAS and PRS, which is
done by choosing b(y) = (1—-p)pj—1 —i—p(p;—;l). Figure 1 shows the expected number of iterations,
plotted against the number of states for various values of p. When p = 0.0 we have PRS, and
when p = 1.0 we have PAS. From the figure we can see how the expected number of iterations
required to converge to the global optimum changes as the probability we sample according to
PAS changes. It is interesting to see that the expected number of iterations changes slowly as
p changes. This shows that one needs only a small probability of sampling in the improving
region in order to dramatically improve performance. Also there is a diminishing return as p
exceeds 0.5 and gets closer to 1. Many practical algorithms have some probability of sampling
in the improving region, which is analogous to sampling according to PAS. We hope that this
analysis will be helpful in understanding why many such algorithms have good performance.

In [6] it is proven that the complexity of PAS is linear in dimension, and an analogous
complexity result for finite PAS is developed in [5] on an m-dimensional lattice {1, ..., k}™ with
distinct objective function values. The domain for the lattice has M = k™ number of states.
The following corollary give an upper bound on the expected number of iterations to solve the
lattice optimization problem with the combination of PAS and PRS, and proves that the number
of iterations to solve the global optimization problem is proportional to the dimension of the
problem m by a constant 1/p.

Corollary 2 For an m-dimensional lattice {1,... k}™ with distinct objective function values,
the expected number of iterations to converge to the global optimum is bounded above by

vm < 1+ (1/p) + (m/p) logk. ()

Uniform distribution and accept non-improving points:

The second special case again assumes a uniform sampling distribution and also allows a
non-improving point to be accepted. We introduce the acceptance probability ¢;; as follows:

P e~U=d/T §f < j not improving
Y1 if ¢+>7 improving

where the constant 7' denotes the temperature as in a standard acceptance probability for
simulated annealing [1]. The transition matrix for the Markov chain analysis simplifies in this
case, and we numerically solve for the expected number of iterations until convergence.

In figure 2, the expected number of iterations until absorption is graphed for fixed tempera-
ture values and p = 0.25. The graph illustrates how the probability of accepting a non-improving
point compares to the ideal PAS situation. It is interesting that when T is very close to zero,
then this special case is essentially the same as the previous special case because it is never
accepting a non-improving point. And as T grows without bound, the complexity will also grow
dramatically as compared with the ideal of PAS. Our research is continuing to explore the effects
of temperature on the complexity of this type of random search algorithm. To bridge the gap
to analyze more realistic algorithms, we are generalizing the framework to modify the sampling
distribution, 7 as a function of temperature and objective function value.

Summary/Conclusions

We have presented a Markov chain analysis for a random search algorithm over finite global
optimization problems. The random search algorithm is a combination of PAS and PRS with
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a probability of accepting a non-improving point that is motivated by simulated annealing.
Two special cases are examined, which provide some insight into the behaviour of this type of
algorithm.
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Figure 1: Expected number of iterations to converge to the global optimum, where p is the
probability of picking a point according to PAS.
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Figure 2: Expected number of iterations to converge to the global optimum using p=0.25 and
varying the temperature 7.
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Global optimization and visualisation of multidimensional data

Antanas Zilinskas

Multidimensional scaling in Fuclidean space means fitting distances to given dissimilarities by
weighted least squares. The corresponding objective function called STRESS is generally non-
differentiable and has many local minima. On the other hand STRESS is defined by a rather
simple analytical formula as well as the gradient of STRESS (where it exists). We start with the
general discussion on the possibilities of minimization of STRESS by various global optimization
techniques. The conclusion: global technique should include a local descent subalgorithm. It is
proved that local descent trajectories never cross the subsets of nondiferentiability of STRESS.
Therefore, for local search it is reasonable to choose a gradient based method. A local mini-
mization method is proposed taking into account the specific features of the constraints to the
local subproblem. The global algorithm controlling the local searches is a version of evolution
strategy. The pros and cons of two- and three-dimensional scaling are discussed. The use of
stereoscopic techniques to visualize the results of three dimensional scaling is demonstrated.
There is twofold relations between scaling and global optimization. We have discussed the ap-
plication of global optimization in constructing of scaling methods. But two/three dimensional
scaling is important to visualization of the global search as well.
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The Graph Partitioning Problem and the Nodal Properties of the
Eigenvectors of the Laplacian

Patrizio Cintioli, Pierluigi Maponi, Donatella, Ponziani and Francesco Zirilli

In recent years there has been a great deal of interest in using methods and results of continuous
mathematics in discrete mathematics. The work presented here belongs to this set of ideas. We
consider the Graph Partitioning problem and its formulation as a (0,1) constrained quadratic
programming problem. It is well known that estimates on the Graph Partitioning problem can
be obtained from the knowledge of the eigenvalues of the laplacian associated to the graph.
We deal with the problem of computing these eigenvalues. First of all we generalize to the
graph contest some properties that hold for the eigenvalue problem associated to the classical
laplacian on a bounded domain of IR" with Neumann boundary conditions. These properties
include some monotonicity properties of the eigenvalues and some “nodal properties” of the
eigenvectors. Using these properties some special techniques to compute the eigenvalues of the
laplacian associated to the graph are proposed and tested on a significant set of test problems.
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Additional information

E-mail A modest telnet facility will be built for the participants. This will allow to make
character (i.e. not graphical or x-terminal) telnet connections to their home machines. In
this way, they will be able to read their new e-mails, and to answer them. You can use
character oriented mailer programs (such as mail, elm or pine). The connection will be
open after the sections (16:30 — 20:00), in this way the workshop will not be disturbed.

thermal bath The hotel has its own indoor thermal bath that is available for the guests free
of charge (7:00 — 20:00). Its temperature is about 32 centigrade.

sauna There is also a sauna available in the hotel, it costs 250 HUF (about 2 USD).

swimming There is a 4-pool indoor swimming facility in the neighbourhood (100 meters) of
the hotel.

phone Each room of the hotel is equipped with a phone. You can use it also for distance calls.
The costs of the calls are not covered by the participation fee (neither other services like
laundry or mini bar in the rooms)— you must pay these services when you leave the hotel.

public transportation The city center is in walking distance (about 1.5 km) to the hotel. The
old bridge is being repaired, yet open for pedestrians and for public transportation. To
use the buses, trolleys or trams you can buy a ticket before the travel (36 HUF, about 0.3
USD each), and you must punch it on the bus. You can also buy ticket from the driver
for a larger price (50 HUF, about 0.4 USD).

taxi The best is to ask the at the reception desk for a taxi. A trip within Szeged should not
cost more than 600 HUF (5 USD).

Distribution of the participants:

Australia
Austria

Canada
Denmark
Germany

Greece

Hungary 1
Ttaly

Jordan
Lithuania
Macedonia,

The Netherlands
New Zeeland
Russia
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USA
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Figure 1: Impact parameter/error distributions for 10°000 hadronic Z° events (60’000 tracks),
obtained with the old sequential code (JULIA) and the new combinatorial method. The new
method produces a sharper peak about the impact parameter value (bin zero) and flatter tails
in the outlying area
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